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Abstract

Following the great success in natural language processing, transformer-based models have
emerged as the competitive model against the convolutional neural networks in computer
vision. Vision transformer (ViT) and its subsequent variants have exhibited promising
performance in tasks such as image classification, object detection and semantic segmentation.
The core of vision transformers is the self-attention mechanism, which models the long-range
dependency of different tokens. Conventionally, the attention matrix in self-attention is
calculated by the scaled dot-product of query (Q) and key (K). In this case, the attention
weight would depend on norm of Q and K as well as the angle between them. In this paper,
we propose a new attention mechanism named angular self-attention, which replaces the
scaled dot-product operation with the angular function in order to effectively model the
relationship between tokens. In particular, we propose two forms of functions: quadratic
and cosine functions, for our angular self-attention. Based on angular self-attention, we
design a new vision transformer architecture called dual-windowed angular vision transformer
(DWAVIT). DWAVIT is a hierarchical-structured model characterized by the angular self-
attention and a new local window mechanism and the new model is supposed to achieve
competitive performance on the downstream tasks. We evaluate DWAVIT on multiple
computer vision benchmark , including image classification on ImageNet-1K, object detection
on COCO, and semantic segmentation on ADE20k. We also validate the effectiveness of
our angular self-attention by investigating the performance of vision transformers with the
scaled dot-product operation replaced by our angular function on several tasks.

1 Introduction

Vision transformers have received tremendous attention since its emergence. Inspired by the success of the
transformer (Vaswani et al [2017)) in the sequence modeling, Dosovitskiy et al. (Dosovitskiy et al., 2021))
proposed the initial architecture of vision transformer which can be regarded as the encoder part of the
original transformer (Vaswani et al.| [2017). Compared to convolutional neural networks (CNNs), the vision
transformer is featured by its ability to transform the spatial visual representation learning on the image
into the token-to-token learning, by partitioning the image into multiple patches. Benefited from the ability
of the self-attention mechanism that can model the long-range dependence of tokens in the image, vision
transformers exhibit on par or better performance against CNNs in many computer vision tasks, such as
image classification (Dosovitskiy et al., 2021} Dong et all 2022)), object detection (Carion et al., [2020; [He
& Todorovic) [2022; [Zhang et al., |2022), and semantic segmentation (Zheng et al., 2021} Xie et al.| 2021]).
Despite the merits mentioned above, the shortcoming of vision transformer is also obvious. The low level of
the inductive bias requires more large datasets such as Image21K (Deng et al.l |2009) and JFT300M (Sun
et al., 2017) for model training. Besides, the time complexity of the computation of the self-attention is
quadratic to the number of input tokens, which prohibits the application of vision transformers on tasks
involving high-resolution images.

To deal with the excessive computation of the self-attention, the subsequent work (Liu et al.l 2021} [Dong
et al.| [2022; [Huang et al., |2019; |Wang et al.| |2020; [Xia et al., 2022) propose different local-window mechanisms
to restrict the computation of self-attention in a local window. For instance, the pioneering work Swin
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Transformer adopts the shift windows to reduce the workload of computing self-attention
and to facilitate the interaction of local windows. CSwin (Dong et al., 2022) proposes the cross-shaped
window, in which the image is split into the horizontal and vertical strips in parallel. Another work
presents flexible local window, which could be implemented in a data-dependent way.

Another branch of work (Qin et al.; Katharopoulos| Layer t Layer t+1
let al., 2020; [Peng et al.; Choromanski et al.) focuses :
on the in-depth understanding of the self-attention » 2Py T
mechanism and proposes new formulations to calcu- i 4 e s
late the attention scores between different pairs of [T | T
tokens. From the perspective of kernel learning, the L -
interaction of the query and key can be modeled by
specific kernel function, and the scaled dot-product
operation can be replaced by the softmax-free oper-

ation in the self-attention. Usually, the softmax-free (@
operation can lower the time complexity of the com- Figure 1: The illustration of the dual window mecha-
putation in self-attention. nism. The image is partitioned into (a) even number of

local windows and (b) odd number of local windows in
two layers, respectively. The size of the local window

