
Learned Index with Dynamic ✏

Anonymous Author(s)
Affiliation
Address
email

Abstract

Index structure is a fundamental component in database and facilitates broad data1

retrieval applications. Recent learned index methods show superior performance2

by learning hidden yet useful data distribution with the help of machine learning,3

and provide a guarantee that the prediction error is no more than a pre-defined4

✏. However, existing learned index methods adopt a fixed ✏ for all the learned5

segments, neglecting the diverse characteristics of different data localities. In6

this paper, we propose a mathematically-grounded learned index framework with7

dynamic ✏, which is efficient and pluggable to existing learned index methods. We8

theoretically analyze prediction error bounds that link ✏ with data characteristics9

for an illustrative learned index method. Under the guidance of the derived bounds,10

we learn how to vary ✏ and improve the index performance with a better space-time11

trade-off. Experiments with real-world datasets and several state-of-the-art methods12

demonstrate the efficiency, effectiveness and usability of the proposed framework.13

1 Introduction14

Data indexing [15, 32, 22, 34], which stores keys and corresponding payloads with designed structures,15

supports efficient query operations over data and benefits various data retrieval applications. Recently,16

Machine Learning (ML) models have been incorporated into the design of index structure, leading17

to substantial improvements in terms of both storage space and querying efficiency [17, 11, 24, 31].18

The key insight behind this trending topic of “learned index” is that the data to be indexed contain19

useful distribution information and such information can be utilized by trainable ML models that20

map the keys {x} to their stored positions {y}.21

To approximate the data distribution, state-of-the-art (SOTA) learned index methods [14, 18, 12, 10]22

propose to learn piece-wise linear segments S = [S1, ..., Si, ..., SN], where Si : y = aix + bi23

is the linear segment parameterized by (ai, bi) and N is the total number of learned segments.24

These methods introduce an important pre-defined parameter ✏ 2 Z>1 and adopt the following25

online learning process: Beginning from the first available data point, the current linear segment26

adjusts (ai, bi) and covers as many data points as possible until a data point, say (x0
, y

0) achieves27

the prediction error |Si(x0)� y
0| > ✏. The violation of ✏ triggers a new linear segment, and the data28

point (x0
, y

0) will be the first available data point. The process repeats until no data point is available29

and as a result, the worst-case preciseness can be guaranteed with ✏.30

By tuning ✏, various space-time preferences from users can be met. For example, a relatively large ✏31

can result in a small index size while having large prediction errors, and on the other hand, a relatively32

small ✏ provides users with small prediction errors while having more learned segments and thus a33

large index size. However, existing learned index methods implicitly assume that the whole dataset to34

be indexed contains the same characteristics for different localities and thus adopt the same ✏ for all35

the learned segments, leading to sub-optimal index performance. More importantly, the impact of ✏36

on index performance is intrinsically linked to data characteristics, which are not fully explored and37

utilized by existing learned index methods.38

Motivated by these, in this paper, we theoretically analyze the impact of ✏ on index performance, and39

link the characteristics of data localities with the dynamic adjustments of ✏. Based on the derived40

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

theoretical results, we propose an efficient and pluggable learned index framework that dynamically41

adjusts ✏ in a principled way. To be specific, under the setting of an illustrative learned index method42

MET [10], we present novel analysis about the prediction error bounds of each segment that link43

✏ with the mean and variance of data localities. The segment-wise prediction error embeds the44

space-time trade-off as it is the product of the number of covered keys and mean absolute error,45

which determine the index size and preciseness respectively. The derived mathematical relationships46

enable our framework to fully explore diverse data localities with an ✏-learner module, which learns47

to predict the impact of ✏ on the index performance and adaptively choose a suitable ✏ to achieve a48

better space-time trade-off.49

We apply the proposed framework to several SOTA learned index methods, and conduct a series of50

experiments on three widely adopted real-world datasets. Comparing with the original learned index51

methods with fixed ✏, our dynamic ✏ versions achieve significant index performance improvements52

with better space-time trade-offs. We also conduct various experiments to verify the necessity and53

effectiveness of the proposed framework, and provide both ablation study and case study to understand54

how the proposed framework works. Our contributions can be summarized as follows:55

• We make the first step to exploit the potential of dynamically adjusting ✏ for learned indexes,56

and propose an efficient and pluggable framework that can be applied to a broad class of57

piece-wise approximation algorithms.58

• We provide theoretical analysis for a proxy task modeling the index space-time trade-off,59

which establishes our ✏-learner based on the data characteristics and the derived bounds.60

• We achieve significant index performance improvements over several SOTA learned index61

methods on real-world datasets. To facilitate further studies, we make our codes and datasets62

public at https://github.com/AnonyResearcher/NeurIPS-5930.63

2 Background64

Learned Index. Given a dataset D = {(x, y)|x 2 X , y 2 Y}, X is the set of keys over a universe65

U such as reals or integers, and Y is the set of positions where the keys and corresponding payloads66

are stored. The index such as B+-tree [1] aims to build a compact structure to support efficient query67

operations over D. Typically, the keys are assumed to be sorted in ascending order to satisfy the68

key-position monotonicity, i.e., for any two keys, xi > xj iff their positions yi > yj , such that the69

range query (X \ [xlow, xhigh]) can be handled.70

Recently, learned index methods [19, 20, 30, 7, 6] leverage ML models to mine useful distribution71

information from D, and incorporate such information to boost the index performance. To look up a72

given key x, the learned index first predicts position ŷ using the learned models, and subsequently finds73

the stored true position y based on ŷ with a binary search or exponential search. Thus the querying74

time consists of the inference time of the learned models and the search time in O(log(|ŷ � y|)). By75

modeling the data distribution information, learned indexes achieve faster query speed than traditional76

B+-tree index, meanwhile using several orders-of-magnitude smaller storage space [9, 14, 12, 18, 23].77

