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Abstract
Self-supervised word embedding algorithms such as word2vec provide a minimal
setting for studying representation learning in language modeling. We examine the
quartic Taylor approximation of the word2vec loss around the origin, and we show
that both the resulting training dynamics and the final performance on downstream
tasks are empirically very similar to those of word2vec. Our main contribution is
to analytically solve for both the gradient flow training dynamics and the final word
embeddings in terms of only the corpus statistics and training hyperparameters.
The solutions reveal that these models learn orthogonal linear subspaces one at
a time, each one incrementing the effective rank of the embeddings until model
capacity is saturated. Training on Wikipedia, we find that each of the top linear
subspaces represents an interpretable topic-level concept. Finally, we apply our
theory to describe how linear representations of more abstract semantic concepts
emerge during training; these can be used to complete analogies via vector addition.

1 Introduction
Modern machine learning models achieve impressive performance on complex tasks in large part due
to their ability to automatically extract useful features from data. Despite rapid strides in engineering,
a scientific theory describing this process remains elusive. The challenges in developing such a
theory include the complexity of model architectures, the nonconvexity of the optimization, and the
difficulty of data characterization. To make progress, it is prudent to turn to simple models that admit
theoretical analysis while still capturing phenomena of interest.

Word embedding algorithms are a class of self-supervised algorithms that learn word representations
with task-relevant vector structure. One example is word2vec, a contrastive algorithm that learns
to model the probability of finding two given words co-occurring in natural text using a two-layer
linear network (Mikolov et al., 2013). Despite its simplicity, the resulting models succeed on a variety
of semantic understanding tasks. One striking ability exhibited by these embeddings is analogy
completion: most famously, man−woman ≈ king − queen, where man is the embedding for
the word “man” and so on. Importantly, this ability is not explicitly promoted by the optimization
objective; instead, it emerges spontaneously from the process of representation learning.

Contributions. In this work, we give a closed-form description of representation learning in models
trained to minimize the quartic Maclaurin approximation of the word2vec loss. We prove that
the learning problem reduces to matrix factorization with quadratic loss (Theorem 1), so we call
these models quadratic word embedding models (QWEMs). We derive analytic solutions for their
training dynamics and final embeddings under gradient flow and vanishing initialization (Result 3).
Training on Wikipedia, we show that QWEMs closely match word2vec-trained models in their
training dynamics, learned features, and performance on standard benchmarks (Figure 3). We apply
our results to show that the dynamical formation of abstract linear representations is well-described
by quantities taken from random matrix theory (Figure 4). Taken together, our results give a clear
picture of the learning dynamics in contrastive word embedding algorithms such as word2vec.

∗dkarkada@berkeley.edu
Code to reproduce all experiments available at https://github.com/dkarkada/qwem.
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Figure 1: Quadratic word embedding models are a faithful and analytically solvable proxy for word2vec.
We compare the time course of learning in QWEMs (top) and word2vec (bottom), finding striking similarities
in their training dynamics and learned representations. Analytically, we solve for the optimization dynamics
of QWEMs under gradient flow from small initialization, revealing discrete, rank-incrementing learning steps
corresponding to stepwise decreases in the loss (top left). In latent space (right side plots), embedding vectors
expand into subspaces of increasing dimension at each learning step. These PCA directions are the model’s
learned features, and they can be extracted from our theory in closed form given only the corpus statistics and
hyperparameters (Theorem 1). Empirically, QWEMs yield high-quality embeddings very similar to word2vec’s
in terms of their learned features and performance on benchmarks (Figure 3). See Appendix A for details.

Relation to previous work. word2vec is a self-supervised contrastive word embedding algorithm
widely used for its simplicity and performance (Mikolov et al., 2013; Levy et al., 2015). Although
the resulting models are known to implicitly factorize a target matrix (Levy & Goldberg, 2014), it is
not known which low-rank approximation of the target is learned (Arora et al., 2016). We provide the
answer in a close approximation of the task, solving for the final word embeddings directly in terms
of the statistics of the data and the training hyperparameters.

Our result connects deeply with previous works on the gradient descent dynamics of linear models.
For two-layer linear feedforward networks trained on a supervised learning task with square loss,
whitened inputs, and weights initialized to be aligned with the target, the singular values of the
weights undergo sigmoidal dynamics; each singular direction is learned independently with a distinct
learning timescale (Saxe et al., 2014, 2019; Gidel et al., 2019; Atanasov et al., 2022). These results
either rely on assumptions on the data (e.g., input covariance Σxx = I or Σxx commutes with Σxy)
or are restricted to scalar outputs. Similarly, supervised matrix factorization models are known to
exhibit rank-incremental training dynamics in some settings (Li et al., 2018; Arora et al., 2019; Gissin
et al., 2019; Li et al., 2021; Jacot et al., 2021; Jiang et al., 2023; Chou et al., 2024). Many of these
results rely on over-parameterization or special initialization schemes. While our result is consistent
with these works, our derivation does not require assumptions on the data distribution, nor does it
require special structure in the initial weights. Another key difference is that our result is the first to
solve for the training dynamics of a natural language task learned by a self-supervised contrastive
algorithm. This directly expands the scope of matrix factorization theory to new settings of interest.

Closest to our work, HaoChen et al. (2021); Tian et al. (2021); Simon et al. (2023b) study linearized
contrastive learning in vision tasks. Our work differs in several ways: we study a natural language
task using a different contrastive loss function, we do not linearize a nonlinear model architecture, we
obtain closed-form solutions for the learning dynamics, and we do not require assumptions on the
data distribution (e.g., special graph structure in the image augmentations, or isotropic image data).
Saunshi et al. (2022) stress that a theory of contrastive learning must account for both the true data
distribution and the optimization dynamics; to our knowledge, our result is the first to do so.
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2 Preliminaries
Notation. We use capital boldface to denote matrices and lowercase boldface for vectors. Subscripts
denote elements of vectors and tensors (Aij is a scalar). We use the “economy-sized” singular value
decomposition (SVD) A = USV ⊤, where S is square. We denote the rank-r truncated SVD as
A[r] = U[:,:r]S[:r,:r]V[:,:r]

⊤.

Setup. The training corpus is a long sequence of words drawn from a finite vocabulary of cardinality
V . A context is any contiguous length-L subsequence of the corpus. Let i and j index the vocabulary.
Let Pr(i) be the empirical unigram distribution, and let Pr(j|i) be the proportion of occurrences
of word j in contexts containing word i. Define Pr(i, j) := Pr(j|i) Pr(i) to be the skip-gram
distribution. We use the shorthand Pij := Pr(i, j) and Pi := Pr(i).

Let W ∈ RV×d be a trainable weight matrix whose ith row wi is the d-dimensional embedding
vector for word i. We restrict our focus to the underparameterized regime d ≪ V , in accordance with
practical settings. The goal is to imbue W with semantic structure so that the inner products between
word embeddings capture semantic similarity. To do this, one often uses an iterative procedure that
aligns frequently co-occurring words and repels unrelated words. The principle underlying this
method is the distributional hypothesis, which posits that semantic structure in natural language can
be discovered from the co-occurrence statistics of the words (Harris, 1954).

Primer on word2vec. In word2vec “skip-gram with negative sampling” (SGNS),3 two embedding
matrices W and W ′ are trained4 using stochastic gradient descent to minimize the contrastive loss

Lw2v(W ,W ′) = E
i,j∼Pr(·,·)

[
Ψ+

ij log
(
1 + e−w⊤

i w′
j

)]
+ E

i∼Pr(·)
j∼Pr(·)

[
Ψ−

ij log
(
1 + ew

⊤
i w′

j

)]
. (1)

The averages are estimated by drawing samples from the corpus. The nonnegative hyperparameters
{Ψ+

ij} and {Ψ−
ij} are reweighting coefficients for word pairs; we use them here to capture the

effect of several of word2vec’s implementation details, including subsampling (i.e., probabilistically
discarding frequent words during iteration), dynamic window sizes, and different negative sampling
distributions. All of these can be seen as preprocessing techniques that directly modify the unigram
and skip-gram distributions. In Appendix A.3 we provide more detail about these engineering tricks
and discuss how one can encode their effects in Ψ+ and Ψ−.

The quality of the resulting embeddings are evaluated using standard semantic understanding bench-
marks. For example, the Google analogy test set measures how well the model can complete analogies
(e.g., man:woman::king:?) via vector addition (Mikolov et al., 2013). Importantly, this benchmark is
distinct from the optimization task, and performing well on it requires representation learning.

The global minimizer of Lw2v is the pointwise mutual information (PMI) matrix

argmin
w⊤

i w′
j

Lw2v(W ,W ′) = log

(
Ψ+

ijPij

Ψ−
ijPiPj

)
, (2)

where the minimization is over the inner products (Levy & Goldberg, 2014). Crucially, the PMI
minimizer can only be realized (WW ′⊤ = PMI) if there is no rank constraint (d ≥ rank(PMI)).
This condition is always violated in practice. It is crucial, then, to determine which low-rank
approximation of the PMI matrix is learned by word2vec. It is not the least-squares approximation;
the resulting embeddings are known to perform significantly worse on downstream tasks such as
analogy completion (Levy et al., 2015). This is because the divergence at Pij/PiPj → 0 causes least
squares to over-allocate fitting power to these rarely co-occurring word pairs. Various alternatives have
been proposed, including the positive PMI, PPMIij = max(0,PMIij), but we find that these still
differ from the embeddings learned by word2vec, both in character and in performance (Figure 3).

