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Abstract

In addressing the challenge of Crystal Structure
Prediction (CSP), symmetry-aware deep learn-
ing models, particularly diffusion models, have
been extensively studied, which treat CSP as a
conditional generation task. However, ensuring
permutation, rotation, and periodic translation
equivariance during diffusion process remains in-
completely addressed. In this work, we propose
EquiCSP, a novel equivariant diffusion-based gen-
erative model. We not only address the over-
looked issue of lattice permutation equivariance
in existing models, but also develop a unique nois-
ing algorithm that rigorously maintains periodic
translation equivariance throughout both training
and inference processes. Our experiments indi-
cate that EquiCSP significantly surpasses existing
models in terms of generating accurate structures
and demonstrates faster convergence during the
training process. Code is available at https:
//github.com/EmperorJia/EquiCSP.

1. Introduction
Crystal structure prediction (CSP) seeks the atomic arrange-
ment with the lowest energy for given chemical composi-
tions and conditions (Desiraju, 2002), focusing on finding
the global minimum of the potential energy surface. This
task, while conceptually straightforward, is a significant
challenge in physics, chemistry, and materials science due
to the complexity of the potential energy landscape and the
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exponential increase in possible structures with more atoms
in a unit cell (Oganov et al., 2019).

Traditional CSP methods primarily employ Density Func-
tional Theory (DFT) (Kohn & Sham, 1965) for iterative
energy calculations, integrating optimization algorithms like
genetic algorithm (Oganov & Glass, 2006; Oganov et al.,
2011) and particle swarm optimization (Wang et al., 2010a;
2012) to navigate the energy landscape for stable states.
However, the time-intensive nature of DFT calculations
makes these traditional CSP approaches notably inefficient.

Recent advances have seen a shift towards deep generative
models, which learn distributions directly from datasets of
stable structures (Court et al., 2020; Yang et al., 2021), with
diffusion models, a subset of these models, gaining promi-
nence in crystal generation (Xie et al., 2021; Jiao et al.,
2023). Diffusion models are lauded for their superior inter-
pretability and performance, owing to their inherent physical
explainability. However, developing diffusion models for
CSP involves addressing specific challenges. Physically,
E(3) transformations, including translation, rotation, and
reflection of crystal coordinates, do not change physical
laws, necessitating E(3) invariant sample generation in the
model. Typical diffusion models like denoising diffusion
probabilistic models (DDPMs) (Sohl-Dickstein et al., 2015;
Vignac et al., 2023) and score-based generative models with
stochastic differential equations (SDEs) (Song et al., 2020),
initially used in computer vision, require E(3) equivariance
when adapted to molecular graph domains (Luo et al., 2021),
and for crystals, additional consideration of periodic invari-
ance is needed (Jiao et al., 2023).

In this study, we introduce EquiCSP, an equivariant1 diffu-
sion method to address CSP. We track the impact of lattice
permutation in crystals on diffusion models used for CSP
and propose corresponding solutions. EquiCSP entails that
during generation and training, any permutation of lattice
parameters results in a corresponding equivariant transfor-
mation of the atomic fractional coordinates. Furthermore,
we propose a specialized diffusion noising algorithm in

1This paper mainly focuses on lattice permutation equivariance
and periodic translation equivariance, which are unique to crys-
tallographic data. Traditional rotation equivariance is addressed
using invariant representations.
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SDEs, meticulously designed to preserve periodic trans-
lation equivariance consistently during both training and
inference stages.

To summarize, our contributions in this work are as follows:

1. To our knowledge, we are the first to address lattice
permutation equivariance in diffusion models, aiming
to address that any permutation of lattice parameters
during training and generation corresponds to an equiv-
alent transformation in atomic fractional coordinates,
achieved through simple and efficient loss functions
rather than encoding the equivariance directly into the
neural networks.

2. In addition, we propose a novel diffusion noising
method, named Periodic CoM-free Noising, to make
the widely used Score-Matching method in SDEs
achieving the periodic translation equivariance of crys-
tal generation.

3. We validate EquiCSP’s effectiveness in CSP tasks,
demonstrating its superior performance over existing
learning methods (e.g. CDVAE (Xie et al., 2021) and
DiffCSP (Jiao et al., 2023)). Furthermore, we enhance
EquiCSP for ab initio generation, proving its enhanced
performance comparing to similar methods.

2. Related Works
Crystal Structure Prediction. Traditional computational
methods, such as DFT combined with optimization algo-
rithms, are used to search for local minima on the potential
energy surface (Pickard & Needs, 2011; Yamashita et al.,
2018; Wang et al., 2010b; Zhang et al., 2017). Despite their
accuracy, these methods are computationally demanding.
Recently, machine learning has emerged as an alternative,
using crystal databases to predict energy more efficiently
than DFT (Jacobsen et al., 2018; Podryabinkin et al., 2019;
Cheng et al., 2022). Another approach employs deep gener-
ative models to directly learn stable structures, representing
crystals with 3D voxels (Court et al., 2020; Hoffmann et al.,
2019; Noh et al., 2019), distance matrices (Yang et al., 2021;
Hu et al., 2020; 2021), or 3D coordinates (Nouira et al.,
2018; Kim et al., 2020; Ren et al., 2021). However, these
methods often overlook the complete symmetries in crystal
structures.

Equivariant Graph Neural Networks. E(3) symmetric, ge-
ometrically equivariant Graph Neural Networks (GNNs) are
effective for representing physical objects and have excelled
in modeling 3D structures (Schütt et al., 2018; Thomas et al.,
2018; Fuchs et al., 2020; Satorras et al., 2021; Thölke &
De Fabritiis, 2021), as evidenced in applications like the
open catalyst project (Chanussot et al., 2021; Tran et al.,
2022). To accommodate periodic materials, multi-graph

edge construction (Xie & Grossman, 2018; Yan et al., 2022)
and Fourier transforms to fractional coordinates (Jiao et al.,
2023) were proposed to represent periodicity. In our work,
we utilize Fourier transforms to achieve periodic transition
invariance and constrain the additional lattice permutation
invariance.

Diffusion Generative Models. Rooted in non-equilibrium
thermodynamics theory (Sohl-Dickstein et al., 2015), diffu-
sion models establish a link between data and prior distri-
butions through forward and backward Markov chains (Ho
et al., 2020), achieving significant advancements in image
generation (Rombach et al., 2021; Ramesh et al., 2022).
When integrated with equivariant GNNs, these models
efficiently generate samples from invariant distributions,
proving effective in tasks such as conformation genera-
tion (Xu et al., 2021; Shi et al., 2021), ab initio molecule de-
sign (Hoogeboom et al., 2022), and protein generation (Luo
et al., 2022). DiffCSP distinguishes itself by simultaneously
generating lattice and atom coordinates for crystals, utiliz-
ing a periodic-E(3)-equivariant denoising model (Jiao et al.,
2023). However, it has yet to fully realize E(3) equivari-
ance based on periodic graph symmetry during its diffusion
training process.

3. Preliminaries
Crystal structures. A 3D crystal structure is depicted as an
endlessly repeating pattern of atoms in three-dimensional
space, with the basic repeating entity known as a ‘unit cell’.
This unit cell is defined by a triplet M = (A,X,L),
where A = [a1,a2, . . . ,an] ∈ Rh×n symbolizes the
one-hot encoded representations of atom types, X =
[x1,x2, . . . ,xn] ∈ R3×n comprises the atoms’ Cartesian
coordinates and L = [l1, l2, l3] ∈ R3×3 represents the lat-
tice matrix that indicates the repeating parameters of the
unit cell. We represent periodic crystal structure as:

{(a′
i,x

′
i)|a′

i = ai,x
′
i = xi +Lk, ∀k ∈ Z3×1}, (1)

where the j-th element of the integral vector k denotes the
integral 3D translation in units of lj .

Fractional coordinate system. In crystallography, the frac-
tional coordinate system is often used to represent the peri-
odic nature of crystal structures (Nouira et al., 2018; Kim
et al., 2020; Ren et al., 2021; Hofmann & Apostolakis,
2003). This system employs lattice vectors (l1, l2, l3) as co-
ordinate bases, distinguishing it from the Cartesian system
with its three orthogonal bases. A point in the fractional co-
ordinate system, denoted by the vector f = [f1, f2, f3]

⊤ ∈
[0, 1)3, corresponds to a Cartesian vector x =

∑3
i=1 fili.

All atomic coordinates in a cell compose F ∈ [0, 1)3×n.
This representation inherently maintains invariance to rota-
tional and reflective transformations of the crystal structure.
As described in (Mardia et al., 2000), periodic data on each
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lattice base can be visualized as points on a circle, measured
by angle value as depicted in Figure 1 (e).

Lattice parameters In crystallography, the lattice matrix
L can be converted to an invariant representations with
three lattice lengths l = [l1, l2, l3]

⊤, where li = ∥li∥2, and
three lattice angles ϕ = [ϕ23, ϕ13, ϕ12], where ϕij is the
angle between li and lj (Hofmann & Apostolakis, 2003;
Luo et al., 2023). This paper employs lattice parameters
C = [l,ϕ] ∈ R3×2 instead of lattice matrix and represents
the crystal by M = (A,F ,C).

