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Abstract

Chest X-ray (CXR) is frequently used in emergency departments and intensive care units
to verify the proper placement of central lines and tubes and to rule out related compli-
cations. The automation of the X-ray reading process can be a valuable support tool for
non-specialist technicians and minimize reporting delays due to non-availability of experts.
While existing solutions for automated catheter segmentation and malposition detection
show promising results, the disentanglement of individual catheters remains an open chal-
lenge, especially in complex cases where multiple devices appear superimposed in the X-ray
projection. In this paper, we propose a deep learning approach based on associative em-
beddings for catheter instance segmentation, able to effectively handle device intersections.
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1. Introduction

Chest X-ray (CXR) is widely used to detect lung abnormalities and pathologies. In emer-
gency departments and intensive care units, CXRs are often employed to check the cor-
rect placement of medical devices in order to exclude potentially dangerous complications
(Gambato et al., 2023). In those cases, a careful assessment of the CXR is required and is
typically performed by the attending radiologist. The development of an automated pro-
cess could assist non-professional technicians in the interpretation of X-rays when an expert
is not available, potentially reducing reporting delays. Several efforts have been made to
deploy automated solutions for catheter segmentation (Subramanian et al., 2019), malpo-
sition recognition (Hansen et al., 2021), and catheter tip detection (Jung et al., 2022). In
addition, it is not rare that a single CXR may contain multiple devices, often appearing as
superimposed in the projection image. In such scenarios, it is essential to identify and sepa-
rate individual catheters, which is still an open problem. The use of conventional methods,
such as Mask R-CNN (He et al., 2017), which rely on a detect and segment approach, may
be limited when dealing with thin and long catheters, that often extend through the entire
image. In this study, we propose a deep learning approach based on associative embedding
for cardiac catheter instance segmentation. The key contributions of this study can be sum-
marized as follows: adaptation of the LaneNet (Neven et al., 2018) architecture for catheter
instance segmentation, by using HRNet(V2) (Sun et al., 2019) as a customized backbone;
an intersection resolution algorithm to effectively handle catheters intersections.
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Figure 1: Schematic representation of the proposed method. An adapted HRNet(V2) architecture is used
to predict segmentation masks and embeddings. To disentagle catheters instances, mean shift clustering is
performed on segmented pixels embeddings and the intersection areas are then detected.

2. Methods

Our method was inspired by the LaneNet architecture (Neven et al., 2018), which was origi-
nally designed to solve a road lane detection task, by treating it as an instance segmentation
problem. Similarly, we aim to segment cardiac catheters which are long and thin structures.
We employ a branched multi-task network, consisting of two parts: a segmentation branch
that detects the pixels belonging to a catheter, and an embedding branch that predicts an
embedding value for each of them. To disentangle segmented pixels into different catheters
instances, we perform clustering on their embeddings. After that, we employ an algorithm
to detect intersection pixels and assign them to all the involved catheters (Figure 1).
Segmentation and embeddings prediction. In our implementation, we use an HR-
Net(V2) architecture as backbone, with two nearly identical branches: a segmentation
branch, trained with the Dice loss to output a segmentation map, and an embedding branch,
trained with the discriminative loss (Neven et al., 2018) to map each segmented pixel to
a point in a 3d feature space, called pixel embedding. In this embeddings space, pixels
belonging to the same catheter end up close together, while pixels belonging to different
instances lie far apart. The discriminative loss achieves this by pulling embeddings of the
same cluster towards the mean embedding, while pushing different clusters further apart.
Embeddings clustering. During the inference, the network generates a semantic segmen-
tation map, identifying which pixels are part of a catheter, and a 3d embedding for each
segmented pixel. We then use the segmented pixels embeddings in a mean shift clustering
algorithm to assign each pixel to an individual catheter.
Intersection resolution. In our images, different catheters may be superimposed in the
projection image. To properly detect intersections, we developed an intersection resolution
algorithm. While mean shift simply splits the set of foreground pixels into n groups, we
observed that, in the embeddings space, the intersection pixels often lie between the cor-
responding clusters centers (catheters). Therefore, starting from a mean shift partition,
for each pixel we compute a similarity score s, that measures how similar, i.e. close, the
embedding is to its assigned cluster center compared to the other cluster centers determined
by mean shift. If s is lower than some threshold, the pixel is considered to belong to the
intersection of the clusters (catheters) involved, so that it is assigned to both.
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Figure 2: From left to right: CXR, ground truth, our prediction, detailed prediction and intersection.

Model IoU Dice AP AR
HRNet(V2) + CC 0.608 ± 0.004 0.746 ± 0.004 0.149 ± 0.013 0.174 ± 0.015

Ours 0.599 ± 0.010 0.739 ± 0.009 0.726 ± 0.013 0.807 ± 0.013

Table 1: Semantic (IoU, Dice) and instance (AP, AR) segmentation results of our method and the baseline.

3. Experiments and results

We used 8877 CXRs from the RANZCR CLiP dataset (Tang et al., 2021), with 11786
annotated Central Venous Catheters (CVC) or Swan-Ganz Catheters (SWG). Every CXR
has at least 1 device, with 30% of the images containing between 2 and 4 devices. We
trained a branched HRNet(V2-W30) architecture pre-trained on ImageNet, resizing images
to 512x512px and performing a patient-stratified 5-fold cross-validation. Hyperparameters
in the training and inference recipes were optimized on the validation set. Figure 2 shows
successfully processed CXRs with the resolved intersections. To overcome the lack of a base-
line from the literature, we compare our method to a semantic segmentation HRNet(V2),
followed by morphological processing via connected component analysis (CC) on predicted
binary segmentation maps to identify isolated regions as instances of catheters. We evaluate
the results using IoU and Dice for semantic segmentation, and average precision (AP) and
average recall (AR) for instance segmentation (Table 1). AP and AR are averaged over
IoU thresholds in a range of [0.2,0.6], chosen based on a reader study 1 that evaluated the
quality of manual CVC annotations. Our method provides significantly better AP and AR
values than the baseline approach, which is prone to over- and under-segmentation issues.

4. Conclusion

Our bottom-up approach based on associative embeddings was able to effectively perform
instance segmentation on chest radiographs with multiple cardiac catheters. To the best
of our knowledge, it is the first successful application of deep learning for catheter instance
segmentation.

1. AP340 KI-RAD, KI-SIGS Summit 2022, Lübeck, Germany
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