In t ¢ the local wind dual wi is flexible and the tokens lie on the border of one local
1 terms ol the local window, we propose a dual win- window would reside in the interior of the local win-

dow mechanism. As shown in Fig[l} similar to Swin dow in the following layer. The connection of the local

Tran§ former (Liu et al} 2021), the local window is window in each layer can be bridged by the operation
also imposed on the feature maps for the purpose of

reduction of the time complexity. However, unlike
the previous work in which the size of the local window is fixed, the size of the local window is flexible and is
adjustable according to the size of the feature maps. Besides, to mitigate the problem of lacking connections
between local windows, the number of local windows is different at layer ¢ and layer ¢ + 1. For instance, there
are even number of the local windows at layer ¢t but odd number of local windows at layer ¢t + 1. In this case,
the tokens that lie in one local window from the first feature map would belong to another local window in
the following features map. Since the features maps are partitioned into different number of local windows,
the coordinates of the local windows in the adjacent feature maps are different. The tokens in the overlapping
area of local windows can bridge the connection of local windows since these tokens would participate in the
self-attention calculation within each local windows. With the dynamic interaction of the local windows, the
receptive field can be enlarged implicitly, and the ability to model long range relations can also be enhanced.

In this paper, we present new designs on the local win-
dow mechanism and the operation in self-attention.

of the local window in the next layer.

In traditional self-attention mechanism, the similarity of the query and key is computed by the scaled dot-
product. Thus, the similarity would depend on the norm of query and key as well as the angle between them.
Inspired by previous work (Wang et al., 2018 |Zhao et all [2020), we notice that scaled dot-product function
is the only choice to model the relationship of tokens. In this paper, we propose the angular self-attention, in
which the similarity of query and key is only dependent on the angle between them. To reduce the impact of
the norm of the query and key on the relation of tokens, the query and key are L.2-normalized, and query
and key are distributed on the unit sphere. The relationship of query and key would be determined by the
angle between them, and smaller angle could yield larger attention score between a pair of query and key.
In angular self-attention, we adopt two forms of functions: quadratic and cosine functions, to model this
relationship, and the similarity is further enlarged by the temperature scaling. Our experiments show that
the angular self-attention can serve as the competitive alternative for the traditional scaled dot-product
self-attention.

Jointly combining the dual window mechanism and angular self-attention, we propose a novel hierarchical-
structured vision transformer backbone called dual-windowed angular vision transformer (DWAVIT). In
DWAVIT, the attention score for each pair of query and key is modeled by the temperature-scaled
quadratic/cosine functions, and experimental results validate that our quadratic/cosine functions are effective
in modeling the relationship between tokens. Besides, dual window mechanism is also adopted in our new
backbone. The feature maps are partitioned into even/odd number of local windows in the layers of DWAVIT
alternatively. The dual window mechanism can substantially reduce the computation cost (see Sec. in
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the backbone and also preserve the ability to model long-range relationship between tokens. With proper
partition of the feature maps, our DWAVIT can be applied to the downstream tasks (e.g., object detection,
semantic segmentation) which involve high-resolution images. The major contributions of this paper are as
follows:

e We propose the dual window mechanism to reduce the computation cost in the self-attention
calculation . By partitioning the feature maps in even/odd number of local windows in an alternative
way, the lack of connection between local windows can be alleviated.

¢ We propose the angular self-attention in which the scaled dot-product operation is replaced by
the temperature-scaled quadratic/cosine functions. Our proposed angular self-attention can model
the long range relationship of tokens and is the competitive alternative for the traditional scaled
dot-product self-attention.

¢ The dual-windowed angular vision transformer (DWAVIT) is proposed by jointly combining the dual
window and angular self-attention. The DWAVIT is evaluated on a series of dense prediction tasks
and achieve competitive performance on ImageNet image classification, COCO object detection, and
ADE20K semantic segmentation.

