
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LS-MERGE: MERGING LANGUAGE MODELS IN
LATENT SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Model merging in weight space is an efficient way to reuse pretrained models,
but existing methods typically assume matching architectures or sizes, making
heterogeneous merges brittle or infeasible. We address this limitation by encoding
model weights into a smooth latent space, enabling cross-architecture operations,
and performing the merge in the latent space before decoding back to weights. This
approach faces two major challenges. First, LLMs contain billions of parameters,
which makes latent encoding computationally demanding. Second, using high com-
pression ratios often hinders the encoder’s ability to generalize to unseen weights.
We tackle these issues with a transformer-based variational autoencoder (VAE)
trained in a two-stage compression curriculum with structured layer-aware chunk-
ing: the model first learns a high-capacity latent representation and then distills to
a compact code, improving both stability and out-of-distribution generalization. To
align heterogeneous models, we introduce a dimensionality-matching projection
that allows interpolation between models of different sizes. Empirically, latent-
space interpolation is consistently more robust than direct weight-space averaging
and yields stronger downstream performance when merging models of different
sizes. Together, these components provide a scalable, architecture-agnostic recipe
for model merging.

1 INTRODUCTION

Large Language Models (LLMs) are foundational to modern artificial intelligence. However, their
pretraining demands millions of GPU-hours, leading to a significant inefficiency if the acquired
knowledge remains confined to a single model instance. To mitigate this cost and enhance utility,
weight-space model merging has emerged as a promising approach. This technique combines
parameters from multiple pretrained models to integrate complementary capabilities and improve
performance on diverse tasks, all without additional pretraining (Yang et al., 2024).

Existing merging methodologies range from straightforward linear interpolation (Wortsman et al.,
2022) to sophisticated evolutionary search-based fusion (Akiba et al., 2025), consistently demonstrat-
ing practical benefits at scale. Despite these advancements, current techniques typically face two
significant limitations: (i) Requirement for multiple source models: Most approaches necessitate
at least two distinct pretrained models for merging, which restricts their application when the goal
is to enhance or adapt a single existing model. (ii) Architectural homogeneity: Merging methods
frequently assume shape-compatible or architecturally homogeneous models, hindering their use
with mismatched architectures (e.g., varying widths or depths) (Yu et al., 2024a). These constraints
significantly limit the broad applicability of merging across diverse LLM checkpoints as well as
self-merging. Addressing these constraints is crucial for unlocking the full potential of pretrained
LLM checkpoints and fostering a more flexible and efficient paradigm for model reuse.

Recent advancements in weight-space learning (Sch”urholt et al., 2024) offer a compelling opportunity
to overcome the aforementioned limitations in LLM merging. These approaches operate directly
on pretrained model weights as the input data modality. By projecting parameters from diverse
models into a smooth, unified latent space of consistent dimensionality, we can inherently mitigate
the challenge of architectural mismatch. Specifically, these parameter signals can be embedded
into identical-dimensionality representations using powerful generative models such as Variational
Autoencoders (VAEs) (Kingma & Welling, 2013), normalizing flows (Kobyzev et al., 2021), or

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: LS-Merge: encode, align, and decode for LLM weight merging. (a) Pretrained weight
tensors x1 and x2 are chunked layer-wise and encoded by E1, E2 into latents z1, z2; decoders D1, D2

reconstruct x̃1, x̃2. (b) A latent-space alignment places z1 and z2 in a shared manifold where they
are merged(linear interpolation) yielding a merged latent zα, supporting both homogeneous (same-
architecture(same encoding model) and heterogeneous (cross-architecture) merges. (c) A target
decoder (e.g., D1) maps zα back to weights x̃α, producing the merged model. Here, xi denotes the
full weight set of model i, zi its latent code, and tildes indicate reconstructions.

diffusion models (Wang et al., 2025). While these innovative latent-space methods have demonstrated
considerable success in vision and other domains, their application to the encoding and subsequent
merging of pretrained LLM weights remains a largely unexplored frontier.

We propose LS-Merge, a novel framework that fundamentally shifts the merging process from
the raw weight space to a learned latent space. This paradigm enables both homogeneous and
heterogeneous merging by design: (i) Enabling single-model augmentation: A generative model
can learn the latent manifold of a single LLM parameters, facilitating ”merging” operations within
this latent space. This allows for the exploration of variations, specializations, or the enhancement
of capabilities derived solely from the original model, obviating the need for an external second
model. (ii) Facilitating heterogeneous integration: By projecting diverse LLM architectures into
a common, fixed-dimensional latent space, the stringent constraints of architectural homogeneity
are significantly relaxed. Merging operations then occur within this unified latent representation,
enabling the seamless integration of knowledge from models with differing widths, depths, or even
fundamental architectural designs, as our method operates solely on the tensor data within the latent
space. In summary, LS-Merge advances LLM merging through the following key contributions:

• Weight statistics that matter for encoding. We show that LLM weights exhibit low
variance with heavy tails, that could significantly affect the choice of encoding network.

• Merging LLMs in latent space. We propose LS-Merge, a novel latent-space merging
methodology that enables merging LLMs in their weights latent space.

• Heterogeneous merging. We introduce a dimensionality-matching projection and OT-based
latent alignment that enables interpolation between models of different depths or widths.

• Consistent empirical gains. On Gemma and LLaMA pretrained models and LoRA-experts
merging, our latent space merging method outperforms existing merging methods and
remains robust under heterogeneity.

2 RELATED WORK

Model averaging The simplest merging approach directly averages weights. Model Soup (Wortsman
et al., 2022) showed that averaging fine-tuned checkpoints from the same initialization improves

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

generalization. Extensions include Uniform Soup (Wortsman et al., 2022) for LoRA weights and
spherical linear interpolation (SLERP), which interpolates on the unit hypersphere but remains a
pairwise-only method that merges only two models at a time and requires identical architectures.

Interference-aware techniques Merging models from different tasks can cause misalignment. Yadav
et al. (2023) uses trimming and sign alignment, Yu et al. (2024a) sparsifies and rescales fine-tuned
deltas, and Yu et al. (2024b) combine both. Greedy Soup (Wortsman et al., 2022) and EvolMerge (Ak-
iba et al., 2025) treat merging as an optimization problem, while Task Arithmetic (Ilharco et al.,
2023) models task vectors in parameter space. These methods require aligned architectures and incur
computational cost.

Modular assembly Instead of merging weights, some approaches combine modules or experts.
Model Stocks (Jang et al., 2024) and LoraHub (Huang et al., 2023) aligns LoRA adapters, Pack of
LLMs (Mavromatis et al., 2024) learns expert routing, and cBTM (Gururangan et al., 2023) merges
task-specific experts via unsupervised domain discovery. Modular systems are flexible but increase
inference cost and do not unify knowledge into a single parameter set.

All prior methods operate in weight or module space and assume architectural alignment. In contrast,
we propose latent-space model merging, which generalizes beyond these constraints.

3 LS MERGE

We present LS-Merge, a framework for performing model merging in latent space. As illustrated
in Figure 1, we encode pretrained LLM weights, operate on their latent representations (including
alignment when heterogeneous), and decode back to parameters to obtain the merged model.

3.1 EXPLORING WEIGHT DYNAMICS IN LLMS

To motivate our design, we analyze the distributional properties of transformer submodules in Gemma-
3 (Team et al., 2025) and LLaMA-3.2 (Grattafiori et al., 2024). We compute the first four moments
(mean, variance, skewness, and kurtosis) for self-attention layers (q proj, k proj, and o proj) and MLP
layers (up proj, down proj, and gate proj). Table 1 reports the statics stands for per moment with
full details in appendix Table 9. Weights exhibit near-zero means, low variances, and small positive
skewness, but markedly high kurtosis in earlier layers, especially in self-attention projections. High
kurtosis, i.e., leptokurtic distributions, indicates sharp peaks with heavy tails: rare, large-magnitude
parameters that are likely functionally important. This contradicts Gaussian assumptions used in prior
work (Si et al., 2025) and suggests that encoders must preserve tail events rather than over-regularize
toward a narrow Gaussian. We observe this pattern consistently across sizes within both families.

