

000 001 002 003 004 005 LS-MERGE: MERGING LANGUAGE MODELS IN 006 LATENT SPACE 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

028 Model merging in weight space is an efficient way to reuse pretrained models,
029 but existing methods typically assume matching architectures or sizes, making
030 heterogeneous merges brittle or infeasible. We address this limitation by encoding
031 model weights into a smooth latent space, enabling cross-architecture operations,
032 and performing the merge in the latent space before decoding back to weights. This
033 approach faces two major challenges. First, LLMs contain billions of parameters,
034 which makes latent encoding computationally demanding. Second, using high com-
035 pression ratios often hinders the encoder’s ability to generalize to unseen weights.
036 We tackle these issues with a transformer-based variational autoencoder (VAE)
037 trained in a two-stage compression curriculum with structured layer-aware chunk-
038 ing: the model first learns a high-capacity latent representation and then distills to
039 a compact code, improving both stability and out-of-distribution generalization. To
040 align heterogeneous models, we introduce a dimensionality-matching projection
041 that allows interpolation between models of different sizes. Empirically, latent-
042 space interpolation is consistently more robust than direct weight-space averaging
043 and yields stronger downstream performance when merging models of different
044 sizes. Together, these components provide a scalable, architecture-agnostic recipe
045 for model merging.
046

1 INTRODUCTION

047 Large Language Models (LLMs) are foundational to modern artificial intelligence. However, their
048 pretraining demands millions of GPU-hours, leading to a significant inefficiency if the acquired
049 knowledge remains confined to a single model instance. To mitigate this cost and enhance utility,
050 weight-space model merging has emerged as a promising approach. This technique combines
051 parameters from multiple pretrained models to integrate complementary capabilities and improve
052 performance on diverse tasks, all without additional pretraining (Yang et al., 2024).
053

054 Existing merging methodologies range from straightforward linear interpolation (Wortsman et al.,
055 2022) to sophisticated evolutionary search-based fusion (Akiba et al., 2025), consistently demon-
056 strating practical benefits at scale. Despite these advancements, current techniques typically face two
057 significant limitations: (i) Requirement for multiple source models: Most approaches necessitate
058 at least two distinct pretrained models for merging, which restricts their application when the goal
059 is to enhance or adapt a single existing model. (ii) Architectural homogeneity: Merging methods
060 frequently assume shape-compatible or architecturally homogeneous models, hindering their use
061 with mismatched architectures (e.g., varying widths or depths) (Yu et al., 2024a). These constraints
062 significantly limit the broad applicability of merging across diverse LLM checkpoints as well as
063 self-merging. Addressing these constraints is crucial for unlocking the full potential of pretrained
064 LLM checkpoints and fostering a more flexible and efficient paradigm for model reuse.
065

066 Recent advancements in weight-space learning (Sch”urholt et al., 2024) offer a compelling opportunity
067 to overcome the aforementioned limitations in LLM merging. These approaches operate directly
068 on pretrained model weights as the input data modality. By projecting parameters from diverse
069 models into a smooth, unified latent space of consistent dimensionality, we can inherently mitigate
070 the challenge of architectural mismatch. Specifically, these parameter signals can be embedded
071 into identical-dimensionality representations using powerful generative models such as Variational
072 Autoencoders (VAEs) (Kingma & Welling, 2013), normalizing flows (Kobyzev et al., 2021), or
073

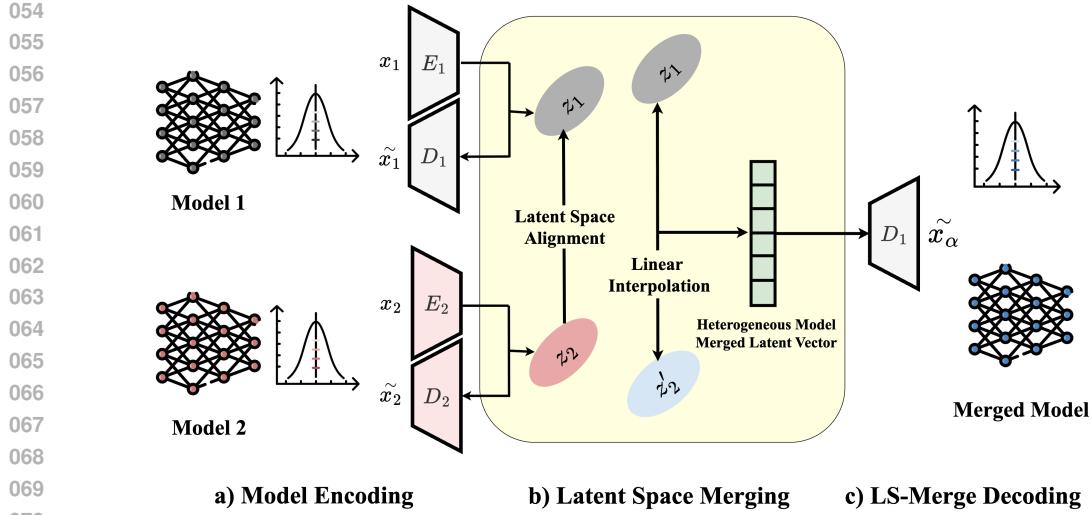


Figure 1: **LS-Merge: encode, align, and decode for LLM weight merging.** (a) Pretrained weight tensors x_1 and x_2 are chunked layer-wise and encoded by E_1, E_2 into latents z_1, z_2 ; decoders D_1, D_2 reconstruct \tilde{x}_1, \tilde{x}_2 . (b) A latent-space alignment places z_1 and z_2 in a shared manifold where they are merged (linear interpolation) yielding a merged latent z_α , supporting both homogeneous (same-architecture/same encoding model) and heterogeneous (cross-architecture) merges. (c) A target decoder (e.g., D_1) maps z_α back to weights \tilde{x}_α , producing the merged model. Here, x_i denotes the full weight set of model i , z_i its latent code, and tildes indicate reconstructions.

diffusion models (Wang et al., 2025). While these innovative latent-space methods have demonstrated considerable success in vision and other domains, their application to the encoding and subsequent merging of pretrained LLM weights remains a largely unexplored frontier.

We propose LS-Merge, a novel framework that fundamentally shifts the merging process from the raw weight space to a learned latent space. This paradigm enables both homogeneous and heterogeneous merging by design: (i) Enabling single-model augmentation: A generative model can learn the latent manifold of a single LLM parameters, facilitating “merging” operations within this latent space. This allows for the exploration of variations, specializations, or the enhancement of capabilities derived solely from the original model, obviating the need for an external second model. (ii) Facilitating heterogeneous integration: By projecting diverse LLM architectures into a common, fixed-dimensional latent space, the stringent constraints of architectural homogeneity are significantly relaxed. Merging operations then occur within this unified latent representation, enabling the seamless integration of knowledge from models with differing widths, depths, or even fundamental architectural designs, as our method operates solely on the tensor data within the latent space. In summary, LS-Merge advances LLM merging through the following key contributions:

- **Weight statistics that matter for encoding.** We show that LLM weights exhibit low variance with heavy tails, that could significantly affect the choice of encoding network.
- **Merging LLMs in latent space.** We propose LS-Merge, a novel latent-space merging methodology that enables merging LLMs in their weights latent space.
- **Heterogeneous merging.** We introduce a dimensionality-matching projection and OT-based latent alignment that enables interpolation between models of different depths or widths.
- **Consistent empirical gains.** On Gemma and LLaMA pretrained models and LoRA-experts merging, our latent space merging method outperforms existing merging methods and remains robust under heterogeneity.

2 RELATED WORK

Model averaging The simplest merging approach directly averages weights. Model Soup (Wortsman et al., 2022) showed that averaging fine-tuned checkpoints from the same initialization improves

108 generalization. Extensions include Uniform Soup (Wortsman et al., 2022) for LoRA weights and
 109 spherical linear interpolation (SLERP), which interpolates on the unit hypersphere but remains a
 110 pairwise-only method that merges only two models at a time and requires identical architectures.
 111

112 **Interference-aware techniques** Merging models from different tasks can cause misalignment. Yadav
 113 et al. (2023) uses trimming and sign alignment, Yu et al. (2024a) sparsifies and rescales fine-tuned
 114 deltas, and Yu et al. (2024b) combine both. Greedy Soup (Wortsman et al., 2022) and EvolMerge (Ak-
 115 iba et al., 2025) treat merging as an optimization problem, while Task Arithmetic (Ilharco et al.,
 116 2023) models task vectors in parameter space. These methods require aligned architectures and incur
 117 computational cost.

118 **Modular assembly** Instead of merging weights, some approaches combine modules or experts.
 119 Model Stocks (Jang et al., 2024) and LoraHub (Huang et al., 2023) aligns LoRA adapters, Pack of
 120 LLMs (Mavromatis et al., 2024) learns expert routing, and cBTM (Gururangan et al., 2023) merges
 121 task-specific experts via unsupervised domain discovery. Modular systems are flexible but increase
 122 inference cost and do not unify knowledge into a single parameter set.

123 All prior methods operate in weight or module space and assume architectural alignment. In contrast,
 124 we propose **latent-space model merging**, which generalizes beyond these constraints.