78
✏-bounded Linear Approximation. Many existing learned index methods adopt piece-wise linear79

segments to approximate the distribution of D due to their effectiveness and low computing cost, and80

introduce the parameter ✏ to provide a worst-case preciseness guarantee and a tunable knob to meet81

various space-time trade-off preferences. Here we briefly introduce the SOTA ✏-bounded learned82

index methods that are most closely to our work, and refer to the review chapter of [11] for details83

of other methods. We first describe an illustrative learned index algorithm MET [10]. Specifically,84

for any two consecutive keys of D, suppose their key interval (xi � xi�1) is drawn according to85

a random process {Gi}i2N, where Gi is a positive independent and identically distributed (i.i.d.)86

random variable whose mean is µ and variance is �2. MET learns linear segments {Si : y = aix+bi}87

via a simple deterministic strategy: the current segment fixes the slope ai = 1/µ, goes through the88

first available data point and thus bi is determined. Then Si covers the remaining data points one by89

one until a data point (x0
, y

0) gains the prediction error larger than ✏. The violation triggers a new90

linear segment that begins from (x0
, y

0) and the process repeats until D has been traversed.91

Other ✏-bounded learned index methods learn linear segments in a similar manner to MET while92

having different mechanisms to determine the parameters of {Si}. FITing-Tree [14] uses a greedy93

shrinking cone algorithm. PGM [12] adopts another one-pass algorithm that achieves the optimal94

number of learned segments. Radix-Spline [18] introduces a radix structure to organize the learned95

segments. However, existing methods constrain all learned segments with the same ✏. All of96

these piece-wise segments based approaches attempt to improve performance by changing the way97

2

segments are learned or organized, but ignore the optimization potential of dynamically varying ✏.98

In this paper, we will discuss the impact of ✏ in more depth and investigate how to enhance existing99

learned index methods from a new perspective: dynamic adjustment of ✏ accounting for the diversity100

of different data localities. Besides, different from [10] that reveals the relationship between ✏ and101

index size performance based on MET. In Section 3.3, we present novel analysis about the impact of102

✏ on not only the index size, but also the index preciseness and a comprehensive trade-off quantity,103

which facilitates the proposed dynamic ✏ adjustment.104

3 Learn to Vary ✏105

3.1 Problem Formulation and Motivation106

Before introducing the proposed framework, we first formulate the task of learning index from107

data with ✏ guarantee, and provide some discussions about why we need to vary ✏. Given a dataset108

D to be indexed and an ✏-bounded learned index algorithm A, we aim to learn linear segments109

S = [S1, ..., Si..., SN] with segment-wise varied [✏i]i2[N], such that a better trade-off between110

storage cost (size in KB) and query efficiency (time in ns) can be achieved than the ones using fixed111

✏. Let Di ⇢ D be the data whose keys are covered by Si, for the remaining data D \
S

j<i Dj , the112

algorithm A repeatedly checks whether the prediction error of new data point violates the given ✏i113

and outputs the learned segment Si. When all the ✏is for i 2 [N] take the same value, the problem114

becomes the one that existing learned index methods are dealing with.115

To facilitate theoretical analysis, we focus on two proxy quantities for the target space-time trade-off:116

(1) the number of learned segments N and (2) the mean absolute prediction error MAE(Di|Si), which117

is affected and upper-bounded by ✏i. We note that the improvements of N -MAE trade-off fairly and118

adequately reflect the improvements of the space-time trade-off: (1) The learned segments size in119

bytes and N are positively correlated and only different by a constant factor, e.g., the size of a segment120

can be 128bit if it consists of two double-precision float parameters (slope and intercept); (2) When121

using exponential search, the querying complexity is O(log(N) + log(MAE(Di|Si)), in which the122

first term indicates the finding process of the specific segment S0 that covers the key x for a queried123

data point (x, y), and the second term indicates the search range |ŷ � y| for true position y based on124

the estimated one ŷ = S
0(x). In this paper, we adopt exponential search as search algorithm since it125

is better than binary search for exploiting the predictive ability of learned models. In Appendix C,126

we show that the search range of exponential search is O(MAE(Di|Si)), which can be much smaller127

than the one of binary search, O(✏i), especially for strong predictive models and the datasets having128

clear linearity. Similar empirical support can be also found in [9].129

Now let’s examine how the parameter ✏ affects the N -MAE trade-off. We can see that these two130

performance terms compete with each other and ✏ plays an important role to balance them. If we131

adopt a small ✏, the prediction error constraint is more frequently violated, leading to a large N ;132

meanwhile, the preciseness of learned index is improved, leading to a small MAE of the whole data133

MAE(D|S). On the other hand, with a large ✏, we will get a more compact learned index (i.e., a small134

N) with larger prediction errors (i.e., a large MAE(D|S)).135

Actually, the effect of ✏ on index performance is intrinsically linked to the characteristic of the136

data to be indexed. For real-world datasets, an important observation is that the linearity degree137

varies in different data localities. Recall that we use piece-wise linear segments to fit the data, and138

✏ determines the partition and the fitness of the segments. By varying ✏, we can adapt to the local139

variations of D and adjust the partition such that each learned segment fits the data better. Formally,140

let’s consider the quantity SegErri that is defined as the total prediction error within a segment Si,141

i.e., SegErri ,
P

(x,y)2Di
|y � Si(x)|, which is also the product of the number of covered keys142

Len(Di) and the mean absolute error MAE(Di|Si). Note that a large Len(Di) leads to a small N143

since |D| =
PN

i=1 Len(Di). From this view, the quantity SegErri internally reflects the N -MAE144

trade-off. Later we will show how to leverage this quantity to dynamically adjust ✏.145