Theoretical Compressibility of LLM Weights As the LLM weights distribution shows heavy
tails and low intrinsic variance, we investigate whether a simple VAE can compress LLM weights
effectively. Let W ∈ Rn×m be a layer matrix and let w = vecrow(W) ∈ RD denote the row-wise
concatenation (flattening) of W with D = nm. Empirically (Fig. 2), the top r ≪ min(n,m)

principal components capture nearly all variance, i.e.,
∑r

i=1 λi/
∑D

i=1 λi ≈ 1, where {λi} are
the eigenvalues of the empirical covariance of w (equivalently, proportional to squared singular
values of W). By Eckart–Young theorem (Eckart & Young, 1936), the best rank-r approximation
Wr satisfies ∥W − Wr∥2F =

∑
i>r λi and can be stored with O(r(n + m)) parameters (e.g.,

Ur ∈ Rn×r, Vr ∈ Rm×r). Thus, weights concentrate near a low-dimensional set. Assuming the
collection of flattened weightsW ⊂ RD concentrates near a smooth d-dimensional manifoldM with
d≪ D, manifold embedding results (Bengio et al., 2012; Lahiri et al., 2016) imply the existence of
Φ : RD → Rk with k = O

(
d
ε2 log

V
τ

)
≪ D that preserves pairwise distances onM within (1± ε),

where V bounds manifold volume and τ its reach. This confirms that there exists a projection map to
a lower dimension which can be approximated by an encoder A VAE encoder fθ : RD → Rk with
decoder gϕ : Rk → RD can approximate such compressive embeddings while modeling uncertainty,
justifying our latent compression.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

layers llama3-2-3b-it gemma-3-1b-it gemma-3-4b-it
mean var. skew kurt. mean var. skew kurt. mean var. skew kurt.

self attn

0 0.0017 0.0192 8.4032 0.0002 0.0031 0.0500 15.0505 0 0.0015 0.0501 15.2010
0 0.0013 0.0191 7.3438 0.0002 0.0030 0.0450 9.8347 0 0.0015 0.0267 7.3832
0 0.0012 0.0178 6.2172 0.0001 0.0030 0.0389 9.0363 0 0.0014 0.0255 7.2277
0 0.0011 0.0104 5.4477 0.0001 0.0030 0.0288 8.6496 0 0.0014 0.0172 6.0731

avg (self attn) 0 0.0005 -0.0002 1.4342 0 0.0012 -0.0009 3.2858 0 0.0005 0.0009 2.6900

mlp

0 0.0005 0.0093 5.4740 0.0002 0.0010 0.0167 8.7665 0 0.0004 0.0266 6.3297
0 0.0005 0.0080 4.1465 0.0002 0.0010 0.0090 3.1514 0 0.0004 0.0155 5.9670
0 0.0004 0.0075 2.6694 0.0002 0.0010 0.0077 3.0577 0 0.0004 0.0130 2.7454
0 0.0004 0.0074 2.4364 0.0002 0.0010 0.0071 3.0113 0 0.0004 0.0094 2.4371

avg (mlp) 0 0.0003 0.0003 0.8435 0 0.0006 0 1.1739 0 0.0003 0.0006 1.0807

Table 1: Layer-wise distribution statistics of model parameters for three instruction-tuned LLMs:
llama3-2-3b-it, gemma-3-1b-it, and gemma-3-4b-it. For each model and block type (self attn
and mlp), we report the first four moments of the flattened weight tensors: mean, variance, skewness,
and excess kurtosis. Per-row entries list representative layers in each block; the avg row aggregates
across all layers for that block and model. Means are near zero and variances are small, while
skewness and especially kurtosis (often > 5 and up to ∼ 15) indicate pronounced heavy tails and
asymmetry. These non-Gaussian, heavy-tailed statistics motivate encoders that preserve rare but
high-magnitude outliers.

1 2 3 4 5 6 7 8 9 10
Principal Component

0.02

0.04

0.06

0.08

0.10

0.12

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

(a) Llama3-2-3b-it layer 0 k proj

1 2 3 4 5 6 7 8 9 10
Principal Component

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

(b) Gemma-3-1b-it layer 0 k proj

1 2 3 4 5 6 7 8 9 10
Principal Component

0.005

0.010

0.015

0.020

0.025

0.030

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

(c) Gemma-3-4b-it layer 0 k proj

Figure 2: Plots of the PCA explained-variance ratio for first k projection weight matrices per model
from three LLM checkpoints: Llama-3-2-3b-it, Gemma-3-1b-it, and Gemma-3-4b-it. Additional
results are reported in the appendix A. For each model, we show the four projection matrices of
self-attention (q, k, v, o). The sharp drop after the leading principal components highlights a low-rank
structure that is consistent across architectures and model sizes.

3.2 LLM WEIGHTS PREPROCESSING AND ENCODING

We first standardize pretrained LLM weights of varying shapes and store the normalized tensors
offline. We then learn a compact latent representation with a transformer-based VAE, chosen for its
strong generalization to unseen checkpoints and faster training than convolutional alternatives at a
comparable parameter count.

Preprocessing as a Sequence For each layer, we flatten its weight tensor to w ∈ RL, then zero-
pad to Lp = ⌈L/c⌉ c and partition into n = Lp/c non-overlapping chunks {ci}ni=1 of size c. A
batch becomes X ∈ RB×n×c. Each chunk is embedded to Xemb ∈ RB×n×d and passed through a
transformer encoder Eθ with optional token downsampling. The latent is

z = Eθ(Xemb) ∈
{
RB×zd (pooled over tokens)
RB×n×zd (token-wise)

The decoder Dϕ is trained to reconstruct chunked weights from the latent z. We optimize the β-VAE
objective in eq. 1

L = −Eqϕ(z |w)

[
log pθ(w | z)

]
+ βKL(qϕ(z |w) ∥ p(z)) , (1)

with p(z) standard Gaussian and fixed β.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Stabilizing Training on Heavy-Tailed Weights Since LLM weights distribution has low variance
and heavy tails (Section 3.1; Appendix 5), training VAEs on these weights can lead to collapse in the
early training stage. We use (i) transformer blocks (Vaswani et al., 2017) in Eθ, Dϕ for long-range
coupling across chunks and (ii) a two-stage curriculum: first train a deterministic autoencoder (KL
off) to convergence, then enable the KL term and fine-tune to structure the latent space without
sacrificing fidelity. The VAE performance is measured by the performance of the reconstructed
weights when used to initialize the corresponding architectures.

3.3 LATENT SPACE ALIGNMENT AND MERGING

Self-Merging and Homogeneous Merging Self-merging encodes a single model and draws
multiple latent codes from its posterior (or the prior) to combine them, which is equivalent
to merging homogeneous models whose per-layer embeddings share the same dimensionality.
To be specific, for two checkpoints with weights Wa,Wb ∈ RN , we encode za = E(Wa)
and zb = E(Wb), and linearly interpolate them as zλ = (1 − λ)za + λzb for λ ∈ [0, 1].
We obtain the weights by decoding the interpolated latent Ŵλ = D(zλ). Empirically, latent-
domain interpolation better preserves functional coherence than direct weight-space mixing,
and common merge operators, for example, model soup or task arithmetic (Wortsman et al.,
2022; Ilharco et al., 2023), transfer naturally by applying them to {za, zb} before decoding.

Source
Target
Merged

Figure 3: Visualization of embeddings of
Gemma models and OT-aligned latents.
The merged latent is partially overlapped
with the target latent.

Heterogeneous Mapping (depth/width mismatch)
When two architectures match, layer by layer, in the num-
ber of weight chunks, we employ a single VAE to embed
all layers into a common d-dimensional latent space. If
the per-layer number and chunk counts differ, we instead
deploy separate encoders for each architecture. Let the
source have ns layers with size M , and the target nt lay-
ers with size N . We embed per-layer latents to a fixed
dimension d and rescale the source so that total capacity
matches the target:

r =
nt N

ns M
, Z (src, mapped) ∈ Rnt×d, Z (tgt) ∈ Rnt×d.

This proportional alignment across depth and width stan-
dardizes each architecture to a common per-layer latent
dimensionality, enabling interpolation and the use of standard merge operators. However, when VAEs
are trained separately per architecture (or under different training regimes), their latent distributions
can differ, so equal shape does not guarantee comparability.