Our approach is different: rather than approximate the minimizer of Lw2v, we obtain the exact
minimizer of a (Taylor) approximation of Lw2v. Though this may seem to be a coarser approximation,
we are well-compensated by the ability to analytically treat the implicit bias of gradient descent,
which enables us to give a full theory of how and which low-rank embeddings are learned.

3Throughout this paper, we use the abbreviated “word2vec” to refer to the word2vec SGNS algorithm.
4W is for “center” words, and W ′ is for “context” words. For simplicity, we consider the setting W ′ = W ;

in Figure 3 we show that this is sufficient for good performance on semantic understanding tasks.
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3 Quadratic Word Embedding Models
We set W ′ = W and study the quartic approximation of Lw2v around the origin:

L(W ) := E
i,j∼Pr(·,·)

[
Ψ+

ij

(
(w⊤

i wj)
2

4
−w⊤

i wj

)]
+ E

i∼Pr(·)
j∼Pr(·)

[
Ψ−

ij

(
(w⊤

i wj)
2

4
+w⊤

i wj

)]
. (3)

Note that the key quantities are the inner products between embeddings. There is no privileged
coordinate basis in embedding space. Since the objective is quadratic in these inner products, we
refer to the resulting models quadratic word embedding models (QWEMs).5

Model equivalence classes. Since L(W ) is invariant under orthogonal transformations of the right
singular vectors of W , we define the right orthogonal equivalence class

REquiv(W ) :=
{
WU

∣∣ U ∈ Rd×d,U⊤U = I
}
. (4)

3.1 QWEM is equivalent to matrix factorization with square loss.
Target matrix. We start by introducing a matrix M⋆. We will show in Theorem 1 that M⋆ is the
optimization target for QWEM, just as the PMI matrix is the optimization target for word2vec.

M⋆
ij :=

Ψ+
ijPij −Ψ−

ijPiPj

1
2 (Ψ

+
ijPij +Ψ−

ijPiPj)
. (5)

To understand this quantity, first note that if language were a stochastic process with independently
sampled words, the co-occurrence statistics would be structureless, i.e., Pij − PiPj = 0. The
distributional hypothesis then suggests that algorithms may learn semantics by modeling the statistical
deviations from independence. It is exactly these (relative) deviations that comprise the optimization
target M⋆ and serve as the central statistics of interest in our theory. Furthermore, M⋆ can be seen
as an approximation the PMI matrix; see Appendix D.

Reweighting hyperparameters. Our goal now is to directly convert Equation (3) into a matrix
factorization problem. To do this, we make some judicious choices for the hyperparameters. We first
define the quantity Gij := Ψ+

ijPij +Ψ−
ijPiPj , which captures the aggregate effect of the reweighting

hyperparameters on the optimization. Then we establish the following hyperparameter setting.

Setting 3.1 (Symmetric Ψ+,Ψ− and constant Gij). Let Ψ+
ij = Ψ+

ji and Ψ−
ij = Ψ−

ji so that, by
symmetry, the eigendecomposition M⋆ = V ⋆ΛV ⋆⊤ exists. Let Gij = g for some constant g.

Note that infinitely many choices of Ψ+ and Ψ− are encompassed by this setting. Let us study
a concrete example: Ψ+

ij = Ψ−
ij = (Pij + PiPj)

−1, so that Gij = g = 1. This has the effect
of down-weighting frequently appearing words and word pairs, which hastens optimization and
prevents the model from over-allocating fitting power to words such as “the” or “and” which may
not individually carry much semantic content. This is exactly the justification given for subsampling
in word2vec, which motivates Setting 3.1. Indeed, in Appendix A.3 we discuss how these choices
of Ψ+ and Ψ− can be seen as approximating several of the implementation details and engineering
tricks in word2vec. In Figures 2 and 3, we show that this simplified hyperparameter setting does not
wash out the relevant structure, thus retaining realism.

With these definitions, we state our key result: rank-constrained quadratic word embedding models
trained under Setting 3.1 learn the top d eigendirections of M⋆.

Theorem 1 (QWEM = unweighted matrix factorization). Under Setting 3.1, the contrastive loss
Equation (3) can be rewritten as the unweighted matrix factorization problem

L(W ) =
g

4

∥∥WW⊤ −M⋆
∥∥2
F
+ const. (6)

If Λ[:d,:d] is positive semidefinite, then the set of global minima of L is given by

argmin
W

L(W ) = REquiv
(
V ⋆
[:,:d]Λ

1/2
[:d,:d]

)
. (7)

Proof. Equation (6) follows from completing the square in Equation (3). Equation (7) follows from
the Eckart-Young-Mirsky theorem. In Appendix A.2, we note that the PSD assumption is easily
satisfied in practice.

5We use “QWEM” as shorthand for minimizing the quartic approximation of the word2vec loss, and
“QWEMs” for the resulting embeddings. We emphasize that QWEMs do not refer to a new model architecture.
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We emphasize that although previous results prove that word embedding models find low-rank
approximations to some target matrix (e.g., PMI for word2vec), previous results do not establish
which low-rank factorization is learned. To our knowledge, our result is the first to solve for the
rank-constrained minimizer of a practical word embedding task. Furthermore, our solution is given in
terms of only the corpus statistics and the hyperparameters Ψ+ and Ψ−. In particular, we show that
QWEMs learn compressed representations of the relative deviations between the true co-occurrence
statistics and the baseline of independently distributed words. Unlike previous work, we do not
require stringent assumptions on the data distribution (e.g., spherically symmetric latent vectors, etc.).

The main limitation of Theorem 1 is its restriction to Setting 3.1. What happens in the general case?

Proposition 2. Equation (3) can be rewritten as the weighted matrix factorization problem

L(W ) =
1

4

∑
i,j

Gij(WW⊤ −M⋆)2ij + const. (8)

Let Ψ+ and Ψ− each be symmetric in i, j, let g ∈ RV be an arbitrary vector with non-negative
elements, and let Γ = diag(g)1/2. Then the eigendecomposition of ΓM⋆Γ = V ⋆

Γ ΛΓV
⋆
Γ

⊤ exists. If
G = gg⊤ and Λ[:d,:d] is positive semidefinite, then the set of global minima of L is given by

argmin
W

L(W ) = REquiv
(
Γ−1V ⋆

Γ,[:,:d]Λ
1/2
Γ,[:d,:d]

)
. (9)

Proof. See Appendix C. Equation (8) says that in the general case, the form of the target matrix
remains unchanged. Equation (9) says that if the hyperparameters are chosen so that G is rank-1,
then we can characterize the minimizer. However, if G is not rank-1, then we do not know what
low-rank factorization is learned, nor can we describe the training dynamics; indeed, weighted matrix
factorization is known to be NP-hard (Gillis & Glineur, 2011). For this reason, we do not revisit these
more general settings, and we hereafter restrict our focus to Setting 3.1. This is ultimately justified by
the empirically close match between our theory and the embeddings learned by word2vec (Figure 3).

3.2 Training dynamics of QWEMs reveal implicit bias towards low rank.
Note that despite the simplification afforded by Theorem 1, the minimization problem Equation (6) is
still nonconvex since L(W ) is quartic in W . Thus, there remain questions regarding convergence
time and the effect of early stopping regularization. To study them, we examine the training trajectories
induced by gradient flow. The central variables of our theory will be the economy-sized SVD of
the embeddings, W (t)

⊤
= U(t)S(t)V (t)

⊤, and the eigendecomposition of the target, M⋆ =

V ⋆ΛV ⋆⊤. For convenience, we define λk := Λkk and sk := Skk.

In general, it is difficult to solve the gradient descent dynamics of Equation (3) from arbitrary
initialization. We first consider a simple toy case in which the initial embeddings are already aligned
with the top d eigenvectors of M⋆.

Lemma 3.1 (Training dynamics, aligned initialization). If Λ̃ := Λ[:d,:d] is positive semidefinite and
V (0) = V ⋆

[:,:d], then under Setting 3.1, the gradient flow dynamics dW
dt = − 1

2g∇L(W ) yields

U(t) = U(0) (10)

S(t) = S(0)
(
e−Λ̃t + S2(0)Λ̃−1

(
I − e−Λ̃t

))−1/2

(11)

V (t) = V (0) = V ⋆
[:,:d] (12)

The proof is given in Appendix C. See Saxe et al. (2014) for a proof in an equivalent learning problem.