Task definition. The CSP task entails predicting the lattice
parameters C and the fractional matrix F for each unit cell,
based on its chemical composition A. Specifically, this
involves learning the conditional distribution p(C,F | A).

4. Methods
This section initially outlines the symmetries inherent in
crystal geometry, subsequently provides an overview of
EquiCSP, and then introduces the joint equivariant diffusion
process applied to C and F , followed by the architecture of
the denoising model.

4.1. Symmetries of Crystal Structure Distribution

The primary challenge of CSP lies in capturing the distri-
bution symmetries of crystal structures. To tackle this, we
define four key symmetries as representations within the dis-
tribution p(C,F | A): composition permutation invariance,
O(3) invariance, periodic translation invariance and lattice
permutation invariance. Detailed definitions are provided as
follows.

Definition 4.1 (Composition Permutation Invariance). For
any permutation P ∈ Sn, p(C,F | A) = p(C,FP |
AP ), i.e., changing the order of atoms will not change
the distribution, where Sn represents the set of permutation
matrices with dimensions n× n.

Definition 4.2 (O(3) Invariance). Given an transforma-
tion matrix Q ∈ R3×3 where Q is any O(3) group ele-
ment operated on L, the condition p(C(QL),F | A) =
p(C(L),F | A) holds, indicating that the distribution re-
mains invariant under any rotation or reflection applied to
L, where C(·) is the function that translates a lattice matrix
to lattice parameters.

Definition 4.3 (Lattice Permutation Invariance). For any
permutation P ∈ S3, p(C,F | A) = p(PC,PF | A),
i.e., changing the lattice base order will not change the
distribution.

Definition 4.4 (Periodic Translation Invariance). For any
translation t ∈ R3×1, p(C, w(F + t1⊤) | A) = p(C,F |
A), where the function w(F ) = F − ⌊F ⌋ ∈ [0, 1)3×n re-
turns the fractional part of each element in F , and 1 ∈ R3×1

Figure 1. (a)→(b): The lattice permutation of the lattice bases
l1, l2. (c)→(d): The periodic translation of the fractional coor-
dinates f1,f2. (e)→(f): The schematic diagram of the period
translation represented as points on a circle. Both cases do not
change the crystal structure. Here, the 2D crystal is used for better
illustration.

is a vector with all elements set to one. It explains that any
periodic translation of F will not change the distribution.

Composition permutation invariance in generation is ef-
fectively achieved by GNNs as the foundational archi-
tecture (Kipf & Welling, 2016). According to previous
work (Jiao et al., 2023), employing the fractional system
handles the O(3) invariance of crystals by ensuring O(3)
invariance with respect to orthogonal transformations on
the lattice matrix. Previous work (Luo et al., 2023) further
address the O(3) invariance of the lattice matrix by substi-
tuting it with lattice parameters C, as C(QL) = C(L)
always holds for arbitrary Q ∈ O(3). Consequently, our
representation of crystals using both the fractional system
and lattice parameters naturally satisfies O(3) invariance.
Thus, we mainly focus on the lattice permutation and peri-
odic translation invarance as shown in Figure 1. For better
demonstration, we utilize representation method in (Mardia
et al., 2000) to show the periodic translation invariance. For
details on the representation of lattice bases as circles in
Figure 1 (e) and (f), see Appendix B.1.

Comparing with other symmetry awareness generation
method. We notice that previous approaches (Xie et al.,
2021; Luo et al., 2023; Jiao et al., 2023) ignore the lat-
tice permutation invariance, both for CSP task and for ab
initio generation task. The ab initio generation method
SymMat (Luo et al., 2023) directly generates lattice param-
eters C using a variational autoencoders from rand noise ϵ.
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Figure 2. Overview of training process in EquiCSP.

However, it doesn’t guarantee that the marginal distribution
satisfies p(C) = p(PC) for any P ∈ S3, which means that
it doesn’t guarantee the lattice permutation invariance. Dif-
fCSP (Jiao et al., 2023) generates lattice matrix by diffusion
model, however, as discussed in Section 4.3, its diffusion
method lacks lattice permutation equivariance, impacting
the final lattice distribution not invariant. Our method is the
first to realize this symmetry of crystal structure, and we
will ablate the benefit in Section 5.2.

4.2. An Overview of EquiCSP

In our work, we implement EquiCSP by concurrently dif-
fusing the C and F within the framework of DiffCSP (Jiao
et al., 2023). For a given atomic composition A, the in-
termediate states of C and F at any time step t (where
0 ≤ t ≤ T ) are represented by Mt. EquiCSP orchestrates
two distinct Markov processes: a forward diffusion that
incrementally introduces noise into M0, and a backward
generation process that strategically samples from the prior
distribution MT to reconstruct the initial data M0. The
implementation specifics are summarized in Algorithms 1
and 2.

In light of the symmetry discussed in Section 4.1, the dis-
tribution restored from MT must meet invariance. This
requirement is achieved if the prior distribution p(MT ) ex-
hibits invariance and the Markov transition p(Mt−1|Mt)
is equivariant, as established in previous literature (Xu et al.,
2021). An equivariant transition implies p(g · Mt−1|g ·
Mt) = p(Mt−1|Mt) for any transformation g acting on
M, as defined in Definitions 4.3-4.4. Further explanations
on how diffusion processes are applied to C and F are

detailed subsequently.

4.3. Diffusion on Lattice Parameters

Given that C is a continuous variable with lattice lengths
l > 0 and lattice angles ϕ ∈ (0, π)3, we exploit Denoising
Diffusion Probabilistic Model (DDPM) (Ho et al., 2020)
with prepossessing of C to accomplish the generation. As
detailed in Appendix B.2, such preprocessing projects the
definition domain of C onto R3×2, and hereinafter the nota-
tion C refers to the projected lattice parameters.

4.3.1. GENERATION

We define the generation process that progressively diffuses
the Normal prior p(CT ) towards stable crystal lattice distri-
bution p(C0) by:

p(Ct−1|Mt) = N (Ct−1|µ(Mt), σ
2(Mt)I), (2)

where µ(Mt) =
1√
αt

(
Ct− βt√

1−ᾱt
ϵ̂L(Mt, t)

)
, σ2(Mt)=

βt
1−ᾱt−1

1−ᾱt
. The denoising term ϵ̂L(Mt, t) ∈ R3×2 is pre-

dicted by the neural network model ϕ(Ct,Ft,A, t) detailed
in Section 4.5.

As the prior distribution p(CT ) = N (0, I) is already lattice
permutation invariant, we require the generation process
in Eq. (2) to be lattice permutation equivariant, which is
formally stated below, and give a proof in Appendix A.1.

Proposition 4.5. The marginal distribution p(C0)
by Eq. (2) is lattice permutation invariant if
ϵ̂L(Mt, t) is lattice permutation equivariant, namely
ϵ̂L(PCt,PFt,A, t) = P ϵ̂L(Ct,Ft,A, t),∀P ∈ S3.
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4.3.2. TRAINING

We define the forward process as one that gradually dif-
fuses C0 towards a Normal prior, represented by p(CT ) =
N (0, I). This process is defined through the conditional
probability q(Ct|Ct−1), which is formulated based on the
initial distribution:

q(Ct|C0) = N
(
Ct|

√
ᾱtC0, (1− ᾱt)I

)
, (3)

where βt ∈ (0, 1) controls the variance, and ᾱt =∏t
s=1 αt =

∏t
s=1(1 − βt) is valued in accordance to the

cosine scheduler (Nichol & Dhariwal, 2021).

To train the denoising model ϕ, we initiate by sampling
ϵL ∼ N (0, I) and reparameterize Ct =

√
ᾱtC0 +√

1− ᾱtϵL based on Eq. (3). The training goal is then
established by minimizing the ℓ2 loss between ϵL and its
estimate ϵ̂L:

LC = EϵL∼N (0,I),t∼U(1,T )[∥ϵL − ϵ̂L(Mt, t)∥22]. (4)

To satisfy proposition 4.5, we introduce an additional loss
value as a penalty term during the training process, detailed
as follows:

LpC = E[∥ϵ̂L(PCt,PFt,A, t)− P ϵ̂L(Ct,Ft,A, t)∥22],
(5)

where the expectation is taken with respect t ∼ U(1, T )
and P ∼ U(S3). After sufficient training, the generation
process will satisfy lattice permutation invariance as stated
in Proposition 4.5. Our ablation experiments demonstrate
the significant performance of this method, and the learning
curve in Appendix D shows that the difficulty of learning is
greatly reduced compared with DiffCSP (Jiao et al., 2023).

Comparing with the Method of Encoding the Equivari-
ance to Denoising Model. We discover that the Frame Av-
erage (FA) method (Puny et al., 2021), employing a unified,
hard-constraint approach for equivariant neural networks,
also satisfies Proposition 4.5. We provide implementation
details in Appendix B.3. However, our experimental find-
ings in Section 5.2 reveal that the computational burden of
finite group operations required by FA renders it impracti-
cal for iterative models like diffusion models. In contrast,
our method significantly enhances computational efficiency
and accuracy by simply incorporating additional loss values
during training.