Optimal Transport Alignment. While latent encoding standardizes per-layer dimensionality,
it does not guarantee that two models’ latent representations are geometrically compatible. As
shown in Appendix C (Figure 9a), homogeneous models (e.g., checkpoints from the same pre-
training run) exhibit overlapping latent support and often satisfy Linear Mode Connectivity, making
linear interpolation well-behaved. In contrast, heterogeneous models such as Gemma and Llama
produce latent distributions Zsrc, Ztgt that lie on disjoint manifolds with different covariance
structures and density profiles (Figure. 9b). Interpolating between such misaligned latents could
produce low performing weights that fall outside the target decoder’s valid manifold and degrade
functionality(performance on down stream tasks). To address this, we treat heterogeneous merging as
a manifold registration problem and align the source latent distribution to the target using Optimal
Transport (OT) (Villani, 2009; Santambrogio, 2015). OT provides a principled framework for finding
a map T : Zsrc → Ztgt that minimizes geometric distortion while reshaping one distribution into the
other. Formally, we solve the Monge problem under the 2-Wasserstein distance 2:

T ∗ = argmin
T

∫
∥z − T (z)∥22 dµsrc(z) s.t. T#µsrc = µtgt, (2)

where T#µsrc denotes the pushforward measure induced by T . This ensures that applying T ∗ to
source latents produces samples distributed as the target. While the general Monge problem is

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Heterogeneous LLM Parameter Merging in Latent Space

Require: Source weights Wsrc, target weights Wtgt, encoder–decoder (E,D)
Ensure: Merged weights Wmerged

1: Extract per-layer groups Lsrc, Ltgt; set N ← min(|Lsrc|, |Ltgt|) and define pairs (l(j)src , l
(j)
tgt)

N
j=1

2: for j = 1 to N do
3: Flatten & chunk w

(j)
src , w

(j)
tgt ; encode z

(j)
src ←E(w

(j)
src), z

(j)
tgt ←E(w

(j)
tgt)

4: Proportional mapping to fixed d: obtain Z
(j)
src , Z

(j)
tgt ∈ Rnt×d

5: OT alignment: Z̃(j)
src ← OT-ALIGN

(
Z

(j)
src , Z

(j)
tgt

)
(solve equation ??)

6: Interpolate latents: Z(j)
λ ← (1− λ)Z

(j)
tgt + λ Z̃

(j)
src

7: Decode & assemble: w(j)
merged ← D

(
Z

(j)
λ

)
; place into Wmerged

8: end for
9: return Wmerged

computationally intensive, can approximate each layer’s latent distribution as a high-dimensional
Gaussian defined by its empirical mean µs and covariance Σs. Under this assumption (?), the optimal
transport map admits a closed-form affine solution: z̃src = T ∗(zsrc) = µt + A (zsrc − µs) , where

A = Σ
−1/2
s

(
Σ

1/2
s Σt Σ

1/2
s

)1/2

Σ
−1/2
s . This transformation aligns both the mean and covariance of

the source latents to the target, effectively registering the two manifolds and removing the geometric
mismatch. In practice, we use existing OT library from Flamary et al. (2021; 2024) in our work.

After alignment, the transported latents Z̃src and the target latents Ztgt share a common support, and
we perform interpolation in this aligned space: ZOT

λ = (1− λ)Ztgt + λ Z̃src. Because ZOT
λ now lies

within the target decoder’s valid density region (Agustsson et al., 2019), the decoded weights remain
stable and functional, enabling robust cross-architecture merging even between disparate model
families. The overall process for heterogeneous LLMs merging is summarized in algorithm 2.

4 EXPERIMENTS

General Setup We evaluate latent–space merging on Gemma-3-1B-it, Gemma-3-4B-it,
Llama-3-1B-instruct, Llama-2-7b, and benchmark latent–space expert fusion against
weight–space merging using 10 LoRA experts on Gemma-7B-it.

Datasets and Tasks We first use subset dataset used by Feng et al. (2024b), such as language under-
standing (MMLU (Hendrycks et al., 2021), MMLU-pro (Wang et al., 2024b)), commonsense reason-
ing (HellaSwag (Zellers et al., 2019)), math (GSM8k (Cobbe et al., 2021)), and knowledge-intensive
tasks (Knowledge Crosswords (Ding et al., 2024), NLGraph (Wang et al., 2024a), TruthfulQA (Lin
et al., 2022), AbstainQA (Feng et al., 2024a)).

Training data consist of pretrained weight snapshots for Gemma-3-1B-it and Gemma-3-4B-it,
plus LoRA experts from Feng et al. (2024b).

Baselines We compare against reference-free weight–space methods: spherical linear interpolation
(SLERP), uniform soup (Wortsman et al., 2022), greedy soup (Wortsman et al., 2022), data-level
merging, the raw pretrained checkpoints, and the best single expert per task. This excludes approaches
that require access to an unmodified base reference model.

Evaluation Protocols We evaluate compression and merging in four scenarios:

1. Self-Merging: sample multiple codes from one model’s latent distribution and merge them.

2. Expert Merging: merge LoRA experts in latent space vs. weight space.

3. Cross-Architecture Merging: align and merge models with various depths and widths.

4. Ablation study: reconstruction or compression behavior and generalization to unseen
checkpoints.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

MMLU MMLU-pro HellaSwag Gsm8k
Gemma-3-4b-it 53.10 20.90 47.40 29.90
VAE 54.10 ± 0.36 20.80 ± 0.20 49.03 ± 0.70 31.27 ± 0.55
LS-Merge 54.20 ± 0.00 21.02 ± 0.03 50.10 ± 0.00 32.20 ± 0.05
Gemma-3-1b-it 32.20 7.10 28.70 16.90
VAE 32.60 ± 0.26 7.60 ± 0.56 28.57 ± 0.12 16.77 ± 0.12
LS-Merge 35.13 ± 0.02 10.30 ± 0.20 31.16 ± 0.14 17.50 ± 0.01

Table 2: Benchmark scores for pretrained model, VAE, and LS-Merge.

MMLU MMLU-pro HellaSwag Gsm8k TruthfulQA NLGraph K-Crossword AbstainQA

Best expert 45.7 14.3 46.6 26.1 32.4 51.7 32.7 -10.8
Base model 48.8 18.1 53.3 6.9 30.1 47.5 28.0 -0.9
Data Merge* 44.5 17.6 52.7 14.3 10.7 42.3 37.0 -2.5
Uniform Soup 49.7 19.4 54.0 7.9 31.2 47.5 29.6 -0.1
SLERP(t=0.45) 52.5 18.8 50.4 25.5 28.7 49.8 30.0 -0.2
Greedy Soup 50.8 22.1 54.6 23.9 31.9 52.9 28.0 3.3
Dare-Ties 49.1 18.8 53.7 7.3 28.2 52.8 29.0 1.4

LS-Merge(lerp) 54.7 21.6 58.1 28.1 33.0 53.1 35.6 2.0
LS-Merge(soup) 56.0 22.2 60.1 24.2 32.0 56.1 35.2 4.0

Table 3: Results on merging expert LoRA weights in the raw weight space and the latent space.

Weight-Encoding Models We evaluated a Transformer-VAE and a ConvNet-VAE (Soro et al., 2025).
We used AdamW (lr = 1e−4, weight decay = 1e−5) with a cosine-to-zero schedule. The checkpoints
are from Hugging Face, and further details are given in the supplement. The learning rate was chosen
on the basis of hyperparameter tuning.

4.1 SELF-MERGING FOR ENHANCED PERFORMANCE

We investigated a self-merging technique designed to enhance a single model’s performance by
exploring its learned latent distribution. The process involves encoding a model, sampling multiple
latent codes from its posterior distribution, merging these codes into a single representation, and
decoding it back into the parameter space. For this experiment, we used a single Transformer-VAE
with six encoder and decoder blocks, trained jointly on weights from both Gemma-3-1B-it and
Gemma-3-4B-it with the compression ratio held constant at 2. As shown in Table 2, this approach
yields an average performance improvement of ≈ 4% over two key baselines: the original base
model and a standard VAE reconstruction from a single latent sample. Notably, the gains are more
pronounced on the smaller model, consistent with it having tighter capacity constraints.

