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Abstract

3D reconstruction from a single image is a long-standing
problem in computer vision. Learning-based methods ad-
dress its inherent scale ambiguity by leveraging increas-
ingly large labeled and unlabeled datasets, to produce ge-
ometric priors capable of generating accurate predictions
across domains. As a result, state of the art approaches
show impressive performance in zero-shot relative and met-
ric depth estimation. Recently, diffusion models have exhib-
ited remarkable scalability and generalizable properties in
their learned representations. However, because these mod-
els repurpose tools originally designed for image genera-
tion, they can only operate on dense ground-truth, which is
not available for most depth labels, especially in real-world
settings. In this paper we present GRIN, an efficient diffu-
sion model designed to ingest sparse unstructured training
data. We use image features with 3D geometric positional
encodings to condition the diffusion process both globally
and locally, generating depth predictions at a pixel-level.
With comprehensive experiments across eight indoor and
outdoor datasets, we show that GRIN establishes a new
state of the art in zero-shot metric monocular depth esti-
mation even when trained from scratch.

1. Introduction
Depth estimation is a fundamental problem in computer vi-
sion and a core component of many practical applications,
including augmented reality [16], medical imaging [43] mo-
bile robotics [10, 34], and autonomous driving [15, 23, 41].
In reality, most of these applications benefit from metric
depth estimates, that capture the true physical shape of the
observed environment (i.e., in meters) and enable scale-
aware 3D reconstruction. Although recovering metric depth
is trivial in the multi-view calibrated setting [30], only re-
cently it started to be explored in the monocular context. In
this ill-posed setting, models must learn priors from training
data in order to reason over the scale ambiguity and gener-
ate accurate predictions. The challenges with this approach
are two-fold: (i) the choice of priors themselves, that should

Figure 1. GRIN sets a new state of the art in zero-shot metric
monocular depth estimation, via efficient pixel-level diffusion and
the proper handling of sparse training data. For comparison, we
overlay ground-truth metric data with predicted pointclouds.

be expressive enough to generalize across diverse domains;
and (ii) the choice of network architecture, that should be
capable of detecting and learning these priors from large-
scale diverse training data.

In this work, we use input-level geometric embeddings
from calibrated cameras [27] to learn physically-grounded
priors capable of the zero-shot transfer of metric depth
across datasets. In order to fully leverage these geometric
priors we turn to diffusion models [31], due to their scal-
ability to large-scale diverse datasets and strong regression
performance in generative tasks, as well as improved gen-
eralization. This choice is becoming increasingly popular,
with several published papers [36, 38, 54, 55] using dif-
fusion models for monocular depth estimation. However,
all these methods repurpose currently available diffusion
frameworks, that are based on the U-Net architecture [52],
and require compromises and ad-hoc solutions to adapt to
this new setting. Broadly speaking, these compromises are
two-fold: (i) the use of latent auto-encoders, that now must
be trained on much smaller and less diverse datasets; and
(ii) the need for dense ground-truth, which is not available
for most real-world datasets.



To mitigate these limitations, we instead propose to use a
more flexible diffusion architecture that is efficient enough
to operate at a pixel-level, and can directly ingest sparse
unstructured training data. In particular, we build on RIN
(Recurrent Interface Networks) [35], a novel diffusion ar-
chitecture that decouples its core computation from input
dimensionality, making it much more efficient than tradi-
tional U-Net models; and that is domain-agnostic, thus not
restricted to dense grid-like inputs. We propose several key
modifications to this original framework to apply it to the
task of depth estimation, including the use of 3D geometric
positional encodings to bridge the geometric domain gap
across datasets, a combination of local and global diffusion
conditioning with dropout and random masking, and a log-
space depth parameterization designed to improve perfor-
mance in widely different ranges. As a result, our proposed
Geometric RIN (GRIN) framework establishes a new state
of the art in zero-shot metric monocular depth estimation.
In summary, our contributions are as follows:

• We introduce GRIN, a novel diffusion-based monocular
depth estimation framework designed to (i) ingest sparse
training data, enabling the use of larger and more diverse
datasets; and (ii) operate on pixel-space, eliminating the
need for dedicated auto-encoders.

• We propose a combination of local and global condition-
ing, in the form of image features with 3D geometric po-
sitional encodings, to enable training and evaluation on
datasets with diverse camera geometries.

• With extensive experiments across 8 different indoor and
outdoor datasets, GRIN establishes a new state of the art
in zero-shot metric depth estimation.