4.4. Diffusion on Fractional Coordinates

Combining Score-Matching (SM) based framework with
Wrapped Normal (WN) distribution (SMWN), as proposed
in (Jiao et al., 2023), for generating fractional coordinates
proves advantageous due to the periodicity and [0,1) con-
straint of these coordinates. Based on SMWN method, we

propose an innovative noising algorithm to meet periodic
translation equivariance, detailed as follows:

4.4.1. GENERATION

In the generation process, we first initialize FT from the
uniform distribution U(0, 1), which is periodic translation
invariant. With the denoising term ϵ̂F (Mt, t) predicted
by ϕ(Ct,Ft,A, t) to model the data score ∇Ft

log p(Ft),
we combine the ancestral predictor with the Langevin cor-
rector used in DiffCSP (Jiao et al., 2023) to sample F0.
Specifically, this method can be simply viewed as pro-
gressively sampling from the wrapped normal distribution
p(Ft−1|Mt) at each time step t, where the mean of the
wrapped normal is a function of ϵ̂F , with the detailed for-
mula provided in Eq. (29) of the Appendix A.2. To ensure
that p(Ft−1|Mt) satisfies periodic translation equivariance,
in accordance with (Jiao et al., 2023), ϵ̂F must meet the
periodic translation invariance:

ϵ̂F (Ct,Ft,A, t) = ϵ̂F (Ct, w(Ft + t1⊤),A, t), (6)

where ∀t ∈ R3 and the truncation function w(·) is already
defined in Definition 4.4. We will ensure that the model
output conforms to this property in Section 4.5 to guarantee
the equivariance of generation.

Similarly, the data score ∇Ft
log p(Ft) must adhere to peri-

odic translation invariance. The accurate estimation of this
score, set as the training target for ϵ̂F (Mt, t), represents
the primary challenge we will tackle in Section 4.4.2.

In addition, we require the generation process to be lattice
permutation equivariant, which is formally stated below,
provided a proof in Appendix A.2:
Proposition 4.6. The marginal distribution p(F0) is lat-
tice permutation invariant if ϵ̂F (Mt, t) is lattice per-
mutation equivariant, namely ϵ̂F (PCt,PFt,A, t) =
P ϵ̂F (Ct,Ft,A, t),∀P ∈ S3.

4.4.2. TRAINING

During the forward process, SMWN samples each column
of ϵ ∈ R3×n from wrapped normal distribution Nw(0, σtI),
and then acquire Ft = w(F0 + ϵ), where Nw(0, σ

2
t I) de-

notes the probability density function(PDF) of WN distri-
bution with mean 0, variance σ2

t and period 1, σt is the
noise magnitude level and σ1 < σ2 < . . . σT . According
to the feature of WN, if σT is sufficiently large, p(FT ) ap-
proaches a uniform distribution U(0, 1) which is desirable
for generation. Our training target is:

ϵ̂F (Mt, t) → ∇Ft
log q(Ft). (7)

The pivotal challenge is how to accurately obtain the score
matrix ∇Ft

log q(Ft) to maintain the periodic translation
invariance, a feature not guaranteed by the conventional dif-
fusion framework. For instance, DiffCSP (Jiao et al., 2023)
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employs the ordinary denoising score matching (Vincent,
2011) training objective to estimate the score:

LF = EF0∼q(F0),Ft∼q(Ft|F0),t∼U(1,T )[
λt∥∇Ft

log q(Ft|F0)− S̃∥22
]
,

(8)

where S̃ is the estimate of ∇Ft log q(Ft) and λt is the
weight of loss. The core issue arises from the dataset dis-
tribution q(F0), which typically does not exhibit the same
periodic translation invariance as the ground truth distribu-
tion p(F0) because the dataset usually does not contain all
the samples w(F0+ t1⊤). Consequently, S̃ cannot be guar-
anteed to be periodic translation invariant. For illustration,
consider a dataset with only one sample F̃0, the estimate of
score will be:

S̃ = ∇Ft
log q(Ft|F0 = F̃0)

= ∇Ft
logNw(Ft|F̃0, σ

2
t I)

= ∇ϵ logNw(ϵ|0, σ2
t I),

(9)

and obviously

∇ϵ logNw(ϵ|0, σ2
t I)

̸= ∇w(ϵ+t1⊤) logNw

(
w(ϵ+ t1⊤)|0, σ2

t I
)
,

(10)

which means the predicted score not invariant. Numerous
studies (Luo et al., 2023; 2021; Niu et al., 2020; Jin et al.,
2023) have also indicated that for ensuring equivariance, the
score matrix should be determined more cautiously.

A potential solution to this issue is to augment the dataset
using periodic translation operations to better align q(F0)
with the invariant distribution p(F0). However, this ap-
proach demands a significant amount of training time due
to the periodic translation group being a Lie group with
infinitely many elements.

We propose ‘Periodic CoM-free Noising’, a new noising
method that ensures the noise added to q(F0) results in
periodic translation invariant score as closely aligned as
possible to the score achieved by the original noise added
to p(F0). The method is based on the following state-
ments: ∇Ft

log q(Ft) is periodic translation invariant if
∇Ft log q(Ft|F0) is periodic translation invariant:

∇Ft
log q(Ft|F0)

= ∇w(Ft+t1⊤) log q(w(Ft + t1⊤)|F0),
(11)

where ∀t ∈ R3.

The noising method is equivalent to operating on
∇Ft

log q(Ft|F0). Therefore, we first focus on achieving
∇Ft

log q(Ft|F0) that meets the periodic translation invari-
ance, followed by adjusting the score numerically for more
accurate training results.

Periodic CoM-free Noising. In order to satisfy Eq.(11), we
adopt a parameterization scheme for ∇Ft log q(Ft|F0) as
follows:

∇Ft
log q(Ft|F0) = ∇F̄ logNw(F̄ |F0, σ

2
t I)

= ∇ϵ̄ logNw(ϵ̄|0, σ2
t I),

(12)

where

F̄ = w(F0 + ϵ̄), (13)

ϵ̄ = m(ϵ) = m(w(ϵ+ t1⊤)),∀t ∈ R3. (14)

Here, we introduce a noise conversion function m(·) to
map all the fractional coordinate matrices that are periodic
translation equivalent with Ft to a unique matrix F̄ . This
addresses the requirement of periodic translation invariance
of score. Consequently, we can employ the ordinary score
calculation method, specifically the score of anisotropic
WN here, to compute ∇F̄ log q(F̄ |F0) as a substitute for
the required score.

The key of Periodic CoM-free Noising is to design the
specific function m : w(ϵ + t1⊤) → ϵ̄. We note that
the CoM-free systems in molecular conformation genera-
tion (Xu et al., 2022) solve similar problem in translation
invariance. However, the Center of Mass(CoM) of periodic
data cannot be simple computed as mean value of data (Bai
& Breen, 2008). Similar to the idea of CoM-free systems,
we utilize the concept of “mean angle” from (Mardia et al.,
2000) to construct m(·) as a periodic CoM-free function.
Specifically, we denote ϵ = [ϵ1, ϵ2, . . . , ϵn] and fomulate:

m(ϵ) = w
(
ϵ− atan2 (ȳ(ϵ), x̄(ϵ))

2π
1⊤),

ȳ(ϵ) =
1

n

n∑
i=0

sin (2πϵi),

x̄(ϵ) =
1

n

n∑
j=0

cos (2πϵi).

(15)

Intuitively, as shown in Figure 3, the function transform pe-
riodic data of each lattice axis to angle data on a circle, and
then subtract all the data by the periodic CoM. Consequently,
it maps all equivalent periodic data to the same representa-
tion, and addresses the periodic translation invariance. We
provide a proof in Appendix A.3.

After implementing the algorithm, we substituted the
∇Ft

log q(Ft|F0) in the denoising score matching training
objective, as defined in Eq.(8), with Eq.(12). This change
led to significant performance improvements in our abla-
tion study and excellent training convergence demonstrated
in Appendix D. However, with F̄ = [f̄1, f̄2, . . . , f̄n] and
Ft = [f1,f2, . . . ,fn], we identified two points that still re-
quire enhancement: 1. The marginal distribution2 q(f̄i|F0)

2We focus on evaluating the score of marginal distribution
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Figure 3. The illustration of periodic translation invariance with
periodic CoM-free function.

does not simply satisfy Nw(0, σ
2
t I), so it is necessary to

re-evaluate its distribution to recalculate ∇F̄ log q(F̄ |F0).
2. The generation process is designed for non periodic
CoM-free system, while our method now simply use peri-
odic CoM-free score ∇F̄ log q(F̄ ) to replace corresponding
∇Ft log q(Ft). A more rigorous implementation of proba-
bilistic modeling is warranted to establish a refined connec-
tion between the score. We provide solutions below.