127 3 LS MERGE

128
 129 We present **LS-Merge**, a framework for performing model merging *in latent space*. As illustrated
 130 in Figure 1, we encode pretrained LLM weights, operate on their latent representations (including
 131 alignment when heterogeneous), and decode back to parameters to obtain the merged model.
 132

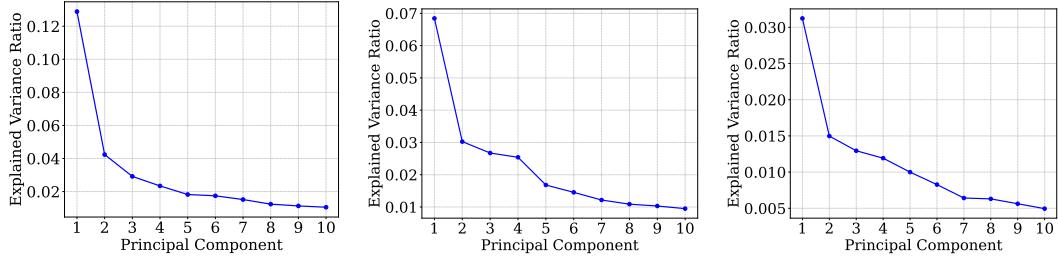
134 3.1 EXPLORING WEIGHT DYNAMICS IN LLMs

135 To motivate our design, we analyze the distributional properties of transformer submodules in Gemma-
 136 3 (Team et al., 2025) and LLaMA-3.2 (Grattafiori et al., 2024). We compute the first four moments
 137 (mean, variance, skewness, and kurtosis) for self-attention layers (q_proj, k_proj, and o_proj) and MLP
 138 layers (up_proj, down_proj, and gate_proj). Table 1 reports the statics stands for per moment with
 139 full details in appendix Table 9. Weights exhibit near-zero means, low variances, and small positive
 140 skewness, but *markedly high kurtosis* in earlier layers, especially in self-attention projections. High
 141 kurtosis, i.e., leptokurtic distributions, indicates sharp peaks with heavy tails: rare, large-magnitude
 142 parameters that are likely functionally important. This contradicts Gaussian assumptions used in prior
 143 work (Si et al., 2025) and suggests that encoders must preserve tail events rather than over-regularize
 144 toward a narrow Gaussian. We observe this pattern consistently across sizes within both families.
 145

146
 147 **Theoretical Compressibility of LLM Weights** As the LLM weights distribution shows heavy
 148 tails and low intrinsic variance, we investigate whether a simple VAE can compress LLM weights
 149 effectively. Let $W \in \mathbb{R}^{n \times m}$ be a layer matrix and let $w = \text{vec}_{\text{row}}(W) \in \mathbb{R}^D$ denote the row-wise
 150 concatenation (flattening) of W with $D = nm$. Empirically (Fig. 2), the top $r \ll \min(n, m)$
 151 principal components capture nearly all variance, i.e., $\sum_{i=1}^r \lambda_i / \sum_{i=1}^D \lambda_i \approx 1$, where $\{\lambda_i\}$ are
 152 the eigenvalues of the empirical covariance of w (equivalently, proportional to squared singular
 153 values of W). By Eckart–Young theorem (Eckart & Young, 1936), the best rank- r approximation
 154 W_r satisfies $\|W - W_r\|_F^2 = \sum_{i>r} \lambda_i$ and can be stored with $O(r(n + m))$ parameters (e.g.,
 155 $U_r \in \mathbb{R}^{n \times r}$, $V_r \in \mathbb{R}^{m \times r}$). Thus, weights concentrate near a low-dimensional set. Assuming the
 156 collection of flattened weights $\mathcal{W} \subset \mathbb{R}^D$ concentrates near a smooth d -dimensional manifold \mathcal{M} with
 157 $d \ll D$, manifold embedding results (Bengio et al., 2012; Lahiri et al., 2016) imply the existence of
 158 $\Phi : \mathbb{R}^D \rightarrow \mathbb{R}^k$ with $k = O(\frac{d}{\varepsilon^2} \log \frac{V}{\tau}) \ll D$ that preserves pairwise distances on \mathcal{M} within $(1 \pm \varepsilon)$,
 159 where V bounds manifold volume and τ its reach. This confirms that there exists a projection map to
 160 a lower dimension which can be approximated by an encoder A VAE encoder $f_\theta : \mathbb{R}^D \rightarrow \mathbb{R}^k$ with
 161 decoder $g_\phi : \mathbb{R}^k \rightarrow \mathbb{R}^D$ can approximate such compressive embeddings while modeling uncertainty,
 justifying our latent compression.

layers	llama3-2-3b-it				gemma-3-1b-it				gemma-3-4b-it				
	mean	var.	skew	kurt.	mean	var.	skew	kurt.	mean	var.	skew	kurt.	
0	0.0017	0.0192	8.4032	0.0002	0.0031	0.0500	15.0505	0	0.0015	0.0501	15.2010		
0	0.0013	0.0191	7.3438	0.0002	0.0030	0.0450	9.8347	0	0.0015	0.0267	7.3832		
0	0.0012	0.0178	6.2172	0.0001	0.0030	0.0389	9.0363	0	0.0014	0.0255	7.2277		
0	0.0011	0.0104	5.4477	0.0001	0.0030	0.0288	8.6496	0	0.0014	0.0172	6.0731		
avg (self.attn)	0	0.0005	-0.0002	1.4342	0	0.0012	-0.0009	3.2858	0	0.0005	0.0009	2.6900	
0	0.0005	0.0093	5.4740	0.0002	0.0010	0.0167	8.7665	0	0.0004	0.0266	6.3297		
0	0.0005	0.0080	4.1465	0.0002	0.0010	0.0090	3.1514	0	0.0004	0.0155	5.9670		
0	0.0004	0.0075	2.6694	0.0002	0.0010	0.0077	3.0577	0	0.0004	0.0130	2.7454		
0	0.0004	0.0074	2.4364	0.0002	0.0010	0.0071	3.0113	0	0.0004	0.0094	2.4371		
avg (mlp)	0	0.0003	0.0003	0.8435	0	0.0006	0	1.1739	0	0.0003	0.0006	1.0807	

Table 1: Layer-wise distribution statistics of model parameters for three instruction-tuned LLMs: **llama3-2-3b-it**, **gemma-3-1b-it**, and **gemma-3-4b-it**. For each model and block type (`self_attn` and `mlp`), we report the first four moments of the flattened weight tensors: *mean*, *variance*, *skewness*, and *excess kurtosis*. Per-row entries list representative layers in each block; the `avg` row aggregates across all layers for that block and model. Means are near zero and variances are small, while skewness and especially kurtosis (often > 5 and up to ~ 15) indicate pronounced heavy tails and asymmetry. These non-Gaussian, heavy-tailed statistics motivate encoders that preserve rare but high-magnitude outliers.



(a) Llama3-2-3b-it layer 0 k-proj (b) Gemma-3-1b-it layer 0 k-proj (c) Gemma-3-4b-it layer 0 k-proj

Figure 2: Plots of the PCA **explained-variance ratio** for first k projection weight matrices per model from three LLM checkpoints: Llama-3-2-3b-it, Gemma-3-1b-it, and Gemma-3-4b-it. Additional results are reported in the appendix A. For each model, we show the four projection matrices of self-attention (q, k, v, o). The sharp drop after the leading principal components highlights a low-rank structure that is consistent across architectures and model sizes.

3.2 LLM WEIGHTS PREPROCESSING AND ENCODING

We first standardize pretrained LLM weights of varying shapes and store the normalized tensors offline. We then learn a compact latent representation with a transformer-based VAE, chosen for its strong generalization to unseen checkpoints and faster training than convolutional alternatives at a comparable parameter count.

Preprocessing as a Sequence For each layer, we flatten its weight tensor to $w \in \mathbb{R}^L$, then zero-pad to $L_p = \lceil L/c \rceil c$ and partition into $n = L_p/c$ non-overlapping chunks $\{c_i\}_{i=1}^n$ of size c . A batch becomes $X \in \mathbb{R}^{B \times n \times c}$. Each chunk is embedded to $X_{\text{emb}} \in \mathbb{R}^{B \times n \times d}$ and passed through a transformer encoder E_θ with optional token downsampling. The latent is

$$z = E_\theta(X_{\text{emb}}) \in \begin{cases} \mathbb{R}^{B \times z_d} & (\text{pooled over tokens}) \\ \mathbb{R}^{B \times n \times z_d} & (\text{token-wise}) \end{cases}$$

The decoder D_ϕ is trained to reconstruct chunked weights from the latent z . We optimize the β -VAE objective in eq. 1

$$\mathcal{L} = -\mathbb{E}_{q_\phi(z|w)} [\log p_\theta(w|z)] + \beta \text{KL}(q_\phi(z|w) \| p(z)), \quad (1)$$

with $p(z)$ standard Gaussian and fixed β .

216 **Stabilizing Training on Heavy-Tailed Weights** Since LLM weights distribution has low variance
 217 and heavy tails (Section 3.1; Appendix 5), training VAEs on these weights can lead to collapse in the
 218 early training stage. We use (i) transformer blocks (Vaswani et al., 2017) in E_θ, D_ϕ for long-range
 219 coupling across chunks and (ii) a two-stage curriculum: first train a deterministic autoencoder (KL
 220 off) to convergence, then enable the KL term and fine-tune to structure the latent space without
 221 sacrificing fidelity. The VAE performance is measured by the performance of the reconstructed
 222 weights when used to initialize the corresponding architectures.

223

224 3.3 LATENT SPACE ALIGNMENT AND MERGING

225

226 **Self-Merging and Homogeneous Merging** *Self-merging* encodes a single model and draws
 227 multiple latent codes from its posterior (or the prior) to combine them, which is equivalent
 228 to merging *homogeneous* models whose per-layer embeddings share the same dimensionality.
 229 To be specific, for two checkpoints with weights $W_a, W_b \in \mathbb{R}^N$, we encode $z_a = E(W_a)$ and
 230 $z_b = E(W_b)$, and linearly interpolate them as $z_\lambda = (1 - \lambda)z_a + \lambda z_b$ for $\lambda \in [0, 1]$.
 231 We obtain the weights by decoding the interpolated latent $\widehat{W}_\lambda = D(z_\lambda)$. Empirically, latent-
 232 domain interpolation better preserves functional coherence than direct weight-space mixing,
 233 and common merge operators, for example, model soup or task arithmetic (Wortsman et al.,
 234 2022; Ilharco et al., 2023), transfer naturally by applying them to $\{z_a, z_b\}$ before decoding.