2 Related Work

Vision Transformers. The pioneering work (Parmar et al.,[2018; |Wang et all 2018)) first introduced the self-
attention mechanism to the computer vision field and some early work Ramachandran et al.| (2019));|Cordonnier|
applied self-attention in the computer vision tasks. Dosovitskiy et al. (Dosovitskiy et all [2021)
proposed the transformer-based backbone architecture called vision transformers (ViTs) (Dosovitskiy et al.
. With the new paradigm of representative learning, ViTs achieve on par or better performance
on image classification, object detection and semantic segmentation against CNNs. Since the emergence
of vision transformers, plenty of work (Touvron et all, [2021a} 2022)) has been done on this field and the
subsequent work aims to improve the ViTs on different aspects. DeiT (Touvron et al., |2021a; 2022)) proposes
new training recipe to reduce the high demand of ViTs for the very large datasets. With the techniques
provided by DeiT (Touvron et al., 2021a; [2022), ViTs can pretrained from scratch on smaller datasets such
as ImageNet-1K (Deng et all [2009) compared to Image21K (Deng et al.| [2009)) and JFT300M (Sun et al.
2017). Besides, ViTs also borrow the idea form the modern CNN architectures (He et all [2016; Howard|
et al] [2017; [Sandler et al, 2018} [Tan & Lé, 2019} [2021} 2019} [Huang et al 2017} [Liu et all, 2022} [Rao et al}
Wang et al 2022a; [Dai et al., [2021)) to improve the ability of representative learning and develop hierarchical
pyramid structure to handle the multi-scale feature maps. The pyramid-structured ViTs usually have four
stage and in each stage the size of the feature maps is half of that in the previous stage while the dimension
is doubled. Another line of work (Wu et all [2021} |Guo et al., [2022} Xiao et all [2021} |Tu et al.l [2022} |Yuan|
let al., 2021} |Srinivas et al.l [2021; |Chen et al.| [2022; Mehta & Rastegari; Peng et al., 2021)) incorporates the
convolution operation into the architecture of the vision transformers at different location. The performance
of the hybrid vision transformers are further improved by fusing the local information learned by CNNs and
global dependence information obtained by self-attention. To mitigate the computation cost of the global
self-attention which is quadratic to the size of the input features. Some work (Lee et all 2022; |Chen et al.|
2021)) learn the contextual information from the multi-scale patch embedding. An extensive work (Dong
et al.] [2022a}, 2021} [Xia et all [2022; [Wang et all, 2020} [Hassani et al. 2022} [Han et all [2021}
Huang et al., [2019; Ren et al., [2022)) proposes different local window mechanism to reduce the computation
cost. The self-attention is performed within the local windows and the connection of different local window is
achieved by some techniques such as shifted window or cross-shaped window
. In our paper we propose a new local window mechanism called dual window and the connection of
local window can be achieved in a simple way.

Self-attention. Apart from the traditional scaled dot-product self-attention, different forms of self-attention
mechanism are also proposed. Early work (Wang et al.| 2018} Zhao et al.| [2020) explored the general form of
the function in the self-attention and proposed several operations such as dot-product and concatenation.
XciT proposed cross-covariance attention (XCA) in which the attention is performed
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Figure 2: The illustration of our proposed dual-windowed angular vision transformer (DWAViT). Similar to
previous work our backbone adopts the hierarchical pyramid structure. The core module in our backbone is
the dual-windowed angular multi-head self-attention (DWA MSA) which jointly combines the dual window
mechanism and angular self-attention. In each block the feature maps are divided into even/odd number of
local windows. Besides. The depthwise convolution provides the conditional positional embedding.