Von Mises Simulation. We denote ϵ̄ = [ϵ̄1, ϵ̄2, . . . , ϵ̄n]. To
evaluate the probability density function (PDF) q(f̄i|F0),
we recognize that since F̄ = w(F0 + ϵ̄), the task can be re-
framed as estimating the marginal PDF of ϵ̄ = m(ϵ), specif-
ically p(ϵ̄i), where ϵ ∼ Nw(0, σ

2
t I). However, directly ob-

taining the formula of p(ϵ̄i) is challenging due to the com-
plexity of m(·) and WN. For simplicity, we utilize the Von
Mises distribution (Gatto & Jammalamadaka, 2007) which
is commonly used in dealing with circular distribution prob-
lems to simulate the p(ϵ̄i), and use the Monte Carlo method
to obtain its parameters. More details is list in Appendix C.1.
Consequently, ∇F̄ log q(F̄ |F0) = [c̄1, c̄2 . . . c̄n] can be ex-
pressed using the formula of score of Von Mises:

c̄i = ∇f̄i
log q(f̄i|F0) = ∇ϵ̄i log p(ϵ̄i)

= −2π · κ(n, σt) · sin(2πϵ̄i),
(16)

where κ(n, σt) is the parameter of Von Mises distribution
obtained by Monte Carlo method. Consequently, using the
revised ∇F̄ log q(F̄ |F0) allows for a more accurate estima-
tion of the invariant score ∇F̄ log q(F̄ ) = [s̄1, s̄2, . . . s̄n].

Probabilistic Modeling Process. For the second point,
we propose a novel probabilistic modeling process inspired
by (Luo et al., 2023). Denoting the score of non periodic
CoM-free system as ∇Ft

log q(Ft) = [s1, s2 . . . sn], we
consider si as a function of all the corresponding CoM-free
data namely {f̄1, f̄2, . . . , f̄n} aiming to address periodic
translation invariance. From the chain rule of derivatives,
we can approximate the score ∇Ft

log q(Ft) by the score of

instead of the joint distribution to better align with the origin noise
addition techniques employed in SDEs.

CoM-free system namely ∇F̄ log q(F̄ ):

sj =

n∑
i=0

∇f̄i
log q(f̄i) · ∇fj

f̄i,

=

n∑
i=0

s̄i · ∇fj
f̄i.

(17)

We previously established that s̄i is invariant, but ∇fj
f̄i

might destroy the periodic translation invariance. Fortu-
nately, we can first transform ∇fj f̄i to the j-colomn of
∇ϵϵ̄i by their definition, and then strictly prove the follow-
ing statements in Appendix A.4:
Proposition 4.7. ∇ϵϵ̄i = ∇ϵ

(
m(ϵ)[:, i]

)
is periodic

translation invariance, where m(ϵ)[:, i] is the i-th col-
umn of m(ϵ). In other words, ∇ϵ

(
m(ϵ)[:, i]

)
=

∇w(ϵ+t1⊤)

(
m(w(ϵ+ t1⊤))[:, i]

)
. Thus ∇Ft

log q(Ft) by
Eq.(17) is periodic translation invariance.

While m(ϵ̄) = m(ϵ) holds, we can reformulate Eq.(17)
using Proposition 4.7 as:

sj =

n∑
i=0

s̄i · ∇ϵ̄j

(
m(ϵ̄)[:, i]

)
, (18)

where ∇ϵ̄j

(
m(ϵ̄)[:, i]

)
is the j-column of ∇ϵ̄

(
m(ϵ̄)[:

, i]
)
. This indicates that to compute the adjusted score

∇Ft
log q(Ft), an additional invariant parameter ϵ̄ is re-

quired. This parameter can be predicted by the model ϕ.

Put things together. Finally, we consolidate our ap-
proach to construct the training objective to approximate
∇F̄ log q(F̄ ) and the expected ϵ̄:

Ls = EF0∼q(F0),ϵ∼Nw(0,σtI),t∼U(1,T )

[∥∇F̄ log q(F̄ |F0)− sθ(Mt, t)∥22],
(19)

LF = EF0∼q(F0),ϵ∼Nw(0,σtI),t∼U(1,T )

[∥ϵ̄− Fθ(Mt, t)∥22],
(20)

where sθ(Mt, t) and Fθ(Mt, t) are directly predicted by
the model ϕ, and ∇F̄ log q(F̄ |F0) is calculated by Eq.(16),
meanwhile ϵ̄ = m(ϵ). And we can finally derive ϵ̂F in
Section 4.4.1 by replacing ∇F̄ log q(F̄ ) with sθ(Mt, t) and
ϵ̄ with Fθ(Mt, t) in Eq.(18).

In addition, to satisfy Proposition 4.6, we design the permu-
tation loss similar to the method in Section 4.3:

Lps = E[∥sθ(PCt,PFt,A, t)− P sθ(Ct,Ft,A, t)∥22],
(21)

LpF = E[∥Fθ(PCt,PFt,A, t)− PFθ(Ct,Ft,A, t)∥22],
(22)

where the expectation is taken with respect t ∼ U(1, T ) and
P ∼ U(S3).
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Table 1. Results on stable structure prediction task. The results of baseline methods are from Jiao (Jiao et al., 2023)

Perov-5 MP-20 MPTS-52
Match rate↑ RMSE↓ Match rate↑ RMSE↓ Match rate↑ RMSE↓

RS 36.56 0.0886 11.49 0.2822 2.68 0.3444

BO 55.09 0.2037 12.68 0.2816 6.69 0.3444

PSO 21.88 0.0844 4.35 0.1670 1.09 0.2390

P-cG-SchNet 48.22 0.4179 15.39 0.3762 3.67 0.4115

CDVAE 45.31 0.1138 33.90 0.1045 5.34 0.2106

DiffCSP 52.02 0.0760 51.49 0.0631 12.19 0.1786

EquiCSP 52.02 0.0707 57.59 0.0510 14.85 0.1169

4.5. The Architecture of the Denoising Model

In this subsection, we outline the specific design of the de-
noising model ϕ(Mt), focusing on how it computes the
three denoising terms: ϵ̂L, sθ, Fθ. For simplicity, the sub-
script t is omitted in this discussion.

The model begins by integrating the atom em-
beddings fatom(A) with sinusoidal time embed-
dings ftime(t) to generate the initial node features
H = φin(fatom(A), ftime(t)). We then describe the
message passing mechanism from node j to node i in the
l-th layer of the network.

m
(l)
ij = φm(h

(l−1)
i ,h

(l−1)
j ,C, ψFT(fj − fi)) (23)

h
(l)
i = h

(l−1)
i + φh(h

(l−1)
i ,

n∑
j=1

m
(l)
ij ), (24)

where φm and φh are MLPs, and The function ψFT :
(−1, 1)3 → [−1, 1]3×K is Fourier Transformation of the
relative fractional coordinate fj − fi to address periodic
translation invariance according to (Jiao et al., 2023).

After S layers of message passing, we get the graph-level
denoising term as:

ϵ̂L = φL

( 1

n

n∑
i=1

h
(S)
i

)
, (25)

and the node-level denoising terms as

sθ[:, i], Fθ[:, i] = φs(h
(S)
i ), φF (h

(S)
i ) (26)

where φL, φs, φF are MLPs.

5. Experiments
In this section, we evaluate the performance of EquiCSP
on diverse tasks, by showing the capability of generating

high-quality structures of different crystals in Section 5.1.
Ablations in Section 5.2 show the necessity of each designed
component. We further exhibit the capability of EquiCSP in
the ab initio generation task in Appendix E.

5.1. Stable Structure Prediction Results

Datasets. Experiments are carried out on three datasets,
each varying in complexity. The Perov-5 dataset (Castelli
et al., 2012a;b) comprises 18,928 perovskite materials, char-
acterized by their analogous structural configurations. No-
tably, each structure within this dataset features a unit
cell containing 5 atoms. The dataset MP-20 comprises
45,231 stable inorganic materials curated from the Mate-
rial Projects(Jain et al., 2013). This dataset predominantly
includes materials that are experimentally generated and
contain no more than 20 atoms per unit cell. In addition,
MPTS-52 represents a more challenging extension of MP-
20, encompassing 40,476 structures with up to 52 atoms per
cell. These structures are organized based on the earliest
year of publication in the literature. For datasets such as
Perov-5, and MP-20, we adhere to a 60-20-20 split for train-
ing, validation, and testing, respectively, aligning with the
methodology of Jiao et al. (2023). Conversely, for MPTS-52,
we allocate 27,380 entries for training, 5,000 for validation,
and 8,096 for testing, arranged in chronological order.

Baselines. This study contrasts two categories of preceding
research. The initial category adopts a predict-optimize ap-
proach, initially training a property predictor, followed by
employing optimization algorithms for identifying optimal
structures. Following Cheng et al. (2022), we use MEG-
Net (Chen et al., 2019) for formation energy prediction. For
optimization, we select Random Search (RS), Bayesian Op-
timization (BO), and Particle Swarm Optimization (PSO),
each conducted over 5,000 iterations. The second category
revolves around deep generative models. In line with modifi-
cations by Xie et al. (2021), we employ cG-SchNet (Gebauer
et al., 2022), integrating SchNet (Schütt et al., 2018) as its

8
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core and incorporating ground-truth lattice initialization to
encode periodicity, resulting in the P-cG-SchNet model.
Another baseline, CDVAE (Xie et al., 2021), which is a
VAE-based approach for crystal generation, predicts lattice
and initial composition, and then optimizes atom types and
coordinates using annealed Langevin dynamics. Following
the method by (Jiao et al., 2023),we adapt CDVAE for the
CSP task. DiffCSP (Jiao et al., 2023), a diffusion method,
learns stable structure distributions, incorporating transla-
tion, rotation, and periodicity, effectively modeling material
systems.