235

236

237 **Heterogeneous Mapping (depth/width mismatch)**

238 When two architectures match, layer by layer, in the number of weight chunks, we employ a single VAE to embed
 239 all layers into a common d -dimensional latent space. If the per-layer number and chunk counts differ, we instead
 240 deploy separate encoders for each architecture. Let the source have n_s layers with size M , and the target n_t layers
 241 with size N . We embed per-layer latents to a fixed dimension d and rescale the source so that total capacity
 242 matches the target:

243

$$r = \frac{n_t N}{n_s M}, \quad Z^{(\text{src, mapped})} \in \mathbb{R}^{n_t \times d}, \quad Z^{(\text{tgt})} \in \mathbb{R}^{n_t \times d}.$$

244

245 This proportional alignment across depth and width standardizes each architecture to a common per-layer latent
 246 dimensionality, enabling interpolation and the use of standard merge operators. However, when VAEs
 247 are trained separately per architecture (or under different training regimes), their *latent distributions*
 248 can differ, so equal shape does not guarantee comparability.

249

250

251 **Optimal Transport Alignment.** While latent encoding standardizes per-layer dimensionality,
 252 it does not guarantee that two models’ latent representations are geometrically compatible. As
 253 shown in Appendix C (Figure 9a), homogeneous models (e.g., checkpoints from the same pre-
 254 training run) exhibit overlapping latent support and often satisfy *Linear Mode Connectivity*, making
 255 linear interpolation well-behaved. In contrast, heterogeneous models such as Gemma and Llama
 256 produce latent distributions $\mathcal{Z}_{\text{src}}, \mathcal{Z}_{\text{tgt}}$ that lie on disjoint manifolds with different covariance
 257 structures and density profiles (Figure. 9b). Interpolating between such misaligned latents could
 258 produce low performing weights that fall outside the target decoder’s valid manifold and degrade
 259 functionality (performance on down stream tasks). To address this, we treat heterogeneous merging as
 260 a *manifold registration* problem and align the source latent distribution to the target using Optimal
 261 Transport (OT) (Villani, 2009; Santambrogio, 2015). OT provides a principled framework for finding
 262 a map $T : \mathcal{Z}_{\text{src}} \rightarrow \mathcal{Z}_{\text{tgt}}$ that minimizes geometric distortion while reshaping one distribution into the
 263 other. Formally, we solve the Monge problem under the 2-Wasserstein distance 2:

264

265

266

267

268

269

$$T^* = \arg \min_T \int \|z - T(z)\|_2^2 d\mu_{\text{src}}(z) \quad \text{s.t.} \quad T_\# \mu_{\text{src}} = \mu_{\text{tgt}}, \quad (2)$$

where $T_\# \mu_{\text{src}}$ denotes the pushforward measure induced by T . This ensures that applying T^* to
 source latents produces samples distributed as the target. While the general Monge problem is

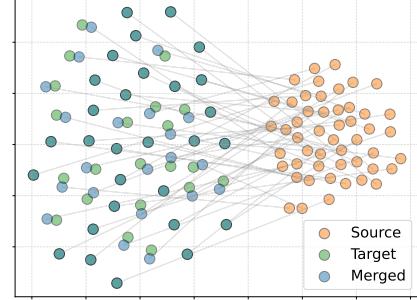


Figure 3: Visualization of embeddings of Gemma models and OT-aligned latents. The merged latent is partially overlapped with the target latent.

270 **Algorithm 1** Heterogeneous LLM Parameter Merging in Latent Space

271 **Require:** Source weights W_{src} , target weights W_{tgt} , encoder-decoder (E, D)

272 **Ensure:** Merged weights W_{merged}

273 1: Extract per-layer groups $L_{\text{src}}, L_{\text{tgt}}$; set $N \leftarrow \min(|L_{\text{src}}|, |L_{\text{tgt}}|)$ and define pairs $(l_{\text{src}}^{(j)}, l_{\text{tgt}}^{(j)})_{j=1}^N$

274 2: **for** $j = 1$ to N **do**

275 3: Flatten & chunk $w_{\text{src}}^{(j)}, w_{\text{tgt}}^{(j)}$; encode $z_{\text{src}}^{(j)} \leftarrow E(w_{\text{src}}^{(j)}), z_{\text{tgt}}^{(j)} \leftarrow E(w_{\text{tgt}}^{(j)})$

276 4: Proportional mapping to fixed d : obtain $Z_{\text{src}}^{(j)}, Z_{\text{tgt}}^{(j)} \in \mathbb{R}^{n_t \times d}$

277 5: OT alignment: $\tilde{Z}_{\text{src}}^{(j)} \leftarrow \text{OT-ALIGN}\left(Z_{\text{src}}^{(j)}, Z_{\text{tgt}}^{(j)}\right)$ (solve equation ??)

278 6: Interpolate latents: $Z_{\lambda}^{(j)} \leftarrow (1 - \lambda) Z_{\text{tgt}}^{(j)} + \lambda \tilde{Z}_{\text{src}}^{(j)}$

279 7: Decode & assemble: $w_{\text{merged}}^{(j)} \leftarrow D\left(Z_{\lambda}^{(j)}\right)$; place into W_{merged}

280 8: **end for**

281 9: **return** W_{merged}

285

286 computationally intensive, can approximate each layer’s latent distribution as a high-dimensional

287 Gaussian defined by its empirical mean μ_s and covariance Σ_s . Under this assumption (?), the optimal

288 transport map admits a closed-form affine solution: $\tilde{z}_{\text{src}} = T^*(z_{\text{src}}) = \mu_t + A(z_{\text{src}} - \mu_s)$, where

289 $A = \Sigma_s^{-1/2} \left(\Sigma_s^{1/2} \Sigma_t \Sigma_s^{1/2} \right)^{1/2} \Sigma_s^{-1/2}$. This transformation aligns both the mean and covariance of

290 the source latents to the target, effectively registering the two manifolds and removing the geometric

291 mismatch. In practice, we use existing OT library from [Flamary et al. \(2021; 2024\)](#) in our work.

292

293 After alignment, the transported latents \tilde{Z}_{src} and the target latents Z_{tgt} share a common support, and

294 we perform interpolation in this aligned space: $Z_{\lambda}^{\text{OT}} = (1 - \lambda) Z_{\text{tgt}} + \lambda \tilde{Z}_{\text{src}}$. Because Z_{λ}^{OT} now lies

295 within the target decoder’s valid density region ([Agustsson et al., 2019](#)), the decoded weights remain

296 stable and functional, enabling robust cross-architecture merging even between disparate model

297 families. The overall process for heterogeneous LLMs merging is summarized in algorithm 2.

298

299

300 4 EXPERIMENTS

301

302 **General Setup** We evaluate latent-space merging on Gemma-3-1B-it, Gemma-3-4B-it,

303 Llama-3-1B-instruct, Llama-2-7b, and benchmark latent-space expert fusion against

304 weight-space merging using 10 LoRA experts on Gemma-7B-it.

305 **Datasets and Tasks** We first use subset dataset used by [Feng et al. \(2024b\)](#), such as language under-

306 standing (MMLU ([Hendrycks et al., 2021](#)), MMLU-pro ([Wang et al., 2024b](#))), commonsense reason-

307 ing ([HellaSwag \(\[Zellers et al., 2019\]\(#\)\)](#)), math (GSM8k ([Cobbe et al., 2021](#))), and knowledge-intensive

308 tasks (Knowledge Crosswords ([Ding et al., 2024](#)), NLGraph ([Wang et al., 2024a](#)), TruthfulQA ([Lin](#)

309 [et al., 2022](#)), AbstainQA ([Feng et al., 2024a](#))).

310 Training data consist of pretrained weight snapshots for Gemma-3-1B-it and Gemma-3-4B-it,

311 plus LoRA experts from [Feng et al. \(2024b\)](#).

312 **Baselines** We compare against reference-free weight-space methods: spherical linear interpolation

313 (SLERP), uniform soup ([Wortsman et al., 2022](#)), greedy soup ([Wortsman et al., 2022](#)), data-level

314 merging, the raw pretrained checkpoints, and the best single expert per task. This excludes approaches

315 that require access to an unmodified base reference model.

316 **Evaluation Protocols** We evaluate compression and merging in four scenarios:

317

1. **Self-Merging:** sample multiple codes from one model’s latent distribution and merge them.
2. **Expert Merging:** merge LoRA experts in latent space vs. weight space.
3. **Cross-Architecture Merging:** align and merge models with various depths and widths.
4. **Ablation study:** reconstruction or compression behavior and generalization to unseen

318 checkpoints.

	MMLU	MMLU-pro	HellaSwag	Gsm8k
Gemma-3-4b-it	53.10	20.90	47.40	29.90
VAE	54.10 \pm 0.36	20.80 \pm 0.20	49.03 \pm 0.70	31.27 \pm 0.55
LS-Merge	54.20 \pm 0.00	21.02 \pm 0.03	50.10 \pm 0.00	32.20 \pm 0.05
Gemma-3-1b-it	32.20	7.10	28.70	16.90
VAE	32.60 \pm 0.26	7.60 \pm 0.56	28.57 \pm 0.12	16.77 \pm 0.12
LS-Merge	35.13 \pm 0.02	10.30 \pm 0.20	31.16 \pm 0.14	17.50 \pm 0.01

Table 2: Benchmark scores for pretrained model, VAE, and LS-Merge.