on g over channels instead of tokens. MaxVit and DaViT (Ding et al., [2022) proposed
grid attention and channel group attention, respectively. These attentions are also performed on channels
dimension rather than spatial dimension. To reduce the the computation cost, the efficient self-attention
is proposed to approximate the traditional softmax self-attention under the lens of kernel learning. Linear
transformer (Katharopoulos et all [2020) suggests that softmax function can be removed and the similarity of

tokens can be obtained by pure dot product of query and key. RFA (Peng et al)) and performer (Choromanski
et al)) approximate the softmax attention with positive random features. CosFormer (Qin et al.) proposed
cos-based re-weighting self-attention in which the attention score is calculated by the weighted dot-product

of query and key. In SOFT (Lu et al. [2021)), the dot-product similarity is replaced by the Gaussian kernel
function. In our paper, we also propose a new self-attention mechanism called angular self-attention, in which
the similarity of tokens is calculated from a quadratic function.

3 Methodology

3.1 Dual Window

As shown if Fig [T} the feature maps is partitioned into even number of local windows and odd number of local
window at layer t and layer t+1 alternatively. The feature maps is padded if necessary. Suppose the original
size of feature map is h x w. after the padding, the size of the padded feature map is A’ x w’. The number of
the local window is Neyen, = ngven(Nood = niod). Neven (Nood) 18 the number of local window per side. Thus,
the size of local window is —— #(ﬁ X ). Compared to Swin Transformer that
bridge the connection of different local windows by complicated techniques such as cycle shift, we solve this
problem in a simple way. Notice that tokens lie on the border of one local window would reside in the interior
of the local window in the following layer. Therefore, the tokens on the border of the local window at one
layer can participate in the self-attention calculation with the tokens from other local windows in the next
layer. The dynamic interaction of the local windows can facilitate the propagation of the information between
local windows, The actual size of receptive field would be larger than the size of local window and the ability
to model the long-range relationship of tokens would also be enhanced.
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3.2 Angular Self-Attention

Self-attention can be regarded as a weighted combination of the input sequence, where the weights are
determined by the similarities between elements of the input sequence. We use O; € R to denote the
generated embedding of token i from self-attention. Then the general form of self-attention could be written
as:
Kj)

0; = 7‘/ 1
B S ak .
where S(-) represents the similarities between Q and K and it has many forms according to the previous
work (Wang et al. 2018} [Zhao et al), [2020). if S(Q;, K;) = exp(Q; - K;/v/dy,), Eq. [I] would become the scaled
dot-product attention as we commonly see in vision transformers. The formulation of scaled dot-product
self-attention in vision transformer is:

T

. QK
Attention(Q, K = Softmax . 2
ttention(Q, K, V) = Soft a(\/ch)V (2)
In dot-product self-attention, the attention weight is generated from the scaled dot-product between Q and K.
The dot-product of Q; and K; can be expanded as Q; - K; = ||Q;]|||K|| cos 6. It indicates that the similarity
would depend on the L2 norm of @ and K as well as thelr angles #. In our paper, we propose angular
self-attention, in which we use angular function s(6) to replace the conventional scaled dot-product operation.
Then the self-attention could be reformulated as:

exp(s(6i;)/T)
0= St 0)/7) ®)

where 0;; = arccos(QZ . ) Q and K are L2 normalized query and key, respectively. 7 is the temperature
hyper-parameter that regulates the attention weight of each token.

When Q and K are normalized, they can be distributed on the surface of the unit sphere. Then the attention
weight obtained from our angular self-attention is solely dependent on the angle §. Through our training
the angles 6 between different Q and K would be adjusted to model the relationship of different tokens and
make the vision transformer achieve strong representative ability. Thus, we propose two alternative functions
for s(f) in Eq. [3] They are cosine function s(f) = cos(f) and quadratic function s(f) =1 — 5. In angular
self-attention, the similarity of @ and K would solely depend on their angles. The matrix form of angular
self-attention could be formulated as:

A A

Attention(Q, K,V) = Softmax(%)V
T
4
) 1—402/7? @
Attention(@, K, V) = Softmax(—————)V,
-

where © = arccos(Q ‘K ). Q and K are L2 normalized query and key, respectively.