2. Related Work

2.1. Monocular Depth Estimation

Monocular depth estimation is the task of regressing per-
pixel range from a single image. Early learning-based ap-
proaches were fully supervised [13, 14], requiring datasets
with annotations from additional range sensors such as
IR [46] or LiDAR [18]. Although ground-breaking at the
time, these methods lacked scalability, due to the need for
dedicated hardware, as well as high sparsity and noise levels
in the collected labels. The seminal work of [82] introduced
the concept of self-supervision to monocular depth estima-
tion, eliminating the need for explicit supervision in favor of
a multi-view photometric objective. This approach is highly
scalable, since it only requires overlapping images, and fur-
ther developments [19, 20, 22–24, 57, 70] have led to ac-
curacy comparable with supervised approaches. However,
self-supervision also has its drawbacks, due to inherent lim-
itations in the multi-view photometric objective itself, and
most notably the inability to generate metric estimates due
to scale ambiguity [23, 26, 37].

Recently, a sharp increase in publicly available
datasets [4, 8, 12, 23, 64, 69] gave rise to a third approach:
large-scale supervised pre-training to generate a rich visual
representation that can be transferred to new domains with
minimal to no fine-tuning [12, 50, 77]. In this setting, the
challenge becomes how to design such a visual representa-
tion, so it can learn robust and transferable priors [27] capa-
ble of bridging the appearance and geometric domain gaps.
This includes both architectures [27, 55, 76] as well as the
application; i.e. relative [12, 38, 50] or metric [27, 55, 76]
depth, focusing on a different set of learned priors.

2.2. Zero-Shot Metric Depth Estimation

Several works have explored ways to generate metric pre-
dictions without explicit supervision in the target domain.
Self-supervised methods [14, 81, 82] require the indi-
rect injection of metric information, obtained from dif-
ferent sources such as velocity measurements [23], cam-
era height [68], cross-camera extrinsics [26, 39, 71], or
left-right stereo consistency [73]. Recently, a few works
have explored the zero-shot transfer of metric predictions
across datasets. ZoeDepth [2] fine-tunes a scale-invariant
model in a combination of indoor and outdoor datasets,
learning domain-specific decoders with adaptive ranges.
Metric3D[76] proposes a canonical camera space transfor-
mation module, that abstracts away scale ambiguity during
training in favor of a post-processing scale alignment step.
ZeroDepth [27] takes a different approach and, instead of
abstracting away camera intrinsics, uses it as input-level ge-
ometric embeddings to learn 3D scale priors over objects
and scenes. DMD [55] uses a similar field-of-view condi-
tioning approach, in combination with synthetic augmenta-
tion to increase camera diversity. UniDepth [49] chooses
instead to directly predict 3D points, relying on a pseudo-
spherical output space to also estimate camera parameters.

2.3. Diffusion Models for Depth Estimation

Denoising Diffusion Probabilistic Models (DDPM) [31] are
a class of generative models that have become very popular
recently. Their aim is to reverse a diffusion process, gen-
erating samples from a target distribution by learning how
to iteratively denoise a random Gaussian distribution. Al-
though originally proposed for image generation [9, 47, 62],
several works have shown their effectiveness in other com-
puter vision tasks, such as semantic segmentation [36],
panoptic segmentation [6], optical flow [54], and monoc-
ular depth [11, 36, 38, 54–56, 74, 80].

Focusing on monocular depth estimation, DDP [36] op-
erates in the latent space, using an input image as the con-
ditioning signal. Similarly, DiffusionDepth [11] uses lo-
cal and global multi-scale image features from a Swim
Transformer [44]. DepthGen [56] proposes novel tools
to handle noisy ground-truth, and DDVM [54] explores



self-supervised pre-training in combination with synthetic
and real-world training data. A few concurrent works
also look into zero-shot diffusion-based depth estimation.
Marigold [38] proposes to fine-tune pre-trained text-to-
image generators with synthetic depth labels, focusing on
affine-invariant predictions. DMD [55] uses field-of-view
conditioning to handle scale ambiguity and enable the zero-
shot transfer of metric depth.

Importantly, all these works rely on different techniques
to address the sparsity of training data. These include: in-
filling (interpolating missing values) [11, 36, 54–56], step-
unrolling (adding noise to the model output rather than
the ground-truth) [54, 55], or avoiding sparse training data
altogether [38, 74]. Conversely, GRIN does not require
any of these techniques, since it was designed to ingest
sparse training data without assuming any spatial structure.
Furthermore, our efficient architecture enables pixel-level
diffusion, thus eliminating the need for specialized auto-
encoders and promoting sharper predictions.