	MMLU	MMLU-pro	HellaSwag	Gsm8k	TruthfulQA	NLGraph	K-Crossword	AbstainQA
Best expert	45.7	14.3	46.6	26.1	32.4	51.7	32.7	-10.8
Base model	48.8	18.1	53.3	6.9	30.1	47.5	28.0	-0.9
Data Merge*	44.5	17.6	52.7	14.3	10.7	42.3	37.0	-2.5
Uniform Soup	49.7	19.4	54.0	7.9	31.2	47.5	29.6	-0.1
SLERP(t=0.45)	52.5	18.8	50.4	25.5	28.7	49.8	30.0	-0.2
Greedy Soup	50.8	22.1	54.6	23.9	31.9	52.9	28.0	3.3
Dare-Ties	49.1	18.8	53.7	7.3	28.2	52.8	29.0	1.4
LS-Merge(lerp)	54.7	21.6	58.1	28.1	33.0	53.1	35.6	2.0
LS-Merge(soup)	56.0	22.2	60.1	24.2	32.0	56.1	35.2	4.0

Table 3: Results on merging expert LoRA weights in the raw weight space and the latent space.

Weight-Encoding Models We evaluated a Transformer-VAE and a ConvNet-VAE (Soro et al., 2025). We used AdamW ($lr = 1e-4$, weight decay = $1e-5$) with a cosine-to-zero schedule. The checkpoints are from Hugging Face, and further details are given in the supplement. The learning rate was chosen on the basis of hyperparameter tuning.

4.1 SELF-MERGING FOR ENHANCED PERFORMANCE

We investigated a self-merging technique designed to enhance a single model’s performance by exploring its learned latent distribution. The process involves encoding a model, sampling multiple latent codes from its posterior distribution, merging these codes into a single representation, and decoding it back into the parameter space. For this experiment, we used a single Transformer-VAE with six encoder and decoder blocks, trained jointly on weights from both Gemma-3-1B-it and Gemma-3-4B-it with the compression ratio held constant at 2. As shown in Table 2, this approach yields an average performance improvement of $\approx 4\%$ over two key baselines: the original base model and a standard VAE reconstruction from a single latent sample. Notably, the gains are more pronounced on the smaller model, consistent with it having tighter capacity constraints.

4.2 MERGING LLM EXPERTS IN LATENT SPACE

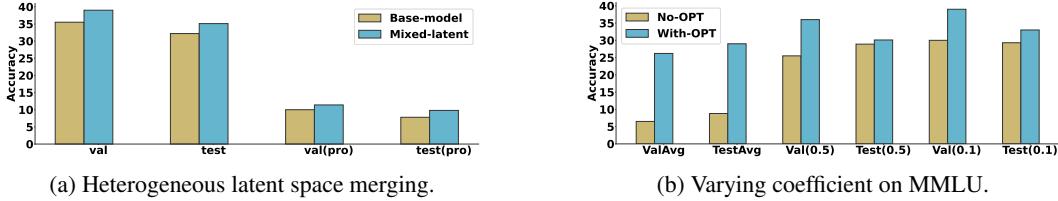
Next, we evaluated the primary application of our work: combining specialized LoRA experts. We compared our latent space approach against traditional weight-space interpolation methods using the experts from Feng et al. (2024b). In our method, each expert is encoded, their latent representations are merged, and then the resulting latent vector will be decoded into a single fused model. As shown in Table 3, our latent-space fusion consistently outperforms all weight-space baselines, including both linear and SLERP interpolation across uniform and greedy soup. We found this advantage stems from increased robustness. For example, greedy soup is highly sensitive to initialization, the checkpoint with the best validation accuracy often fails to yield the best test performance. By sampling multiple latent codes for each expert before merging, our method explores the learned parameter distribution instead of relying on a single point estimate, creating more robust and effective combinations.

4.3 COMPARISON TO REPRESENTATION-MERGING METHODS

To assess the robustness of our latent space approach, we benchmark it against leading representation-merging methods: Task Arithmetic (Ilharco et al., 2023) and Activation-Informed Merging (AIM) (Nobari et al., 2025), which operate on model activations rather than parameters. contrarily to the previous experiments, in this setting we use *lm-eval* tool (Gao et al., 2024) for fair comparison with the baselines. For this comparison, we merged Llama-2-13B models fine-tuned on distinct domains, utilizing a single VAE trained on the combined weights of all constituent models. The results

Method	MMLU	IFEval	MBPP	HumanEval	GSM8k
base	52.18	25.10	27.80	17.07	4.20
code	52.91	26.25	31.60	17.07	24.10
instruct	53.41	35.67	34.80	26.83	43.40
code + instruct (Task Arithmetic)	52.18	25.10	34.40	26.83	4.20
code + instruct (AIM)	54.18	32.00	36.00	29.27	46.20
code + instruct (LS-merge)	55.07	36.41	36.02	28.14	44.12

Table 4: Comparison of our latent space merging (LS-merge) with Task Arithmetic and AIM on Llama-2-13B fine-tuned models.



(a) Heterogeneous latent space merging.

(b) Varying coefficient on MMLU.

Figure 4: (a) Accuracy gains obtained by latent space merging of Gemma-3-4B-it with Gemma-3-1B-it. Bars show performance on the validation (*val*) and test splits of the MMLU and MMLU-PRO benchmarks (b) Impact of the merging coefficient t on validation and test accuracy in latent-space merging.

presented in Table 4 demonstrate that our method is highly competitive. It achieves performance comparable to the state-of-the-art AIM and substantially outperforms Task Arithmetic. This finding is significant, as it shows that a latent weight-space approach can match the performance of prominent methods that require access to model activations.

4.4 CROSS-ARCHITECTURE MERGING

Our latent-space approach supports merging across substantial architectural gaps. We study two settings: (i) *intra-family* (different sizes within Gemma) and (ii) *cross-family* (Gemma \leftrightarrow LLaMA).

Intra-family (Gemma-3-4B-it \rightarrow Gemma-3-1B-it). Direct latent interpolation between independently trained models is unstable (Fig. 4b). Aligning the larger model’s latents to the smaller model’s distribution before interpolation yields consistent gains across the mixing range. As shown in Fig. 4a, small injections from the source ($\lambda \in [0.05, 0.20]$) deliver the best improvements over the Gemma-3-1B-it baseline.

Cross-family (LLaMA-3.2-1B-instruct \rightarrow Gemma-3-1B-it). Family-level transfer is more challenging: baseline parameter/latent mixing without alignment degrades performance. Table 5 shows that distributionally aligned latent merging recovers and surpasses these baselines, a modest interpolation weight ($\lambda = 0.1$) achieves the best overall scores. The evaluation for cross family evaluation is performed using *lm-eval* for simplicity and also due to some issues with llama model when using the previous evaluation code.

Takeaway. *Matching latent dimensionality* is insufficient for heterogeneous merges, *aligning latent distributions* is crucial. Once aligned, a single knob λ reliably controls how much capacity is injected from the source into the target.

5 ABLATION STUDIES

To better understand the properties of our method, we conduct two targeted ablation studies. In this section we use *lm-eval* for evaluation unless stated.

Strategy	WinoGrande	ARC-C	HellaSwag
Base	56.83	42.78	49.07
OT only	51.13	34.25	48.50
OT + interp.	57.75	43.34	50.10

Table 5: Downstream accuracy on WinoGrande, ARC-Challenge, and HellaSwag for different alignment strategies with $\lambda = 0.1$.

Strategy	WinoGrande	ARC-C	MMLU
Base	56.83	42.78	40.76
MLP	56.84	43.89	41.02
Attention	56.67	40.23	39.80
Attention + MLP	57.75	43.34	42.10

Table 6: Ablation: Merging subsets of layers. MLP-only outperforms on ARC-C, combining MLP and Attention achieves the best results.

Model	Winogrande (5-shot)	ARC-Challenge (25-shot)	HellaSwag (10-shot)	MMLU (5-shot)
Gemma-3-1B-it (base)	56.83	42.78	49.07	40.76
LLaMA-3.2-1B-it (base)	61.56	41.11	61.62	46.55
Gemma-3-1B-it (VAE, $r = 1.6$)	56.67	42.83	47.31	39.98
LLaMA-3.2-1B-it (VAE, $r = 1.6$)	61.25	41.47	60.80	46.06
Gemma-3-1B-it (VAE, $r = 2$)	56.67	38.23	38.88	32.22
LLaMA-3.2-1B-it (VAE, $r = 2$)	59.43	37.12	55.99	39.73
Gemma-3-1B-it (VAE, $r = 4$)	46.49	28.24	25.66	25.02
LLaMA-3.2-1B-it (VAE, $r = 4$)	49.20	26.28	25.70	26.76

Table 7: Accuracy of VAE models (trained on Gemma-3-4B-it) when evaluated on Gemma-3-1B-it and LLaMA-3.2-1B-it. Performance remains stable for $r = 1.6$, but degrades as the compression factor increases.

5.1 COMPONENT CONTRIBUTIONS IN LATENT MERGING

We first analyze how different submodules contribute to the merged model’s performance by merging MLP layers only, self-attention layers only, or both jointly. The results in Table 6 show that merging MLP layers alone provides modest gains, while merging attention layers alone degrades performance. Optimal results are achieved by merging both, indicating that **MLP and self-attention parameters encode complementary functional knowledge**, and that altering one without the other can disrupt learned co-adaptations.

5.2 VAE GENERALIZATION AND THE COMPRESSION TRADE-OFF

Next, we assess the VAE’s zero-shot generalization by training it on Gemma-3-4B-it and evaluating it on two unseen models: an in-family Gemma-3-1B-it and an out-of-family LLaMA-3.2-1B-it. Table 7 reveals a clear trade-off between compression and generalization. At a low compression ratio ($r = 1.6$), the VAE maintains strong performance on both unseen models. However, performance degrades substantially at higher ratios ($r = 2, 4$). This suggests that while the VAE learns transferable representations of weight structures, higher compression ratios lead to posterior collapse due to the fact most of the data sample are cluster around zero.