This result states that the final embeddings’ PCA directions are given by the top d eigenvectors of
M⋆, that the dynamics are decoupled in this basis, and that the population variance of the embeddings
along the kth principal direction increases sigmoidally from s2k(0) to λk in a characteristic time
t = τk := (1/λk) ln

(
λk/s

2
k(0)

)
. These training dynamics have been discovered in a variety of other

learning problems (Saxe et al., 2014; Gidel et al., 2019; Atanasov et al., 2022; Simon et al., 2023b;
Dominé et al., 2023). Our result adds self-supervised quadratic word embedding models to the list.
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Figure 2: Theory matches experiment. We make two simplifications to the word2vec algorithm: a quartic
approximation of the loss, and a restriction on the reweighting hyperparameters. We train these QWEMs on
2 billion tokens of English Wikipedia (see Appendix A for details) and compare to word2vec. We find good
qualitative match in the singular value dynamics, both with the standard word2vec initialization scheme and
with small random initialization. (For evidence that the singular vectors match as well, see Figure 3.) We
compare the dynamics to the prediction of Result 3, which is derived in the vanishing initialization limit with
full-batch gradient flow. Even though the experiment uses stochastic mini-batching, non-vanishing learning rate,
and large initialization, we find excellent agreement even up to constant factors.

It is restrictive to require perfect alignment V = V ⋆ at initialization. To lift this assumption, we
show that in the limit of vanishing random initialization, the dynamics are indistinguishable from the
aligned case, up to orthogonal transformations of the right singular vectors of W . To our knowledge,
previous works have not derived this equivalence for under-parameterized matrix factorization.

Result 3 (Training dynamics, vanishing random initialization). Initialize Wij(0) ∼ N (0, σ2), and
let S(0) denote the singular values of W (0). Define the characteristic time τ1 := λ−1

1 ln
(
λ1/σ

2
)

and the rescaled time variable t̃ = t/τ1. Define W ⋆(0) := V ⋆
[:,:d]S(0) and let W ⋆(t) be its gradient

flow trajectory given by Lemma 3.1. If Λ[:d,:d] is positive semidefinite, then under Setting 3.1 we have
with high probability that

∀t̃ ≥ 0, lim
σ2→0

min
W ′∈REquiv(W (t̃τ1))

∥W ′ −W ⋆(t̃τ1)∥F = 0. (13)

Derivation. See Appendix C. The main idea is to study the dynamics of the QR factorization of
W⊤V ⋆. We write the equation of motion, discard terms that become small in the limit, solve the
resulting equation, and show that the discarded terms remain small. We conjecture that our argument
can be made rigorous by appropriately bounding the discarded terms. We leave this to future work.

Result 3 generalizes previous work that establishes a silent alignment phenomenon for linear networks
with scalar outputs (Atanasov et al., 2022). Here, for all k ≤ d, V[:,:k] quickly aligns with V ⋆

[:,:k] while
sk remains near initialization; thus the alignment assumption is quickly near-satisfied and Lemma 3.1
becomes applicable. We conclude that quadratic word embedding models trained from small random
initialization are inherently greedy spectral methods. The principal components of the embeddings
learn a one-to-one correspondence with the eigenvectors of M⋆, and each component is realized
independently and sequentially. Thus, early stopping acts as an implicit regularizer, constraining
model capacity in terms of rank rather than weight norm.
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word2vec feature neighbors QWEM feature neighbors svd(PPMI) feature neighbors

(PC1) jones scott gary frank robin-
son terry michael david eric kelly

(PC1) tom jones david frank
michael scott robinson kelly tony

(PC1) eric cooper jones dennis
oliver sam tom robinson

(PC2) government council national
established in state united republic

(PC2) government council estab-
lishment appointed republic union

(PC2) jones dennis eric robinson
scott michael oliver taylor

(PC3) adjacent located built sur-
face powered bay meters road near

(PC3) bay adjacent located north
junction southwest road northeast

(PC3) government establishment
foreign authorities leaders

(PC11) combat enemy offensive
deployed naval artillery narrative

(PC10) offensive combat war
artillery enemy naval defensive

(PC11) deployed force combat
patrol command naval squadron

(PC12) whilst trained skills compe-
titions studying teaching artistic

(PC11) trained skills whilst study-
ing competitions aged honours

(PC14) piano vocal orchestra solo
music instrumental recordings

(PC13) britain produced anglo ltd
welsh australian scottish sold

(PC12) britain produced consider-
able price notably industry sold

(PC15) england thus great price
meant liverpool share earl enjoyed

(PC100) il northern di worker laid
contributions ireland down oak

(PC100) doctor bar lives disc
oregon credited ultimate split serial

(PC100) org figure standing riding
with http green date www parent

(a) Words with smallest cosine distance to embedding principal components

word2vec QWEM svd(M⋆) svd(PPMI) svd(PMI)

Google Analogies 68.0% 65.1% 66.3% 50.6% 8.4%

MEN test set 0.744 0.755 0.755 0.740 0.448

WordSim353 0.698 0.682 0.683 0.690 0.221

(b) Performance on standard word embedding benchmarks

Figure 3: QWEMs and word2vec learn similar features, whereas PMI (and variants) differ qualitatively.
For the following, all models W ∈ RV ×d are trained with V = 10, 000 and d = 200 on 2 billion tokens of
Wikipedia. See Appendix A for experimental details. We denote svd(M) := argminW ∥WW⊤ −M∥2F.
(Top.) We compute the principal components of the final embeddings and list the closest embeddings. See
Appendix B for a quantitative plot of subspace overlaps. Top section: top three components of word2vec and
QWEM represent topic-level concepts (biography, government, geography) corresponding to common topics
on Wikipedia. Middle section: components closest to word2vec components 11, 12, 13. Up to reordering,
QWEMs match closely and remain interpretable, while positive PMI deviates. Bottom row: late components
lose their interpretability. (Bottom.) Since QWEMs and word2vec learn similar features, they perform similarly
on the vector addition analogy completion task. Explicit factorization of M⋆ almost matches the performance
of word2vec, much better than the best previously-known SVD embeddings.

3.3 Empirically, QWEMs are a good proxy for word2vec.
Our rationale for studying QWEMs is to gain analytical tractability (e.g., Result 3) in a setting that is
“close to” the true setting of interest: word2vec. In Figure 3, we check whether QWEMs are in fact
a faithful representative for word2vec. We find that not only do QWEMs nearly match word2vec
on the analogy completion task, they also learn very similar representations, as measured by the
alignment between their singular vectors. Importantly, QWEMs are closer to word2vec than the
least-squares approximations of either PMI or PPMI. This underscores the importance of accounting
for the implicit bias of gradient descent.

To run the experiments in Figures 1 to 3, we implemented a GPU-enabled training algorithm for both
word2vec and QWEM. The corpus data is streamed from the hard drive in chunks to avoid memory
overhead and excessive disk I/O, and the loops for batching positive and negative word pairs are
compiled for efficiency. Notably, it is often faster to construct and explicitly factorize M⋆ (e.g., with
vocabulary size V = 10, 000, it takes ∼10 minutes in total on a single GeForce GTX 1660 GPU).

Figure 3 suggests that if one is interested in understanding the learning behaviors of word2vec, it
suffices to study QWEMs. Then Theorem 1 and Result 3 state that if one is interested in understanding
the learning behaviors of QWEMs, it suffices to study M⋆. In this spirit, we will now study M⋆ to
investigate certain aspects of representation learning in word embedding models.
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4 Linear Structure in Latent Space
Result 3 reveals that, for QWEMs, the “natural” basis of the learning dynamics is simply the eigenbasis
of M⋆. Figure 3 suggests that this basis already encodes concepts interpretable to humans. These
are the fundamental features learned by the model: each word embedding is naturally expressed as a
linear combination of these orthogonal latents. Both early stopping and small embedding dimension
regularize the model by constraining the number (but not the character) of available latents.

We may conclude that natural language contains linear semantic structure in its co-occurrence
statistics, and that it is easily extracted by word embedding algorithms. It is not unreasonable to
expect, then, that other semantic concepts may be encoded as linear subspaces. This idea is the linear
representation hypothesis, and it motivates modern research in more sophisticated language models,
including representation learning (Park et al., 2023; Jiang et al., 2024; Wang et al., 2024), mechanistic
interpretability (Li et al., 2023; Nanda et al., 2023; Lee et al., 2024), and LLM alignment (Lauscher
et al., 2020; Zou et al., 2023; Li et al., 2024). To make these efforts more precise, it is important to
develop a quantitative understanding of these linear representations in simple models. Our Theorem 1
provides a new lens for this analysis: we may gain insight by studying the properties of M⋆.

In word embedding models, a natural category of abstract linear representations are the difference
vectors between semantic pairs, e.g., {r(n)}n = {man−woman,king− queen, . . . } for gender
binaries. If the r(n) are all approximately equal, then the model can effectively complete analogies
via vector addition (see Appendix A.4). Following Ilharco et al. (2022), we call the r(n) task vectors.

Here, we provide empirical evidence for the following dynamical picture of learning. The model
internally builds task vectors in a sequence of noisy learning steps, and the geometry of the task
vectors is well-described by a spiked random matrix model. Early in training, semantic signal
dominates; however, later in training, noise may begin to dominate, causing a degradation of the
model’s ability to resolve the task vector. We validate this picture by studying the task vectors in a
standard analogy completion benchmark.

We emphasize that, due to our Result 3, any result comparing the final embeddings of many models
of different sizes d is fully equivalent to a result considering the time course of learning for a single
(sufficiently large) model. Therefore, although we vary the model dimension in our plots, these can
be viewed as results concerning the dynamics of learning in word embedding models.