4.2 MERGING LLM EXPERTS IN LATENT SPACE

Next, we evaluated the primary application of our work: combining specialized LoRA experts. We
compared our latent space approach against traditional weight-space interpolation methods using the
experts from Feng et al. (2024b). In our method, each expert is encoded, their latent representations
are merged, and then the resulting latent vector will be decoded into a single fused model. As shown
in Table 3, our latent-space fusion consistently outperforms all weight-space baselines, including both
linear and SLERP interpolation across uniform and greedy soup. We found this advantage stems from
increased robustness. For example, greedy soup is highly sensitive to initialization, the checkpoint
with the best validation accuracy often fails to yield the best test performance. By sampling multiple
latent codes for each expert before merging, our method explores the learned parameter distribution
instead of relying on a single point estimate, creating more robust and effective combinations.

4.3 COMPARISON TO REPRESENTATION-MERGING METHODS

To assess the robustness of our latent space approach, we benchmark it against leading representation-
merging methods: Task Arithmetic (Ilharco et al., 2023) and Activation-Informed Merging (AIM) (No-
bari et al., 2025), which operate on model activations rather than parameters. contrairily to the
previous experiments, in this setting we use lm-eval tool (Gao et al., 2024) for fair comparison with
the baselines. For this comparison, we merged Llama-2-13B models fine-tuned on distinct do-
mains, utilizing a single VAE trained on the combined weights of all constituent models. The results

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method MMLU IFEval MBPP HumanEval GSM8k
base 52.18 25.10 27.80 17.07 4.20
code 52.91 26.25 31.60 17.07 24.10
instruct 53.41 35.67 34.80 26.83 43.40
code + instruct (Task Arithmetic) 52.18 25.10 34.40 26.83 4.20
code + instruct (AIM) 54.18 32.00 36.00 29.27 46.20
code + instruct (LS-merge) 55.07 36.41 36.02 28.14 44.12

Table 4: Comparison of our latent space merging (LS-merge) with Task Arithmetic and AIM on
Llama-2-13B fine-tuned models.

val test val(pro) test(pro)0
5

10
15
20
25
30
35
40

Ac
cu

ra
cy

Base-model
Mixed-latent

(a) Heterogeneous latent space merging.

ValAvg TestAvg Val(0.5) Test(0.5) Val(0.1) Test(0.1)0
5

10
15
20
25
30
35
40

Ac
cu

ra
cy

No-OPT
With-OPT

(b) Varying coefficient on MMLU.

Figure 4: (a) Accuracy gains obtained by latent space merging of Gemma-3-4B-it with
Gemma-3-1B-it. Bars show performance on the validation (val) and test splits of the MMLU and
MMLU-PRO benchmarks (b) Impact of the merging coefficient t on validation and test accuracy in
latent-space merging.

presented in Table 4 demonstrate that our method is highly competitive. It achieves performance
comparable to the state-of-the-art AIM and substantially outperforms Task Arithmetic. This finding is
significant, as it shows that a latent weight-space approach can match the performance of prominent
methods that require access to model activations.

4.4 CROSS-ARCHITECTURE MERGING

Our latent-space approach supports merging across substantial architectural gaps. We study two
settings: (i) intra-family (different sizes within Gemma) and (ii) cross-family (Gemma↔ LLaMA).

Intra-family (Gemma-3-4B-it→ Gemma-3-1B-it). Direct latent interpolation between indepen-
dently trained models is unstable (Fig. 4b). Aligning the larger model’s latents to the smaller model’s
distribution before interpolation yields consistent gains across the mixing range. As shown in
Fig. 4a, small injections from the source (λ ∈ [0.05, 0.20]) deliver the best improvements over the
Gemma-3-1B-it baseline.

Cross-family (LLaMA-3.2-1B-instruct→Gemma-3-1B-it). Family-level transfer is more challeng-
ing: baseline parameter/latent mixing without alignment degrades performance. Table 5 shows that
distributionally aligned latent merging recovers and surpasses these baselines, a modest interpolation
weight (λ = 0.1) achieves the best overall scores. The evaluation for cross family evaluation is
performed using lm-eval for simplicity and also due to some issues with llama model when using the
previous evaluation code.

Takeaway. Matching latent dimensionality is insufficient for heterogeneous merges, aligning latent
distributions is crucial. Once aligned, a single knob λ reliably controls how much capacity is injected
from the source into the target.

5 ABLATION STUDIES

To better understand the properties of our method, we conduct two targeted ablation studies. In this
section we use lm-eval for evaluation unless stated.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Strategy WinoGrande ARC-C HellaSwag

Base 56.83 42.78 49.07
OT only 51.13 34.25 48.50
OT + interp. 57.75 43.34 50.10

Table 5: Downstream accuracy on WinoGrande,
ARC-Challenge, and HellaSwag for different align-
ment strategies with λ = 0.1.

Strategy WinoGrande ARC-C MMLU
Base 56.83 42.78 40.76
MLP 56.84 43.89 41.02
Attention 56.67 40.23 39.80
Attention + MLP 57.75 43.34 42.10

Table 6: Ablation: Merging subsets of layers.
MLP-only outperforms on ARC-C, combining
MLP and Attention achieves the best results.

Model Winogrande (5-shot) ARC-Challenge (25-shot) HellaSwag (10-shot) MMLU (5-shot)

Gemma-3-1B-it (base) 56.83 42.78 49.07 40.76
LLaMA-3.2-1B-it (base) 61.56 41.11 61.62 46.55

Gemma-3-1B-it (VAE, r = 1.6) 56.67 42.83 47.31 39.98
LLaMA-3.2-1B-it (VAE, r = 1.6) 61.25 41.47 60.80 46.06
Gemma-3-1B-it (VAE, r = 2) 56.67 38.23 38.88 32.22
LLaMA-3.2-1B-it (VAE, r = 2) 59.43 37.12 55.99 39.73
Gemma-3-1B-it (VAE, r = 4) 46.49 28.24 25.66 25.02
LLaMA-3.2-1B-it (VAE, r = 4) 49.20 26.28 25.70 26.76

Table 7: Accuracy of VAE models (trained on Gemma-3-4B-it) when evaluated on
Gemma-3-1B-it and LLaMA-3.2-1B-it. Performance remains stable for r = 1.6, but de-
teriorates as the compression factor increases.

5.1 COMPONENT CONTRIBUTIONS IN LATENT MERGING

We first analyze how different submodules contribute to the merged model’s performance by merging
MLP layers only, self-attention layers only, or both jointly. The results in Table 6 show that merging
MLP layers alone provides modest gains, while merging attention layers alone degrades performance.
Optimal results are achieved by merging both, indicating that MLP and self-attention parameters
encode complementary functional knowledge, and that altering one without the other can disrupt
learned co-adaptations.

5.2 VAE GENERALIZATION AND THE COMPRESSION TRADE-OFF

Next, we assess the VAE’s zero-shot generalization by training it on Gemma-3-4B-it and
evaluating it on two unseen models: an in-family Gemma-3-1B-it and an out-of-family
LLaMA-3.2-1B-it. Table 7 reveals a clear trade-off between compression and generalization. At
a low compression ratio (r = 1.6), the VAE maintains strong performance on both unseen models.
However, performance degrades substantially at higher ratios (r = 2, 4). This suggests that while
the VAE learns transferable representations of weight structures, higher compression ratios lead to
posterior collapse due to the fact most of the data sample are cluster aroung zero.

5.3 LINEAR SUBSPACE VS. NON-LINEAR MANIFOLD LEARNING

In this section we investigate the use of incremental PCA for weights encoding on gemma-3-1 b-it
compare to VAE based en coding. Although Section 3.1 showed that LLM weight matrices exhibit
low-rank structure, this does not imply that the space of functional parameters forms a linear subspace.
To assess whether linear methods are sufficient, we compare our non-linear Transformer-VAE against
PCA across compression ratios r ∈ {1.6, 2.0, 4.0} (Table 8).

PCA collapses functional performance. Across all ratios, PCA-reconstructed models regress to
near-random accuracy on MMLU (≈25.5% at r = 1.6) and exhibit a global drop across benchmarks
(e.g., ARC-C: 42.41%→ 27.65%). Notably, performance is equally poor at r = 1.6 and r = 4.0,
indicating that the failure is not due to insufficient latent capacity but to a structural mismatch: the set
of valid pretrained weights does not reside in a linear subspace.