Evaluation metrics. Adhering to established protocols (Xie
et al., 2021), we assess performance by comparing predicted
candidates against ground-truth structures. For each test set
structure, we generate one samples with identical compo-
sition, considering a match if any sample aligns with the
ground truth under pymatgen’s StructureMatcher class met-
rics (Ong et al., 2013), with ltol=0.3, angle tol=10, stol=0.5.
The Match rate reflects the ratio of matched structures in
the test set. RMSE is computed between the ground truth
and the closest matching candidate, normalized by 3

√
V/n

where V represents the lattice volume, and averaged across
matched structures.

Results. Table 1 presents the following key insights: 1.
Optimization approaches exhibit low Match rates, indicat-
ing the challenging nature of pinpointing optimal structures
within the expansive search space. 2. Our method outper-
forms other generative approaches, which underscore our
method’s effectiveness in incorporating symmetry aware-
ness during training and inference. 3. Across datasets rang-
ing from Perov-5 to MPTS-52, all techniques experience a
drop in performance with increasing atoms per cell. Despite
this, our approach consistently surpasses the performance
of other methods. In particular, our method significantly
improved the RMSE metric, indicating that our equivariant
diffusion approach effectively reduces the redundancy in
the solution space, allowing the model to better learn the
distribution characteristics of crystal data.

5.2. Ablation Studies

In Table 2, we conduct an ablation study on each compo-
nent of EquiCSP, exploring the following aspects. 1. To
verify the necessity of lattice permutation equivariance in
the generation procedure, we conduct experiments by re-
moving the loss component of lattice permutation. Result
indicates that 3.77% decrease in match rate and 6.67% in-
crease in RMSE, both of these performance metrics have
deteriorated. In addition, we also compared the performance
of the Frame Average method, which is also lower than that
of our proposed method. 2. Without applying periodic
CoM-free noising, we observe a significant deterioration
in the performance metrics, with the match rate dropping

from 57.59% to 52.31% and the RMSE increasing from
0.0510 to 0.0594. This substantial change indicates that our
methodology has effectively captured the characteristics of
crystalline periodic translation during training, leading to
a notable impact on the evaluation metrics. 3. To further
investigate the importance of the Von Mises and Probalistic
Model components in periodic translation, we conducted
ablation studies on these two modules separately. Even
without utilizing these two components, we observed per-
formance improvements compared to scenarios where the
noising method m(·) was not used. This indicates that
our approach of modifying the noising method to ensure
the score is periodic translation invariant is valid. And we
observed that removing any or all of the Von Mises and
Probalistic Model components will reduce the performance
of the model in terms of match rate and RMSE, indicating
that both components play a positive role in performance.

Table 2. Ablation studies of EquiCSP model on MP-20.
Performance

Method Match rate↑ RMSE↓

EquiCSP 57.59 0.0510
w/o Lattice Permutation Equivariance

w/o permutation loss 55.42 0.0544

w/ Frame Average 55.92 0.0578
w/o Periodic CoM − free Noising

w/om(·) 52.31 0.0594
w/ Partial Periodic CoM − free Noising

w/o Probalistic Model & w/o Von Mises 54.77 0.0578

w/ Von Mises & w/o Probalistic Model 57.03 0.0537

w/ Probalistic Model & w/o Von Mises 56.32 0.0525

6. Conclusion
In summary, we introduce EquiCSP, a novel equivariant
diffusion generative model for Crystal Structure Prediction
task. We addresses a previously unacknowledged challenge
in current models: lattice permutation equivariance. During
the diffusion phase, when lattice parameters undergo per-
mutation, the fractional coordinates of atoms experience an
equivariant transformation, ensuring consistency and pre-
serving structural integrity. Furthermore, we have devised
an innovative noising algorithm that meticulously preserves
periodic translation equivariance throughout both the infer-
ence and training phases. Experimental results unequivo-
cally demonstrate that EquiCSP outperforms existing CSP
methods, achieving superior in generating high quilty struc-
tures.
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A. Theoretical Analysis.
A.1. Proof of Proposition 4.5

We first introduce the following definition to describe the equivariance and invariance from the perspective of distributions.

Definition A.1. We call a distribution p(x) is G-invariant if for any transformation g in the group G, p(g · x) = p(x), and a
conditional distribution p(x|c) is G-equivariant if p(g · x|g · c) = p(x|c),∀g ∈ G.

We then provide the following lemma to capture the symmetry of the generation process.

Lemma A.2 (Xu et al. (2021)). Consider the generation Markov process p(x0) = p(xT )
∫
p(x0:T−1|xt)dx1:T . If the

prior distribution p(xT ) is G-invariant and the Markov transitions p(xt−1|xt), 0 < t ≤ T are G-equivariant, the marginal
distribution p(x0) is also G-invariant.

The proposition Proposition 4.5 is rewritten and proved as follows.

Proof. Consider the transition probability in Eq. (2), we have

p(Ct−1|Ct,Ft,A) = N (Ct−1|at(Ct − btϵ̂L(Ct,Ft,A, t)), σ
2
t I),

where at = 1√
αt
, bt =

βt√
1−ᾱt

, σ2
t = βt · 1−ᾱt−1

1−ᾱt
for simplicity, and ϵ̂L(Mt, t) is completed as ϵ̂L(Ct,Ft,A, t).

As the denoising term ϵ̂L(Ct,Ft,A, t) is lattice permutation equivariant, we have ϵ̂L(PCt,PFt,A, t) =
P ϵ̂L(Ct,Ft,A, t) for any permutation matrix P ∈ S3,P

⊤P = I .

For the variable C ∼ N (C̄, σ2I), we have PC ∼ N (PC̄,P (σ2I)P⊤) = N (PC̄, σ2I). That is,

N (C|C̄, σ2I) = N (PC|PC̄, σ2I). (27)

For the transition probability p(Ct−1|Ct,Ft,A), we have

p(PCt−1|PCt,PFt,A) = N (PCt−1|at(PCt − btϵ̂L(PCt,PFt,A, t)), σ
2
t I)

= N (PCt−1|at(PCt − btP ϵ̂L(Ct,Ft,A, t)), σ
2
t I) (lattice permutation equivariant ϵ̂L)

= N (PCt−1|P
(
at(Ct − btϵ̂L(Ct,Ft,A, t))

)
, σ2

t I)

= N (Ct−1|at(Ct − btϵ̂L(Ct,Ft,A, t)), σ
2
t I) (Eq. (27))

= p(Ct−1|Ct,Ft,A).

As the transition is lattice permutation equivariant and the prior distribution N (0, I) is lattice permutation invariant, we
prove that the the marginal distribution p(C0) is lattice permutation invariant based on lemma A.2.

A.2. Proof of Proposition 4.6

Let Nw(µ, σ
2I) denote the wrapped normal distribution with mean µ, variance σ2 and period 1. We first provide the

following lemma.

Lemma A.3. If the denoising term ϵ̂F (Ct,Ft,A, t) is lattice permutation equivariant, and the transition probabilty can be
formulated as p(Ft−1|Ct,Ft,A) = Nw(Ft−1|Ft+utϵ̂F (Ct,Ft,A, t), v

2
t I), where ut, vt are functions of t, the transition

is lattice permutation equivariant.

Proof. For the variable F ∼ Nw(F̄ , v
2
t I) and P ∈ S3, we have PF ∼ Nw(PF̄ ,P (v2t I)P

⊤) = Nw(PF̄ , v2t I). That is,

Nw(F |F̄ , v2t I) = Nw(PF |PF̄ , v2t I). (28)
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For the transition probability p(Ft−1|Ct,Ft,A), we have

p(PFt−1|PCt,PFt,A) = Nw(PFt−1|PFt + utϵ̂F (PCt,PFt,A, t), v
2
t I)

= Nw(PFt−1|PFt + utP ϵ̂F (Ct,Ft,A, t), v
2
t I) (lattice permutation equivariant ϵ̂F )

= Nw(PFt−1|P
(
Ft + utϵ̂F (Ct,Ft,A, t)

)
, v2t I)

= Nw(Ft−1|Ft + utϵ̂F (Ct,Ft,A, t), v
2
t I) (Eq. (28))

= p(Ft−1|Ct,Ft,A).

The transition probability of the fractional coordinates during the Predictor-Corrector sampling can be formulated as

p(Ft−1|Ct,Ft,A) = pP (Ft− 1
2
|Ct,Ft,A)pC(Ft−1|Ct−1,Ft− 1

2
,A),

pP (Ft− 1
2
|Ct,Ft,A) = Nw(Ft− 1

2
|Ft + (σ2

t − σ2
t−1)ϵ̂F (Ct,Ft,A, t),

σ2
t−1(σ

2
t − σ2

t−1)

σ2
t

I),

pC(Ft−1|Ct−1,Ft− 1
2
,A) = Nw(Ft− 1

2
|Ft + γ

σt−1

σ1
ϵ̂F (Ct−1,Ft− 1

2
,A, t− 1), 2γ

σt−1

σ1
I),

(29)

where pP , pC are the transitions of the predictor and corrector. According to lemma A.3, both of the transitions are
lattice permutation equivariant. Therefore, the transition p(Ft−1|Ct,Ft,A) is lattice permutation equivariant. As the
prior distribution U(0, 1) is lattice permutation invariant, we finally prove that the marginal distribution p(F0) is lattice
permutation invariant based on lemma A.2.