Task vectors are often concentrated on a few dominant eigen-features. Task vectors derived
from the analogy dataset are neither strongly aligned with a single model eigen-feature, nor are they
random vectors. Instead, they exhibit localization: a handful of the top eigen-features are primarily
responsible for the task vector. In some cases, these dominant eigen-features are interpretable and
clearly correlate with the abstract semantic concept associated with the task vector (Figure 4).

Task vectors are well-described by a spiked random matrix model. To study the geometry of
the task vectors within a class of semantic binaries, we consider stacking task vectors to produce the
matrix Rd ∈ RN×d, where N is the number of word pairs and d is the embedding dimension. We
note that Rd can be computed in closed form using our Theorem 1. If all the task vectors align (as
desired for analogy completion), then Rd will be a rank-1 matrix; if the task vectors are all unrelated,
then Rd will have a broad spectrum. This observation suggests that a useful object to study is the
empirical spectrum of the Gram matrix Gd := RdR

⊤
d ∈ RN×N .

We find that this spectrum is very well-described by the spiked covariance model, a well-known
distribution of random matrices. In the model, one studies the spectrum of Z = ΞΞ⊤+µaa⊤, where
Ξ is a random matrix with i.i.d. mean-zero entries with variance σ2 and µaa⊤ is a deterministic
rank-1 perturbation with strength µ. If µ is sufficiently large compared to σ, then in the asymptotic
regime the spectrum of Z is known to approach the Marchenko-Pastur distribution with a single
outlier eigenvalue (Baik et al., 2005). We consistently observe this structure in the real empirical data,
across both model dimension and semantic families (Figure 4). We note that N ≈ 30 is fairly small,
and so it is somewhat surprising that results from the asymptotic regime visually appear to hold.

We interpret this observation as evidence that task vectors are well-described as being random vectors
with a strong deterministic signal (e.g., Gaussian random vectors with nonzero mean). One expects
that in a high-quality linear representation, the signal is simply the mean task vector, and that it
overwhelms the random components. To understand whether a model can effectively utilize the task
vectors, then, we examine the relative strength of the spike compared to the noisy bulk.
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Figure 4: Models build linear representations from a few informative and many noisy eigen-features. In the
left and upper plots, we examine task vectors between verb past tenses and their participle (e.g., went−going).
In Appendix B we show that these observations hold for other semantic binaries. (Left.) The spectrum of the
Gram matrix (histogram) is well-described by a Marchenko-Pastur distribution (orange) plus an outlier “spike,”
across model sizes d. See Appendix A.6 for details. (Top.) The spike corresponds to the average task vector,
which comprises a few dominant eigen-features. Many of these features correspond to concepts related to
history or temporal change, consistent with this semantic category. (Bottom.) We measure the strength of the
spike across model size d for various semantic categories. We find that the spike strength correlates strongly
with the model’s ability to use the task vectors for analogy completion.

The strength of the spike perturbation corresponds to the robustness of the task vector. We
measure the relative strength of the signal-containing spike using an empirical measure of the signal-
to-noise ratio: snr := λmax(G) · rank(G)/Tr[G]. This quantity is simply the ratio between the
maximum eigenvalue (i.e., the signal strength) and the mean nonzero eigenvalue (i.e., the typical
variation due to noise). We find that as the model learns representations of increasing rank during
learning, it first captures an increasing fraction of the signal (consistent with the previous observation
regarding the localization of the task vector). Later in training, the noise begins to dominate, and
the model’s ability to resolve the signal degrades. Finally, the maximum achieved SNR serves as a
coarse predictor for how effectively the model can use the representation for downstream tasks: the
model achieves higher analogy completion scores on semantic directions with higher SNR.

Together, these observations provide evidence that useful linear representations arise primarily from
the model’s ability to resolve signal-containing eigen-features without capturing excess noise from
extraneous eigen-features. Furthermore, our results suggest that tools from random matrix theory
may be fruitfully applied to understand and characterize this interplay. We leave this to future work.

5 FAQ
Can the assumptions be relaxed? Our theoretical results require only four assumptions: quartic
approximation of the loss, our Setting 3.1, small initial weights, and population gradient flow. The
latter two are technical conveniences that simplify the analysis; Figure 2 suggests that they may be
relaxed (or possibly eliminated) with additional effort. The first two are genuine approximations of
the word2vec algorithm; their validity is supported by our empirical checks (see Figures 1, 3 and 5
and Appendix A.3). To further understand why these two approximations are technically useful, and
what happens if they are relaxed, we perform empirical ablation tests in Figure 7.6

6We note that these auxiliary experiments use a different training corpus, model size, and hyperparameter
choices, indicating that our theory is not sensitive to these choices.
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The clear stepwise learning and decoupled dynamics in our theory originate from Setting 3.1.
This condition turns the weighted factorization problem into an unweighted factorization. As a
consequence, the singular value/vector dynamics quickly become “untangled” in the early stage of
training; see Proposition 2 and the subsequent discussion. Somewhat surprisingly, this simplification
is “close enough” to word2vec. Though the word2vec singular vectors do exhibit mild “mixing”
in time (Figure 2), the overall learning dynamics are well-described by the simplified setting. This
agreement is partly because the recommended word2vec hyperparameters approximate satisfy
Setting 3.1 (see Appendix A.3). Our results suggest that future efforts to understand more complex
learning systems may find purchase in identifying useful approximations of this kind.

Why do QWEM factorizations describe word2vec better than PMI factorizations? The crux
of the issue lies in adequately handling the rank constraint. The idea behind factorizing PMI via
SVD is to first solve the unconstrained minimizer of the loss (i.e., the PMI matrix) and then, at the
end, apply the rank constraint by choosing the closest (in Frobenius norm) rank-d matrix. This does
not work well because the loss basin is extremely wide and shallow, so the global unconstrained
minimum is actually very far from where the model actually ends up via gradient descent in finite
time. We take a different approach: by first approximating the loss landscape itself, we can account
for the rank constraint throughout the entire optimization trajectory. As a result, our prediction for
what word2vec learns is significantly more accurate.

Why does decreasing SNR sometimes still yield high performance in Figure 4? This is an
ancillary effect of using top-1 accuracy as the performance metric. As a concrete example, consider
the analogy “France : Paris :: Japan : Tokyo,” satisfying japan + (paris − france) ≈ tokyo.
As the effective embedding dimension increases, the SNR may decrease; at the same time, the
typical separation between embeddings increases (due to the increased available volume in latent
space). This means that there are fewer nearby “competitors” for tokyo. In the large d regime,
we find that the embeddings are sufficiently spaced, and tokyo is still the nearest embedding to
japan + (paris − france) despite an increase in absolute error (see Figure 8). Thus, top-1
performance does not degrade with decreasing SNR. We note that unintuitive effects associated with
using top-k accuracy have been observed in LLMs as well (Schaeffer et al., 2024).

How might one apply these results to other self-supervised learning tasks? Since our results are
distribution agnostic, Theorem 1 can be extended to establish an explicit equivalence between self-
supervised contrastive learning and supervised matrix factorization. In particular, if the contrastive
objective has the functional form L(W ) = Epositive pairs[f

+(wTw′)] + Enegative pairs[f
−(wTw′)] for

some differentiable f+(·) and f−(·), then one can simply take the quadratic Taylor approximation,
complete the square, and obtain a target matrix in terms of the positive and negative distributions of
the learning problem. See Appendix D.2 for a demonstration of this idea for the SimCLR loss. To
obtain closed-form learning dynamics, one needs to find an equivalent of our Setting 3.1. This may
be challenging depending on the form of the input data; for instance, when the inputs are not one-hot,
it may require a whitened data covariance.

What do these results tell us about feature learning? Two operational notions of feature learning
are 1) optimization trajectories must escape the local vicinity of the (typically small) initialization
(Yang & Hu, 2021; Jacot et al., 2021; Zhu et al., 2022; Atanasov et al., 2024; Kunin et al., 2025),
and 2) learned weight matrices must project data onto target-relevant subspaces (Damian et al., 2022;
Radhakrishnan et al., 2024). Our message complements this line of research by offering a practical
yet solvable setting in which both behaviors appear: word2vec escapes its near-isotropic initialization
region to learn a dense compression of the relative excess co-occurrence probability M⋆, thereby
aligning the embedding geometry with the most salient semantic linear subspaces. Our result is thus
a step forward in the broader scientific project of obtaining quantitative, predictive descriptions of
learning in practical algorithms.

Limitations. Our results are limited to the symmetric setup (tied encoder/decoder weights, i.e.,
W = W ′). We did not train and evaluate at scales that are considered state-of-the-art, nor did we
compare against other embedding models such as GloVe (Pennington et al., 2014).

Author contributions. DK developed the analytical results, ran all experiments, and wrote the
manuscript with input from all authors. JS proposed the initial line of investigation and provided
insight at key points in the analysis. YB and MD helped shape research objectives and gave oversight
and feedback throughout the project’s execution.
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.

• Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and intro state the contributions of the paper and frame them in
relation to the larger goal of developing theory for machine learning.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]

Justification: The limitations are discussed in the final section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Proofs can be found in the appendices.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Experimental details can be found in the appendices. Code is provided in
supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code to run experiments is provided in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experimental details can be found in the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The main contribution of this paper is theoretical; the experiment simply
confirms the analytic theory. Our sanity checks revealed that our results are not sensitive to
particular initializations or data subsets.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Given in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: No ethics violations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is primarily theoretical.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We train on Wikipedia, which has a CC 4.0 license.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects.
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Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experimental details
All our implementations use jax (Bradbury et al., 2018). In all reported experiments we use a
vocabulary size V = 104, model dimension d = 200, and a context length L = 32 neighbors for
each word. These were chosen fairly arbitrarily and our robustness checks indicated that our main
empirical results were not sensitive to these choices.

A.1 Training corpus
We train all word embedding models on the November 2023 dump of English Wikipedia, downloaded
from https://huggingface.co/datasets/wikimedia/wikipedia. We tokenize by replacing
all non-alphabetical characters (including numerals and punctuation) with whitespace and splitting by
whitespace. The full corpus contains 6.4 million articles and 4.34 billion tokens in total. The number
of tokens per article follows a long-tailed distribution: the (50%, 90%, 95%, 99%) quantiles of the
article token counts are (364, 1470, 2233, 5362) tokens. We discard all articles with fewer than 500
tokens, leaving a training corpus of 1.58 million articles with 2.00 billion tokens in total.

We use a vocabulary consisting of the V = 104 most frequently appearing words. We discard
out-of-vocabulary words from both the corpus and the benchmarks. Our robustness checks indicated
that as long as the corpus is sufficiently large (as is the case here), it does not matter practically
whether out-of-vocabulary words are removed or simply masked. This choice of V retains 87% of
the tokens in the training corpus and 53% of the analogy pairs.

A.2 Optimization
We optimize using stochastic gradient descent with no momentum nor weight decay. Each minibatch
consists of 100,000 word pairs (50,000 positive pairs and 50,000 negative pairs). For benchmark
evaluations (Figure 3) we use a stepwise learning rate schedule in which the base learning rate is
decreased by 90% at t = 0.75tmax. We found that this was very beneficial, especially for QWEMs,
which appear more sensitive to large learning rates. The finite-stepsize gradient descent dynamics of
matrix factorization problems remains an interesting area for future research.

We directly train the tensor of embedding weights W ∈ Rd×V . One potential concern is that since the
model WW⊤ is positive semidefinite, it cannot reconstruct the eigenmodes of M⋆ ∈ RV×V with
negative eigenvalue. However, we empirically find that with V = 104, M⋆ has 4795 non-negative
eigenvalues. Therefore, in the underparameterized regime d ≪ V , the model lacks the capacity to
attempt fitting the negative eigenmodes. Thus, the PSD-ness of our model poses no problem.

A.3 Reweighting hyperparameters
Taking from the original word2vec implementation, we use the following engineering tricks to
improve performance.

Dynamic context windows. Rather than using a fixed context window length L, word2vec uni-
formly samples the context length between 1 and L at each center word. In aggregate, this has the
effect of more frequently sampling word pairs with less separation. Let dij be the mean distance
between words i and j, when found co-occurring in contexts of length L. (Thus, di is small for the
words “phase" and “transition" since they are a linguistic collocation, but large for “proved” and
“derived” since verbs are typically separated by many words.) Then it is not hard to calculate the
effect of uniformly-distributed dynamic context window lengths; it is equivalent to setting

Ψ+
ij =

L− dij∑
i′j′(L− di′j′)Pi′j′

. (14)

Subsampling frequent words. Mikolov et al. (2013) suggest discarding very frequent words with a
frequency-dependent discard probability. This is akin to rejection sampling, with the desired unigram
distribution flatter than the true Zipfian distribution. The original word2vec implementation uses an
acceptance probability of

Pacc(i) = min

1,
10−3

Pi
+

√
10−3

Pi

 . (15)

This is equivalent to setting the hyperparameters

Ψ+
ij = Ψ−

ij = Pacc(i)Pacc(j). (16)
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Different negative sampling rate. Finally, Mikolov et al. (2013) draw negative samples from a
different distribution (empirically, they find that P 3/4

j is particularly performant) and upweight the
negative sampling term by a hyperparameter k (they recommend k ≈ 5 for large corpora). This is
equivalent to setting

Ψ−
ij =

kP
−1/4
j

V −1
∑

j′ P
−1/4
j′

. (17)

Note that this is an asymmetric choice, so it is not covered by Setting 3.1. However, both this and the
previous subsampling technique are methods for modifying and flattening the word distributions, as
seen by the training algorithm. Our Setting 3.1 accomplishes the same thing. We speculate that these
manipulations accomplish for language data what spectral whitening does for image data.

Taken together, these give a prescription for cleanly and concisely capturing several of the implemen-
tation details of word2vec in a set of training hyperparameters. In our experiments, when training
word2vec, we use all of these settings – they can be combined by multiplying the different Ψ+ and
likewise for Ψ−. For QWEMs, we use Ψ+

ij = Ψ−
ij = (Pij + PiPj)

−1, and modify Ψ+ by combining
with the setting for dynamic context windows. For fair comparison, we use k = 1 for the SGNS
experiments in the main text.

A.4 Benchmarks
We use the Google analogies described in Mikolov et al. (2013) for the analogy completion benchmark,
https://github.com/tmikolov/word2vec/blob/master/questions-words.txt. We then
compute the analogy accuracy using

acc(W ) :=
1

|D|
∑

(a,b,a′,b′)∈D

1{b′}

(
arg max

w∈{W }\{a,b,a′}
ŵ⊤

(
â′ + (b̂− â)

))
(18)

=
1

|D|
∑

(a,b,a′,b′)∈D

1{b′}

(
arg min

w∈{W }\{a,b,a′}

∥∥∥â− b̂− â′ + ŵ
∥∥∥2
F

)
, (19)

where the 4-tuple of embeddings (a, b,a′, b′) constitute an analogy from the benchmark data D, hats
(e.g., ŵ) denote normalized unit vectors, 1 is the indicator function, and {W } is the set containing
the word embeddings. The first expression measures cosine alignment between embeddings and
the “expected” representation obtained by summing the query word and the task vector. The second
expression measures the degree to which four embeddings form a closed parallelogram (Rumelhart &
Abrahamson, 1973). The two forms of the accuracy are equivalent since

arg min
w

∥∥∥â− b̂− â′ + ŵ
∥∥∥2
F
= arg min

w

(
2ŵ⊤(â− b̂− â′) + const.

)
(20)

= arg max
w

ŵ⊤(â′ + b̂− â). (21)

To understand the role of normalization, we compared this metric with one in which only the candidate
embedding is normalized:

winner = arg max
w∈{W }\{a,b,a′}

ŵ⊤ (a′ + (b− a)) . (22)

We found that the accuracy metric using this selection criterion yields performance measurements that
are nearly identical to those given by the standard fully-normalized accuracy metric. We conclude that
the primary role of embedding normalization is to prevent longer w’s from “winning” the argmax
just by virtue of their length. The lengths of a, b,a′ are only important if there is significant angular
discrepancy between (â′ + b̂− â) and (a′ + b− a); in the high-dimensional regime with relatively
small variations in embedding length, we expect such discrepancies to be negligible.

For semantic similarity benchmarks, we use the MEN dataset (Bruni et al., 2014) and the WordSim353
dataset (Finkelstein et al., 2001). These datasets consist of a set of N word pairs ranked by humans
in order of increasing perceived semantic similarity. The model rankings are generated by computing
the inner product between the embeddings in each pair and sorting them. The model is scored by
computing the Spearman’s rank correlation coefficient between its rankings and the human rankings:

ρ(W ) := Corr[rhuman(i), rmodel(i)] (23)
where r(i) is the rank of pair i and Corr is the standard Pearson’s correlation coefficient.
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A.5 Computational resources
Our implementations are relatively lightweight. The models can be trained on a home desktop
computer with an i7 4-core processor, 32GB RAM, and a consumer-grade NVIDIA GTX 1660
graphics card, in about 2 hours. For the experiments in Figure 3, we train for 12 hours with a much
lower learning rate. Our code is publicly available at https://github.com/dkarkada/qwem.

A.6 Empirics of task vectors
We construct the theoretical embeddings W by constructing M⋆ according to Equation (5), diago-
nalizing it, and applying Theorem 1. Due to right orthogonal symmetry, we are free to apply any right
orthogonal transformation; we choose the identity as the right singular matrix, so that the components
of each embedding in the canonical basis are simply its projections on the eigen-features. With
this setup, it is easy to extract the embeddings resulting from a smaller model: simply truncate the
extraneous columns of W .

We construct the task vectors by first collecting a dataset of semantic binaries. These can, for example,
be extracted from the analogy dataset. The task vectors are then simply the difference vectors
between the embeddings in each binary. In our reported results, we do not normalize either the
word embeddings nor the task vectors. However, our robustness checks indicated that choosing to
normalize does not qualitatively change our results.