3. Diffusion Preliminaries
We begin by providing a brief overview of diffusion mod-
els [5, 31, 58]. These methods were originally developed
for image generation, operating via a series of learned state
transitions from a noise tensor N1 to an image I0 from the
data distribution. To learn this transition f , a forward func-
tion is first defined as:

It =
√
γ(t)I0 +

√
1− γ(t)N1, (1)

where N1 ∼ N (0, I), t ∼ U(0, 1) and γ(t) is a monoton-
ically decreasing function. A neural network is learned to
predict Nt from It in a given transition step t via:

Ñt = f(It, t) = f(
√

γ(t)I0 +
√
1− γ(t)N1, t) (2)

and used to sample an image via a sequence of state tran-
sitions from I1 = N1 to I0 via small steps I1 → I1−∆ →
... → I0 [31, 59]. In practice, the diffusion process is often
conditioned by an additional variable y, such as a class la-
bel [9], language caption [51], or camera parameters [42],
to control the generated samples.

A central question when designing diffusion approaches
is the choice of architecture for the transition function f .
Mainstream methods [9, 32, 51] have used the U-Net CNN
architecture [52] due to its simplicity and ability to preserve
input resolution. However, this approach quickly becomes
computationally prohibitive for high-resolution images. Be-
cause of that, most methods train f not in the RGB pixel
space, but in a lower-resolution latent space produced by an
auto-encoder [65]. Although more efficient, this approach
also has its drawbacks, namely the loss of fine-grained de-
tails due to latent compression, and the assumption that in-
puts will be represented on a dense 2D grid, which is natural
for images, but not for sparse data such as depth maps.

(a) RIN block. (b) RIN model.

Figure 2. Recurrent Interface Networks (RIN) architecture. (a)
Latent tokens Zin read from input tokens Xin, are processed via
a series of self-attention layers, and written back to output tokens
Xout. (b) A RIN model consists of B blocks, each receiving latent
Zb and input Xb tokens from the previous block and returning up-
dated Zb+1 and Xb+1.

Recurrent Interface Networks (RIN). To circumvent
these limitations, we instead adopt RIN [35], a recently in-
troduced transformer-based architecture, shown in Figure 2.
The key idea behind RIN is the separation of computation
into input tokens X ∈ RN×D and latent tokens Z ∈ RM×D,
where the former is obtained by tokenizing input data (and
hence N is dependent on input size), but M is a fixed di-
mension. The computation is then performed via a sequence
of attention operations. First, the latents Z attend to in-
puts X (read operation), followed by several self-attention
operations on Z (compute) and the final write from latents
to inputs. This forms a single RIN block (Figure 2a), and
stacking multiple blocks enables the construction of deeper
models (Figure 2b, please refer to [35] for further details).

The fact that the computation cost of RIN is indepen-
dent of input size enables us to learn the transition func-
tion directly in pixel space. Moreover, the tokenization step
removes the requirement for inputs to be represented on a
dense grid. Capitalizing on these benefits, in the next sec-
tion we introduce our approach for zero shot metric depth
estimation with pixel-level diffusion.

4. Geometric RIN

We propose the GRIN (Geometric RIN) architecture, as
shown in Figure 3. GRIN takes as input a noisy single-
channel depth map D ∈ RH×W , containing pixel-wise
djk distances to the camera ranging between ds and df ,
for j ∈ [0, H] and k ∈ [0,W ] and outputs the estimated
noise matrix Nt. Importantly, the depth values are met-
ric, representing physical distances, and we make the de-
sign choice of working with euclidean depth, representing
distance along the viewing ray rjk, rather than the more tra-
ditional z-depth parameterization. Moreover, D is assumed
to be sparse, meaning that specific djk can potentially be
missing. We describe how we address the sparsity chal-
lenge in Section 4.1. The denoising process is conditioned
on an RGB image I ∈ RH×W×3 and corresponding cam-
era intrinsics K. The design of these conditioning vectors
is a key component of GRIN, and is described in details in
Sections 4.2 and 4.3.



4.1. Sparse Unstructured Training

Differently from traditional U-Net architectures, RIN does
not assume any spatial structure in its input tokens X. This
is necessary to enable training from sparse unstructured
data, where there is no explicit concept of neighborhood.
In GRIN, spatial structure is defined by geometric embed-
dings used as conditioning, and once incorporated each to-
ken is treated independently, which enables processing only
parts of the input with available ground truth.