5.3 LINEAR SUBSPACE VS. NON-LINEAR MANIFOLD LEARNING

In this section we investigate the use of incremental PCA for weights encoding on gemma-3-1 b-it compare to VAE based en coding. Although Section 3.1 showed that LLM weight matrices exhibit low-rank structure, this does not imply that the space of functional parameters forms a linear subspace. To assess whether linear methods are sufficient, we compare our non-linear Transformer-VAE against PCA across compression ratios $r \in \{1.6, 2.0, 4.0\}$ (Table 8).

PCA collapses functional performance. Across all ratios, PCA-reconstructed models regress to near-random accuracy on MMLU ($\approx 25.5\%$ at $r = 1.6$) and exhibit a global drop across benchmarks (e.g., ARC-C: $42.41\% \rightarrow 27.65\%$). Notably, performance is equally poor at $r = 1.6$ and $r = 4.0$, indicating that the failure is not due to insufficient latent capacity but to a structural mismatch: the set of valid pretrained weights does not reside in a linear subspace.

VAE preserves the functional manifold. In contrast, the LS-Merge VAE retains near-original accuracy at all compression levels. At $r = 1.6$, it recovers 96% of the base model’s MMLU performance (39.89% vs. 41.44%) and even improves Winogrande (56.64% vs. 55.41%). Remarkably,

486
 487 Table 8: Functional Reconstruction Fidelity vs. Compression Ratio. Zero-shot accuracy comparison
 488 on standard benchmarks (MMLU, HellaSwag, Winogrande, ARC-C) for Gemma-3-1B-it. We
 489 compare our non-linear Transformer-VAE (LS-Merge) against a linear PCA baseline at compression
 490 ratios $r \in \{1.6, 2, 4\}$. While the VAE maintains strong performance at $r = 1.6$ and $r = 2$,
 491 linear compression suffers significantly as the bottleneck tightens, validating the need for non-linear
 manifold learning.

Method	Ratio (r)	MMLU	HellaSwag	Winogrande	ARC-C
Gemma-3-1b-it)	1.0×	41.44 ± 0.00	49.05 ± 0.01	55.41 ± 0.03	42.41 ± 0.02
PCA (Linear)	1.6×	25.50 ± 0.37	25.56 ± 0.04	50.12 ± 0.01	27.65 ± 0.01
LS-Merge VAE	1.6×	39.89 ± 0.01	48.57 ± 0.25	56.64 ± 0.15	41.64 ± 0.01
PCA (Linear)	2.0×	24.12 ± 0.00	25.27 ± 0.12	46.27 ± 0.01	26.24 ± 0.32
LS-Merge VAE	2.0×	39.80 ± 0.00	49.29 ± 0.10	54.14 ± 1.02	42.32 ± 0.21
PCA (Linear)	4.0×	24.13 ± 0.15	24.79 ± 0.23	49.57 ± 0.01	25.89 ± 0.23
LS-Merge VAE	4.0×	39.83 ± 0.00	49.30 ± 0.21	56.06 ± 0.15	42.75 ± 0.20

502
 503 VAE reconstructions remain stable at $r = 4.0$, whereas PCA has already collapsed at $r = 1.6$. This
 504 indicates that pretrained weights lie on a non-linear manifold that requires expressive encoders and
 505 decoders to model its curvature. Linear projections such as PCA cannot preserve the structure of the
 506 pretrained weight manifold and produce functionally invalid models even under mild compression.
 507 The VAE’s non-linear latent geometry is therefore not a stylistic preference but a geometric necessity
 508 for faithful reconstruction, compression, and downstream operations such as interpolation and
 509 merging.
 510

511 6 DISCUSSION

512
 513 **Limitations** Despite its strong performance, our approach has limitations. The training of the
 514 weight-encoding VAE is computationally non-trivial when for higher compression ratios and can be
 515 sensitive to hyperparameters, especially given the heavy-tailed nature of LLM weight distributions.

516
 517 **Future Work** This work opens several avenues for future research. One direction is to explore
 518 more efficient or powerful generative models for weight encoding, such as extending latent-space
 519 merging to encompass more than two models via barycentric interpolation in the aligned latent space
 520 could unlock more complex model compositions.
 521

522 7 CONCLUSION

523
 524 In this work, we introduced LS-Merge, a novel framework that reimagines model merging by
 525 operating in a learned latent space of model parameters. By mapping weights to a continuous
 526 manifold and critically employing OT for principled alignment, our method successfully merges
 527 models with heterogeneous architectures, overcoming a fundamental limitation of prior weight-space
 528 techniques. Our comprehensive experiments demonstrate that this approach not only excels at
 529 standard expert fusion but also enables robust cross-scale and cross-family model merging for the first
 530 time. LS-Merge establishes a scalable and architecture-agnostic paradigm for model composition,
 531 paving the way for more flexible and efficient reuse of pre-trained models.
 532

533 8 REPRODUCIBILITY STATEMENT

534
 535 To ensure reliable and reproducible results, we have provided detailed experiment settings in the
 536 Appendix. We plan to open-source our implementation.
 537

540 REFERENCES
541

542 Eirikur Agustsson, Alexander Sage, Radu Timofte, and Luc Van Gool. Optimal transport maps
543 for distribution preserving operations on latent spaces of generative models. In *International
544 Conference on Learning Representations*, 2019.

545 Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization
546 of model merging recipes. *Nature Machine Intelligence*, 7(2):195–204, January 2025. ISSN
547 2522-5839. doi: 10.1038/s42256-024-00975-8. URL <http://dx.doi.org/10.1038/s42256-024-00975-8>.

549 Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and new
550 perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35:1798–1828,
551 2012.

553 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
554 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
555 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
556 2021.

557 Wenxuan Ding, Shangbin Feng, Yuhan Liu, Zhaoxuan Tan, Vidhisha Balachandran, Tianxing He,
558 and Yulia Tsvetkov. Knowledge crosswords: Geometric knowledge reasoning with large language
559 models, 2024. URL <https://arxiv.org/abs/2310.01290>.

560

561 Carl Eckart and G. Marion Young. The approximation of one matrix by another of lower rank.
562 *Psychometrika*, 1:211–218, 1936.

563 Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Vidhisha Balachandran, and Yulia Tsvetkov.
564 Don’t hallucinate, abstain: Identifying LLM knowledge gaps via multi-LLM collaboration. In
565 *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
566 1: Long Papers)*, August 2024a.

567

568 Shangbin Feng, Zifeng Wang, Yike Wang, Sayna Ebrahimi, Hamid Palangi, Lesly Miculicich, Achin
569 Kulshrestha, Nathalie Rauschmayr, Yejin Choi, Yulia Tsvetkov, Chen-Yu Lee, and Tomas Pfister.
570 Model swarms: Collaborative search to adapt llm experts via swarm intelligence, 2024b. URL
571 <https://arxiv.org/abs/2410.11163>.

572 Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
573 Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
574 Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
575 Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
576 Titouan Vayer. Pot: Python optimal transport. *Journal of Machine Learning Research*, 22(78):1–8,
577 2021. URL <http://jmlr.org/papers/v22/20-451.html>.

578 Rémi Flamary, Cédric Vincent-Cuaz, Nicolas Courty, Alexandre Gramfort, Oleksii Kachaiev, Huy
579 Quang Tran, Laurène David, Clément Bonet, Nathan Cassereau, Théo Gnassounou, Eloi Tanguy,
580 Julie Delon, Antoine Collas, Sonia Mazelet, Laetitia Chapel, Tanguy Kerdoncuff, Xizheng Yu,
581 Matthew Feickert, Paul Krzakala, Tianlin Liu, and Eduardo Fernandes Montesuma. Pot python
582 optimal transport (version 0.9.5), 2024. URL <https://github.com/PythonOT/POT>.

583

584 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
585 Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
586 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
587 Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
588 harness, 07 2024. URL <https://zenodo.org/records/12608602>.

589 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
590 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
591 Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
592 Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
593 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang

594 Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
 595 Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
 596 Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina
 597 Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang,
 598 Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire
 599 Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron,
 600 Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
 601 Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
 602 van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
 603 Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
 604 Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani,
 605 Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
 606 Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yeary, Laurens van der
 607 Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
 608 Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat
 609 Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya
 610 Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman
 611 Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
 612 Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
 613 Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
 614 Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
 615 Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
 616 Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
 617 Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
 618 Shaoliang Nie, Sharan Narang, Sharath Rapparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,
 619 Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
 620 Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
 621 Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
 622 Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
 623 Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
 624 Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide
 625 Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei,
 626 Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
 627 Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
 628 Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
 629 Alex Boesenber, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
 630 Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
 631 Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
 632 Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
 633 Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola,
 634 Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence,
 635 Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu,
 636 Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris
 637 Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
 638 Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich,
 639 Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
 640 Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban
 641 Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
 642 Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
 643 Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang,
 644 Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
 645 Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan
 646 Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai
 647 Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
 Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
 Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
 Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal,
 Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran
 Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,

648 Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca
 649 Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson,
 650 Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally,
 651 Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
 652 Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
 653 Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
 654 Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
 655 Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
 656 Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
 657 Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
 658 Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
 659 Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
 660 Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
 661 Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji
 662 Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shuang Zhang, Shuang Zhang, Sheng Feng, Shenghao Lin,
 663 Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
 664 Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
 665 Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
 666 Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
 667 Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou,
 668 Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
 669 Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 670 Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaoqian
 671 Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
 672 Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
 673 Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu
 674 Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024.

675 Suchin Gururangan, Margaret Li, Mike Lewis, Weijia Shi, Tim Althoff, Noah A. Smith, and Luke
 676 Zettlemoyer. Scaling expert language models with unsupervised domain discovery. *arXiv preprint*
 677 *arXiv:2303.14177*, 2023.

678 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 679 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International
 Conference on Learning Representations (ICLR)*, 2021.

680 Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
 681 Efficient cross-task generalization via dynamic lora composition, 2023.

