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Abstract

Recent advances in generative models have revolution-
ized the controllable synthesis of realistic data for com-
puter vision tasks. Despite their recent impact on tasks like
classification and representation learning, their potential in
clustering, a related and fundamental unsupervised learn-
ing technique, remains largely unexplored. Traditionally,
clustering involves partitioning a dataset based on hand-
crafted or learned feature representations paired with a
similarity metric. Our paper turns this paradigm on its
head by proposing a different perspective on clustering from
the view of implicit generative modeling. We propose the
concept of Implicit Neural Clustering, in which clusters are
generated implicitly through a generative model that is con-
trollable by disentangled factors of variation. Specifically,
we address the challenge of implicit multi-partition cluster-
ing, where a dataset may exhibit multiple plausible cluster-
ings representing different class categories. Our contribu-
tion is threefold: We introduce a rigorous mathematical def-
inition of Implicit Neural Clustering, propose a straightfor-
ward sampling strategy to perform implicit multi-partition
clustering, and provide preliminary empirical evidence for
the effectiveness of our approach on synthetic data.

1. Introduction

Recent advances in generative models for controllable
image synthesis like Generative Adversarial Networks
(GANs) (e.g., [3, 14]) and Diffusion models (e.g., [5, 24])
reached a point where synthetic images are so realistic that
thy can improve classification performance (e.g., [1, 8]) or
help self-supervised representation learning (SSL) methods
learn better general purpose embeddings (e.g., [4, 13, 26]).

A closely related task to classification and SSL is clus-
tering, which traditionally partitions a dataset with learned
(e.g., SSL) or handcrafted features and a similarity met-
ric, allowing unsupervised classification and data analysis.
These approaches almost exclusively follow the prevailing
idea that there is only a single correct clustering correspond-
ing to given class labels. However, real-world data often has

multiple factors of variation that one could group them by,
leading to multi-partition clustering [6, 7, 9, 23, 27, 31, 33].
For instance, animals could be clustered either by species,
color, size, or origin. Given that these factors of varia-
tion can be used to control the synthesis of realistic im-
ages (e.g., [7, 10, 19, 20, 22, 28, 29, 32]), it is beneficial to
know (a) what these factors of variation in a dataset are and
(b) how we can effectively obtain new synthetic samples
from these different clusterings to exploit them for down-
stream tasks like classification or SSL.

Suppose we have access to a generative model control-
lable through disentangled representations, which can be
composed and the model generalizes to out-of-distribution
(OOD) combinations of factors of variation. Would we be
able to generate arbitrary different clusters and objects with
combinations of factors of variation implicitly? Regarding
this question, previous works on disentangled representa-
tion learning have shown that factors of variation are em-
bedded in single or multiple dimensions of a disentangled
feature space [2, 7, 17, 18, 30]. Further, these factors are
invariant to others when they are used to control (e.g., via
latent traversal) the synthesis of new images [30], genera-
tive models can learn to synthesize OOD combinations [19],
factors are composable [7], and they can be obtained unsu-
pervised [17, 22, 32] or with supervision [12, 18, 30].

In light of all these recent advances in implicit generative
modeling, disentangled representation learning, and realis-
tic image synthesis, instead of a clustering algorithm explic-
itly clustering a dataset into disjoint subsets, this paper takes
a step back and looks at clustering the other way around to
reveal a totally different perspective: What if instead of ex-
plicitly clustering the elements of a given dataset we would
have an implicit model that generates the clusters, i.e., an
implicit neural representation of clustering?

To answer this question, we propose Implicit Neural
Clustering, a novel clustering approach that uses a gener-
ative model conditioned on a disentangled latent space to
produce the data of each cluster implicitly. Under the as-
sumption that we can transform elements of a dataset into a
disentangled representation comprised of its underlying fac-
tors of variation, we can effectively model multi-partition



clusterings of the data and implicitly generate the data for
any cluster partitioning. Implicit Neural Clustering yields a
novel way how to obtain realistic synthetic datasets based
on the real factors of variation in real data. Our contri-
bution is threefold: The concept of Implicit Neural Clus-
tering, a corresponding mathematically rigorous definition,
and, based on that, a sampling strategy showing an applica-
tion of this concept for implicit multi-partition clustering.