The cosine similarity and quadratic distance has common mathematical properties. Both functions are
descending when 6 € [0, 7], which means that the tokes with larger angles would have less weaker relationships.
Specifically, when 6 € [0,7/2], cos ~ 1 — 62/2 ~ 1 — 46% /72, when 0 € (7/2,7], 1 — 462 /72 < cosf < 0,
which means that tokens with angles larger than 7/2 have weaker relationships in quadratic function than
that of in cos function. Our experiments suggest that in most tasks like image classification and object
detection, the performance of quadratic and cosine functions is comparable and the difference is very slight
(<0.5%). However, in semantic segmentation, the performance of cosine function is better than that of
quadratic function (>1.0%).

3.3 Overall Architecture

We replace the traditional scaled dot-product self-attention with our angular self-attention, and integrate
the dual window mechanism to build our dual-windowed angular vision transformer (DWAVIT). The overall
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Table 1: The details of the DWAVIT variants.

Models #Dim #Blocks #Heads #Param(M) #FLOPs(G)
DWAVIiT-Tiny  [64,128,256,512] [2,4,18,2] [1,2,4,8] 92.7 4.2
DWAVIT-Small [80,160,320,640] [3,6,21,3] [1,2,4,8] 44.6 8.2
DWAViT-Base  [96,192,384,768] [4,8,24,4] [1,2,4,8] 77.4 14.3

illustration of our proposed dual-windowed angular vision transformer (DWAVIT) is illustrated in Fig
Similar to the previous work (Wang et al., 2021} [2022b; Ding et al.l [2022; [Fan et all [2021} [Li et al. 2022}
let all 2021} 2022a)), the DWAVIT also adopt the hierarchical pyramid structure that take advantage of the
multi-scale resolution of feature maps for the dense prediction task. The size of the input image is H x W x 3.
Instead of adopting the convolutional layer with large kernel, we follow the work (Xiao et al., |2021) and
leverage the two stacked convolutional layer as the stem to generate patch embedding. For each convolutional

layer, the kernel size is 3 x 3 and the stride is 2 x 2. The size of the output from the stem is % X % x C.

The DWAVIT consists of four stages in which the
size of the feature maps is half of that from previ-
ous stage while the dimension is doubled compared
to that from previous stage. Between two adjacent
stage we adopt a convolutional layer with kernel size
of 2 x 2 and stride of 2 to downsample the feature
maps. Each stage consists of multiple blocks which
include the depthwise convolution
that generates the conditional positional embedding
(CPE) (Chu et al., 2021b) , the dual-windowed an-
gular multi-head self-attention (DWA MSA) and
feed-forward network (FFN). Compared to absolute
positional embedding (APE) (Vaswani et all [2017)

that could only provide the the positional informa-
tion for the fixed length of sequence, The CPE can 1 1
provide flexible positional information adaptive to [ Q ] [ K ] 4
various length of input sequence that is often seen Localized 1 Localized
in the downstream tasks. Relative positional em-
bedding (RPE) (Liu et al, 2021} [Shaw et al, 2018) Lo ) [« J [ v ]
provide the relative positional information within T Linear Projection f
the window. However, since the size of window is
different in each stage, we don’t adopt the RPE in

’ X
our DWAVIT. D

The dual-windowed angular multi-head self-attention
(DWA MSA) serves the core function for our back-
bone. It jointly combines the dual window mecha-
nism and angular self-attention. The details of DWA
MSA is illustrated in Fig[3] Suppose the input fea-
ture is X € RPXWXP N = N_yen OF Nyoq is the
number of local windows and n = v/N is the number
of local windows per side. After linear projection,
we obtain query, key and value Q, K, V € RF*wXD Instead of splitting the X into smaller local windows,
we split () and K into N local windows. The size of the local window is % X % The b’ and w’ are the
height and width of the padded feature maps. In each stage, the partition with even/ood number of windows
take turns and the value of Neyen(Nood) vary according to the size of the feature maps. After the partition,
for k' head, we obtain the localized query Q* = {QF,Q5%,...,Q%} and key K* = {K¥ K},..,K%}. the
localized query and key are L2 normalized and the angle matrix © is calculated from the normalized query
and key. Next the new embedding is calculated from the localized query, key and value by Eq. @] The
new feature maps of each local window is obtained by the concatenation of the embedding from each head