VAE preserves the functional manifold. In contrast, the LS-Merge VAE retains near-original
accuracy at all compression levels. At r = 1.6, it recovers 96% of the base model’s MMLU
performance (39.89% vs. 41.44%) and even improves Winogrande (56.64% vs. 55.41%). Remarkably,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 8: Functional Reconstruction Fidelity vs. Compression Ratio. Zero-shot accuracy comparison
on standard benchmarks (MMLU, HellaSwag, Winogrande, ARC-C) for Gemma-3-1B-it. We
compare our non-linear Transformer-VAE (LS-Merge) against a linear PCA baseline at compression
ratios r ∈ {1.6, 2, 4}. While the VAE maintains strong performance at r = 1.6 and r = 2,
linear compression suffers significantly as the bottleneck tightens, validating the need for non-linear
manifold learning.

Method Ratio (r) MMLU HellaSwag Winogrande ARC-C

Gemma-3–1b-it) 1.0× 41.44 ± 0.00 49.05 ± 0.01 55.41 ± 0.03 42.41 ± 0.02

PCA (Linear) 1.6× 25.50 ± 0.37 25.56 ± 0.04 50.12 ± 0.01 27.65 ± 0.01
LS-Merge VAE 1.6× 39.89 ± 0.01 48.57 ± 0.25 56.64 ± 0.15 41.64 ± 0.01

PCA (Linear) 2.0× 24.12 ± 0.00 25.27 ± 0.12 46.27 ± 0.01 26.24 ± 0.32
LS-Merge VAE 2.0× 39.80 ± 0.00 49.29 ± 0.10 54.14 ± 1.02 42.32 ± 0.21

PCA (Linear) 4.0× 24.13 ± 0.15 24.79 ± 0.23 49.57 ± 0.01 25.89 ± 0.23
LS-Merge VAE 4.0× 39.83 ± 0.00 49.30 ± 0.21 56.06 ± 0.15 42.75 ± 0.20

VAE reconstructions remain stable at r = 4.0, whereas PCA has already collapsed at r = 1.6. This
indicates that pretrained weights lie on a non-linear manifold that requires expressive encoders and
decoders to model its curvature. Linear projections such as PCA cannot preserve the structure of the
pretrained weight manifold and produce functionally invalid models even under mild compression.
The VAE’s non-linear latent geometry is therefore not a stylistic preference but a geometric necessity
for faithful reconstruction, compression, and downstream operations such as interpolation and
merging.

6 DISCUSSION

Limitations Despite its strong performance, our approach has limitations. The training of the
weight-encoding VAE is computationally non-trivial when for higher compression ratios and can be
sensitive to hyperparameters, especially given the heavy-tailed nature of LLM weight distributions.

Future Work This work opens several avenues for future research. One direction is to explore
more efficient or powerful generative models for weight encoding, such as extending latent-space
merging to encompass more than two models via barycentric interpolation in the aligned latent space
could unlock more complex model compositions.

7 CONCLUSION

In this work, we introduced LS-Merge, a novel framework that reimagines model merging by
operating in a learned latent space of model parameters. By mapping weights to a continuous
manifold and critically employing OT for principled alignment, our method successfully merges
models with heterogeneous architectures, overcoming a fundamental limitation of prior weight-space
techniques. Our comprehensive experiments demonstrate that this approach not only excels at
standard expert fusion but also enables robust cross-scale and cross-family model merging for the first
time. LS-Merge establishes a scalable and architecture-agnostic paradigm for model composition,
paving the way for more flexible and efficient reuse of pre-trained models.

REPRODUCIBILITY STATEMENT

To ensure reliable and reproducible results, we have provided detailed experiment settings in the
Appendix. We plan to open-source our implementation.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Eirikur Agustsson, Alexander Sage, Radu Timofte, and Luc Van Gool. Optimal transport maps
for distribution preserving operations on latent spaces of generative models. In International
Conference on Learning Representations, 2019.

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization
of model merging recipes. Nature Machine Intelligence, 7(2):195–204, January 2025. ISSN
2522-5839. doi: 10.1038/s42256-024-00975-8. URL http://dx.doi.org/10.1038/
s42256-024-00975-8.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35:1798–1828,
2012.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Wenxuan Ding, Shangbin Feng, Yuhan Liu, Zhaoxuan Tan, Vidhisha Balachandran, Tianxing He,
and Yulia Tsvetkov. Knowledge crosswords: Geometric knowledge reasoning with large language
models, 2024. URL https://arxiv.org/abs/2310.01290.

Carl Eckart and G. Marion Young. The approximation of one matrix by another of lower rank.
Psychometrika, 1:211–218, 1936.

Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Vidhisha Balachandran, and Yulia Tsvetkov.
Don’t hallucinate, abstain: Identifying LLM knowledge gaps via multi-LLM collaboration. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), August 2024a.

Shangbin Feng, Zifeng Wang, Yike Wang, Sayna Ebrahimi, Hamid Palangi, Lesly Miculicich, Achin
Kulshrestha, Nathalie Rauschmayr, Yejin Choi, Yulia Tsvetkov, Chen-Yu Lee, and Tomas Pfister.
Model swarms: Collaborative search to adapt llm experts via swarm intelligence, 2024b. URL
https://arxiv.org/abs/2410.11163.

Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z. Alaya, Aurélie Boisbunon, Stanislas
Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, Léo Gautheron,
Nathalie T.H. Gayraud, Hicham Janati, Alain Rakotomamonjy, Ievgen Redko, Antoine Rolet,
Antony Schutz, Vivien Seguy, Danica J. Sutherland, Romain Tavenard, Alexander Tong, and
Titouan Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1–8,
2021. URL http://jmlr.org/papers/v22/20-451.html.

Rémi Flamary, Cédric Vincent-Cuaz, Nicolas Courty, Alexandre Gramfort, Oleksii Kachaiev, Huy
Quang Tran, Laurène David, Clément Bonet, Nathan Cassereau, Théo Gnassounou, Eloi Tanguy,
Julie Delon, Antoine Collas, Sonia Mazelet, Laetitia Chapel, Tanguy Kerdoncuff, Xizheng Yu,
Matthew Feickert, Paul Krzakala, Tianlin Liu, and Eduardo Fernandes Montesuma. Pot python
optimal transport (version 0.9.5), 2024. URL https://github.com/PythonOT/POT.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation
harness, 07 2024. URL https://zenodo.org/records/12608602.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang

11

http://dx.doi.org/10.1038/s42256-024-00975-8
http://dx.doi.org/10.1038/s42256-024-00975-8
https://arxiv.org/abs/2310.01290
https://arxiv.org/abs/2410.11163
http://jmlr.org/papers/v22/20-451.html
https://github.com/PythonOT/POT
https://zenodo.org/records/12608602

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina
Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire
Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron,
Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat
Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya
Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman
Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,
Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Virginie Do, Vish Vogeti, Vı́tor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin
Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide
Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei,
Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola,
Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence,
Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu,
Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris
Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban
Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan
Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal,
Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran
Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca
Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally,
Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji
Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou,
Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian
Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu
Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024.

Suchin Gururangan, Margaret Li, Mike Lewis, Weijia Shi, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. Scaling expert language models with unsupervised domain discovery. arXiv preprint
arXiv:2303.14177, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu Pang, Chao Du, and Min Lin. Lorahub:
Efficient cross-task generalization via dynamic lora composition, 2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
6t0Kwf8-jrj.

Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han. Model stock: All we need is just a few
fine-tuned models. In Proceedings of the European Conference on Computer Vision, 2024.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. CoRR, abs/1312.6114, 2013.
URL https://api.semanticscholar.org/CorpusID:216078090.

Ivan Kobyzev, Simon J.D. Prince, and Marcus A. Brubaker. Normalizing flows: An introduction and
review of current methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43
(11):3964–3979, 2021. doi: 10.1109/TPAMI.2020.2992934.

Subhaneil Lahiri, Peiran Gao, and Surya Ganguli. Random projections of random manifolds, 2016.
URL https://arxiv.org/abs/1607.04331.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods, 2022. URL https://arxiv.org/abs/2109.07958.