3.2 Overall Framework146

In practice, it is intractable to directly solve the problem formulated in Section 3.1. With a given ✏i,147

the one-pass algorithm A determines Si and Di until the error bound ✏i is violated. In other words,148

it is unknown what the data partition {Di} will be a priori, which makes it impossible to solve the149

problem by searching among all the possible {✏i}s and learning index with a set of given {✏i}.150

In this paper, we investigate how to efficiently find an approximate solution to this problem via the151

introduced ✏-learner module. Instead of heuristically adjusting ✏, the ✏-learner learns to predict152

3

the impact of ✏ on the index structure and adaptively adjusts ✏ in a principled way. Meanwhile, the153

introducing of ✏-learner should not sacrifice the efficiency of the original one-pass learned index154

algorithms, which is important for real-world practical applications.155

10 20 30
Key

0

5

10

15

P
o
si

ti
o
n

10 20 30
Key

0

5

10

15

P
o
si

ti
o
n

()

reward
,-./00!, ((, *)

User &−Learner
* ", +, ,

⑤ update
4, &,-./00

(

② lookahead
2", ((", *")

""

[,!, 2!]

10 20 30
Key

0

5

10

15

P
o
si

ti
o
n

""

"$,-

[,!#$, 2!#$]

③ predict 5!

(,, &#) (,, &#$%)

: Learned Segments

: M&'|) − +)|

: Data Points

④ learn index

&,-./00
① initExpected

Figure 1: The dynamic ✏ framework. We 1� transform ✏̃ into the proxy prediction error ^SegErr, then
2� sample a small look-ahead data D

0 to estimate the data characteristics (µ,�). 3� The ✏-learner
predicts a suitable ✏i accordingly, and 4� we learn a new segment Si using A (e.g., PGM) with ✏i.
5� Once Si triggers the violation of ✏i, the ✏-learner is updated and enhanced with the rewarded

ground-truth. Steps 2� to 5� repeat in an online manner to approximate the distribution of D.

These two design considerations establish our dynamic ✏ framework as shown in Figure 1. The156

✏-learner is based on an estimation function SegErr = f(✏, µ,�) that depicts the mathematical157

relationships among ✏, SegErri and the characteristics µ,� of the data to be indexed. As a start, users158

can provide an expected ✏̃ that indicates various preferences under space-sensitive or time-sensitive159

applications. To meet the user requirements, afterwards, we internally transform the ✏̃ into another160

proxy quantity ^SegErr, which reflects the expected prediction error for each segment if we set ✏i = ✏̃.161

This transformation also links the adjustment of ✏ and data characteristics together, which enables the162

data-dependent adjustment of ✏. Beginning with ✏̃, the ✏-learner chooses a suitable ✏i according to163

current data characteristics, then learns a segment Si using A, and finally enhances the ✏-learner with164

the rewarded ground-truth SegErri of each segment. To make the introduced adjustment efficient,165

we propose to only sample a small Look-ahead data D0 to estimate the characteristics (µ,�) of the166

following data locality. The learning process repeats and is also in an efficient one-pass manner.167

Note that the proposed framework provides users the same interface as the ones used by original168

learned index methods. That is, we do not add any additional cost to the users’ experience, and users169

can smoothly and painlessly use our framework with given ✏̃ just as they use the original methods170

with given ✏. The ✏ is an intuitive, meaningful, easy-to-set and method-agnostic quantity for users.171

On the one hand, we can easily impose restrictions on the worst-case querying cases with ✏ as the data172

accessing number in querying process is O(log(|ŷ � y|)). On the other hand, ✏ is easier to estimate173

than the other quantities such as index size and querying time, which are dependent on specific174

algorithms, data layouts, implementations and experimental platforms. Our pluggable framework175

retains the benefits of existing learned index methods, such as the aforementioned usability of ✏, and176

the ability to handle dynamic update case and hard size requirement. 1177

We have seen how ✏ determines index performance and how SegErri embeds the N -MAE trade-off178

in Section 3.1. In Section 3.3, we further theoretically analyze the relationship among ✏, SegErri,179

and data characteristics µ,� at different localities. Based on the analysis, we elaborate the details of180

✏-learner and the internal transformation between ✏ and SegErri in Section 3.4.181

3.3 Prediction Error Estimation182

In this section, we theoretically study the impact of ✏ on the prediction error SegErri of each learned183

segment Si. The derived closed-form relationships will be taken into account in the design of the184

proposed ✏-learner module (Section 3.4). Specifically, for the MET algorithm, we can prove the185

following theorem to bound the expectation of SegErri with ✏ and the key interval distribution of D.186

Theorem 1. Given a dataset D to be indexed and an ✏ where ✏ 2 Z>1, consider the setting of the187

MET algorithm [10], in which key intervals of D are drawn from a random process consisting of188

positive i.i.d. random variables with mean µ and variance �
2
, and ✏ � �/µ. For a learned segment189

Si and its covered data Di, denote SegErri =
P

(x,y)2Di
|y � Si(x)|. Then the expectation of190

1We discuss how to extend existing works in more details in Appendix E.

4

SegErri satisfies:191 r
1
⇡
µ
�
✏2 < E[SegErri] <

2
3

r
2
⇡
(
5
3
)
3
4 (

µ
�
)2✏3.