Figure 3: The illustration of the pipeline in the dual-
windowed angular multi-head self-attention (DWA
MSA). The Q, K and V are localized by dividing them
into a couple of local windows. The traditional scaled
dot-product operation is replaced by the temperature-
scaled angular function in the calculation of attention
matrix
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X; = concat(X}, X?,..., XJ). K is the number of heads. We concatenate the feature maps of each local
window to form the complete feature map X = concat(j(l7 Xo, . )N(N). The size of X is larger than that of
original feature map. To restore it to the original size, the final feature map is obtained from X with slice
operation:

X = X[top : h — bottom, left : w — right], (5)

where top, bottom, left and right are the size of padding on the top, bottom,left and right of the feature
maps, respectively. With all the components aforementioned above, the pipeline of the block in our DWAVIT
can be formulated as:

Z* = DWConv(X*~1) + X1,

X, = DWA-attention(LN(Z*%)) + Z°, (6)
X, = FFN(LN(X))) + X/,

where X*~! denote the output feature from the £** block in the backbone and DWConv denotes the depthwise
convolution.

In our DWAVIT, there are strong connections between the two key components: angular self-attention and
dual local window mechanism. On one hand, The dual window mechanism can greatly relieve this computation
cost by dividing the large feature maps into smaller ones. On the other hand, our empirical study suggests
that our angular self-attention can achieve better performance with our dual local window techniques than
that with previous local window techniques (i.e., Swin Transformer 2021)). To wrap up, the two
proposed techniques (dual windows and angular self-attention) have strong mutual connections and are two
indispensable components in our DWAVIT.

3.4 Architecture Variants

We build three variants of DWAVIT with different number of parameters and FLOPs, namely DWAViT-Tiny,
DWAVIT-Small and DWAViT-Base. For all the variants, the number of local window in each stage is set to
(64,49), (16,9), (4,1), (1,1) in image classification, respectively. In stage one, the size of the local window
would be 7 x 7 and 8 x 8 in two consecutive blocks. For the downstream tasks such as object detection and
semantic segmentation, since the size of the input image is larger, the number of local windows in DWAViT
is also different. The details of three DWAVIT variants are illustrated in Table [1l

3.5 Time Complexity Analysis

Suppose the original size of feature map is h x w and the dimension is C. After padding the size of feature
maps become b’ X w’. The total number of local window is N. The time complexity of the linear projection
is 4hwC?. Since the self-attention is performed on the padded feature maps, the time complexity for the
self-attention calculation is 2(h’w’)2C//N. Thus, the total time complexity of our DWA MSA is:

Q(DWA MSA) = 4hwC? + 2(h'w')*C/N. (7)

As illustrated in Eq. [7 In order to reduce the time complexity, we should choose a large value of N while
keeping the h’ and w’ as close as to the original value. Note that though angular self-attention includes some
operations like arccos and L2 normalization, they do not increase the time complexity. However, the memory
demand of angular self-attention is larger than that of traditional self-attention.

3.6 Theoretical Analysis

As aforementioned, we propose quadratic and cosine functions to model the relationships of tokens. Compared
to the scale dot-product function, the difference of our method is that we map the Q and K features on
the unit sphere and the relationship of tokens is only dependent on the angles between them. To better
understand the angular self-attention, it is essential to investigate the relationship of tokens in our method.
Thus, we provided the Proposition to analyze this problem.
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Proposition 1 Suppose the angles between the query of a token and the keys of all the tokens match
Op <01 <---<0jy_1. J is the total number of the tokens. In angular self-attention, the embedding of the
token O; o< Vo +w1Vi + -+ +wy_1Vj_1, where wy = eXp(M) € (0,1). s(9)=1- 47%2 for quadratic
self-attention and s(0) = cos @ for cosine self-attention.