2. From Explicit to Implicit Neural Clustering
2.1. Explicit (Multi-Partition) Clustering

Explicit clustering is defined by a partition function Cl;;,
that partitions an input data set D under an arbitrary notion
of similarity sim into k clusters that either maps any x € D
toahard C : D — N (e.g., k-means) or soft cluster as-
signment C' : D + R¥ (e.g., maximum likelihood). Hard
clustering can be defined as applying Cl;,,, on each x € D,
which yields k disjoint subsets D™ C D :

=Dy =J{z |2 €DACam(a) =k} (1)
k k

with |, Di"™ = D and (), Dy = 0. A different
sim’ # sim formally defines any arbitrary clustering dif-
ferent from sim over D, i.e., multi-partition clustering [9].

In the multi-partition clustering context, explicit cluster-
ing w.r.t. sim yields only one out of many possible clus-
terings of the data. However, high-dimensional data such
as images typically encompass multiple interesting factors
of variation that one could cluster over [7]. As shown in
Figure 1, images of objects in a scene could be clustered
based on shape, color, or style, where each of these fac-
tors of variation reflects a different sim. For multi-partition
clustering, sim either corresponds to clustering over dif-
ferent sub-dimensions of the feature representation leading
to different clustering partitions [6, 7, 9, 23, 27, 31, 33],
or with representation learning, we could also train a dif-
ferent feature extractor for each possible sim. Different
from the prevailing concept in representation learning that a
representation only disentangles with respect to one factor
of variation, in the context of disentangled representation
learning, each factor is disentangled in a single (or across
multiple) dimension(s) [7, 30] in the disentangled represen-
tation. The latter allows multi-partition clustering w.r.t. to
stm (any factor of variation) by clustering in isolation on
these sub-dimensions [7, 9].

2.2. Definition of Disentangled Representations

In contrast to explicit clustering D under various sim, Im-
plicit Neural Clustering can be derived from a disentangled
representation F of D. As an initial intuition, if any x € D
could be decomposed into its factors of variation, we can

impose specific changes to any x € D by modifying the
desired parts of the factor in the representation.

We quickly recall essential parts of the symmetry group-
based definition for disentangled representations by Higgins
etal. [11]. Let G be a symmetry group acting on W, W be a
set of world states (ground truth factors of variation), O ob-
servations (e.g., pixel space), and Z the internal agent rep-
resentation of W. A generative process b : W — O leads
from world to observation states, and an inference process
h : O — Z leads from observation to an agent’s internal
representation of W. Following this definition of disentan-
gled representations, we have a dataset D = {o01,...,0n}
of observations o; € O. We now define the inference pro-
cess h : O — Z as a parameterized feature extractor !
he + O — F with parameters ¢ that yields a disentangled
representation F of any o € D, where F decomposes into
its factors of variation F = F7 X ... X Fjs. In addition, we
have access to a parameterized generator Gy : F' — O with
parameters 6 that transforms samples from the disentangled
representation space J to the observation space O.

2.3. Implicit Neural Clustering

Figure | provides an overview of Implicit Neural Clustering
with its main differences to explicit (multi-partition) cluster-
ing. Following the definition of implicit probabilistic mod-
els, Implicit Neural Clustering can be defined as a special
sampling procedure from a disentangled compositional la-
tent space. Different from implicit models where a param-
eterized generator Gy(-) (e.g., GAN) transforms samples
from an analytic distribution (e.g., isotropic Gaussian) to
synthetic examples [16], Implicit Neural Clustering trans-
forms samples from a disentangled distribution F into syn-
thetic clusters Di"™. More specifically, for each cluster
D;'™, there exists an implicit cluster that can be obtained
by sampling from F while fixing one respective factor of
variation Fy. Let G = G1 X ... X G be the group actions
that acton F, and - : G x F — F the action that changes F
to the respective factor. Given that each factor of variation
consists of several atomic attributes (i.e., class labels like
shape, color, or animal species), we precisely define fixing
a factor of variation as follows: Each GG; consists of atomic
partitions G; = {G; 1, G, 2, ...}, that can be parameterized
by a single value f € R or a parameterized distribution