A.3. Proof of Periodic CoM-free Nosing

We prove the periodic CoM-free function m(ϵ) constructed by Eq (15) is periodic translation invariance as Eq (14) describes
in this section. Since m(·) can be treated as operating on each row of ϵ ∈ R3×n independently, without loss of generality,
we use ϵ = [ϵ1, ϵ2, . . . , ϵn] to represent any row of the origin ϵ for simplification. Then we can rewrite m as:



m(ϵ) = w
(
ϵ− atan2 (ȳ(ϵ), x̄(ϵ))

2π

)
,

ȳ(ϵ) =
1

n

n∑
i=0

sin (2πϵi),

x̄(ϵ) =
1

n

n∑
i=0

cos (2πϵi),

We next prove that m(ϵ) = m(ϵ+ r) for any r ∈ R.

Proof. We can rewrite m(ϵ) = m(ϵ+ r):

w
(
ϵ− atan2 (ȳ(ϵ), x̄(ϵ))

2π

)
= w

(
ϵ+ r − atan2 (ȳ(ϵ+ r), x̄(ϵ+ r))

2π

)
ϵ− atan2 (ȳ(ϵ), x̄(ϵ))

2π
= ϵ+ r − atan2 (ȳ(ϵ+ r), x̄(ϵ+ r))

2π
+ d,

where d denotes any integer. We can redefine that r = w(r) ∈ [0, 1) because ȳ(ϵ + r) = ȳ(ϵ + w(r)) and x̄(ϵ + r) =
x̄(ϵ+ w(r)) by the periodicity of trigonometric functions and we can merge integer part of the origin r into d since d can
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be any integer. Further simplification leads to:

atan2 (ȳ(ϵ), x̄(ϵ))

2π
+ r + d =

atan2 (ȳ(ϵ+ r), x̄(ϵ+ r))

2π
,

atan2 (ȳ(ϵ), x̄(ϵ)) + 2π · r + 2π · d = atan2 (ȳ(ϵ+ r), x̄(ϵ+ r)) ,

tan
(
atan2 (ȳ(ϵ), x̄(ϵ)) + 2π · r + 2π · d

)
=

ȳ(ϵ+ r)

x̄(ϵ+ r)
, (tan(·) for both sides)

tan
(
atan2 (ȳ(ϵ), x̄(ϵ)) + 2π · r) = ȳ(ϵ+ r)

x̄(ϵ+ r)
,

ȳ(ϵ)
x̄(ϵ) + tan(2π · r)

1− ȳ(ϵ)
x̄(ϵ) tan(2π · r)

=
ȳ(ϵ+ r)

x̄(ϵ+ r)
, (tan(·) addition formula)

ȳ(ϵ) cos(2π · r) + x̄(ϵ) sin(2π · r)
x̄(ϵ) cos(2π · r)− ȳ(ϵ) sin(2π · r)

=
ȳ(ϵ+ r)

x̄(ϵ+ r)
,

Then we can prove that:

the right-hand side =
1
n

∑n
i=0 sin (2πϵi + 2π · r)

1
n

∑n
i=0 cos (2πϵi + 2π · r)

,

=
1
n

∑n
i=0

(
sin (2πϵi) cos 2π · r + cos (2πϵi) sin (2π · r)

)
1
n

∑n
i=0

(
cos (2πϵi) cos (2π · r)− sin (2πϵi) sin (2π · r)

) (sin(·) and cos(·) addition formula)

=
ȳ(ϵ) cos(2π · r) + x̄(ϵ) sin(2π · r)
x̄(ϵ) cos(2π · r)− ȳ(ϵ) sin(2π · r)

(30)

= the left-hand side

We finally prove that m(ϵ) is periodic translation invariance.

A.4. Proof of Proposition 4.7

Since ∇ϵ

(
m(ϵ)[:, i]

)
can be treated as operating on each row of ϵ ∈ R3×n independently, without loss of generality, we use

ϵ = [ϵ1, ϵ2, . . . , ϵn] to represent any row of the origin ϵ, and use mi(ϵ) to represent the origin m(ϵ)[:, i] for simplification.
Then we can rewrite m(ϵ)[:, i] as: 

mi(ϵ) = w
(
ϵi −

atan2 (ȳ(ϵ), x̄(ϵ))

2π

)
,

ȳ(ϵ) =
1

n

n∑
j=0

sin (2πϵj),

x̄(ϵ) =
1

n

n∑
j=0

cos (2πϵj),

(31)

Our target is to prove that ∇ϵmi(ϵ) is periodic translation invariance.

We first get the formula of ∇ϵmi(ϵ):

∂mi

∂ϵj
=


− 1

2π

(
x̄

x̄2 + ȳ2
· ∂ȳ
∂ϵj

− ȳ

x̄2 + ȳ2
· ∂x̄
∂ϵj

)
, if i ̸= j,

1− 1

2π

(
x̄

x̄2 + ȳ2
· ∂ȳ
∂ϵj

− ȳ

x̄2 + ȳ2
· ∂x̄
∂ϵj

)
, if i = j,
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where

ȳ = ȳ(ϵ),

x̄ = x̄(ϵ),

∂ȳ

∂ϵj
=

1

n
· 2π cos(2πϵj),

∂x̄

∂ϵj
= − 1

n
· 2π sin(2πϵj).

Substituting these partial derivatives, we obtain:

∂mi

∂ϵj
=


− 1

n(x̄2 + ȳ2)
(x̄ cos(2πϵj) + ȳ sin(2πϵj)) , if i ̸= j,

1− 1

n(x̄2 + ȳ2)
(x̄ cos(2πϵj) + ȳ sin(2πϵj)) , if i = j,

(32)

where ȳ = ȳ(ϵ) and x̄ = x̄(ϵ). Thus, the gradient ∇ϵmi(ϵ) is a vector with its jth component given by Eq.(32).

We next prove ∇ϵmi(ϵ) = ∇ϵ+rmi(ϵ+ r).

Proof. By Eq.(32), we can rewrite ∇ϵmi(ϵ) = ∇ϵ+rmi(ϵ+ r) as:

x̄(ϵ) cos(2πϵj) + ȳ(ϵ) sin(2πϵj)

x̄2(ϵ) + ȳ2(ϵ)
=

x̄(ϵ+ 2πr) cos(2πϵj + 2πr) + ȳ(ϵ+ 2πr) sin(2πϵj + 2πr)

x̄2(ϵ+ 2πr) + ȳ2(ϵ+ 2πr)
(33)

Referring to Eq.(30), we have:

ȳ(ϵ+ r) = ȳ(ϵ) cos(2π · r) + x̄(ϵ) sin(2π · r),
x̄(ϵ+ r) = x̄(ϵ) cos(2π · r)− ȳ(ϵ) sin(2π · r).

The numerator of the right-hand side of Eq.(33) can be expressed as:

x̄(ϵ+ r) cos(2πϵj + 2πr) + ȳ(ϵ+ r) sin(2πϵj + 2πr)

= [x̄(ϵ) cos(2πr)− ȳ(ϵ) sin(2πr)][cos(2πϵj) cos(2πr)− sin(2πϵj) sin(2πr)]

+ [ȳ(ϵ) cos(2πr) + x̄(ϵ) sin(2πr)][sin(2πϵj) cos(2πr) + cos(2πϵj) sin(2πr)]

= x̄(ϵ) cos(2πϵj) + ȳ(ϵ) sin(2πϵj),

where the terms involving r cancel out due to trigonometric identities.

The denominator remains invariant under the transformation due to the Pythagorean identity:

x̄2(ϵ+ r) + ȳ2(ϵ+ r) = [x̄(ϵ) cos(2πr)− ȳ(ϵ) sin(2πr)]2 + [ȳ(ϵ) cos(2πr) + x̄(ϵ) sin(2πr)]2

= x̄2(ϵ) + ȳ2(ϵ).

Therefore, the given statement is proven:

x̄(ϵ) cos(2πϵj) + ȳ(ϵ) sin(2πϵj)

x̄2(ϵ) + ȳ2(ϵ)
=
x̄(ϵ+ r) cos(2πϵj + 2πr) + ȳ(ϵ+ r) sin(2πϵj + 2πr)

x̄2(ϵ+ r) + ȳ2(ϵ+ r)
.

We finally prove that ∇ϵmi(ϵ) is periodic translation invariance, which is equivalent to the statement that ∇ϵ

(
m(ϵ)[:, i]

)
is

periodic translation invariance.
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We next prove that ∇Ft
log q(Ft) is periodic translation invariance. We can derive it as:

∇Ft
log q(Ft) =

n∑
i=0

(
∇f̄i

log q(f̄i)
)
1⊤ ⊙∇Ft

f̄i,

=

n∑
i=0

(
∇f̄i

log q(f̄i)
)
1⊤ ⊙∇ϵ

(
m(ϵ)[:, i]

)
,

Since ∇f̄i
log q(f̄i) is periodic translation invariance, and ∇ϵ

(
m(ϵ)[:, i]

)
is also periodic translation invariance from the

above proof, we can easily get ∇Ft
log q(Ft) is periodic translation invariance.