682 Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
 683 and Ali Farhadi. Editing models with task arithmetic. In *The Eleventh International Conference
 684 on Learning Representations*, 2023. URL <https://openreview.net/forum?id=6t0Kwf8-jrj>.

685 Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han. Model stock: All we need is just a few
 686 fine-tuned models. In *Proceedings of the European Conference on Computer Vision*, 2024.

687 Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. *CoRR*, abs/1312.6114, 2013.
 688 URL <https://api.semanticscholar.org/CorpusID:216078090>.

689 Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction and
 690 review of current methods. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 43
 691 (11):3964–3979, 2021. doi: 10.1109/TPAMI.2020.2992934.

692 Subhaneil Lahiri, Peiran Gao, and Surya Ganguli. Random projections of random manifolds, 2016.
 693 URL <https://arxiv.org/abs/1607.04331>.

694 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 695 falsehoods, 2022. URL <https://arxiv.org/abs/2109.07958>.

696 Costas Mavromatis, Petros Karypis, and George Karypis. Pack of llms: Model fusion at
 697 test-time via perplexity optimization. *ArXiv*, abs/2404.11531, 2024. URL <https://api.semanticscholar.org/CorpusID:269188153>.

702 Amin Heyrani Nobari, Kaveh Alimohammadi, Ali ArjomandBigdeli, Akash Srivastava, Faez Ahmed,
 703 and Navid Azizan. Activation-informed merging of large language models, 2025. URL <https://arxiv.org/abs/2502.02421>.

704

705 Filippo Santambrogio. *Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs,*
 706 *and Modeling*, volume 87 of *Progress in Nonlinear Differential Equations and Their Applications*.
 707 Birkhäuser, 2015.

708

709 Konstantin Sch”urholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile
 710 weight space learning. In *Proceedings of the 41st International Conference on Machine Learning*
 711 (*ICML*), 2024.

712

713 Chongjie Si, Jingjing Jiang, and Wei Shen. Unveiling the mystery of weight in large foundation
 714 models: Gaussian distribution never fades, 2025.

715

716 Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and Sung Ju
 717 Hwang. Diffusion-based neural network weights generation. In *The Thirteenth International*
 718 *Conference on Learning Representations*, 2025.

719

720 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 721 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 722 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
 723 Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
 724 Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
 725 Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
 726 Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 727 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 728 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedekemeyer, Alaa
 729 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 730 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 731 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 732 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 733 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar
 734 Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene
 735 Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-
 736 Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,
 737 Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
 738 Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy
 739 Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
 740 Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,
 741 Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen
 742 Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,
 743 Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna,
 744 Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome,
 745 Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar,
 746 Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,
 747 Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov,
 748 Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed,
 749 Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo,
 750 Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris
 751 Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
 752 Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff
 753 Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste
 754 Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
 755 Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report,
 2025.

756

757 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 758 Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
 759 H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Advances in Neural Information*
 760 *Processing Systems*, volume 30. Curran Associates, Inc., 2017.

756 Cédric Villani. *Optimal Transport: Old and New*, volume 338 of *Grundlehren der mathematischen*
 757 *Wissenschaften*. Springer, 2009.
 758

759 Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. Can
 760 language models solve graph problems in natural language?, 2024a. URL <https://arxiv.org/abs/2305.10037>.
 761

762 Kai Wang, Dongwen Tang, Wangbo Zhao, Konstantin Schürholt, Zhangyang Wang, and Yang You.
 763 Recurrent diffusion for large-scale parameter generation, 2025.
 764

765 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 766 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
 767 multi-task language understanding benchmark. *arXiv preprint arXiv:2406.01574*, 2024b.
 768

769 Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
 770 Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
 771 Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
 772 without increasing inference time. In *Proceedings of the 39th International Conference on*
Machine Learning, pp. 23965–23998, 2022.
 773

774 Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
 775 Resolving interference when merging models. In *Thirty-seventh Conference on Neural Information*
Processing Systems, 2023. URL <https://openreview.net/forum?id=xtaX3WyCj1>.
 776

777 Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
 778 Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities,
 779 2024.
 780

781 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: ab-
 782 sorbing abilities from homologous models as a free lunch. In *Proceedings of the 41st International*
Conference on Machine Learning, ICML’24. JMLR.org, 2024a.
 783

784 Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
 785 Absorbing abilities from homologous models as a free lunch. In *International Conference on*
Machine Learning, 2024b.
 786

787 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
 788 really finish your sentence?, 2019. URL <https://arxiv.org/abs/1905.07830>.
 789

790 A APPENDIX

791 IMPACT STATEMENT

792 We introduce a VAE-based latent-space merging technique for pretrained LLMs that encodes weights
 793 into compact codes, blends them, and decoding new high-performance parameters. This enables
 794 fast, compute-efficient model customization and smooth interpolation across architectures. However,
 795 blending latent codes can unintentionally merge biases or toxic behaviors, obscure the origin of
 796 capabilities, and be misused to graft malicious functionality. We advocate for rigorous bias /
 797 toxicity audits, transparent provenance tracking, and clear reporting guidelines to ensure responsible
 798 deployment.
 799

800 A EXTENDED DISTRIBUTION ANALYSIS

801 Section 3.1 characterized layerwise weight statistics to inform encoding and merging. Here we extend
 802 that analysis with (i) complete per-layer distribution plots, including all MLP layers for GEMMA-3-
 803 1B-IT, GEMMA-3-4B-IT, and LLAMA-3.2-3B-INSTRUCT, and (ii) cumulative variance-explained
 804 curves from PCA on those MLP layers.
 805

810 A.1 DATA AND PROCEDURE
811812 **Models.** GEMMA-3-1B-IT, GEMMA-3-4B-IT, LLAMA-3.2-3B-INSTRUCT, plus the main-paper
813 models.814 **Layer selection.** For each transformer block, we analyze *self-attention* (Q/K/V/O projections) and
815 *MLP* (up/gate/down) weight matrices independently.816 **Preprocessing.** Unless noted, statistics are computed on raw matrix entries. For PCA, matrices are
817 mean-centered and the spectrum is computed over flattened rows; we report cumulative variance
818 explained. We use *excess kurtosis* (Fisher convention) so a Gaussian has $\kappa_{\text{ex}}=0$:

819
$$\kappa_{\text{ex}} = \frac{\mathbb{E}[(W - \mu)^4]}{\sigma^4} - 3.$$

820

821 Means and variances are standard sample estimates; skewness uses the unbiased estimator.
822823 **Aggregation.** We report per-layer curves and layer-type aggregates (self-attention vs. MLP). Family
824 summaries first average across layers within a model, then across models in the same family.
825826 A.2 COMPLETE PLOTS
827828 Figure 5 shows layerwise distribution plots (self-attention and MLP). Figure 6 reports cumulative
829 PCA variance for all MLP layers (attention spectra are in the main text).
830831 A.3 FINDINGS AND IMPLICATIONS
832833 **Self-attention layers exhibit heavier tails in Gemma.** In self-attention projections (Fig. 7a, Table 9),
834 GEMMA-3-1B-IT and GEMMA-3-4B-IT show pronounced positive excess kurtosis with depth-
835 localized peaks, indicating heavy tails and more extreme outliers. LLAMA models track closely
836 across scales, suggesting family-level statistical stability.
837838 **MLP layers are more stable and closer to Gaussian.** Across models (Fig. 7b, Table 9), MLP
839 projections are near-Gaussian with excess kurtosis typically in $[0, 2]$ and fewer depth-dependent spikes.
840 Their PCA spectra (Fig. 6) decay faster than attention, indicating lower intrinsic dimensionality.
841842 **Design implications for encoding and merging.**843

- *Allocate capacity to attention.* Heavy tails in attention (notably in Gemma) warrant encoders
844 with higher capacity or robust priors; Gaussian assumptions under-represent extremes.
- *MLP is the easy regime.* More Gaussian, stable MLP statistics admit accurate compression
845 with standard VAE settings and fewer latent pathologies.
- *Family consistency aids calibration.* The alignment of LLAMA statistics across scales
846 simplifies cross-scale latent calibration and reduces merging friction.

847848 **Summary.** Attention weights (especially in Gemma) are the dominant source of heavy-tail behavior;
849 MLP weights are comparatively benign. Tail-aware encoding and depthwise calibration are most
850 critical for attention, while default settings suffice for MLP.
851852 B VARIATIONAL ENCODER ARCHITECTURE AND TRAINING DETAILS
853854 Table 10 lists the configuration of our transformer VAE. The encoder applies a twofold down-
855 projection of the token (*compression ratio* $r=2$), which is the smallest bottleneck we found that
856 preserves reconstruction while generalizing to unseen checkpoints. The decoder mirrors the encoder
857 to restore the original dimension. For heterogeneous merges, we set the latent size d_z by the source
858 to target layer mapping ratio and keep all other hyperparameters fixed, ensuring comparable latent
859 scales across architectures.
860861 **Objective.** We optimize the ELBO (reconstruction + KL to $\mathcal{N}(0, I)$) with a constant learning rate
862 1×10^{-5} for 10,000 epochs.
863