This theorem reveals that the prediction error SegErri depends on both ✏ and the data characteristics192

(µ,�). Recall that CV =�/µ is the coefficient of variation, a classical statistical measure of the relative193

dispersion of data points. In the context of the linear approximation, the data statistic 1/CV = µ/�194

in our bounds intrinsically corresponds to the linearity degree of the data. With this, we can find195

that when µ/� is large, the data is easy-to-fit with linear segments, and thus we can choose a small ✏196

to achieve precise predictions. On the other hand, when µ/� is small, it becomes harder to fit the197

data using a linear segment, and thus ✏ should be increased to absorb some non-linear data localities.198

In this way, we can make the total prediction error for different learned segments consistent and199

achieve a better N -MAE trade-off. This analysis also confirms the motivation of varying ✏: The local200

linearity degrees of the indexed data can be diverse, and we should adjust ✏ according to the local201

characteristic of the data, such that the learned index can fit and leverage the data distribution better.202

In the rest of this section, we provide a proof sketch of this theorem due to the space limitation.203

For detailed proof, please refer to our Appendix A. The main idea is to model the learning process204

of linear approximation with ✏ guarantee as a random walk process, and consider that the absolute205

prediction error of each data point follows folded normal distributions. Specifically, given a learned206

segment Si : y = aix+ bi, we can calculate the expectation of SegErri for this segment as:207

E[SegErri] = aiE

2

4
(j⇤�1)X

j=0

|Zj |

3

5 = ai

1X

n=1

E
"
n�1X

j=0

|Zj |
#
Pr(j⇤ = n), (1)

where Zj is the j-th position of a transformed random walk {Zj}j2N, j⇤ = max{j 2 N|� ✏/ai 208

Zj  ✏/ai} is the random variable indicating the maximal position when the random walk is within209

the strip of boundary ±✏/ai, and the last equality is due to the definition of expectation.210

Under the MET algorithm setting where ai = 1/µ and ✏ � �/µ, we can show that the increments of211

the transformed random walk {Zj} have zero mean and variance �2, and many steps are necessary to212

reach the random walk boundary. With the Central Limit Theorem, we can assume the Zj follows213

normal distribution with mean µzj = 0 and variance �
2
zj = j�

2, and thus |Zj | follows the folded214

normal distribution with expectation E(|Zj |) =
p

2/⇡�
p
j. Thus Eq. (1) can be written as215

1
µ

1X

n=1

E
"
n�1X

j=0

|Zj |
#
Pr(j⇤ = n)<

1
µ

1X

n=1

n�1X

j=0

E [|Zj |]Pr(j⇤ = n) =
�
µ

r
2
⇡

1X

n=1

n�1X

j=0

p
j Pr(j⇤ = n).

Using E[j⇤] = µ
2

�2
✏
2 and V ar[j⇤] =

2

3

µ
4

�4
✏
4 as derived in [10], we get E[(j⇤)2] = 5

3

µ
4

�4
✏
4. With the216

inequality
Pn�1

j=0

p
j <

2
3n

p
n and E[X 3

4]  (E[X])
3
4 , we get the upper bound:217

E[SegErri] <
2
3

r
2
⇡
�
µ
E[(j⇤)

3
2]  2

3

r
2
⇡
�
µ

�
E[(j⇤)2]

� 3
4 =

2
3

r
2
⇡
(
5
3
)
3
4 (

µ
�
)2✏3.

For the lower bound, applying the triangle inequality into Eq. (1), we can get E[SegErri] >218
1
µ

P1
n=1 E [|Z|] Pr(j⇤ = n), where Z =

Pn�1
j=0 Zj , and Z follows the normal distribution since219

Zj ⇠ N(0,�2
zj). We can prove that |Z| follows the folded normal distribution whose expectation220

E[|Z|] > �(n� 1)/
p
⇡. Thus the lower bound is:221

E[SegErri] >
�
µ

r
1
⇡

1X

n=1

(n� 1)Pr(j⇤ = n) =
�
µ

r
1
⇡
E [j⇤ � 1] =

r
1
⇡
(
µ
�
✏2 � �

µ
).

Since ✏ � �
µ , we can omit the right term

p
1/⇡ · �/µ and finish the proof. Although the derivations222

are based on the MET algorithm whose slope is the reciprocal of µ, we found that the mathematical223

forms among ✏, µ/� and SegErri are still applicable to other ✏-bounded methods, and further prove224

that the learned segment slopes of other methods are close to the reciprocal of expected key intervals225

in Appendix B. For the another independence assumption adopted by the MET algorithm, the authors226

discussed that the Central Limit Theorem holds for non-i.i.d. variables and the theorems can be227

extended accordingly [10]. We empirically show that the proposed framework is robust to these228

assumptions and works well for several SOTA methods on the real-world datasets (Section 4.2).229

5

3.4 ✏-Learner230

Now given an ✏, we have obtained the closed-form bounds of the SegErr in Theorem 1, and both231

the upper and lower bounds are in the form of w1(
µ
�)

w2✏
w3 , where w1,2,3 are some coefficients. As232

the concrete values of these coefficients can be different for different datasets and different methods,233

we propose to learn the following trainable estimator to make the error prediction preciser:234

SegErr = f(✏, µ,�) =w1(
µ
�
)w2✏w3 ,

s.t.

r
1
⇡

 w1  2
3

r
2
⇡
(
5
3
)
3
4 , 1  w2  2, 2  w3  3.

(2)

235

With this learnable estimator, we feed data characteristic µ/� of the look-ahead data and the trans-236

formed ^SegErr into it and find a suitable ✏
⇤ as

⇣
^SegErr/w1(

µ
�)

w2

⌘1/w3

. We will discuss the237

look-ahead data and the transformed ^SegErr in the following paragraphs. Now let’s discuss the rea-238

sons for how this adjustment can achieve better index performance. Actually, the ✏-learner proactively239

plans the allocations of the total prediction error indicated by user (i.e., ✏̃ · |D|) and calculates the240

tolerated ^SegErr for the next segment. By adjusting current ✏ to ✏
⇤, the following learned segment241

can fully utilize the distribution information of the data and achieve better performance in terms of242

N -MAE trade-off. To be specific, when µ/� is large, the local data has clear linearity, and thus we243

can adjust ✏ to a relatively small value to gain precise predictions; although the number of data points244

covered by this segment may decrease and then the number of total segments increases, such cost245

paid in terms of space is not larger than the benefit we gain in terms of precise predictions. Similarly,246

when µ/� is small, ✏ should be adjusted to a relatively large value to lower the learning difficulty and247

absorb some non-linear data localities; in this case, we gain in terms of space while paying some248

costs in terms of prediction accuracy. The segment-wise adjustment of ✏ improves the overall index249

performance by continually and data-dependently balancing the cost of space and preciseness.250