Fitting the empirical spectra with the Marchenko-Pastur distribution. The Marchenko-Pastur
distribution is a limiting empirical spectral distribution given in terms of an aspect ratio γ := N/d and
an overall scale σ2. In particular, if N < d and Ξ ∈ RN×d is a random matrix with i.i.d. elements of
mean zero and variance σ2, then as N, d → ∞ with N/d = γ fixed, the MP law for d−1ΞΞ⊤ is

dµ(λ) =
1

2πσ2

√
(λ+ − λ)(λ− λ−)

γλ
dλ (24)

λ± := σ2(1±√
γ)2 (25)

where the support is λ− ≤ λ ≤ λ+, and the density is zero outside. Thus, the MP law gives the
expected distribution of eigenvalues for a large noisy covariance (or Gram) matrix.

To fit the MP law to the Gram matrix of task vectors, we first subtract off the mean task vector.
Then we compute the population variance of the elements of the centered matrix – we use this to set
the σ2 parameter. We manually fit the aspect ratio γ, and we find that the best-fitting γ̂ = N/deff
corresponds to an effective dimension which is often much lower than the true embedding dimension
d. We hypothesize that deff < d due to anisotropic noise in the task vectors. We report the deff
resulting from the fit in Figure 4.

Composition of mean task vector. We measure the degree to which the spike captures the mean
task vector by computing the ratio

signal in mean =
1⊤RdR

⊤
d 1

N · λmax(RdR⊤
d )

≤ 1, (26)

where 1 is the ones-vector. If this quantity is (close to) 1, then the mean task vector is a large
component of the spike, and vice versa. We find that this quantity is consistently greater than 0.9 for
all the semantic categories in the analogy benchmark.
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B Additional figures
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Figure 5: word2vec eigen-features align very closely with QWEMs’ and less with PPMI. The heatmap
indicates the squared overlaps between the latent feature vectors (i.e., the left singular vectors) between the three
models considered. This is a quantitative version of the table in Figure 3.

0

5

10

co
un

ts

spectra of RdR
>
d

d= 256

deff = 50.4

0.000

0.025

0.050

0.075

(〈 r〉 > u
k
)2

projection of eigen-features on mean task vector

m
al

e/
fe

m
al

e

0

5

10

co
un

ts

d= 256

deff = 98.4

0.0

0.1

0.2

(〈 r〉 > u
k
)2

ad
je

ct
iv

e/
ad

ve
rb

0

5

10

co
un

ts

d= 256

deff = 52.8

0.000

0.025

0.050

0.075

(〈 r〉 > u
k
)2

no
un

/
pl

ur
al

0.00 0.05 0.10 0.15 0.20
eigenvalue

0

5

10

co
un

ts

d= 256

deff = 83.4

0 20 40 60 80 100
eigen-feature index k (with eigen-feature uk)

0.0

0.1

0.2

(〈 r〉 > u
k
)2

ad
je

ct
iv

e/
co

m
pa

ra
tiv

e

Figure 6: The empirical observations regarding linear representations extend across the semantic classes
in the analogy dataset. We show that across analogy categories, the corresponding task vectors exhibit the
geometric structure discussed in Figure 4.
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Figure 7: Ablation tests. Starting from vanilla word2vec (top left), we separately add in both the quartic
approximation (top right) and the reweighting condition Setting 3.1 (bottom left). We include QWEM on
the bottom right (i.e., both effects). The quartic approximation hardly changes the singular value dynamics
at all; the clean mode separation is due to the reweighting. However, as is common with logistic losses,
the weights begin to diverge at late times. Using the quartic loss prevents this. The experiments here use a
41-million-token mixture of the Corpus of Contemporary American English and the News on the Web dataset.
We use a vocabulary size of 20,000; the embedding dimension is 150; 2 negative samples per positive sample;
and a context length of 16.
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Figure 8: Although the analogy geometry degrades with d, relative scores remain high. We plot two
different measures of analogy geometry across d to illustrate subtleties associated with the top-1 accuracy metric.
For an analogy a : b :: c : w, we denote x̂ := c+(b−a) the prediction for the fourth word. We plot the average
cosine similarity between x̂ and the true w over the analogy family. The prediction degrades dramatically as
the embedding dimension increases, complementing the observation in Figure 4 that the SNR decreases with d.
However, this geometric breakdown fails to capture the fact that all embedding vectors separate as d increases;
if we normalize by the maximum cosine similarity between w and non-analogy embeddings, the score remains
roughly stable at large d. This provides an explanation for why top-1 accuracy often remains high despite the
breakdown of geometric analogical structure.
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C Proofs
Theorem 1 (QWEM = unweighted matrix factorization). Under Setting 3.1, the contrastive loss
Equation (3) can be rewritten as the unweighted matrix factorization problem

L(W ) =
g

4

∥∥WW⊤ −M⋆
∥∥2
F
+ const. (6)

If Λ[:d,:d] is positive semidefinite, then the set of global minima of L is given by

argmin
W

L(W ) = REquiv
(
V ⋆
[:,:d]Λ

1/2
[:d,:d]

)
. (7)

Proof. Define M := WW⊤. Rewriting Equation (3) and plugging in Equation (5) and Setting 3.1,

L(W ) =
∑
i,j

PijΨ
+
ij

(
1

4
M2

ij −Mij

)
+ PiPjΨ

−
ij

(
1

4
M2

ij +Mij

)
(27)

=
1

4

∑
ij

GijM
2
ij − 4(PijΨ

+
ij − PiPjΨ

−
ij)Mij (28)

=
1

4

∑
ij

Gij

(
M2

ij − 2
PijΨ

+
ij − PiPjΨ

−
ij

1
2 (PijΨ

+
ij + PiPjΨ

−
ij)

Mij

)
(29)

=
1

4

∑
ij

Gij

(
M2

ij − 2M⋆
ijMij +M⋆

ij
2 −M⋆

ij
2
)

(30)

=
g

4

(
∥M −M⋆∥2F + ∥M⋆∥2F

)
. (31)

Since Pij , PiPj , Ψ+
ij , Ψ−

ij are all real symmetric, so is M⋆, so it has an eigendecomposition. By the
Eckart-Young-Mirsky theorem, the loss-minimizing M must be the truncated SVD M⋆

[d], whose
symmetric factors are exactly given by Equation (7). ■

Proposition 2. Equation (3) can be rewritten as the weighted matrix factorization problem

L(W ) =
1

4

∑
i,j

Gij(WW⊤ −M⋆)2ij + const. (8)

Let Ψ+ and Ψ− each be symmetric in i, j, let g ∈ RV be an arbitrary vector with non-negative
elements, and let Γ = diag(g)1/2. Then the eigendecomposition of ΓM⋆Γ = V ⋆

Γ ΛΓV
⋆
Γ

⊤ exists. If
G = gg⊤ and Λ[:d,:d] is positive semidefinite, then the set of global minima of L is given by

argmin
W

L(W ) = REquiv
(
Γ−1V ⋆

Γ,[:,:d]Λ
1/2
Γ,[:d,:d]

)
. (9)

Proof. The formulation as a weighted matrix factorization follows from Equation (30). In the case
that G is rank 1, substituting in Γ, we find

L(W ) =
1

4
∥Γ(M −M⋆)Γ∥2F. (32)

After distributing factors and invoking the Eckart-Young-Mirsky theorem, we conclude that the
rank-d minimizer is

Mmin = Γ−1 (ΓM⋆Γ)[d] Γ
−1 (33)

whose symmetric factors are exactly given by Equation (9). ■
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Lemma 3.1 (Training dynamics, aligned initialization). If Λ̃ := Λ[:d,:d] is positive semidefinite and
V (0) = V ⋆

[:,:d], then under Setting 3.1, the gradient flow dynamics dW
dt = − 1

2g∇L(W ) yields

U(t) = U(0) (10)

S(t) = S(0)
(
e−Λ̃t + S2(0)Λ̃−1

(
I − e−Λ̃t

))−1/2

(11)

V (t) = V (0) = V ⋆
[:,:d] (12)

Proof. By Theorem 1, we write the loss (Equation (3)) as

L(W ) =
g

4
Tr
[
(WW⊤ −M⋆)

⊤
(WW⊤ −M⋆)

]
. (34)

We neglect constant terms since they do not affect the gradient descent dynamics. Under the stated
gradient flow, the equation of motion is

dW

dt
= − 1

2g
∇L(W ) (35)

= −1

8

(
2(WW⊤ −M⋆)(2W )

)
(36)

=
1

2
(M⋆ −WW⊤)W . (37)

From here on we adopt the dot notation for time derivatives. We use the spectral decompositions
W (t)

⊤
= U(t)S(t)V (t)

⊤ and M⋆ = V ⋆ΛV ⋆⊤. Then the above can be written

Ẇ = V̇ SU⊤ + V ṠU⊤ + V SU̇⊤ =
1

2
(V ⋆ΛV ⋆⊤V − V S2)SU⊤. (38)

Left-multiplying by V ⊤ and right-multiplying by U , we obtain

V ⊤V̇ S + Ṡ + SU̇⊤U =
1

2
(Λ̃− S2)S. (39)

where we now use the alignment assumption, V ⊤V ⋆ = I . Note that since we use the economy SVD
in our notation, we use a non-standard notation where I ∈ Rd×V is a rectangular matrix with ones
on the main diagonal and zeros elsewhere. Now, since the RHS is diagonal, we must have that

(V ⊤V̇ S + SU̇⊤U)ij = 0 for i ̸= j. (40)

Furthermore, since V and U are orthogonal, V ⊤V̇ and U̇⊤U must both be antisymmetric (since
for any orthogonal matrix Q, d

dtQ
⊤Q = Q̇⊤Q+Q⊤Q̇ = İ = 0). It follows that, for all i ̸= j,

(V ⊤V̇ )ijsi + (U̇⊤U)ijsj = (V ⊤V̇ )ijsj + (U̇⊤U)ijsi = 0. (41)

Isolating (V ⊤V̇ )ij , we see that this can only hold if si = sj or if (V ⊤V̇ )ij = (U̇⊤U)ij = 0. The
former is ruled out by level repulsion in Gaussian random matrices; with probability 1 we have that
S contains distinct singular values. We conclude that U̇ = 0 and V̇ = 0.