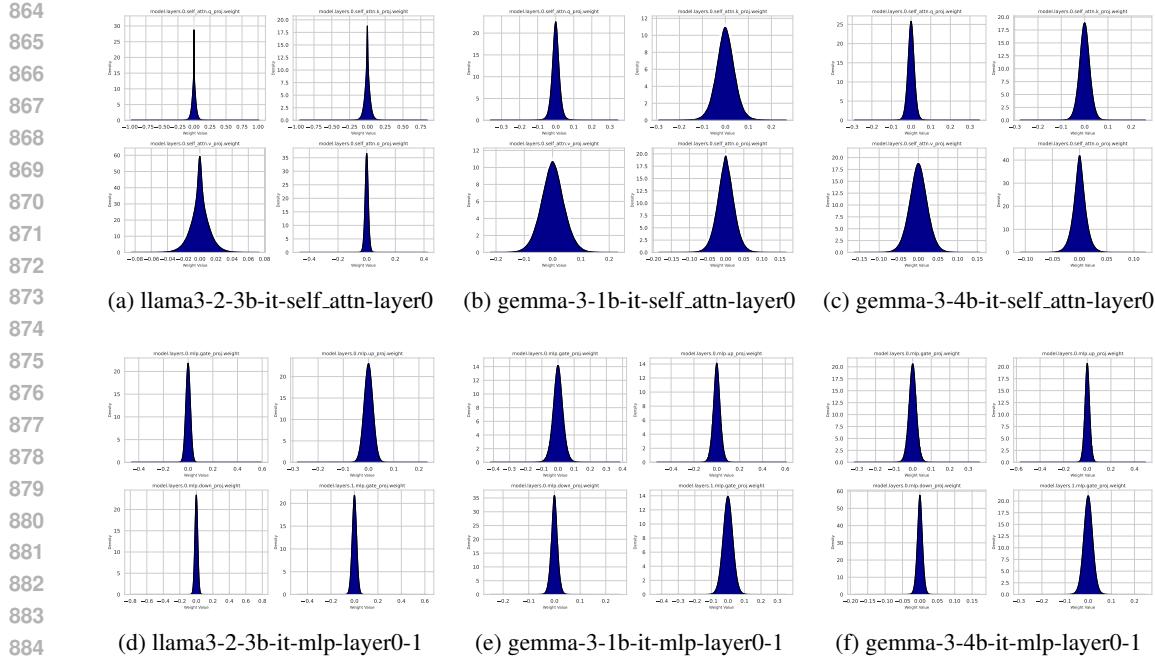


Figure 5: Distribution plot of the self-attention and the mlp modules in llama3-1-8b-instruct, gemma-3-1b-it, and gemma-3-4b-it for attention layer 0.

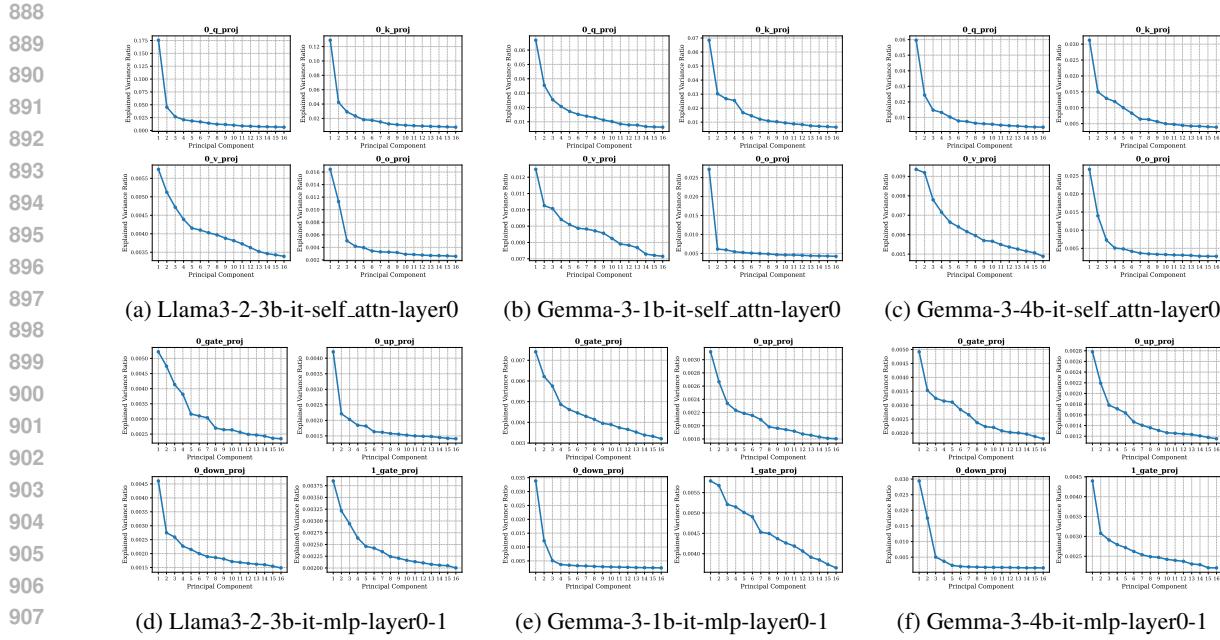


Figure 6: Plots of the PCA **explained-variance ratio** for individual weight matrices in the first self-attention block (top row of each subpanel set) of three LLM checkpoints—Llama-3-2-3b-it, Gemma-3-1b-it, and Gemma-3-4b-it. For each model, we show the four projection matrices of self-attention (q, k, v, o). The sharp drop after the leading principal components highlights a pronounced low-rank structure that is consistent across architectures and model sizes.

Training setup. Single NVIDIA A6000, bfloat16 for forward and backward, the remaining settings (optimizer, batch size, weight decay, clip-norm) are in Table 10. Seeds are fixed for data order and initialization.

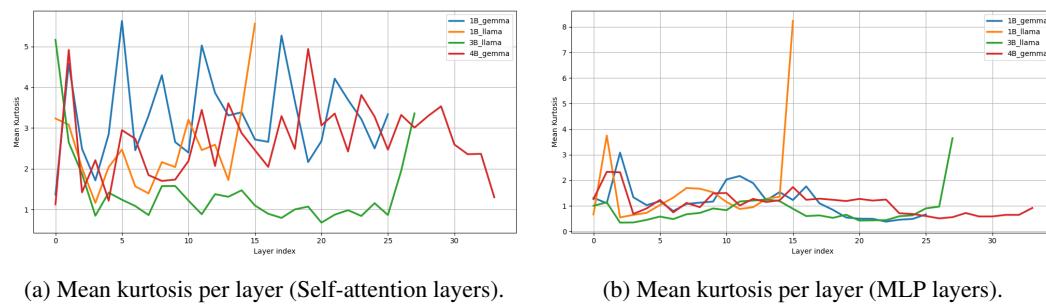


Figure 7: Comparison of mean kurtosis across layers in self-attention and MLP components for Gemma and LLaMA models.

layers	llama3-2-3b-it			gemma-3-1b-it			gemma-3-4b-it		
	var.	skew	kurt.	var.	skew	kurt.	var.	skew	kurt.
self_attn	0.0017	0.0192	8.4032	0.0031	0.0500	15.0505	0.0015	0.0501	15.2010
	0.0013	0.0191	7.3438	0.0030	0.0450	9.8347	0.0015	0.0267	7.3832
	0.0012	0.0178	6.2172	0.0030	0.0389	9.0363	0.0014	0.0255	7.2277
	0.0011	0.0104	5.4477	0.0030	0.0288	8.6496	0.0014	0.0172	6.0731
avg (self_attn)	0.0005	-0.0002	1.4342	0.0012	-0.0009	3.2858	0.0005	0.0009	2.6900
min (self_attn)	0.0001	-0.0131	0.3027	0.0002	-0.0418	0.1589	0.0001	-0.0305	0.2412
mlp	0.0005	0.0093	5.4740	0.0010	0.0167	8.7665	0.0004	0.0266	6.3297
	0.0005	0.0080	4.1465	0.0010	0.0090	3.1514	0.0004	0.0155	5.9670
	0.0004	0.0075	2.6694	0.0010	0.0077	3.0577	0.0004	0.0130	2.7454
	0.0004	0.0074	2.4364	0.0010	0.0071	3.0113	0.0004	0.0094	2.4371
avg (mlp)	0.0003	0.0003	0.8435	0.0006	0	1.1739	0.0003	0.0006	1.0807
min (mlp)	0.0003	-0.0139	0.0892	-0.0001	-0.0184	0.1552	0	-0.0076	0.1559

Table 9: Statistical moments of the self-attention and MLP layers across three models.

Field	Value	Notes
length	10,240	Sequence length processed
n_layers	6	Transformer depth
chunk_size	640	Per-token chunk width
embed_dim	768	Matches global embed_dim
latent_dim	640	Size of latent vector per chunk
n_heads	4	Attention heads
rope_base	20,000	RoPE base frequency
conv	false	No convolutional patching
flatten	true	Flatten to original shape.

Table 10: Transformer block settings shared by the encoder and decoder.

Ablation summary. Bottlenecks weaker than $r=2$ overfit and degrade out-of-distribution reconstruction, stronger bottlenecks raise reconstruction error and harm downstream merging. Choosing d_z via the mapping ratio stabilizes cross-architecture alignment without retuning.

B.1 ANALYSIS WEIGHTS ENCODING EVOLUTION

Pretrained weight matrices exhibit substantial variation in tail behavior (high to near-zero excess kurtosis; cf. Section 3.1). We study how this variability interacts with the compression ratio r in the VAE and how it impacts generalization to unseen checkpoints.

Convergence vs. compression. Figure 8 shows a clear monotone effect: optimization slows as the bottleneck tightens. With $r=2$ (twofold down-projection), storage is halved and the reconstruction loss increases by only $\approx 6\%$; at $r=4$, the penalty rises to $\approx 10\%$. These curves set a practical operating point: $r \approx 2$ balances footprint and fidelity with minimal training overhead.