Look-ahead Data. To make the training and inference of the ✏-learner light-weight, we propose to251

look ahead a few data D0 to reflect the characteristics of the following data localities. Specifically,252

we leverage a small subset D0 ⇢ D \
S

j<i Dj to estimate the value µ/� for the following data.253

In practice, we set the size of D0 to be 404 when learning the first segment as initialization, and254 �
1

(i�1)

Pi�1
j=1 Len(Dj)

�
· ⇢ for the other following segments. Here ⇢ is a pre-defined parameter255

indicating the percentage that is relative to the average number of covered keys for learned segments,256

considering that the distribution of µ/� can be quite different to various datasets. As for the first257

segment, according to the literature [16], the sample size 404 can provide a 90% confidence intervals258

for a coefficient of variance �/µ  0.2.259

^SegErr and Optimization. As aforementioned, taking the user-expected ✏̃ as input, we aim to260

reflect the impact of ✏̃ with a transformed proxy quantity ^SegErr such that the ✏-learner can choose261

suitable ✏
⇤ to meet users’ preference while achieving better N -MAE trade-off. Specifically, we make262

the value of ^SegErr updatable, and update it to be ^SegErr = w1(µ̂/�̂)w2 ✏̃
w3 once a new segment263

is learned, where µ̂/�̂ is the mean value of all the processed data so far. This strategy enables264

us to promptly incorporate both the user preference and the data distribution into the calculation265

of ^SegErr. As for the optimization of the light-weight model, i.e., f(✏, µ,�) that contains only266

three learnable parameters w1,2,3, we adopt the projected gradient descent [4, 8] with the parameter267

constraints in Eq. (2). In this way, we only need to track a few statistics and learn the ✏ estimator in268

an efficient one-pass manner. The overall algorithm is summarized in Appendix D.269

4 Experiments270

4.1 Experimental Settings271

Baselines. We apply our framework into several SOTA ✏-bounded learned index methods that use272

different mechanisms to determine the parameters of segments {Si}. Among them, MET [10] fixes273

the segment slope as the reciprocal of the expected key interval. FITing-Tree [14] and Radix-Spline274

[18] adopt a greedy shrinking cone algorithm and a spline interpolating algorithm respectively. PGM275

[12] adopts a convex hull based algorithm to achieve the minimum number of learned segments.276

More introduction and implementation details are in Appendix F.277

6

Datasets. We use several widely adopted datasets that differ in data scales and distributions278

[19, 14, 9, 12, 21]. Weblogs and IoT contain 715M log entries from a university web server and 26M279

event entries from different IoT sensors respectively, in which the keys are log timestamps. Map280

dataset contains location coordinates around the world [25], and the keys are longitudes of 200M281

places. Lognormal is a synthetic dataset whose key intervals follow the lognormal distribution. We282

generate 20M keys with 40 partitions having different generation parameters to simulate the varied283

data characteristics among different localities. More details and visualization are in Appendix G.284

Evaluation Metrics. We evaluate the index performance in terms of its size, prediction preciseness,285

and the total querying time. Specifically, we report the number of learned segments N , the index size286

in bytes, the MAE as 1
|D|

P
(x,y)2D |y � S(x)|, and the total querying time per query in ns (i.e., we287

perform querying operations for all the indexed data, record the total time of getting the payloads288

given the keys, and report the time that is averaged over all the queries). For a quantitative comparison289

w.r.t. the trade-off improvements, we calculate the Area Under the N-MAE Curve (AUNEC) where290

the x-axis and y-axis indicate N and MAE respectively. For AUNEC metric, the smaller, the better.291

4.2 Overall Index Performance292

N -MAE Trade-off Improvements. In Table 1, we summarize the AUNEC improvements in293

percentage brought by the proposed framework of all the baseline methods on all the datasets. We294

also illustrate the N -MAE trade-off curves for some cases in Figure 2, where the blue curves indicate295

the results achieved by fixed ✏ version while the red curves are for dynamic ✏. Other baselines296

and datasets yield similar curves, which we include in Appendix H due to the space limitation.297

These results show that the dynamic ✏ versions of all the baseline methods achieve much better298

N -MAE trade-off (�15.66% to �22.61% averaged improvements as smaller AUNEC indicates299

better performance), demonstrating the effectiveness and the wide applicability of the proposed300

framework. As discussed in previous sections, datasets usually have diverse key distributions at301

different data localities, and the proposed framework can data-dependently adjust ✏ to fully utilize302

the distribution information of data localities and thus achieve better index performance in terms of303

N -MAE trade-off. Here the Map dataset has significant non-linearity caused by spatial characteristics,304

and it is hard to fit using linear segments (all baseline methods learn linear segments), thus relatively305

small improvements are achieved.306

Table 1: The AUNEC relative improvements for learned index methods with dynamic ✏.
Weblogs IoT Map Lognormal Average

MET -25.87% -7.66% -7.63% -21.48% -15.66%
FITing-Tree -31.18% -25.56% -4.94% -28.24% -22.48%
Radix-Spline -28.37% -24.59% -6.14% -31.32% -22.61%

PGM -22.42% -25.01% -7.18% -6.52% -15.28%

Figure 2: The N -MAE trade-off curves for learned index methods.

Figure 3: Improvements in terms of querying time for learned index methods with dynamic ✏.