Returning to Equation (39), we have that

Ṡ =
1

2
(Λ̃− S2)S. (42)

These are precisely the dynamics studied in Saxe et al. (2014). These dynamics are now decoupled,
so we may solve each component separately. The solution to this equation is

s2k(t) =
s2k(0) λk eλkt

λk + s2k(0) (e
λkt − 1)

. (43)

Thus, the each singular direction of the embeddings is realized in a characteristic time

τk =
1

λk
ln

λk

s2k(0)
. ■ (44)
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Result 3 (Training dynamics, vanishing random initialization). Initialize Wij(0) ∼ N (0, σ2), and
let S(0) denote the singular values of W (0). Define the characteristic time τ1 := λ−1

1 ln
(
λ1/σ

2
)

and the rescaled time variable t̃ = t/τ1. Define W ⋆(0) := V ⋆
[:,:d]S(0) and let W ⋆(t) be its gradient

flow trajectory given by Lemma 3.1. If Λ[:d,:d] is positive semidefinite, then under Setting 3.1 we have
with high probability that

∀t̃ ≥ 0, lim
σ2→0

min
W ′∈REquiv(W (t̃τ1))

∥W ′ −W ⋆(t̃τ1)∥F = 0. (13)

Derivation. Before starting the main derivation, we give a qualitative argument for why one expects
the result of Lemma 3.1 to hold in the small initialization limit despite a lack of initial alignment.

Warmup. We begin with the equation of motion for M := WW⊤:

Ṁ = WẆ⊤ + ẆW⊤ =
1

2

(
MM⋆ +M⋆M − 2M2

)
. (45)

We again consider the dynamics in terms of the spectral decompositions M(t) = V (t)S2(t)V (t)
⊤

and M⋆ = V ⋆Λ⋆V ⋆⊤. Note that here V ,S ∈ RV×V are square. We define the eigenbasis overlap
O := V ⋆⊤V . After transforming coordinates to the target eigenbasis, we find

V ⋆⊤ṀV ⋆ = V ⋆⊤(V̇ S2V ⊤ + V (2SṠ)V ⊤ + V S2V̇ ⊤)V ⋆ (46)

= ȮS2O⊤ + 2OSṠO⊤ +OS2Ȯ⊤ (47)

=
ΛOS2O⊤ +OS2O⊤Λ

2
−OS4O⊤. (48)

For clarity, we rotate coordinates again into the O basis and find

S2Ȯ⊤O +O⊤ȮS2 + 2SṠ =
S2O⊤ΛO +O⊤ΛOS2

2
− S4. (49)

Since O is orthogonal, it satisfies Ȯ⊤O +O⊤Ȯ = 0 (this follows from differentiating the identity
O⊤O = I). Therefore the first two terms on the LHS of Equation (49), which concern the singular
vector dynamics, have zero diagonal; the third term, which concerns singular value dynamics, has
zero off-diagonal. This implies

2SṠ =
(
diag(O⊤ΛO)− S2

)
S2, (50)

where diag(·) is the diagonal matrix formed from the diagonal of the argument. From Equation (50),
we see that at initialization 2SṠ scales with the initialization size σ2 since S2(0) ∼ σ2. On the
other hand, from the off-diagonal of Equation (49), we see that Ȯ is order 1 (since the scale of O
is fixed by orthonormality). Therefore, in the limit of small initialization, we expect the model to
align quickly compared to the dynamics of S2. This motivates the silent alignment ansatz, which
informally posits that with high probability, the top d × d submatrix of O converges towards the
identity matrix well before S2 reaches the scale of Λ. As O → I , the dynamics decouple and enter a
regime well-described by Lemma 3.1. We formalize this idea in our concrete derivation of Result 3.

Main derivation. We are interested in showing that

∀t̃ ≥ 0, lim
σ2→0

min
W ′∈REquiv(W (t̃τ1))

∥W ′ −W ⋆(t̃τ1)∥F = 0, (51)

where we express the statement in terms of rescaled time t̃ = t/τ1 since we anticipate that τ1 → ∞
as σ2 → 0. For notational clarity, though, let us switch back to the original time variable. Then

min
W ′(t)∈REquiv(W (t))

∥W ′(t)−W ⋆(t)∥F = min
W ′(t)∈REquiv(W (t))

∥W ′(t)
⊤ −W ⋆(t)

⊤∥F (52)

= min
U ′(t)∈O

∥U ′(t)U(t)S(t)V ⊤(t)− S⋆(t)V ⋆⊤∥F (53)

= min
U ′(t)∈O

∥U ′(t)U(t)S(t)O⊤(t)− S⋆(t)∥F (54)

where we again define the eigenbasis overlap O := V ⋆⊤V .
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Motivated by the expectation that we will see sequential learning dynamics starting from the top mode
and descending into lower modes, we seek a change of variables in which the dynamics are expressed
in an upper-triangular matrix. We can achieve this reparameterization using a QR factorization:
USO⊤ → QR, where Q is orthogonal and R is upper triangular. Then

min
W ′(t)∈REquiv(W (t))

∥W ′(t)−W ⋆(t)∥F = min
U ′(t)∈O

∥U ′(t)Q(t)R(t)− S⋆(t)∥F (55)

= min
U ′(t)∈O

∥U ′(t)R(t)− S⋆(t)∥F, (56)

where the second equation follows since U ′ is a variable to be minimized, and it can simply absorb Q.
We emphasize that this convenience follows from the right orthogonal symmetry of the embeddings.
If we can show that ∥R(t)− S⋆(t)∥F → 0 for all t in the vanishing initialization limit, then we will
have completed the derivation.

Our starting point will be transpose of Equation (37), right-multiplied by V ⋆:
d

dt

(
USO⊤) = 1

2
USO⊤(Λ−OS2O⊤) =⇒ Q̇R+QṘ =

1

2
QR

(
Λ−R⊤R

)
. (57)

Left-multiplying by 2Q⊤ and rearranging, we find

2Ṙ = R
(
Λ−R⊤R

)
− 2Q⊤Q̇R (58)

= RΛ− (RR⊤ + 2Q⊤Q̇)R (59)

= RΛ− R̃R, (60)

where we define R̃ := RR⊤ + 2Q⊤Q̇. Note that R̃ must be upper triangular: since the other terms
in the equation are upper triangular, so must be R̃R; and since R and R̃R are both upper triangular,
then R̃ must be upper triangular.

In fact, this is enough to fully determine the elements of R̃. We know that Q⊤Q̇ is antisymmetric
(since Q⊤Q = I by orthogonality, Q⊤Q̇+ Q̇⊤Q = 0). Additionally using the fact that RR⊤ is
symmetric and imposing upper-triangularity on the sum, we have that

R̃ij =


2(RR⊤)ij if i < j

(RR⊤)ii if i = j

0 if i > j

. (61)

Here, we take a moment to examine the dynamics in Equation (60). Treating the initialization scale
σ as a scaling variable, we expect that Rij ∼ σ. Thus, in the small initialization limit, we expect
the second term (which scales like σ3) to contribute negligibly until late times; initially, we will see
an exponential growth in the elements of R with growth rates given by Λ. Later, R will (roughly
speaking) reach the scale of Λ1/2, and there will be competitive dynamics between the two terms.
We now write out the element-wise dynamics of R to see this precisely.

2Ṙij = Rijλj −
∑

j≥k≥i

R̃ikRkj (62)

= Rijλj −
∑

j≥k≥i

∑
ℓ≥k

(2− δik)RiℓRkℓRkj (63)

= Rijλj −
∑
ℓ≥i

R2
iℓRij − 2

∑
j≥k>i

∑
ℓ≥k

RiℓRkℓRkj (64)

= Rijλj −
∑
ℓ≥i

R2
iℓRij − 2

∑
j≥k>i

RijR
2
kj − 2

∑
j≥k>i

∑
j>ℓ≥k

RiℓRkℓRkj (65)

=

λj −
∑
ℓ≥i

R2
iℓ − 2

∑
j≥k>i

R2
kj

Rij − 2
∑

j≥k>i

∑
j>ℓ≥k

RiℓRkℓRkj . (66)

We have separated the dynamics of Rij into a part that is explicitly linear in Rij and a part which
has no explicit dependence on Rij . (Of course, there is coupling between all the elements of R and
Rij through their own dynamical equations.) So far, everything we have done is exact.
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Our main approximation is to argue that at all times, only the diagonal elements of R contribute
non-negligibly to the dynamics. This holds if the off-diagonal elements are initialized vanishingly
small and if they remain vanishingly small throughout. In this case, we may discard any terms that
include couplings between off-diagonal elements.