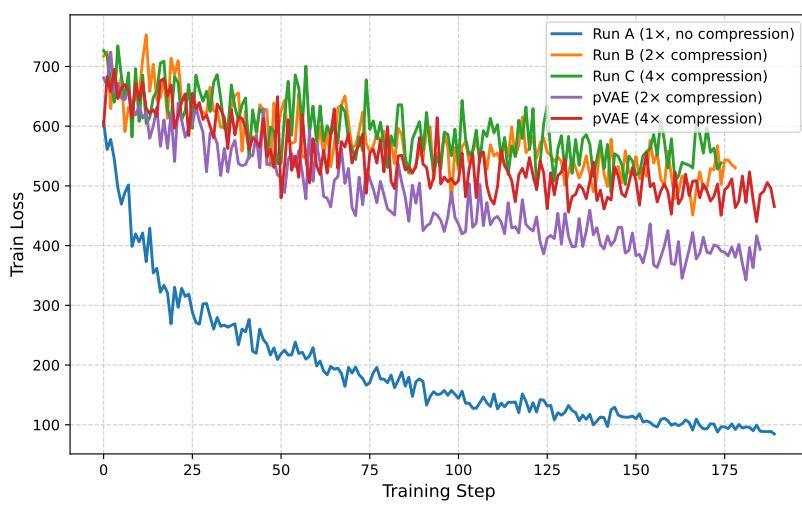


Figure 8: Mean reconstruction error curves (smoothed with a 5-step moving average) for pVAE (VAE initialized from an existing pretrained VAE with reduction factor 1) and VAE (random initialized VAE). r denotes the compression ratio.

Sensitivity to distribution shape. Layers with heavier tails (high excess kurtosis) are more sensitive to increasing r , exhibiting larger loss gaps at fixed training budget, near-Gaussian layers degrade more gently. In our models, attention projections in GEMMA fall into the former regime, whereas MLP projections across families align with the latter (App. A).

Training schedule. Two-Stage Training. To improve stability under tight bottlenecks, we employ a two-stage curriculum: (1) train a deterministic autoencoder to convergence with the KL term disabled, then (2) enable KL regularization and fine-tune as a VAE. This approach prevents early posterior collapse and yields stable convergence even at high compression ratios, without increasing total training time.

Computational Cost All experiments were conducted on a single NVIDIA RTX 6000 Ada GPU. Training a $\sim 200M$ parameter VAE at compression ratio $r = 1.6$ requires approximately 1-2 hours for 1B-scale models and 3-4 hours for 7B-scale models ($\sim 500K$ chunks). Higher compression ratios increase training time proportionally. LoRA weights converge notably faster than full model weights due to their lower-rank structure. At inference, the full encode-decode pipeline completes in 5-10 seconds, enabling rapid iteration during merging experiments.

Reducing the Training Time: Interestingly, in the case of heterogeneous models expansion $r < 1$ can offer an alternative trade-off. Lifting weights into an overcomplete latent space can unfold curved manifolds, making linear interpolation better approximate geodesics on the original weight manifold. expansion forces the encoder to learn a non-trivial transformation, avoiding identity collapse. Practically, expansion significantly accelerates training the relaxed bottleneck eases optimization and improves gradient flow at the cost of increased memory.

C HETEROGENEOUS MODEL MERGING IN LATENT SPACE

Merging models with matched layer shapes is straightforward in weight space. Heterogeneous pairs are harder: to avoid truncating the higher-capacity model, we train *separate* VAEs per architecture and merge in a shared, *aligned* latent space. Concretely, we first calibrate latents per layer, fit an alignment map between the source and target latent spaces, and then interpolate on the target side before decoding. This preserves each model’s capacity while enabling stable cross-architecture merges without ad hoc dimensionality cuts. The full procedure is given in Algorithm 2.

1026 **Algorithm 2** Details of Heterogeneous LLM Parameter Merging in Latent Space

1027 **Require:** Source weights W_{src} , target weights W_{tgt} , VAE configs $C_{\text{src}}, C_{\text{tgt}}$

1028 **Ensure:** Merged weights W_{merged}

1029 1: Initialize VAEs: $(V_{\text{src}}, V_{\text{tgt}}) \leftarrow \text{init}(C_{\text{src}}, C_{\text{tgt}})$

1030 2: Load pretrained parameters into $V_{\text{src}}, V_{\text{tgt}}$

1031 3: Split weights into per-layer groups:

1032 $L_{\text{src}} \leftarrow \{\text{all layers from } W_{\text{src}}\}$

1033 $L_{\text{tgt}} \leftarrow \{\text{all layers from } W_{\text{tgt}}\}$

1034 4: Determine the number of pairs to merge: $N \leftarrow \min(|L_{\text{src}}|, |L_{\text{tgt}}|)$

1035 5: Define aligned layer pairs: $(l_{\text{src}}^{(j)}, l_{\text{tgt}}^{(j)})$ for $j = 1, \dots, N$

1036 6: **for** each aligned pair $(l_{\text{src}}^{(j)}, l_{\text{tgt}}^{(j)})$ **do**

1037 7: Flatten & chunk weights into $\{w_{\text{src}}^{(i)}, w_{\text{tgt}}^{(i)}\}$

1038 8: Encode: $z_{\text{src}}^{(i)} \leftarrow V_{\text{src}}(w_{\text{src}}^{(i)}), z_{\text{tgt}}^{(i)} \leftarrow V_{\text{tgt}}(w_{\text{tgt}}^{(i)})$

1039 9: Align latents via OT: $z_{\text{align}}^{(i)} \leftarrow \text{OT}(z_{\text{src}}^{(i)}, z_{\text{tgt}}^{(i)})$

1040 10: Merge latents: $z_{\text{merged}}^{(i)} \leftarrow z_{\text{tgt}}^{(i)} + \beta \cdot (z_{\text{align}}^{(i)} - z_{\text{tgt}}^{(i)})$

1041 11: Decode: $w_{\text{merged}}^{(i)} \leftarrow V_{\text{tgt}}^{-1}(z_{\text{merged}}^{(i)})$

1042 12: Store $w_{\text{merged}}^{(i)}$ in W_{merged}

1043 13: **end for**

1044 14: Initialize and evaluate final network with complete W_{merged}

1045 15: **return** W_{merged}

1049

1050 C.1 INTUITION BEHIND LATENT SPACE ALIGNMENT

1051

1052 The rationale for restricting explicit latent alignment specifically to heterogeneous merging scenarios
 1053 relies on the geometric properties of the neural loss landscape and the topological structure of the
 1054 parameter manifolds.

1055 **Homogeneous Merging and Linear Mode Connectivity.** In the case of homogeneous models—
 1056 specifically those finetuned from a shared pretrained initialization (e.g., distinct fine-tunes of
 1057 LLaMA-2-13B)—the parameters remain within a shared basin of attraction. Consequently, their
 1058 weight vectors θ_1, θ_2 reside on a connected region of the high-dimensional parameter manifold \mathcal{M} .
 1059 When encoded into the latent space \mathcal{Z} , the resulting distributions $p(z|\theta_1)$ and $p(z|\theta_2)$ naturally share
 1060 a common support and overlapping density. Therefore, interpolation in \mathcal{Z} corresponds to traversing a
 1061 flat, low-loss path on the underlying manifold, rendering explicit distributional alignment redundant.

1062 **The Heterogeneous Disconnect.** Conversely, heterogeneous models (e.g., Gemma-3-1B vs. LLaMA-
 1063 3.2-1B) possess fundamentally distinct architectures. Even when projected into a latent space of
 1064 identical dimensionality d , their representations occupy disjoint manifolds \mathcal{M}_{src} and \mathcal{M}_{tgt} with
 1065 divergent geometric structures and density profiles as show in Figure 9

1066 This disjoint nature necessitates a non-linear mapping to bridge \mathcal{M}_{src} and \mathcal{M}_{tgt} . We employ Optimal
 1067 Transport (specifically the Monge map) to push the source distribution μ_{src} onto the target distribution
 1068 μ_{tgt} by minimizing the Wasserstein-2 distance. This process essentially “registers” the two manifolds,
 1069 aligning their statistical moments and geometric structure. By enforcing this alignment, we ensure
 1070 that the interpolated latent codes z_α remain within the valid density region of the target decoder,
 1071 thereby preserving functional competence across architectural boundaries.

1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

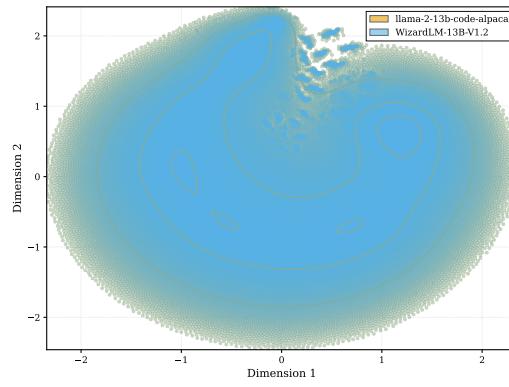
1094

1095

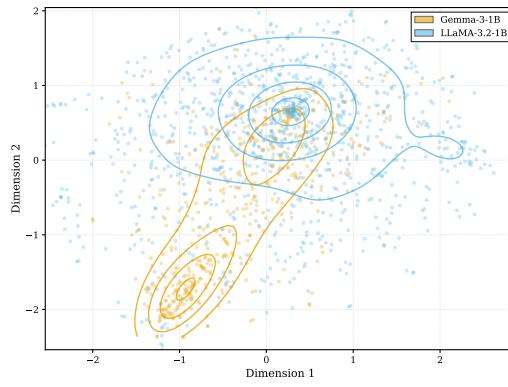
1096

1097

1098



1110 (a) Same-Architecture Fine-tuning Variants: LLaMA-
 1111 2-13B Code-Alpaca vs WizardLM-13B-V1.2.
 1112



1110 (b) Cross-Architecture Comparison: Gemma-3-1B vs
 1111 LLaMA-3.2-1B.
 1112

1113 **Figure 9: VAE latent space reveals architectural signatures in weight distributions.** t-SNE
 1114 projections of encoded k-proj weights show (a) fine-tuned variants of the same base model (LLaMA-
 1115 2-13B) remain indistinguishable while (b) distinct clusters for different architectures (Gemma vs
 1116 LLaMA) , suggesting the learned latent space captures intrinsic architectural properties.
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133