Querying Time Improvements. Recall that the querying time of each data point is in O(log(N) +307

log(|y � ŷ|) as we mentioned in Section 3.1, where N and |y � ŷ| are inversely impacted by ✏. To308

examine whether the performance improvements w.r.t. N -MAE trade-off (i.e., Table 1) can lead309

7

to better querying efficiency in real-world systems, we show the averaged total querying time per310

query and the actual learned index size in bytes for two scenarios in Figure 3. We also mark the311

99th percentile (P99) latency as the right bar. We can observe that the dynamic ✏ versions indeed312

gain faster average querying speed, since we improve both the term N as well as the term |y � ŷ|313

via adaptive adjustment of ✏. Besides, we find that the dynamic version achieves comparable or314

even better P99 results than the static version, due to the fact that our method effectively adjust ✏315

based on the expected ✏̃ and data characteristic, making the {✏i} fluctuated within a moderate range316

and leading to a good robustness. The similar conclusion can be drawn from other baselines and317

datasets, and we present their results in Appendix H. Another thing to note is that, this experiment318

also verifies the usability of our framework in which users can flexibly set the expected ✏̃ to meet319

various space-time preferences just as they set ✏ in the original learned index methods.320

Index Building Cost. Comparing with the original learned index methods that adopt a fixed ✏, we321

introduces extra computation to dynamically adjust ✏ in the index building stage. Does this affect the322

efficiency of original methods? Here we report the relative increments of building times in Table 2.323

From it, we can observe that the proposed dynamic ✏ framework achieves comparable building times324

to all the original learned index methods on all the datasets, showing the efficiency of our framework325

since it retains the online learning manner with the same complexity as the original methods (both in326

O(|D|)). Note that we only need to pay this extra cost once, i.e., building the index once, and then327

the index structures can accelerate the frequent data querying operations for real-world applications.328

Table 2: Building time increments in percentage for learned index methods with dynamic ✏.
Weblogs IoT Map Lognormal Average

MET 10.54% 5.14% 8.33% 5.26% 7.32%
FITing-Tree 10.70% 1.88% 5.35% 5.23% 5.79%
Radix-Spline 10.19% 1.64% 3.85% 8.96% 6.16%

PGM 16.76% 2.20% 1.28% 21.29% 10.38%

4.3 Ablation Study of Dynamic ✏329

To gain further insights about how the proposed dynamic ✏ framework works, we compare the330

proposed one with three dynamic ✏ variants: (1) Random ✏ is a vanilla version that randomly choose331

✏ from [0, 2✏̃] when learning each new segment; (2) Polynomial Learner differs our framework with332

another polynomial function SegErr(✏) = ✓1✏
✓2 where ✓1 and ✓2 are trainable parameters; (3) Least333

Square Learner differs our framework with an optimal (but very costly) strategy to learn f(✏, µ,�)334

with the least square regression.335

Table 3: The AUNEC relative changes of dynamic ✏ variants compared to the proposed framework.
Weblogs IoT Map Lognormal Average

Random ✏ +70.94% +68.19% +53.29% +73.38% +66.45%
Polynomial Learner +49.32% +40.57% +7.71% +42.77% +35.09%

Least Square Learner +4.44% +9.32% +2.04% �17.63% �0.46%

We summarize the AUNEC changes in percentage compared to the proposed framework in Table 3.336

Here we only report the results for FITing-Tree due to the space limitation and similar results can337

be observed for other methods. Recall that for AUNEC, the smaller, the better. From this table, we338

have the following observations: (1) The Random ✏ version achieves much worse results than the339

proposed dynamic ✏ framework, showing the necessity and effectiveness of learning the impact of340

✏. (2) The Polynomial Learner achieves better results than the Random ✏ version while still have a341

large performance gap compared to our proposed framework. This indicates the usefulness of the342

derived theoretical results that link the index performance, the ✏ and the data characteristics together.343

(3) For the Least Square Learner, we can see that it achieves similar AUNEC results compared with344

the proposed framework. However, it has higher computational complexity and pays the cost of much345

larger building times, e.g., 14⇥ and 53⇥ longer building times on IoT and Map respectively. These346

results demonstrate the effectiveness and efficiency of the proposed framework that adjusts ✏ based347

on the theoretical results, which will be validated next.348

4.4 Theoretical Results Validation349

We study the impact of ✏ on SegErri for the MET algorithm in Theorem 1, where the derivations350

are based on the setting of the slope condition ai = 1/µ. To confirm that the proposed framework351

8

0.2 0.4 0.6 0.8 1.0
1/µi

0.2

0.4

0.6

0.8

1.0

a
i

IoT Dataset
ai = 1/µi

FITing-Tree

RadixSpline

PGM

Figure 4: Learned slopes.
100 200 300 400

�

0

5

10

15

20

25

30

35

40

45

L
o
g
(S

eg
E
rr

)

Lognormal µ = 1 � = 0.5
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

100 200 300 400
�

0

5

10

15

20

25

30

35

40

L
o
g
(S

eg
E
rr

)

Lognormal µ = 1 � = 1
MET Upper Bound

MET

MET Lower Bound

PGM

RadixSpline

FITing-Tree

Figure 5: Illustration of the derived bounds.

also works well with other ✏-bounded learned index methods, we analyze the learned slopes of other352

✏-bounded methods in Appendix B. In summary, we prove that for a segment Si : y = aix + bi353

whose covered data is Di and the expected key interval of Di is µi, then ai concentrates on 1/µi354

within 2✏/(E[Len(Di)]� 1) relative deviations. Here we plot the learned slopes of baseline learned355

index methods in Figure 4. We can see that the learned slopes of other methods indeed center along356

the line ai = 1/µi, showing the close connections among these methods and confirming that the357

proposed framework can work well with other ✏-bounded learned index methods.358

We further compare the theoretical bounds with the actual SegErri for all the adopted learned359

index methods. In Figure 5, we only show the results on Lognormal dataset due to space limitation.360

As expected, we can see that the MET method has the actual SegErri within the derived bounds,361

verifying the correctness of the Theorem 1. Besides, the other ✏-bounded methods show the same362

trends with the MET method, providing the evidence that these methods have the same mathematical363

forms as we derived, and thus the ✏-learner also works well with them.364

4.5 Case Study365

Figure 6: Visualization of the
learned index (partial) on IoT for
FITing-Tree with fixed ✏ = 32 and
dynamic version (✏̃ = 32).