With this approximation, we may discard the entire second term on the RHS, as well as some of the
summands in the first prefactor for Rij . This leaves the approximate dynamics

2Ṙij =
(
λj −R2

ii − 2(1− δij)R
2
jj

)
Rij . (67)

We may now directly solve for the diagonal dynamics. Letting rk := Rkk,

ṙk =
1

2

(
λk − r2k

)
rk =⇒ r2k(t) =

r2k(0) λk eλkt

λk + r2k(0) (e
λkt − 1)

. (68)

We obtain the same sigmoidal dynamics as in Lemma 3.1. If we show that the off-diagonal elements
remain vanishingly small in the limit σ2 → 0, then: a) our approximation is justified, and b) it follows
that ∥R(t)− S⋆(t)∥F → 0 for all t, completing the derivation.

To do this, we examine the dynamics of the off-diagonals and show that the maximum scale they
achieve (at any time) decays to zero as σ2 → 0. For i < j we have

2Ṙij =
(
λj − r2i − 2r2j

)
Rij (69)

This is a linear first-order homogeneous ODE with a time-dependent coefficient, and thus it can be
solved exactly:

R2
ij(t) = R2

ij(0) ·

(
λj

λj + r2j (0) (e
λjt − 1)

)2

· λi

λi + r2i (0) (e
λit − 1)

· eλjt (70)

= R2
ij(0) ·

r4j (t)

r4j (0)
· r

2
i (t)

r2i (0)
· e−(λi+λj)t. (71)

This product contains two factors with sigmoidal dynamics of different timescales, and one factor
with an exponential decay to the dynamics. Thus, as t → ∞, the first two factors saturate, and the
decay drives the off-diagonal elements Rij to zero. We now show that maxt R

2
ij(t) vanishes as

σ2 → 0. Focusing on the scaling w.r.t. the initialization scale, we may approximate R2
kℓ(0) ≈ σ2 for

all k ≤ ℓ. Discarding O(σ4) terms and solving Ṙij = 0, we find

max
t

R2
ij ≈

(
λiλj

λi − λj

)λj/λi

σ2(λi−λj)/λi when t =
1

λi
log

λiλj

σ2(λi − λj)
. (72)

Therefore, for i < j, assuming λi ̸= λj ,

lim
σ2→0

max
t

R2
ij = 0 (73)

and we conclude that ∥R(t)− S⋆(t)∥F → 0 as desired.

In fact, under these approximations, as long as the initialization scale satisfies

log σ2 ≪ − λj

λi − λj
log

(
λiλj

λi − λj

)
(74)

for all i and j, the off-diagonal elements will remain much smaller than the diagonal elements, and
we may view the diagonal element dynamics as simply being the singular value dynamics. This
follows from Weyl’s inequality for matrix perturbations. Thus we may expect that our results hold in
the small-but-finite initialization regime (e.g., the regime accessed by our experiments). ■
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D Relation between QWEMs and known algorithms
D.1 Relation to PMI
Early word embedding algorithms obtained low-dimensional embeddings by explicitly constructing
some target matrix and employing a dimensionality reduction algorithm. One popular choice was the
pointwise mutual information (PMI) matrix (Church & Hanks, 1990), defined

PMIij = log
Pij

PiPj
. (75)

Later, Levy & Goldberg (2014) showed that PMI is the rank-unconstrained minimizer of Lw2v. To
see the relation between the QWEM target M⋆ and PMI, let us write

Pij

PiPj
= 1 +∆(xij), (76)

where the function ∆(x) yields the fractional deviation away from independent word statistics, in
terms of some small parameter x of our choosing (so that ∆(0) = 0). This setup allows us to Taylor
expand quantities of interest around x = 0. A judicious choice will produce terms that cancel the
− 1

2∆
2 that arises from the Taylor expansion of log(1 + ∆), leaving only third-order corrections.

One such example is ∆(x) = 2x/(2− x), which yields

xij =
Pij − PiPj

1
2 (Pij + PiPj)

= M⋆
ij (77)

and

PMI = log

(
1 +

2x

2− x

)
= x+

x3

12
+

x5

80
+ · · · (78)

This calculation reveals that M⋆ learns a very close approximation to the PMI matrix; the leading
correction is third order. However, M⋆ is much friendlier to least-squares approximation, since x is
bounded (−2 ≤ M⋆

ij ≤ 2).

D.2 Relation to SimCLR
SimCLR is a widely-used contrastive learning algorithm for learning visual representations (Chen
et al., 2020). It uses a deep convolutional encoder to produce latent representations from input images.
Data augmentation is used to construct positive pairs; negative pairs are drawn uniformly from the
dataset. The encoder is then trained using the normalized temperature-scaled cross entropy loss:

L(fθ) = E
i,j∼Pr(·,·)

− log
exp
(
βfθ(xi)

⊤
fθ(xj)

)
∑B

k ̸=j exp
(
βfθ(xi)

⊤
fθ(xk)

)
 , (79)

where Pr(·, ·) is the positive pair distribution, fθxi is the learned representation of xi, β is an inverse
temperature hyperparameter, and B is the batch size. Defining Sθ(i, j) = fθ(xi)

⊤
fθ(xj), in the

limit of large batch size, we can Taylor expand this objective function around the origin:

L(Sθ) = E
i,j∼Pr(·,·)

[
− βSθ(i, j) + log

(
E

k∼Pr(·)

[
exp(βSθ(i, k))

])
+ logB

]
(80)

≈ E
i,j∼Pr(·,·)

[
− βSθ(i, j) + E

k∼Pr(·)

[
exp(βSθ(i, k))

]
− 1

]
+ logB (81)

≈ E
i,j∼Pr(·,·)

[
− βSθ(i, j)

]
+ E

i∼Pr(·)
k∼Pr(·)

[
1 + βSθ(i, k) +

1

2
β2S2

θ (i, k)

]
− 1 + logB (82)

≈ β

 E
i,j∼Pr(·,·)

[
− Sθ(i, j)

]
+ E

i∼Pr(·)
j∼Pr(·)

[
Sθ(i, j) +

β

2
S2
θ (i, j)

]+ const. (83)

(84)
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If the model is in a linearized regime, we may approximate Sθ(i, j) ≈ f⊤
i fj for some linearized

feature vectors f . Then the loss can be written as an unweighted matrix factorization problem using
exactly the same argument as in Theorem 1. Thus, we expect that vision models trained under the
SimCLR loss in a linearized regime will undergo stepwise sigmoidal dynamics. This provides an
explanation for the previously unresolved observation in Simon et al. (2023b) that vision models
trained with SimCLR from small initialization exhibit stepwise learning.

D.3 Relation to next-token prediction.
Word embedding targets are order-2 tensors M⋆ that captures two-token (skip-gram) statistics. These
two-token statistics are sufficient for coarse semantic understanding tasks such as analogy completion.
To perform well on more sophisticated tasks, however, requires modeling more sophisticated language
distributions.

The current LLM paradigm demonstrates that the next-token distribution is largely sufficient for most
downstream tasks of interest. The next-token prediction (NTP) task aims to model the probability
of finding word i given a preceding window of context tokens of length L − 1. Therefore, the
NTP target is an order-L tensor that captures the joint distribution of length-L contexts. NTP thus
generalizes the word embedding task. Both QWEM and LLMs are underparameterized models
that learn internal representations with interpretable and task-relevant vector structure. Both are
trained using self-supervised gradient descent algorithms, implicitly learning a compression of natural
language statistics by iterating through the corpus.

Although the size of the NTP solution space is exponential in L (i.e., much larger than that of
QWEM), LLMs succeed because the sparsity of the target tensor increases with L. We conjecture,
then, that a dynamical description of learning sparse high-dimensional tensors is necessary for a
general scientific theory of when and how LLMs succeed on reasoning tasks and exhibit failures such
as hallucinations or prompt attack vulnerabilities.

D.4 Relation to neural tangent kernel.
Our result describing an implicit bias towards low rank directly contrasts the well-studied neural
tangent kernel training (NTK) regime (Jacot et al., 2018; Chizat et al., 2019; Karkada, 2024). Here
we compare the two learning regimes.

Learning with NTK.

• Learning dynamics and generalization performance can be solved (Lee et al., 2019; Bordelon
et al., 2020; Simon et al., 2023a).

• Extreme over-parameterization is required; large finite-width corrections at practical widths
(Huang & Yau, 2020).

• Model weights do not learn task-relevant features.

• Optimization remains in a locally convex region of the loss landscape (Chizat et al., 2019).

Learning from small initialization.

• Learning dynamics are generally complicated; can be solved in very simple cases (linear
networks, special data distributions, etc.).

• Behavior is qualitatively consistent across network widths, with only moderate finite-width
corrections (Vyas et al., 2023).

• Model weights learn task-relevant features.

• Optimization tends to pass near a sequence of saddle points. (Baldi & Hornik, 1989; Jacot
et al., 2021).
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