The proposition states that the embedding of a token can be regarded as the combination of the value vectors
with the relative weight denoted by wy. The relative weight of the value vector with smallest angle to the
target query is normalized to 1. And the relative weight of a value vector is smaller if the corresponding
angle is larger. The proposition suggest the larger contribution of the value vector to the embedding of the
target token with smaller angles between them. The proof can be found in Appendix.

4 Experiments

In this section, we evaluate our proposed DWAVIT on ImageNet-1K (Deng et all 2009) classification,
COCO object detection, and ADE20K (Zhou et al., [2017) semantic segmentation. Besides,
we also implement the ablation study to investigate the effectiveness of angular self-attention and compare the
results of angular self-attention against that of traditional scaled dot-product self-attention on benchmarks.

4.1 ImageNet-1K Classification

this experiment we adopt the same training recipe as previous work (Touvron et al.| [2021a; [Li et al. 2022}
let al., 2022; Dong et al., 2022) for fair comparison. The training strategies include repeated data augmentation
methods and the EMA (Polyak & Juditskyl, [1992). The total training epoch is 300 with the first 20 epochs
as warm-up. We adopt the AdamW (Kingma & Ba), [2014) algorithm to optimize the model. The initial
learning rate is 1.2e-3 and the weight decay is 0.05. The learning rate is adjusted according to the cosine
learning rate schedule. The drop path rate is 0.1 and the input image is resized to 224 x 224. The mlp
ratio for all the DWAVIT variants is set to 4. The number of windows in each stage is (64,49), (16,9),
(4,1), (1,1). The temperature in an angular self-attention is 0.1 for DWAViIT-T and DWAViT-S and 0.25 for
DWAVIT-B, respectively. All the experiments are running on NVIDIA A100. Since the model is trained
on ImageNet-1K for many training epochs (300 epochs), the variance could be diminished considerably and
become insignificant compared to the main results. As a consequence, only the major results are reported.

The results are illustrated in Table 2] Our proposed DWAVIT is compared against the previous state-of-
the-art vision transformers and CNNs including the CSwin (Dong et al.l 2022)), MViTv2 2022)),
DaViT (Ding et al) 2022) and ConvNeXt (Liu et al., 2022b)). Specifically, Swin Transformer
2021)), Focal Transformer (Yang et al] [2021)), DaViT (Ding et al., [2022), MViTv2 and CSWin
Transformer (Dong et all [2022)) are baselines for the exact comparison. The experimental results show that
under the similar amount of parameters, the DWAVIT-T can outperform the latest vision transformers and
CNNs, The top-1 accuracy of the DWAVIT-T can achieve 82.8%, which is even 0.1% higher than that of
CSwin-T (Dong et al., 2022)). As for the small-sized model, our DWAVIT-S can achieve the top-1 accuracy of
83.6% in the classification task, which is on par with that of CSWin (Dong et al., 2022) and MViTv2
2022)). For base-sized models, our DWAVIT-B with cosine self-attention can achieve 83.9% accuracy in
classification task.