Concretely, during training, we assume ground-truth in
the form of a 2D grid D ∈ RH×W with N < HW valid
pixels. Each valid depth value djk is paired with the cor-
responding RGB pixel value pjk = (u, v)jk and geometric
embedding gijk for conditioning (see Section 4.2 for de-
tails). Note, however, that in the case of very sparse labels
(N << HW ), this could result in few remaining pixels,
limiting the amount of information about the scene context.
Moreover, some areas will never produce valid depth labels
for supervision (e.g., the sky). To address these limitations
we propose a combination of local and global conditioning
which promote training with unstructured sparse data while
still maintaining dense scene-level information.

4.2. GRIN Embeddings

We use two input modalities to condition depth predic-
tions during the GRIN diffusion process: images and cam-
era geometry. Although image-level conditioning has al-
ready been widely used in diffusion models, enabling tasks
such as image-to-image translation [53, 79] and even in-
domain [36, 54] or affine-invariant [38, 74] depth estima-
tion, the use of camera information has only recently started
to be explored [42, 55]. GRIN differs from these methods
in the sense that camera information is used to condition
predictions at a pixel-level, rather than globally (i.e., cam-
era extrinsics in [42] and focal length in [55]). Below we
describe each one of these embeddings in detail.

Image Embeddings are generated using an encoder Fθ,
with learnable parameters θ, to process an input image I
such that F = Fθ(I). Following RIN [35], we use a
single convolutional layer F loc

θ , with kernel size K × K
and Cl output channel dimensions, to directly tokenize I.
This results in a flattened Floc ∈ RHW×Cl feature map
containing patch-wise visual information fjk for each pixel
pjk = (u, v)jk within I.

Geometric Embeddings are generated using informa-
tion from the camera used to obtain I, in the form of a 3× 3
intrinsic K matrix (assumed to be pinhole for simplicity,
although any geometric model can be readily used). Each
pixel pjk from image I is parameterized in terms of its view-
ing ray rjk = K−1 [ujk, vjk, 1]

T , with the camera center
assumed to be at the origin tjk = [0, 0, 0]

T . To increase ex-
pressiveness, we follow the standard approach [27, 28, 45]

of Fourier-encoding these values. Assuming No encoding
frequencies for camera centers and Nr for viewing rays,
the resulting geometric embeddings are of dimensionality
D = 2

(
3(No + 1) + 3(Nr + 1)

)
= 6 (No +Nr + 2). The

resulting embeddings gijk = G(ti, rijk) = E(ti)⊕E(rijk),
where ⊕ denotes concatenation, are used to imbue visual
information with geometric awareness, resulting in features
capable of reasoning over 3D properties such as physical
shape and scale. As shown in previous works, this is a key
enabler of capabilities such as implicit learning of multi-
view geometry [28, 29, 75] and zero-shot transfer of metric
depth across datasets with diverse cameras [27].

Depth Embeddings are generated from ground-truth la-
bels during training, and estimated as predictions during in-
ference. To enable learning from sparse unstructured data,
GRIN operates at a pixel-level, and therefore does not re-
quire latent auto-encoders or tokenizers. However, in agree-
ment with [55], we have independently verified that a log-
scale parameterization leads to improved results when deal-
ing with large range intervals. Specifically, our projection
and unprojection functions mapping djk to and from log-
space d̂jk are defined as:

d̂jk = logb

(
(b− 1)

djk − ds
df − ds

+ 1

)
(3)

djk =
bd̂jk − 1

b− 1
(df − ds) + ds (4)

where b is the logarithm base, that determines how distances
will be compressed at different ranges. Our goal is to make
shorter ranges more robust to residual noise from the diffu-
sion process, without compromising performance at longer
ranges, where this residual noise is less impactful. In our
ablation analysis (Section 5.6) we evaluate different b val-
ues, as well as a linear parameterization.

4.3. GRIN Conditioning

Local Conditioning. To condition the denoising process
with the image and geometric embeddings defined above,
we simply concatenate them to the corresponding depth em-
beddings in the token dimension. As a result, in GRIN we
make a simple yet crucial design choice and, instead of tra-
ditional positional encodings [67], that describe only the 2D
location (u, v)jk of each pixel pjk within I, we use geomet-
ric embeddings gjk to describe each pixel in a 3D reference
frame. This choice guides the denoising process not only to-
wards localized predictions within the image, but also pro-
motes disambiguation between camera geometries (e.g., fo-
cal length, resolution, or distortion). For a 1-dimensional
prediction djk ∈ R, the conditioned vector is defined as
d̂jk = djk⊕f locjk ⊕gjk, projected onto a V -dimensional vec-
tor vjk using a linear layer P loc

1+Cl+D�V . The collection of
conditioned vectors for all HW predictions to be estimated
during the denoising process is given by Vloc ∈ RHW×V .