Costas Mavromatis, Petros Karypis, and George Karypis. Pack of llms: Model fusion at
test-time via perplexity optimization. ArXiv, abs/2404.11531, 2024. URL https://api.
semanticscholar.org/CorpusID:269188153.

13

https://openreview.net/forum?id=6t0Kwf8-jrj
https://openreview.net/forum?id=6t0Kwf8-jrj
https://api.semanticscholar.org/CorpusID:216078090
https://arxiv.org/abs/1607.04331
https://arxiv.org/abs/2109.07958
https://api.semanticscholar.org/CorpusID:269188153
https://api.semanticscholar.org/CorpusID:269188153

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Amin Heyrani Nobari, Kaveh Alimohammadi, Ali ArjomandBigdeli, Akash Srivastava, Faez Ahmed,
and Navid Azizan. Activation-informed merging of large language models, 2025. URL https:
//arxiv.org/abs/2502.02421.

Filippo Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs,
and Modeling, volume 87 of Progress in Nonlinear Differential Equations and Their Applications.
Birkhäuser, 2015.

Konstantin Sch”urholt, Michael W. Mahoney, and Damian Borth. Towards scalable and versatile
weight space learning. In Proceedings of the 41st International Conference on Machine Learning
(ICML), 2024.

Chongjie Si, Jingjing Jiang, and Wei Shen. Unveiling the mystery of weight in large foundation
models: Gaussian distribution never fades, 2025.

Bedionita Soro, Bruno Andreis, Hayeon Lee, Wonyong Jeong, Song Chong, Frank Hutter, and Sung Ju
Hwang. Diffusion-based neural network weights generation. In The Thirteenth International
Conference on Learning Representations, 2025.

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Casbon,
Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xiaohai
Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Coleman,
Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry, Jan-
Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivakumar
Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eugene
Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna Klimczak-
Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian Ballantyne,
Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wieting, Jonathan
Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh, Kat Black, Kathy
Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine, Marina Coelho,
Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael Moynihan, Min Ma,
Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Nilay Chauhan, Noveen
Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Rubenstein, Phil Culliton,
Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya Tafti, Rakesh Shivanna,
Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu, Ryan Mullins, Sammy Jerome,
Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti Sheth, Siim Põder, Sijal Bhatnagar,
Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi Liu, Trevor Yacovone, Tyler Liechty,
Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry, Vlad Feinberg, Vlad Kolesnikov,
Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein Zhu, Zichuan Wei, Zoltan Egyed,
Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat Black, Nabila Babar, Jessica Lo,
Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas Gonzalez, Zach Gleicher, Tris
Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Barral, Zoubin Ghahramani, Raia
Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam Shazeer, Oriol Vinyals, Jeff
Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena Buchatskaya, Jean-Baptiste
Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier Bachem, Armand Joulin,
Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot. Gemma 3 technical report,
2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017.

14

https://arxiv.org/abs/2502.02421
https://arxiv.org/abs/2502.02421

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Cédric Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der mathematischen
Wissenschaften. Springer, 2009.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. Can
language models solve graph problems in natural language?, 2024a. URL https://arxiv.
org/abs/2305.10037.

Kai Wang, Dongwen Tang, Wangbo Zhao, Konstantin Schürholt, Zhangyang Wang, and Yang You.
Recurrent diffusion for large-scale parameter generation, 2025.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. arXiv preprint arXiv:2406.01574, 2024b.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In Proceedings of the 39th International Conference on
Machine Learning, pp. 23965–23998, 2022.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=xtaX3WyCj1.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities,
2024.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: ab-
sorbing abilities from homologous models as a free lunch. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024a.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In International Conference on
Machine Learning, 2024b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

A APPENDIX

IMPACT STATEMENT

We introduce a VAE-based latent-space merging technique for pretrained LLMs that encodes weights
into compact codes, blends them, and decoding new high-performance parameters. This enables
fast, compute-efficient model customization and smooth interpolation across architectures. However,
blending latent codes can unintentionally merge biases or toxic behaviors, obscure the origin of
capabilities, and be misused to graft malicious functionality. We advocate for rigorous bias /
toxicity audits, transparent provenance tracking, and clear reporting guidelines to ensure responsible
deployment.

A EXTENDED DISTRIBUTION ANALYSIS

Section 3.1 characterized layerwise weight statistics to inform encoding and merging. Here we extend
that analysis with (i) complete per-layer distribution plots, including all MLP layers for GEMMA-3-
1B-IT, GEMMA-3-4B-IT, and LLAMA-3.2-3B-INSTRUCT, and (ii) cumulative variance–explained
curves from PCA on those MLP layers.

15

https://arxiv.org/abs/2305.10037
https://arxiv.org/abs/2305.10037
https://openreview.net/forum?id=xtaX3WyCj1
https://arxiv.org/abs/1905.07830

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.1 DATA AND PROCEDURE

Models. GEMMA-3-1B-IT, GEMMA-3-4B-IT, LLAMA-3.2-3B-INSTRUCT, plus the main-paper
models.

Layer selection. For each transformer block, we analyze self-attention (Q/K/V/O projections) and
MLP (up/gate/down) weight matrices independently.

Preprocessing. Unless noted, statistics are computed on raw matrix entries. For PCA, matrices are
mean-centered and the spectrum is computed over flattened rows; we report cumulative variance
explained. We use excess kurtosis (Fisher convention) so a Gaussian has κex=0:

κex =
E[(W − µ)4]

σ4
− 3.

Means and variances are standard sample estimates; skewness uses the unbiased estimator.

Aggregation. We report per-layer curves and layer-type aggregates (self-attention vs. MLP). Family
summaries first average across layers within a model, then across models in the same family.

A.2 COMPLETE PLOTS

Figure 5 shows layerwise distribution plots (self-attention and MLP). Figure 6 reports cumulative
PCA variance for all MLP layers (attention spectra are in the main text).

A.3 FINDINGS AND IMPLICATIONS

Self-attention layers exhibit heavier tails in Gemma. In self-attention projections (Fig. 7a, Table 9),
GEMMA-3-1B-IT and GEMMA-3-4B-IT show pronounced positive excess kurtosis with depth-
localized peaks, indicating heavy tails and more extreme outliers. LLAMA models track closely
across scales, suggesting family-level statistical stability.

MLP layers are more stable and closer to Gaussian. Across models (Fig. 7b, Table 9), MLP
projections are near-Gaussian with excess kurtosis typically in [0, 2] and fewer depth-dependent spikes.
Their PCA spectra (Fig. 6) decay faster than attention, indicating lower intrinsic dimensionality.

Design implications for encoding and merging.

• Allocate capacity to attention. Heavy tails in attention (notably in Gemma) warrant encoders
with higher capacity or robust priors; Gaussian assumptions under-represent extremes.

• MLP is the easy regime. More Gaussian, stable MLP statistics admit accurate compression
with standard VAE settings and fewer latent pathologies.

• Family consistency aids calibration. The alignment of LLAMA statistics across scales
simplifies cross-scale latent calibration and reduces merging friction.

Summary. Attention weights (especially in Gemma) are the dominant source of heavy-tail behavior;
MLP weights are comparatively benign. Tail-aware encoding and depthwise calibration are most
critical for attention, while default settings suffice for MLP.

B VARIATIONAL ENCODER ARCHITECTURE AND TRAINING DETAILS

Table 10 lists the configuration of our transformer VAE. The encoder applies a twofold down-
projection of the token (compression ratio r=2), which is the smallest bottleneck we found that
preserves reconstruction while generalizing to unseen checkpoints. The decoder mirrors the encoder
to restore the original dimension. For heterogeneous merges, we set the latent size dz by the source
to target layer mapping ratio and keep all other hyperparameters fixed, ensuring comparable latent
scales across architectures.