B. Methods
B.1. Symmetries of crystal structure distribution

We represent the fractional coordinates on a lattice base of crystal as the points on the circle in Figure 1 (e) (f). If the points
rotate alongside the circle, it means that the fractional coordinates on the base undergo a periodic translation. Specifically,
the geometry of 2π · fi alongside the circle is equivalent to 2πw(fi + d). Periodic translation invariance can be explained
that any rotation on the circle does not change geometry of the angle distribution.

B.2. Diffusion on Lattice Parameters

In DDPM models (Ho et al., 2020), lattice parameters typically range from [0,+∞) for lengths and (0, π) for angles.
However, DDPMs diffuse within the (−∞,+∞) interval, potentially generating unreasonable lattice parameters during
diffusion generation. To ensure generated lattice parameters are always reasonable, we apply a logarithmic transformation to
lengths, as the function log maps (0,+∞) to (−∞,+∞), perfectly aligning with our requirement. Thus, we generate log l
instead of l, and convert it back using elog l = l, ensuring lengths l are always positive. For angles, we process them with
tan(ϕ− π/2), which also maps the desired (0, π) to (−∞,+∞). Upon generating values for tan(ϕ− π/2), we retrieve
angles ϕ in the (0, π) range through arctan(tan(ϕ− π/2) + π/2) = ϕ.

B.3. Frame Average Method

Frame Average Method encodes the lattice permutation equivariance to the neural network. On the context of lattice
permutation group, a frame is defined as one specific order of lattice vectors. By applying a permutation matrix to both the
lattice and its fractional coordinates, we are able to transform the structure into an equivalent frame, as we described in
Definition 4.5 of our paper.

Specifically, we adjusted the neural network formula to:

ϕFA(X) =
1

6

∑
P∈S3

P−1ϕ(PX)

where ϕ is the neural network model in Section 4.5, X is a 3 × N matrix comprising three lattices and their respective
fractional coordinates, and P represents the permutation matrices for the lattices.

C. Implementation Details.
C.1. Von Mises Distribution Simulation

The Von Mises distribution(Gatto & Jammalamadaka, 2007), often referred to as the ’circular normal’ distribution, is a
probability distribution used for modeling angular or directional data. It is flexible and efficient to handle periodic and
directional characteristics. Let V(µ, κ) denote the Von Mises distribution with mean direction µ, concentration parameter κ
and period 1. The probability density function (PDF) of V(µ, κ) is defined as:

V(x;µ, κ) = eκ cos(2πx−µ)

I0(κ)
,
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where µ is the mean direction of the distribution, and κ is the concentration parameter, indicating the level of concentration
around the mean direction. The function I0(κ) is the modified Bessel function of order zero, which normalizes the
distribution.

As detailed in Section 4.4.1, we employ Von Mises distribution to simulate p(ϵ̄i) where ϵ̄ = m(ϵ) by Eq.(15), ϵ ∈ R3×n

and ϵ ∼ Nw(0, σ
2
t I) and ϵ̄i is the i-coloumn of ϵ̄. Similar to the analysis in Appendix.A.4, we can simplify the question as:

using V(µ, κ) to simulate p(ϵ̄i) where ϵ̄i = mi(ϵ) by Eq.(31), ϵ = [ϵ1, ϵ2, · · · ϵn], i ∈ U(1, n) and ϵ ∼ Nw(0, σ
2
t I). Since

the mean of the ϵ ∼ Nw(0, σ
2
t I) is 0 and the function mi(ϵ) intuitively moves the elements of ϵ as a whole closer to 0,

we set the mean direction of V(µ, κ) to 0 empirically. As a result, the key of simulation is to estimate the concentration
parameter κ. We denotes V(0, κ(n, σt)) as the target distribution since κ is relative to the size of ϵ i.e. n and the variance of
Nw(0, σ

2
t I) i.e. σt.

We employ the Monte Carlo method to estimate κ(n, σt). For each specified n and σt, the procedure initiates by generating
samples from ϵ ∼ Nw(0, σ

2
t I), which are then transformed into ϵ̄i following the methodology outlined above. These

transformed points are then used to compute their respective probability values according to V(0, κ(n, σt)), where κ(n, σt)
is initially set to an arbitrary value. The negative log-likelihood of these probabilities serves as the loss function. To refine
the estimation and ascertain the optimal κ(n, σt) value, we utilize the minimize function from the SciPy library, ensuring an
effective and precise optimization tailored to each n and σt configuration.

We have obtained the approximate probability density function for each element of ϵ̄. As each element is considered to be
independently and identically distributed, the calculation of the score for ϵ̄ involves deriving the corresponding score for
each individual element, i.e.∇ϵ̄i logV(ϵ̄i|0, κ(n, σt)). To derive ∇ϵ̄i logV(ϵ̄i|0, κ(n, σt)), we first consider the logarithm
of V(ϵ̄i;µ, κ):

logV(ϵ̄i;µ, κ) = log

(
eκ cos(2πϵ̄i−µ)

I0(κ)

)
= κ cos(2πϵ̄i − µ)− log I0(κ)

Now, taking the gradient with respect to ϵ̄i, we get:

∇ϵ̄i logV(ϵ̄i|0, κ(n, σt)) =
d

dϵ̄i
(κ(n, σt) cos(2πϵ̄i)− log I0(κ(n, σt)))

= −2πκ(n, σt) sin(2πϵ̄i)

(34)

To sum up, we have:

∇ϵ̄i log p(ϵ̄i) ≈ ∇ϵ̄i logV(ϵ̄i|0, κ(n, σt))
= −2πκ(n, σt) sin(2πϵ̄i)

C.2. Probabilistic Modeling Process

We simplify Eq.(18) to improve the efficiency of calculation. Since ∇Ft log q(Ft) can be treated as operating on each row
of ϵ̄ independently, without loss of generality, we use ϵ̄ = [ϵ̄1, ϵ̄2, . . . , ϵ̄n] to represent any row of the origin ϵ̄ and use s
to represent the corresponding row of ∇Ft

log q(Ft) for simplification, while using s̄ = [s̄1, s̄2, . . . , s̄n] to represent the
corresponding row of ∇F̄ log q(F̄ ). Then we have:

s =

n∑
i=0

(
s̄i · ∇ϵ̄mi(ϵ̄)

)
,
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where ∇ϵ̄i log p(ϵ̄i) can be obtained by Eq.(34) and ∇ϵ̄mi(ϵ̄) can be obtained by Eq.(32). Further expanding:

s = s̄1 · [1 + g1, g2, . . . , gn] + s̄2 · [g1, 1 + g2, . . . , gn] + . . .

s̄n · [g1, g2, . . . , 1 + gn],

=

[
s̄1 + g1 ·

( n∑
i=0

s̄i
)
, . . . , s̄n + gn ·

( n∑
i=0

s̄i
)]
,

= s̄+
( n∑
i=0

s̄i
)
· g(ϵ̄),

where 

g(ϵ̄) = [g1, g2, . . . , gn],

= − x̄ cos(2πϵ̄) + ȳ sin(2πϵ̄)

n(x̄2 + ȳ2)

x̄ =
1

n

n∑
j=0

sin (2πϵ̄j),

ȳ =
1

n

n∑
j=0

cos (2πϵ̄j).

Consequently, we have successfully formulated a more parallelization-friendly expression of s. By extrapolating this to the
initial context where ϵ̄ = [ϵ̄1, ϵ̄2, . . . , ϵ̄n] ∈ R3×n, the ultimate expression is thus deduced:

∇Ft log q(Ft) = ∇F̄ log q(F̄ ) +
( n∑
i=0

s̄i1
⊤ ⊙ g(ϵ̄

)
, (35)

where 

g(ϵ̄) = − 1

n(x̄2 + ȳ2)
⊙

(
x̄⊙ cos(2πϵ̄) + ȳ ⊙ sin(2πϵ̄)

)
x̄ =

( 1
n

n∑
j=0

sin (2πϵ̄j)
)
1⊤,

ȳ =
( 1
n

n∑
j=0

cos (2πϵ̄j)
)
1⊤.

(36)

C.3. Algorithms for Training and Sampling

Algorithm 1 provides a comprehensive overview of the forward diffusion process and the training procedure for the
denoising model ϕ, while Algorithm 2 elucidates the backward sampling process. These algorithms can effectively preserve
symmetries if ϕ is meticulously designed. It is worth mentioning that we employ the predictor-corrector sampler (Song et al.,
2020) to sample F0 in Algorithm 2, where Line 8 denotes the predictor, and Lines 11-12 correspond to the corrector. The
m(·) denotes the function in Eq.(15). The w(·) denotes the truncation function. The g(·) denotes the function in Eq.(36).

C.4. Hyper-parameters and Training Details.