Figure 3. Diagram of GRIN for monocular depth estimation. An input image I with intrinsics K is used to condition the diffusion
process both locally, by augmenting each pixel to be predicted with geometrically aware visual features; and globally, by introducing
additional scene-level information decoupled from the pixels to be predicted. The resulting tokens are concatenated and attended with the
RIN latent space, generating noise predictions for a particular diffusion timestep.

Global Conditioning. Global image embeddings are gen-
erated using a convolutional encoder Fglob

θ , resulting in
multi-scale feature maps Fglob = [F0,F1, ...,FS ] at S
increasingly lower resolutions. Lower-resolution feature
maps are upsampled, concatenated and flattened to gener-
ate F̂

glob
∈ R

HW
d2

×Cg , where d is the downsampling fac-
tor of the highest encoded resolution and Cg is the con-
catenated channel-wise dimension. These embeddings con-
tain scene-level multi-resolution visual information that is
not tied to any specific pixel-level prediction, but rather
used to promote global consistency during the denoising
process. To promote spatial structure, we use a combina-
tion of image F̂

glob
and geometric G embeddings, the lat-

ter generated from a camera resized to match the former’s
resolution. Similarly to local conditioning, concatenated
embeddings are projected onto V-dimensional vectors us-
ing a linear layer Pglob

Cg+D→V . The collection of M vectors
used to globally condition the denoising process is given
by Vglob ∈ RM×V , and concatenated with Vloc to produce
input tokens X = Vloc ⊕ Vglob ∈ R(N+M)×V .

4.4. Training Procedure

At training time we discard pixels with missing depth in-
formation (i.e., djk = 0), resulting in a V̂

loc
matrix with

varying length N . To improve iteration speed, we also ran-
domly discard a percentage of valid local vectors, thus only
supervising on a subset of L pixels, which leads to faster
cross-attention with the GRIN latent tokens. This is akin
to training on image crops, taken to the extreme by su-
pervising instead on a random subset of pixels. A similar
process is applied to the global vector matrix V̂

glob
(i.e.,

only using a subset G of global vectors), which we have
empirically observed (Section 5.6) that not only leads to

faster iteration speeds but also improves performance. This
is akin to dropout [63], which is known to improve gen-
eralization. The resulting input tokens are of dimension-
ality X̂ ∈ R(L+G)×V . Our training objective is the L2
loss, calculated in this log-depth scale such that L(t) =(
Ntγ(t)− Ñt

)2
, where Nt ∼ N (0, I) is the injected noise

at timestep t ∼ U(0, 1) and Ñt is the GRIN predicted noise
at that timestep. For more information, we refer the reader
to the supplementary material.

4.5. Inference Procedure

At inference time we use the full Vloc and Vglob matrices,
to maximize the amount of available information, although
this is not strictly necessary. In the supplementary material
we ablate the partial use of global vectors during inference,
and show that targeted depth estimation can be done by only
considering a subset of local vectors (i.e., to estimate depth
only on image crops, such as 2D bounding boxes). A ran-
dom noise matrix N1 ∼ N (0, I) ∈ RHW is then sampled,
and conditioned both locally and globally to produce in-
put tokens X ∈ R(HW+M)×V for GRIN. During the de-
noising process, at each timestep t a noise prediction N̂t is
used to guide the generation of depth values for each input
patch. After T iterations, the resulting Ṽ

loc
local vectors

are extracted from X̃ and projected onto a 1-channel vector
containing log-scaled depth predictions, using a linear layer
Pdec
V �1. These predictions are then converted to linear depth

estimates using Equation 4.

5. Experiments
5.1. Training Datasets

We trained GRIN using a diverse combination of in-
door and outdoor datasets from both real-world and syn-



AbsRel↓ RMSE↓ δ < 1.25↑ AbsRel↓ RMSE↓ δ < 1.25↑ AbsRel↓ RMSE↓ δ < 1.25↑ AbsRel↓ RMSE↓ δ < 1.25↑
KITTI [17] DDAD [23] nuScenes [4] VKITTI2 [3]

AdaBins∗ [1] 0.058 2.360 0.964 0.147 7.550 0.766 0.445 10.658 0.471 0.133 6.248 0.803
NeWCRFs∗ [78] 0.052 2.129 0.974 0.119 6.183 0.874 0.400 12.139 0.512 0.117 5.691 0.829