Objective. We optimize the ELBO (reconstruction + KL to N (0, I)) with a constant learning rate
1×10−5 for 10,000 epochs.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Weight Value

0

5

10

15

20

25

30

De
ns

ity

model.layers.0.self_attn.q_proj.weight

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

model.layers.0.self_attn.k_proj.weight

0.08 0.06 0.04 0.02 0.00 0.02 0.04 0.06 0.08
Weight Value

0

10

20

30

40

50

60

De
ns

ity

model.layers.0.self_attn.v_proj.weight

0.4 0.2 0.0 0.2 0.4
Weight Value

0

5

10

15

20

25

30

35

De
ns

ity

model.layers.0.self_attn.o_proj.weight

(a) llama3-2-3b-it-self attn-layer0

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weight Value

0

5

10

15

20

De
ns

ity

model.layers.0.self_attn.q_proj.weight

0.3 0.2 0.1 0.0 0.1 0.2
Weight Value

0

2

4

6

8

10

12

De
ns

ity

model.layers.0.self_attn.k_proj.weight

0.2 0.1 0.0 0.1 0.2
Weight Value

0

2

4

6

8

10

12

De
ns

ity

model.layers.0.self_attn.v_proj.weight

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

model.layers.0.self_attn.o_proj.weight

(b) gemma-3-1b-it-self attn-layer0

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weight Value

0

5

10

15

20

25

De
ns

ity

model.layers.0.self_attn.q_proj.weight

0.3 0.2 0.1 0.0 0.1 0.2
Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

model.layers.0.self_attn.k_proj.weight

0.15 0.10 0.05 0.00 0.05 0.10 0.15
Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

model.layers.0.self_attn.v_proj.weight

0.10 0.05 0.00 0.05 0.10
Weight Value

0

10

20

30

40

De
ns

ity

model.layers.0.self_attn.o_proj.weight

(c) gemma-3-4b-it-self attn-layer0

0.4 0.2 0.0 0.2 0.4 0.6
Weight Value

0

5

10

15

20

De
ns

ity

model.layers.0.mlp.gate_proj.weight

0.3 0.2 0.1 0.0 0.1 0.2
Weight Value

0

5

10

15

20

De
ns

ity

model.layers.0.mlp.up_proj.weight

0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Weight Value

0

5

10

15

20

De
ns

ity

model.layers.0.mlp.down_proj.weight

0.4 0.2 0.0 0.2 0.4 0.6
Weight Value

0

5

10

15

20

De
ns

ity

model.layers.1.mlp.gate_proj.weight

(d) llama3-2-3b-it-mlp-layer0-1

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Weight Value

0

2

4

6

8

10

12

14

De
ns

ity

model.layers.0.mlp.gate_proj.weight

0.4 0.2 0.0 0.2 0.4 0.6
Weight Value

0

2

4

6

8

10

12

14

De
ns

ity

model.layers.0.mlp.up_proj.weight

0.2 0.1 0.0 0.1 0.2
Weight Value

0

5

10

15

20

25

30

35

De
ns

ity

model.layers.0.mlp.down_proj.weight

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weight Value

0

2

4

6

8

10

12

14

De
ns

ity

model.layers.1.mlp.gate_proj.weight

(e) gemma-3-1b-it-mlp-layer0-1

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

model.layers.0.mlp.gate_proj.weight

0.6 0.4 0.2 0.0 0.2 0.4
Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

model.layers.0.mlp.up_proj.weight

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
Weight Value

0

10

20

30

40

50

60

De
ns

ity

model.layers.0.mlp.down_proj.weight

0.3 0.2 0.1 0.0 0.1 0.2
Weight Value

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

De
ns

ity

model.layers.1.mlp.gate_proj.weight

(f) gemma-3-4b-it-mlp-layer0-1

Figure 5: Distribution plot of the self-attention and the mlp modules in llama3-1-8b-instruct, gemma-
3-1b-it, and gemma-3-4b-it for attention layer 0.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_q_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.02

0.04

0.06

0.08

0.10

0.12

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_k_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0035

0.0040

0.0045

0.0050

0.0055

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_v_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_o_proj

(a) Llama3-2-3b-it-self attn-layer0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.01

0.02

0.03

0.04

0.05

0.06

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_q_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.01

0.02

0.03

0.04

0.05

0.06

0.07

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_k_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.007

0.008

0.009

0.010

0.011

0.012

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_v_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.005

0.010

0.015

0.020

0.025

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_o_proj

(b) Gemma-3-1b-it-self attn-layer0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.01

0.02

0.03

0.04

0.05

0.06

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_q_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.005

0.010

0.015

0.020

0.025

0.030

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_k_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.005

0.006

0.007

0.008

0.009

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_v_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.005

0.010

0.015

0.020

0.025

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_o_proj

(c) Gemma-3-4b-it-self attn-layer0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_gate_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_up_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_down_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.00200

0.00225

0.00250

0.00275

0.00300

0.00325

0.00350

0.00375

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

1_gate_proj

(d) Llama3-2-3b-it-mlp-layer0-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.003

0.004

0.005

0.006

0.007

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_gate_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_up_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.005

0.010

0.015

0.020

0.025

0.030

0.035

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_down_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0040

0.0045

0.0050

0.0055

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

1_gate_proj

(e) Gemma-3-1b-it-mlp-layer0-1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_gate_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0012

0.0014

0.0016

0.0018

0.0020

0.0022

0.0024

0.0026

0.0028

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_up_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.005

0.010

0.015

0.020

0.025

0.030

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

0_down_proj

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Principal Component

0.0025

0.0030

0.0035

0.0040

0.0045

E
xp

la
in

ed
 V

ar
ia

nc
e

R
at

io

1_gate_proj

(f) Gemma-3-4b-it-mlp-layer0-1

Figure 6: Plots of the PCA explained-variance ratio for individual weight matrices in the first
self-attention block (top row of each subpanel set) of three LLM checkpoints—Llama-3-2-3b-it,
Gemma-3-1b-it, and Gemma-3-4b-it. For each model, we show the four projection matrices of self-
attention (q, k, v, o). The sharp drop after the leading principal components highlights a pronounced
low-rank structure that is consistent across architectures and model sizes.

Training setup. Single NVIDIA A6000, bfloat16 for forward and backward, the remaining settings
(optimizer, batch size, weight decay, clip-norm) are in Table 10. Seeds are fixed for data order and
initialization.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Mean kurtosis per layer (Self-attention layers). (b) Mean kurtosis per layer (MLP layers).

Figure 7: Comparison of mean kurtosis across layers in self-attention and MLP components for
Gemma and LLaMA models.

layers llama3-2-3b-it gemma-3-1b-it gemma-3-4b-it

var. skew kurt. var. skew kurt. var. skew kurt.

self attn

0.0017 0.0192 8.4032 0.0031 0.0500 15.0505 0.0015 0.0501 15.2010
0.0013 0.0191 7.3438 0.0030 0.0450 9.8347 0.0015 0.0267 7.3832
0.0012 0.0178 6.2172 0.0030 0.0389 9.0363 0.0014 0.0255 7.2277
0.0011 0.0104 5.4477 0.0030 0.0288 8.6496 0.0014 0.0172 6.0731

avg (self attn) 0.0005 -0.0002 1.4342 0.0012 -0.0009 3.2858 0.0005 0.0009 2.6900
min (self attn) 0.0001 -0.0131 0.3027 0.0002 -0.0418 0.1589 0.0001 -0.0305 0.2412

mlp

0.0005 0.0093 5.4740 0.0010 0.0167 8.7665 0.0004 0.0266 6.3297
0.0005 0.0080 4.1465 0.0010 0.0090 3.1514 0.0004 0.0155 5.9670
0.0004 0.0075 2.6694 0.0010 0.0077 3.0577 0.0004 0.0130 2.7454
0.0004 0.0074 2.4364 0.0010 0.0071 3.0113 0.0004 0.0094 2.4371

avg (mlp) 0.0003 0.0003 0.8435 0.0006 0 1.1739 0.0003 0.0006 1.0807
min (mlp) 0.0003 -0.0139 0.0892 -0.0001 -0.0184 0.1552 0 -0.0076 0.1559

Table 9: Statistical moments of the self-attention and MLP layers across three models.

Field Value Notes

length 10,240 Sequence length processed
n layers 6 Transformer depth
chunk size 640 Per-token chunk width
embed dim 768 Matches global embed dim
latent dim 640 Size of latent vector per chunk
n heads 4 Attention heads
rope base 20,000 RoPE base frequency
conv false No convolutional patching
flatten true Flatten to original shape.

Table 10: Transformer block settings shared by the encoder and decoder.