For our EquiCSP, we employ a 4-layer setting with 256 hidden states for Perov-5 and a 6-layer setting with 512 hidden
states for other datasets. The dimension of the Fourier embedding is set to k = 256. We utilize the cosine scheduler with
s = 0.008 to regulate the variance of the DDPM process on Ct, and an exponential scheduler with σ1 = 0.005, σT = 0.5 to
control the noise scale of the score matching process on Ft. The diffusion step is set to T = 1000. Our model undergoes
training for 3500, 4000, 1000, and 1000 epochs respectively for Perov-5, Carbon-24, MP-20, and MPTS-52 using the same
optimizer and learning rate scheduler as CDVAE. For Langevin dynamics’ step size γ, we apply values of γ = 5× 10−7 for
Perov-5, γ = 5× 10−6 for MP-20, γ = 1× 10−5 for MPTS-52; while for ab initio generation in Carbon-24 case we use
γ = 1× 10−5. All models are trained on one Nvidia A800 GPU.
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Algorithm 1 Training Procedure of EquiCSP
1: Input: lattice parameters C0, atom types A, fractional coordinates F0, denoising model ϕ, and the number of sampling steps T .
2: Sample ϵL ∼ N (0, I),ϵF ∼ N (0, I),P ∼ U(S3) and t ∼ U(1, T ).
3: ϵ̄←m(w(σtϵF ))
4: Ct ←

√
ᾱtC0 +

√
1− ᾱtϵL

5: Ft ← w(F0 + ϵ̄)
6: ϵ̂L, sθ, Fθ ← ϕ(Ct,Ft,A, t)
7: ϵ̂′L, s

′
θ, F

′
θ ← ϕ(PCt,PFt,A, t)

8: LC ← ∥ϵL − ϵ̂L∥22
9: Ls ← ∥(−2πκ(n, σt) sin(2πϵ̄))− sθ∥22

10: LF ← ∥ϵ̄− Fθ∥22
11: LpC ← ∥P ϵ̂L − ϵ̂′L|22
12: Lps ← ∥P sθ − s′θ|22
13: LpF ← ∥PFθ − F ′

θ|22
14: Minimize LC + Ls + LF + LpC + Lps + LpF

Algorithm 2 Sampling Procedure of EquiCSP
1: Input: atom types A, denoising model ϕ, number of sampling steps T , step size of Langevin dynamics γ.
2: Sample CT ∼ N (0, I),FT ∼ U(0, 1).
3: for t← T, · · · , 1 do
4: Sample ϵL, ϵF , ϵ′F ∼ N (0, I)
5: ϵ̂L, sθ, Fθ ← ϕ(Ct,Ft,A, t).

6: Ct−1 ← 1√
αt

(Ct − βt√
1−ᾱt

ϵ̂L) +
√

βt · 1−ᾱt−1

1−ᾱt
ϵL.

7: ϵ̂F = sθ + (
∑n

i=0 sθ[:, i])1
⊤ ⊙ g(Fθ)

8: Ft− 1
2
← w(Ft + (σ2

t − σ2
t−1)ϵ̂F +

σt−1

√
σ2
t−σ2

t−1

σt
ϵF )

9: , sθ, Fθ ← ϕ(Ct−1,Ft− 1
2
,A, t− 1).

10: ϵ̂F = sθ + (
∑n

i=0 sθ[:, i])1
⊤ ⊙ g(Fθ)

11: dt ← γσt−1/σ1

12: Ft−1 ← w(Ft− 1
2
+ dtϵ̂F +

√
2dtϵ

′
F ).

13: end for
14: Return C0,F0.

D. Learning Curves of Different Variants.
We plot the curves of training loss of different variants proposed in Figure 4 and 5.

E. Ab initio Structure Generation
Dataset. We conduct experiments on Perov-5, Carbon-24 and MP-20 dataset. Notably, Carbon-24 (Pickard, 2020)
encompasses 10,153 carbon materials, each containing 6 to 24 atoms per cell. Contrasting with other datasets used in Table 3,
where compositions typically correspond to a single stable structure, Carbon-24 features a wide array of structures for any
given composition. This dataset allows us to evaluate the capability to generate diverse one-to-many metastable structures,
reflecting the variability inherent in crystal structures.

Extending EquiCSP to Ab Initio Generation Task We utilize the approach described in Appendix G of the DiffCSP
literature (Jiao et al., 2023) to extend EquiCSP to the ab initio generation task.

Baseline. Our approach is compared against four generative methods suited to this dataset. FTCP(Ren et al., 2021),
a coordinate-based, non-E(3)-invariant method, represents crystals via a blend of real-space and Fourier-transformed
properties, utilizing a CNN-VAE architecture for generation. G-SchNet(Gebauer et al., 2019) employs an autoregressive
model for structure generation, while P-G-SchNet is a G-SchNet variant incorporating periodicity. CDVAE(Xie et al., 2021),
as previously mentioned, integrates a score matching-based decoder into the VAE framework; here, its standard version is
applied without modifications. SyMat (Luo et al., 2023) uses a variational auto-encoder for generating periodic structures,
defining lattice and atom types. DiffCSP (Jiao et al., 2023), a diffusion method, learns stable structure distributions,
incorporating translation, rotation, and periodicity, effectively modeling material systems.
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Figure 4. Learning curves of lattice loss.

Figure 5. Leanring curves of fractional coordinates loss.
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Table 3. Results on ab initio generation task. The results of baseline methods are from Jiao (Jiao et al., 2023)

Data Method Validity (%) ↑ Coverage (%) ↑ Property ↓
Struc. Comp. COV-R COV-P dρ dE delem

Perov-5 FTCP 0.24 54.24 0.00 0.00 10.27 156.0 0.6297
Cond-DFC-VAE 73.60 82.95 73.92 10.13 2.268 4.111 0.8373
G-SchNet 99.92 98.79 0.18 0.23 1.625 4.746 0.0368
P-G-SchNet 79.63 99.13 0.37 0.25 0.2755 1.388 0.4552
CDVAE 100.0 98.59 99.45 98.46 0.1258 0.0264 0.0628
SyMat 100.0 97.40 99.68 98.64 0.1893 0.2364 0.0177
DiffCSP 100.0 98.85 99.74 98.27 0.1110 0.0263 0.0128
EquiCSP 100.0 98.60 99.60 98.76 0.1110 0.0257 0.0503

Carbon-24 FTCP 0.08 – 0.00 0.00 5.206 19.05 –
G-SchNet 99.94 – 0.00 0.00 0.9427 1.320 –
P-G-SchNet 48.39 – 0.00 0.00 1.533 134.7 –
CDVAE 100.0 – 99.80 83.08 0.1407 0.2850 –
SyMat 100.0 – 100.0 97.59 0.1195 3.9576 -
DiffCSP 100.0 – 99.90 97.27 0.0805 0.0820 –
EquiCSP 100.0 – 99.75 97.12 0.0734 0.0508 –

MP-20 FTCP 1.55 48.37 4.72 0.09 23.71 160.9 0.7363
G-SchNet 99.65 75.96 38.33 99.57 3.034 42.09 0.6411
P-G-SchNet 77.51 76.40 41.93 99.74 4.04 2.448 0.6234
CDVA 100.0 86.70 99.15 99.49 0.6875 0.2778 1.432
SyMat 100.0 88.26 98.97 99.97 0.3805 0.3506 0.5067
DiffCSP 100.0 83.25 99.71 99.76 0.3502 0.1247 0.3398
EquiCSP 99.97 82.20 99.65 99.68 0.1300 0.0848 0.3978

Evaluation Metrics We assess the results using three different criteria. Validity: This encompasses both structural and
compositional validity. Structural validity is assessed by calculating the percentage of generated structures where all pairwise
distances exceed 0.5 Å, while compositional validity checks for charge neutrality using the SMACT criteria (Davies et al.,
2019). Coverage: This metric evaluates how well the structural and compositional attributes of the generated samples
Sg match those in the test set St. It uses dS(M1,M2) and dC(M1,M2) to represent the L2 distances for CrystalNN
structural fingerprints (Zimmermann & Jain, 2020) and normalized Magpie compositional fingerprints (Ward et al., 2016),
respectively. Coverage Recall (COV-R) is calculated as COV-R = 1

|St| |{Mi|Mi ∈ St,∃Mj ∈ Sg, dS(Mi,Mj) <

δS , dC(Mi,Mj) < δC}|, with predefined thresholds δS , δC . Coverage Precision (COV-P) is defined in a similar manner
but with the roles of Sg and St reversed. Property Statistics: This includes the calculation of Wasserstein distances for
three properties—density, formation energy, and elemental count—between the generated and test structures, denoted as dρ,
dE , and delem, respectively. The validity and coverage metrics are based on 10,000 generated samples, whereas the property
statistics are derived from 1,000 samples that passed the validity check.

Results. Our method, EquiCSP, exhibits outstanding performance across multiple metrics, as detailed in Table 3. Notably,
EquiCSP achieves competitive results in validity and coverage precision, underscoring the high quality of the samples it
generates. Additionally, it delivers robust coverage recall, demonstrating the diversity of the structures produced. In the
realm of property metrics, EquiCSP excels by significantly reducing the density distance dρ, influenced by the volume of the
generated lattice, and the formation energy distance dE , which relates to the atomic configuration. These achievements in
minimizing key distances underscore the effectiveness of our symmetry-aware processing approach.

F. Visualizations
In this section, we present additional visualizations of the predicted structures from EquiCSP and the second best method
DiffCSP in Figure 6. Our EquiCSP provides more accurate predictions compared with DiffCSP.
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Figure 6. Additional visualizations of the predicted structures. We translate the same atom to the origin for better visualization and
comparison.
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