P(f|¢). We further define a function % that yields true if
an atomic factor of variation G;; is presentin z € F.
When clustering with respect to a factor of variation F;,
let sim = F;. Based on Equation I, explicit clustering
C'r, splits D into |G;| disjoint subsets. In the implicit case,
together with the generator G, the feature extractor h,,, we
can (a) generate each cluster D;; implicitly, and (b) generate

'We change Z to F for notation and readability reasons.
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Figure 1. We visualize the difference between multi-partition clustering in the traditional sense and Implicit Neural Clustering. Under
different notions of similarity, explicit clustering can cluster the dataset correctly in three different partitionings. However, since not all
possible combinations between factors of variation are observed in the data, certain combinations are not present in the final clusters
because we only explicitly cluster the real data. In contrast, Implicit Neural Clustering leads to implicit clusters that in addition include
realistic examples not observed in the underlying dataset, and can from definition also synthesize out-of-distribution cross-combinations.

a synthetic version of the original dataset D as follows.

U Dy = U {Galh

feaq; fea;

DD =

2

In this way, D’ implicitly models D with respect to a
clustering under a factor of variation F;. On the basis of
Equation 2, we derive Implicit Neural Clustering based on
a very strong assumption. If we assume the disentangled
representation space J to be composable, we can modify
any z € F by acting with the atomic group action Gj;, to
change the factor of variation and cluster membership un-
der factor F; from any previous D;; to D;;, 1 # j. Together
with a sampling procedure (-) ~ F for each factor of varia-
tion F;, Implicit Neural Clustering is defined as follows.

D' = [ JA{Go(2) | z € {:(f,21), -

fea;

(fr2x)} ~ F} ©)

where we fix a factor of variation, sample random repre-
sentations from z € F', take the respective group action
f of an atomic factor of variation?, and modify each z ac-
cordingly with -(f, z). Under the respective definition of
disentangled representations, the resulting synthetic dataset
D’ is now partitioned into a clustering w.r.t. a certain factor
of variation. As a result, up to the capabilities of the en-
coder h,, and generator G, Implicit Neural Clustering can
synthesize any cluster that could be obtained by a explicit
clustering for synthetic dataset generation.

Sampling Procedure. Algorithm 1 outlines the sampling
procedure used for implicit clustering based on some fac-
tor of variation Fj. For this procedure, we must first obtain

2In practice, we would parameterize f with a probability distribution
and sample the respective modification for more variety, but a single value,
like the mean over all possible values, would also work.

) [0 € DAL (h(0)}

Algorithm 1: Algorithm of the proposed method

Input: Group actions G; for factor of variation Fj,
Generator Gy, number of samples K
Output: Implicit clustering D’ with respect to F;

1D« 0

2 for each f € G; do

3 Dij < @

4 for kinl1.. K do

5 f~ Gy

6 z = (21,22, ..y2d4) ~ {G1,G2,...,Gpr}
7 Z'=-(f,2)

8 Dij = Dij U{Gy(0)}

9 D' <—DIUD1']’

the atomic group actions G;;. We assume factors of vari-
ation to be disentangled dimension-wise, i.e., in only one
dimension [ of the representation (21, 22, ..., zq) € R%. In
practice, the definition that F' decomposes into only its fac-
tors is too restrictive. Therefore, we relax this definition
so that F decomposes into dimensions with and without
factors of variation, z = (z1,29,...,24) € R% d > M,
and we identify which z; corresponds to any G;;. To this
end, we first encode the full dataset and then partition each
dimension using kernel density estimation (KDE) together
with local minima on the resulting density estimates®. Af-
terward, for each partition in each dimension we identify
unique co-occurences with the known ground truth factors
of variation. Finally, we turn each G;; into a parameterized
probability distribution P(f|¢) (e.g., Uniform or Normal),
which allows sampling for more variety.