ZeroDepth [27] 0.064 2.987 0.958 0.100 6.318 0.889 0.157 7.612 0.822 0.099 4.209 0.905
ZoeDepth† [2] N/A N/A N/A 0.138 7.225 0.824 0.198 8.245 0.809 0.105 5.095 0.850
DMD [55] N/A N/A N/A 0.108 5.365 0.907 N/A N/A N/A 0.092 4.387 0.890
Metric3D [76] 0.058 2.770 0.964 N/A N/A N/A 0.147 7.889 — 0.089 4.201 0.904
UniDepth [49] 0.047 2.000 0.980 0.097 5.399 0.919 0.143 7.425 0.839 0.078 3.850 0.923

GRIN 0.046 2.251 0.983 0.093 5.307 0.922 0.138 7.217 0.857 0.074 3.501 0.937

NYUv2 [46] SunRGBD [61] DIODE (indoor) [66] DIODE (outdoor) [66]

AdaBins∗ [1] 0.103 0.364 0.903 0.159 0.476 0.771 0.443 1.963 0.174 0.865 10.350 0.158
NeWCRFs∗ [78] 0.095 0.334 0.922 0.151 0.424 0.798 0.404 1.867 0.187 0.854 9.228 0.176

ZeroDepth [27] 0.100 0.380 0.901 0.121 0.347 0.864 0.309 1.779 0.377 0.714 7.880 0.219
ZoeDepth† [2] N/A N/A N/A 0.123 0.356 0.856 0.331 1.598 0.386 0.757 7.569 0.208
DMD [55] N/A N/A N/A 0.109 0.306 0.914 0.291 1.292 0.380 0.553 8.943 0.187
Metric3D [76] 0.094 0.337 0.926 0.104 0.319 0.919 0.268 1.429 — 0.414 6.934 —
UniDepth [49] 0.063 0.232 0.984 0.106 0.316 0.918 0.237 1.329 0.408 0.401 6.491 0.278

GRIN 0.058 0.209 0.980 0.098 0.301 0.927 0.221 1.128 0.439 0.393 6.011 0.303

Table 1. Zero-shot metric monocular depth estimation results on various indoor and outdoor datasets. Numbers in italics indicate results
obtained by evaluating specific methods on additional benchmarks using publicly available code and pre-trained models. UniDepth [49]
was re-evaluated in most benchmarks because it does not report standard metrics in them (for a fair comparison, we used the UniDepth-C
model, that also rely on input intrinsics and has the same ResNet backbone as ours). ∗ indicates state-of-the-art methods trained and
evaluated on the same dataset, for comparison. † indicates methods that do not require camera intrinsics. N/A indicate methods that cannot
be evaluated zero-shot in a particular benchmark, because the benchmark dataset is used during training.

thetic sources. These include Waymo [64], with 990, 340
LiDAR-annotated images from 5 cameras, as a source of
real-world driving data; LyftL5 [33], with over 1, 000
hours of data collected by 20 self-driving cars, for a to-
tal 351, 029 LiDAR-annotated images from 7 cameras; Ar-
goVerse2 [72], with 3, 909, 297 LiDAR-annotated images
from 7 cameras, for a total of 1, 000 sequences taken from
the Sensor split; Large-Scale Driving (LSD) [27], with
1, 057, 920 LiDAR-annotated images from 6 cameras, col-
lected from multi-continental vehicles; Parallel Domain
(PD) [24, 25], with 567, 000 images from 6 cameras con-
taining procedurally generated photo-realistic renderings
of urban driving scenes; TartanAir [69], with 613, 274
stereo images rendered from diverse synthetic scenes; Om-
niData [12], composed of a collection of synthetic datasets
(Taskonomy, HM3D, Replica, and Replica-GSO), for a total
of 14, 340, 580 images from a wide range of environments
and cameras; and ScanNet [8], with 547, 991 RGB-D sam-
ples collected from 1, 413 indoor scenes.

Note that most of these datasets contain sparse depth
maps from LiDAR reprojection, which makes then unsuit-
able for traditional latent diffusion methods, but that can be
directly ingested with our proposed pixel-level approach.

5.2. Implementation Details

Our models were implemented in PyTorch [48]. We used
the LION optimizer [7], with batch size b = 1024, weight
decay of wd = 10−2 (applied only to layer weights), β1 =

0.9, β2 = 0.99, and a warm-up scheduler [21] with linear
increase for 10k steps followed by cosine decay. We use
DDIM [60] with 1000 training and 10 evaluation timesteps,
as well as EMA [40] with β = 0.999. Additional details are
available in the supplementary material.