We visualize the partial learned segments for FITing-Tree with366

fixed and dynamic ✏ on IoT dataset in Figure 6, where the N and367 P
SegErri indicates the number of learned segments and the368

total prediction error for the shown segments respectively. The369 ��!
µ/� indicates the characteristics of covered data {Di}. We can370

see that our dynamic framework helps the learned index gain371

both smaller space (7 v.s. 4) and smaller total prediction errors372

(48017 v.s. 29854). Note that ✏s within �!
✏i are diverse due to the373

diverse linearity of different data localities: For the data whose374

positions are within about [30000, 30600] and [34700, 35000],375

the proposed framework chooses large ✏s as their µ/�s are small,376

and by doing so, it achieves smaller N than the fixed version by377

absorbing these non-linear localities; For the data at the middle378

part, they have clear linearity with large µ/�s, and thus the379

proposed framework adjusts ✏ as 19 and 10 that are smaller than380

32 to achieve better precision. These experimental observations381

are consistent with our analysis in the paragraph under Eq. (2),382

and clearly confirm that the proposed framework adaptively adjusts ✏ based on data characteristics.383

5 Conclusions384

Existing learned index methods introduce an important hyper-parameter ✏ to provide a worst-case385

preciseness guarantee and meet various space-time user preferences. In this paper, we provide386

formal analysis about the relationships among ✏, data local characteristics and the introduced quantity387

SegErri for each learned segment, which is the product of the number of covered keys and MAE,388

and thus embeds the space-time trade-off. Based on the derived bounds, we present a pluggable389

dynamic ✏ framework that leverages an ✏-learner to data-dependently adjust ✏ and achieve better390

index performance in terms of space-time trade-off. A series of experiments verify the effectiveness,391

efficiency and usability of the proposed framework.392

We believe that our work contributes a deeper understanding of how the ✏ impacts the index perfor-393

mance, and enlightens the exploration of fine-grained trade-off adjustments by considering data local394

characteristics. Our study also opens several interesting future works. For example, we can apply the395

proposed framework to other problems in which the piece-wise approximation algorithms with fixed396

✏ are used while still requiring space-time trade-off, such as similarity search and lossy compression397

for time series data [5, 33, 3, 26].398

9

References399

[1] D. J. Abel. A B+-tree structure for large quadtrees. Computer Vision, Graphics, and Image400

Processing, 27(1):19–31, 1984.401

[2] T. Bingmann. Stx b+ tree. https://panthema.net/2007/stx-btree/, 2013.402

[3] C. Buragohain, N. Shrivastava, and S. Suri. Space efficient streaming algorithms for the403

maximum error histogram. In IEEE 23rd International Conference on Data Engineering, pages404

1026–1035, 2007.405

[4] P. H. Calamai and J. J. Moré. Projected gradient methods for linearly constrained problems.406

Mathematical programming, 39(1):93–116, 1987.407

[5] Q. Chen, L. Chen, X. Lian, Y. Liu, and J. X. Yu. Indexable pla for efficient similarity search.408

In Proceedings of the 33rd international conference on Very large data bases, pages 435–446,409

2007.410

[6] A. Crotty. Hist-tree: Those who ignore it are doomed to learn. In 11th Conference on Innovative411

Data Systems Research, 2021.412

[7] Y. Dai, Y. Xu, A. Ganesan, R. Alagappan, B. Kroth, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.413

From wisckey to bourbon: A learned index for log-structured merge trees. In 14th USENIX414

Symposium on Operating Systems Design and Implementation, pages 155–171, 2020.415

[8] D. den Hertog and C. Roos. A survey of search directions in interior point methods for linear416

programming. Mathematical Programming, 52(1):481–509, 1991.417

[9] J. Ding, U. F. Minhas, H. Zhang, Y. Li, C. Wang, B. Chandramouli, J. Gehrke, D. Kossmann,418

and D. B. Lomet. Alex: An updatable adaptive learned index. In Proceedings of the ACM419

SIGMOD International Conference on Management of Data, page 969–984, 2020.420

[10] P. Ferragina, F. Lillo, and G. Vinciguerra. Why are learned indexes so effective? In International421

Conference on Machine Learning, pages 3123–3132, 2020.422

[11] P. Ferragina and G. Vinciguerra. Learned data structures. In Recent Trends in Learning From423

Data, pages 5–41. 2020.424

[12] P. Ferragina and G. Vinciguerra. The PGM-Index: A fully-dynamic compressed learned index425

with provable worst-case bounds. Proceedings of the VLDB Endowment, 13(8):1162–1175,426

2020.427

[13] A. Galakatos, A. Crotty, E. Zgraggen, C. Binnig, and T. Kraska. Revisiting reuse for approximate428

query processing. volume 10, pages 1142–1153, 2017.429

[14] A. Galakatos, M. Markovitch, C. Binnig, R. Fonseca, and T. Kraska. FITing-Tree: A data-aware430

index structure. In Proceedings of the International Conference on Management of Data, page431

1189–1206, 2019.432

[15] G. Graefe and H. Kuno. Modern b-tree techniques. In 27th International Conference on Data433

Engineering, pages 1370–1373, 2011.434

[16] K. Kelley. Sample size planning for the coefficient of variation from the accuracy in parameter435

estimation approach. Behavior Research Methods, 39(4):755–766, 2007.436

[17] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities:437

Estimating correlated joins with deep learning. In 9th Biennial Conference on Innovative Data438