Ablation summary. Bottlenecks weaker than r=2 overfit and degrade out-of-distribution reconstruc-
tion, stronger bottlenecks raise reconstruction error and harm downstream merging. Choosing dz via
the mapping ratio stabilizes cross-architecture alignment without retuning.

B.1 ANALYSIS WEIGHTS ENCODING EVOLUTION

Pretrained weight matrices exhibit substantial variation in tail behavior (high to near-zero excess
kurtosis; cf. Section 3.1). We study how this variability interacts with the compression ratio r in the
VAE and how it impacts generalization to unseen checkpoints.

Convergence vs. compression. Figure 8 shows a clear monotone effect: optimization slows as the
bottleneck tightens. With r=2 (twofold down-projection), storage is halved and the reconstruction
loss increases by only ≈ 6%; at r=4, the penalty rises to ≈ 10%. These curves set a practical
operating point: r≈2 balances footprint and fidelity with minimal training overhead.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175
Training Step

100

200

300

400

500

600

700

Tr
ai

n
Lo

ss

Run A (1×, no compression)
Run B (2× compression)
Run C (4× compression)
pVAE (2× compression)
pVAE (4× compression)

Figure 8: Mean reconstruction error curves (smoothed with a 5-step moving average) for pVAE (VAE
initialized from an existing pretrained VAE with reduction factor 1) and VAE (random initialized
VAE). r denotes the compression ratio.

Sensitivity to distribution shape. Layers with heavier tails (high excess kurtosis) are more sensitive
to increasing r, exhibiting larger loss gaps at fixed training budget, near-Gaussian layers degrade
more gently. In our models, attention projections in GEMMA fall into the former regime, whereas
MLP projections across families align with the latter (App. A).

Training schedule. Two-Stage Training. To improve stability under tight bottlenecks, we employ a
two-stage curriculum: (1) train a deterministic autoencoder to convergence with the KL term disabled,
then (2) enable KL regularization and fine-tune as a VAE. This approach prevents early posterior
collapse and yields stable convergence even at high compression ratios, without increasing total
training time.

Computational Cost All experiments were conducted on a single NVIDIA RTX 6000 Ada GPU.
Training a ∼ 200M parameter VAE at compression ratio r = 1.6 requires approximately 1-2 hours
for 1B-scale models and 3–4 hours for 7B-scale models (∼500K chunks). Higher compression ratios
increase training time proportionally. LoRA weights converge notably faster than full model weights
due to their lower-rank structure. At inference, the full encode-decode pipeline completes in 5–10
seconds, enabling rapid iteration during merging experiments.

Reducing the Training Time: Interestingly, in the case of heterogeneous models expansion
r < 1 can offer an alternative trade-off. Lifting weights into an overcomplete latent space can
unfold curved manifolds, making linear interpolation better approximate geodesics on the original
weight manifold. expansion forces the encoder to learn a non-trivial transformation, avoiding
identity collapse. Practically, expansion significantly accelerates training the relaxed bottleneck eases
optimization and improves gradient flow at the cost of increased memory.

C HETEROGENEOUS MODEL MERGING IN LATENT SPACE

Merging models with matched layer shapes is straightforward in weight space. Heterogeneous pairs
are harder: to avoid truncating the higher-capacity model, we train separate VAEs per architecture
and merge in a shared, aligned latent space. Concretely, we first calibrate latents per layer, fit an
alignment map between the source and target latent spaces, and then interpolate on the target side
before decoding. This preserves each model’s capacity while enabling stable cross-architecture
merges without ad hoc dimensionality cuts. The full procedure is given in Algorithm 2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 2 Details of Heterogeneous LLM Parameter Merging in Latent Space

Require: Source weights Wsrc, target weights Wtgt, VAE configs Csrc, Ctgt
Ensure: Merged weights Wmerged

1: Initialize VAEs: (Vsrc, Vtgt)← init(Csrc, Ctgt)
2: Load pretrained parameters into Vsrc, Vtgt
3: Split weights into per-layer groups:

Lsrc ← {all layers from Wsrc}
Ltgt ← {all layers from Wtgt}

4: Determine the number of pairs to merge: N ← min(|Lsrc|, |Ltgt|)
5: Define aligned layer pairs: (l(j)src , l

(j)
tgt) for j = 1, . . . , N

6: for each aligned pair (l(j)src , l
(j)
tgt) do

7: Flatten & chunk weights into {w(i)
src , w

(i)
tgt }

8: Encode: z(i)src ← Vsrc(w
(i)
src), z

(i)
tgt ← Vtgt(w

(i)
tgt)

9: Align latents via OT: z(i)align ← OT (z
(i)
src , z

(i)
tgt)

10: Merge latents: z(i)merged ← z
(i)
tgt + β · (z(i)align − z

(i)
tgt)

11: Decode: w(i)
merged ← V −1

tgt (z
(i)
merged)

12: Store w
(i)
merged in Wmerged

13: end for
14: Initialize and evaluate final network with complete Wmerged
15: return Wmerged

C.1 INTUITION BEHIND LATENT SPACE ALIGNMENT

The rationale for restricting explicit latent alignment specifically to heterogeneous merging scenarios
relies on the geometric properties of the neural loss landscape and the topological structure of the
parameter manifolds.

Homogeneous Merging and Linear Mode Connectivity. In the case of homogeneous mod-
els—specifically those finetuned from a shared pretrained initialization (e.g., distinct fine-tunes of
LLama-2-13B)—the parameters remain within a shared basin of attraction. Consequently, their
weight vectors θ1, θ2 reside on a connected region of the high-dimensional parameter manifoldM.
When encoded into the latent space Z , the resulting distributions p(z|θ1) and p(z|θ2) naturally share
a common support and overlapping density. Therefore, interpolation in Z corresponds to traversing a
flat, low-loss path on the underlying manifold, rendering explicit distributional alignment redundant.

The Heterogeneous Disconnect. Conversely, heterogeneous models (e.g., Gemma-3-1B vs. LLaMA-
3.2-1B) possess fundamentally distinct architectures. Even when projected into a latent space of
identical dimensionality d, their representations occupy disjoint manifoldsMsrc andMtgt with
divergent geometric structures and density profiles as show in Figure 9

This disjoint nature necessitates a non-linear mapping to bridgeMsrc andMtgt. We employ Optimal
Transport (specifically the Monge map) to push the source distribution µsrc onto the target distribution
µtgt by minimizing the Wasserstein-2 distance. This process essentially “registers” the two manifolds,
aligning their statistical moments and geometric structure. By enforcing this alignment, we ensure
that the interpolated latent codes zα remain within the valid density region of the target decoder,
thereby preserving functional competence across architectural boundaries.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

2 1 0 1 2
Dimension 1

2

1

0

1

2

D
im

en
si

on
 2

llama-2-13b-code-alpaca
WizardLM-13B-V1.2

(a) Same-Architecture Fine-tuning Variants: LLaMA-
2-13B Code-Alpaca vs WizardLM-13B-V1.2.

2 1 0 1 2
Dimension 1

2

1

0

1

2

D
im

en
si

on
 2

Gemma-3-1B
LLaMA-3.2-1B

(b) Cross-Architecture Comparison: Gemma-3-1B vs
LLaMA-3.2-1B.

Figure 9: VAE latent space reveals architectural signatures in weight distributions. t-SNE
projections of encoded k proj weights show (a) fine-tuned variants of the same base model (LLaMA-
2-13B) remain indistinguishable while (b) distinct clusters for different architectures (Gemma vs
LLaMA) , suggesting the learned latent space captures intrinsic architectural properties.

21

	Introduction
	Related Work
	LS Merge
	Exploring Weight Dynamics in LLMs
	LLM Weights Preprocessing and Encoding
	Latent Space Alignment and Merging

	Experiments
	Self-Merging for Enhanced Performance
	Merging LLM Experts in Latent Space
	Comparison to Representation-Merging Methods
	Cross-Architecture Merging

	Ablation Studies
	Component Contributions in Latent Merging
	VAE Generalization and the Compression Trade-off
	Linear Subspace vs. Non-Linear Manifold Learning

	Discussion
	Conclusion
	Appendix
	Extended Distribution Analysis
	Variational Encoder Architecture and Training Details
	Analysis Weights Encoding Evolution

	Heterogeneous Model Merging in Latent Space
	Intuition Behind Latent Space Alignment