During training, input images (and intrinsics) are first re-
sized to fit within a 640×512 resolution, and then randomly
resized between [0.5, 1.5] of this resolution, preserving as-
pect ratio. If the result is larger than 640×512 it is randomly
cropped, otherwise it is padded, so it can be collated as part
of a batch. The padded portions of each image are discarded
during image embeddings calculation, and not used in the
local and global conditioning stages. The same augmenta-
tion procedure is applied to ground-truth depth labels, albeit
with different resizing parameters. We also apply horizontal
flipping and color jittering as additional augmentations.

For efficiency purposes, training was conducted in two
stages, for a total of 200k iterations steps. For the first 120k
steps, a target resolution of 320 × 256 (half the original)
was used. Moreover, for the first 40k steps only synthetic
datasets were used, as a way to promote (a) sharper bound-
aries, due to the dense labels; and (b) reasoning over the
full 200m range, with areas further away such as the sky be-
ing clipped to still serve as supervision. The remaining 80k
steps used all training datasets, shuffled to ensure a similar
ratio of indoor and outdoor samples per batch, as well as
real-world and synthetic samples. The second stage used
this same training strategy for an additional 80k steps, with



Figure 4. Qualitative zero-shot metric depth estimation results
using GRIN on various indoor and outdoor datasets. The same
model was used in all evaluations. For more examples, please refer
to the supplementary material.

images at the target resolution and no additional changes.
In total, training takes roughly 5 days with distributed data
parallel (DDP) across 32 A100 GPUs, with mixed precision
format. Inference for a 640× 384 image can be done in 0.8
seconds on a single similar GPU (faster than Marigold).

5.3. Zero-Shot Metric Depth Estimation

We evaluated the zero-shot capabilities of GRIN on 8
standard indoor and outdoor monocular depth estimation
benchmarks. These include KITTI [17], VKITTI2 [3],
DDAD [23], nuScenes [4], DIODE [66] (indoor and out-
door), NYUv2 [46], and SunRGBD [61]. As baselines,
we considered recently published state of the art meth-
ods [2, 27, 49, 55, 76] that also target zero-shot metric depth
estimation. For a fair comparison, we used the standard
evaluation protocol for each of these benchmarks, and when
necessary re-evaluated models under the same conditions
with official code and pre-trained checkpoints.

Quantitative results are reported in Table 1, showing that
GRIN outperforms all considered methods and establishes a

Method KITTI NYUv2 DDAD DIODE ETH3D

Marigold 0.071 0.055 0.297 0.308 0.065
DepthAnything N/A N/A 0.230 0.066 0.126

GRIN NI 0.048 0.049 0.198 0.058 0.061

Table 2. Zero-shot relative monocular depth estimation results
(AbsRel). All methods use test-time scale alignment, and do not
require intrinsics as input. N/A indicates methods trained on the
target dataset. GRIN NI indicates our model (Table 1) evaluated
without intrinsics.

new state of the art in zero-shot metric monocular depth es-
timation. In particular, we outperform Metric3D [76], that
proposes to overcome the geometric domain gap by pro-
jecting training data onto a canonical camera space. GRIN
follows a different paradigm and instead exposes the net-
work to this information, thus enabling the implicit learn-
ing of robust 3D-aware geometric priors that can be di-
rectly transferred across datasets. Interestingly, we also out-
perform ZeroDepth [27], that uses a similar approach to
bridge the geometric domain gap. Similarly, we also out-
perform DMD [55], a diffusion-based approach that relies
on field-of-view conditioning and synthetic data augmen-
tation to increase camera diversity. We argue that our ap-
proach of directly ingesting sparse data is more scalable,
since it enables supervised pre-training on much more di-
verse real-world datasets without relying on inaccurate pre-
processing strategies to artificially generate dense ground-
truth [11, 36, 38, 54–56, 74]. Lastly, we also outperform in
almost all metrics (22 / 24) the very recent UniDepth [49],
that directly predicts 3D points instead of depth maps,
which enables the joint estimation of camera intrinsics. We
believe GRIN could be modified to operate in a similar set-
ting, which would potentially further improve performance,
however this is left for future work. Qualitative examples of
zero-shot GRIN predictions are shown in Figure 4.

5.4. Zero-Shot Relative Depth Estimation

Even though our main focus is on metric depth estimation,
here we explore how GRIN can also be applied in the con-
text of relative depth estimation, where predictions are ac-
curate up-to-scale. In this setting, camera intrinsics are not
required, since the model does not need to reason over phys-
ical 3D properties of the environment, focusing instead on
2D appearance cues. Thus, we replace them with default
pinhole values: fx = cx = W/2 and fy = cy = H/2,
and reutilize our pre-trained metric model (Table 1). Re-
sults of this experiment are shown in Table 2, indicating
that GRIN also outperforms the current state-of-the-art in
relative depth estimation across multiple datasets, with the
added benefit that it can also produce metric depth estimates
if intrinsics are available.