With the atomic group actions, the specific sampling
procedure is defined in lines 5-8 in Algorithm 1. We

3 Any partition algorithm could be used. KDE has the advantage over,
e.g., k-means that we do not specify the number of partitions in advance.
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Figure 2. Implicit Neural Clustering of Shapes3D. Our approach
can implicitly cluster the dataset into shape, different object col-
ors, and size. Each row represents random samples for an atomic
factor of variation that we were able to disentangle. Each row is
the result of applying atomic group actions we extracted from the
disentangled representation space to random samples.

first sample a random value from the partition distribution
f ~ P(f|Gi;). Next, we sample random values from all
partitions to obtain a random latent z € F. We then act
with f on z, i.e. -(f, z), which modifies z accordingly. For
Implicit Neural Clustering, this process is repeated K times
for each cluster F;;, and implicit multi-partition clustering
is achieved by repeating the Algorithm 1 with different F;.

3. Experiments

We evaluate our approach on the popular 3DShapes
Dataset [15], which includes 6 ground truth factors of vari-
ation. For a strong basis, we train a weakly-supervised
ADA-GVAE [18], known to work well with this dataset,
using the publicly available code* provided by the work
in [25]. The encoder of the VAE serves as the encoder
h,, and the decoder as the generator Gjp. We evaluate the
finding of atomic group actions, generating implicit clusters
with these atomic group actions, and compositionality in a
qualitative manner. In this evaluation, we have access to
the ground truth factors of variation. In an unsupervied set-
ting, one could potentially fall back to pseudo-labels with a
zero-shot classifier instead (e.g., using CLIP [21]).

“https://github.com/facebookresearch/disentangling-correlated-factors
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Figure 3. For random generated samples, we can specifically mod-

ify a certain factor of variation by applying the respective atomic
group action, e.g., change the object shape,color, or size.

Implicit Neural Clustering of Shapes3D. Figure 2
shows three coherent synthetic multi-partition clusters with
respect to shape, color, and size that we have implicitly clus-
tered with our approach. They are the result of applying the
atomic group actions we were able to extract from the disen-
tangled representations to random samples. We specifically
show that we can modify arbitary samples with the atomic
group actions in Figure 3, where we show that randomly
generated samples are modified to the desired atomic factor
of variation. However, even though we find atomic group
actions for all ground truth labels, not all of them are invari-
ant to the other factors of variation, showing a limitation in
the disentanglement learned by the ADA-GVAE for some
factors of variation. In summary, our experiment on syn-
thetic data shows that when the assumptions we make for
our approach hold for a desired factor of variation, we can
implicitly cluster a dataset with Implicit Neural Clustering.

4. Conclusion

We propose the concept of Implicit Neural Clustering to-
gether with a mathematically rigorous definition and sam-
pling procedure for implicit (multi-partition) clustering. We
provide preliminary empirical evidence that our approach
can be an effective and efficient way for controllable syn-
thetic data generation when known factors of variation are
disentangled. Regarding future work, we plan to evaluate
our approach on more datasets, including real-world data,
for stronger empirical evidence and with an empirical eval-
uation on downstream tasks such as classification and self-
supervised representation learning. We strongly believe that
our approach can serve as a foundation to generate any
kind of clusterings imposed by factors of variation in real
datasets, enabling effective synthesis of extended training
datasets with varying class labels, more balanced class dis-
tributions, and data variations not observed in the original
data (including out of distribution) in the future.
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