Systems Research, 2019.439

[18] A. Kipf, R. Marcus, A. van Renen, M. Stoian, A. Kemper, T. Kraska, and T. Neumann.440

Radixspline: A single-pass learned index. In Proceedings of the Third International Workshop441

on Exploiting Artificial Intelligence Techniques for Data Management, 2020.442

[19] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures.443

In Proceedings of the International Conference on Management of Data, page 489–504, 2018.444

10

https://panthema.net/2007/stx-btree/

[20] X. Li, J. Li, and X. Wang. Aslm: Adaptive single layer model for learned index. In International445

Conference on Database Systems for Advanced Applications, pages 80–95. Springer, 2019.446

[21] Y. Li, D. Chen, B. Ding, K. Zeng, and J. Zhou. A pluggable learned index method via sampling447

and gap insertion. arXiv preprint arXiv:2101.00808, 2021.448

[22] C. Luo and M. J. Carey. Lsm-based storage techniques: a survey. The VLDB Journal, 29(1):393–449

418, 2020.450

[23] R. Marcus, A. Kipf, A. van Renen, M. Stoian, S. Misra, A. Kemper, T. Neumann, and T. Kraska.451

Benchmarking learned indexes. Proceedings of the VLDB Endowment, 14(1):1–13, 2020.452

[24] M. Mitzenmacher. A model for learned bloom filters, and optimizing by sandwiching. In453

Proceedings of the 32nd International Conference on Neural Information Processing Systems,454

page 462–471, 2018.455

[25] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org . https:456

//www.openstreetmap.org, 2017.457

[26] J. O’Rourke. An on-line algorithm for fitting straight lines between data ranges. Communications458

of the ACM, 24(9):574–578, 1981.459

[27] M. H. Overmars. The design of dynamic data structures, volume 156. Springer Science &460

Business Media, 1987.461

[28] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured merge-tree (lsm-tree). Acta462

Informatica, 33(4):351–385, 1996.463

[29] J. Rao and K. A. Ross. Cache conscious indexing for decision-support in main memory. In464

Proceedings of the 25th International Conference on Very Large Data Bases, page 78–89, 1999.465

[30] C. Tang, Y. Wang, Z. Dong, G. Hu, Z. Wang, M. Wang, and H. Chen. Xindex: a scalable learned466

index for multicore data storage. In Proceedings of the 25th ACM SIGPLAN Symposium on467

Principles and Practice of Parallel Programming, pages 308–320, 2020.468

[31] K. Vaidya, E. Knorr, M. Mitzenmacher, and T. Kraska. Partitioned learned bloom filters. In469

International Conference on Learning Representations, 2021.470

[32] J. Wang, T. Zhang, j. song, N. Sebe, and H. T. Shen. A survey on learning to hash. IEEE471

Transactions on Pattern Analysis and Machine Intelligence, 40(4):769–790, 2018.472

[33] Q. Xie, C. Pang, X. Zhou, X. Zhang, and K. Deng. Maximum error-bounded piecewise linear473

representation for online stream approximation. The VLDB journal, 23(6):915–937, 2014.474

[34] X. Zhou, C. Chai, G. Li, and J. Sun. Database meets artificial intelligence: A survey. IEEE475

Transactions on Knowledge and Data Engineering, 2020.476

11

%20https://www.openstreetmap.org%20
%20https://www.openstreetmap.org%20
%20https://www.openstreetmap.org%20

Checklist477

1. For all authors...478

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s479

contributions and scope? [Yes]480

(b) Did you describe the limitations of your work? [Yes] Please see the last paragraph in481

the Section 3.3.482

(c) Did you discuss any potential negative societal impacts of your work? [No] For the483

studied theoretical analyses and the proposed learned index framework, we have not484

seen direct paths to negative societal impacts.485

(d) Have you read the ethics review guidelines and ensured that your paper conforms to486

them? [Yes]487

2. If you are including theoretical results...488

(a) Did you state the full set of assumptions of all theoretical results? [Yes] Please see the489

Theorem 1.490

(b) Did you include complete proofs of all theoretical results? [Yes] Please see the491

supplementary material, and we also provide a proof sketch in Section 3.3.492

3. If you ran experiments...493

(a) Did you include the code, data, and instructions needed to reproduce the main experi-494

mental results (either in the supplemental material or as a URL)? [Yes] Please see the495

URL in the final part of the Introduction.496

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they497

were chosen)? [Yes] Please see the URL and the Appendix F.498

(c) Did you report error bars (e.g., with respect to the random seed after running ex-499

periments multiple times)? [N/A] The experimental learned index methods are all500

deterministic algorithms.501

(d) Did you include the total amount of compute and the type of resources used (e.g., type502

of GPUs, internal cluster, or cloud provider)? [Yes] Please see the Appendix F.503

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...504

(a) If your work uses existing assets, did you cite the creators? [Yes] Please see the Section505

4.1.506

(b) Did you mention the license of the assets? [N/A]507

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]508

509

(d) Did you discuss whether and how consent was obtained from people whose data you’re510

using/curating? [N/A]511

(e) Did you discuss whether the data you are using/curating contains personally identifiable512

information or offensive content? [N/A]513

5. If you used crowdsourcing or conducted research with human subjects...514

(a) Did you include the full text of instructions given to participants and screenshots, if515

applicable? [N/A]516

(b) Did you describe any potential participant risks, with links to Institutional Review517

Board (IRB) approvals, if applicable? [N/A]518

(c) Did you include the estimated hourly wage paid to participants and the total amount519

spent on participant compensation? [N/A]520

12

	Introduction
	Background
	Learn to Vary
	Problem Formulation and Motivation
	Overall Framework
	Prediction Error Estimation
	-Learner

	Experiments
	Experimental Settings
	Overall Index Performance
	Ablation Study of Dynamic
	Theoretical Results Validation
	Case Study

	Conclusions
	Proof of Theorem 1