(a) RMSE results with varying
confidence levels.

(a) Qualitative examples of uncertainty maps, given by the standard deviation from multi-
ple samples. More examples are available in the supplementary material.

Figure 5. Uncertainty estimation analysis using multiple GRIN samples. In (a), Depth and uncertainty maps are calculated taking the
median and standard deviation of s = 10 samples. In (b) we show improvements in depth estimation by only evaluating a percentage of
pixels with lower standard deviation. More examples can be found in the supplementary material.

KITTI NYUv2
Method Intrinsics AbsRel RMSE AbsRel RMSE

Metric3D ✓ 0.058 2.770 0.083 0.310
ZoeDepth - 0.057 2.586 0.077 0.277
ZeroDepth ✓ 0.053 2.087 0.074 0.269
DMD ✓ 0.053 2.411 0.072 0.296
DepthAnything - 0.046 2.180 0.056 0.264

GRIN FT NI - 0.043 1.953 0.051 0.251

Table 3. In-domain metric monocular depth estimation results.
All methods were fine-tuned on the training splits of the validation
datasets. GRIN FT NI indicates our model (Table 1) fine-tuned
without intrinsics.

5.5. Fine-Tuning Experiments

Although our main focus is on zero-shot depth estima-
tion, here we explore how GRIN can also be fine-tuned in-
domain to further improve performance in a particular set-
ting, at the expense of generalization. Note that in this set-
ting intrinsics are also not required (see Section 5.4) due to
the absence of the geometric domain gap, since the model
is over-fitting to a single camera geometry, and therefore
can generate metric predictions without the need to reason
over physical 3D properties. Results are shown in Table 3,
indicating that GRIN also outperforms other metric depth
estimation methods that use in-domain training data.

5.6. Ablation Study

Here we ablate different aspects and design choices of
GRIN, with quantitative results in Table 4. First, we ablate
the use of different forms of local and global conditioning.
In (A) we show that removing image embeddings for local
conditioning leads to noticeable performance degradation.
We attribute this behavior to the lack of visual information
for pixel-specific denoising, that now can only rely on geo-
metric information, which is locally smooth and struggles to
capture sharp discontinuities. Similarly, in (B) we show that
removing global conditioning also significantly degrades
performance, due to the lack of scene-level context for con-
sistent local predictions. In (C) and (D) we explore differ-

Method
KITTI NYUv2

AbsRel RMSE δ < 1.25 AbsRel RMSE δ < 1.25

A w/o local 0.057 2.624 0.941 0.079 0.301 0.944
B w/o global 0.074 2.973 0.914 0.092 0.431 0.913

C linear projection 0.046 2.178 0.985 0.065 0.271 0.972
D log-e projection 0.049 2.465 0.971 0.055 0.198 0.982

E single sample 0.048 2.498 0.973 0.061 0.258 0.971

GRIN 0.046 2.251 0.983 0.058 0.209 0.980

Table 4. Ablation study of different design choices.

ent depth parameterizations, namely linear and natural loga-
rithm, each emphasizing different ranges. The linear param-
eterization promotes more fine-grained long-range predic-
tions, while log-e focuses on short-range predictions. Our
log-10 parameterization is a compromise, producing a rea-
sonable trade-off as evidenced by our reported numbers.
In (E) we evaluate single-sample estimates, which leads to
noisier predictions as shown by a higher RMSE. In Figure 5
we show uncertainty maps from multiple samples, and how
these can improve depth estimation by focusing on predic-
tions with lower uncertainty [27].

6. Conclusion

We introduce GRIN (Geometric RIN), a diffusion-based
framework for depth estimation designed to circumvent two
of the main shortcomings shown by recent diffusion meth-
ods when applied to this task, namely (i) the inability to
properly leverage sparse training data; and (ii) the lack of
specialized auto-encoders. We build upon the highly ef-
ficient and domain-agnostic RIN architecture, and modify
it to include visual conditioning with 3D geometric em-
beddings, which enables the learning of priors anchored in
physical properties. To directly ingest unstructured ground-
truth supervision, we operate at a pixel-level, and introduce
global conditioning as a way to preserve dense scene-level
information when training with sparse labels. As a result,
GRIN establishes a new state of the art in zero-shot met-
ric monocular depth estimation, outperforming published
methods that rely on large-scale image-based pre-training.
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