4.2 COCO Object Detection

Next, we evaluate our model on COCO object detection task. The COCO dataset has 118K images for
training and 5K images for validation. We adopt the Mask R-CNN and Cascade Mask
R-CNN (Cai & Vasconcelos| [2018)) as the framework and our DWAVIT serves as the backbone. For a fair
comparison, we follow the same training recipe as the previous work (Touvron et all [2021a} |[Li et al [2022
Lee et al., [2022; Dong et al., 2022)) and perform the experiment with MMDetection toolbox (Chen et al.
[2019). In order to tackle with the images with high resolution. The number of local windows in object
detection task is different from that in image classification task. The number of window in each stage is
(256,225), (64,49), (16,9), (4,1), respectively. In both framework, the size of the local window in each stage
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Table 2: The performance of our proposed DWAVIT and the baseline models on the ImageNet-1K classification.
The resolution of the image is 224 x 224. [cos] and [quad] denote cosine and quadratic function, respectively.

| #Param(M) #FLOPs(G) Top-1 Acc

25.0 4.1G 76.2

22.1 4.5 79.8

( . 24.5 3.8 79.8
RegNetY-4G (Radosavovic et al., 2020) 21.0 4.0 80.0
CrossViT-S (Chen et al., 2021) 26.7 5.6 81.0
TNT-S (Han et al., 2021 23.8 5.2 81.3
Swin-T (Liu et al., [2021 28.3 4.5 81.2
CoAtNet-0 (Dai et al., [2021) 25 4.0 81.6
CvT-13 (Wu et all, [2021) 20.0 45 81.6
CaiT-XS-24 (Touvron et al.| [2021b) 26.6 5.4 81.8
ViL-S (Zhang et al., [2021) 24.6 5.1 82.0
PVTv2-B2 (Wang et al.l [2022b 25.4 4.0 82.0
ConvNeXt-T (Liu et all [2022b 29 5.0 82.1
Focal-T (Yang et al. |2021) 29.1 4.9 82.2
DaViT-T (Ding et a1.|, 28.3 4.5 82.8
MViTv2-T (Li et al [2022) 24 4.7 82.3
CSWin-T (Dong et al) [2022) 23 4.3 82.7
DWAViT-Tcos| (Ours) 22.7 4.2 82.7
DWAVIT-T[quad] (Ours) 22.7 4.2 82.8
ResNet—l 2016)) 45.0 7.9 77.4
PVT-M (Wang et al. [2021) 44.2 6.7 81.2
RegNetY-8G (Radosavovic et al., 2020) 39.0 8.0 81.7
Swin-S (Liu et al., 2021) 49.6 8.7 83.1
CoAtNet-1 (Dai et al, [2021) 42.0 8 83.3
CvT-21 (Wu et al., [2021) 32.0 7.1 82.5
ViL-M (Zhang et al., ) 39.7 9.1 83.3
PVTVQ-B 2022b 45.2 6.9 83.2
ConvNeXt-S (Liu et al., [2022h 50.0 9.0 83.1
Focal-S QYang et al. 51.1 9.1 83.5
MViTv2-S (Li et al., 2022 35 7.0 83.6
CSWin-S (Dong et al., [2022 35 6.9 83.6
DWAVIT-S[cos] (Ours) 44.6 8.2 83.5
DWAVIT-S[quad] (Ours) 44.6 8.2 83.6
ResNet-152 (He et al., 2016) 60.0 11.0 78.3
PVT-L (Wang et al., [2021) 61.4 9.8 81.7
DeiT-B (Touvron et al., 2021a) 86.7 174 81.8
Swin-B (Liu et al.| 2021) 87.8 15.4 83.4
ViL-B QZhang et al., 2021 95.7 13.4 83.2
Focal-B (Yang et al., 2021 89.8 16.0 83.8
DWAVIT-BJcos| (Ours) 77.4 14.3 83.9
DWAVIT-B[quad] (Ours) 77.4 14.3 83.8
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Table 3: Object detection and instance segmentation performance the our model and the baseline models
with Mask R-CNN framework with 1x schedule training scheme. The FLOPs are measured at resolution 800
x 1280. [cos| and [quad] denote cosine and quadratic function, respectively.

Backbone | #Param(M) #FLOPs(G) | AP* AP}, APl | AP™ APY AP
ResNet-50 (He et al. 44 260 38.0 586 414 | 344 551  36.7
PVT-S (Wang et al.| 44 245 404 629 438 | 378  60.1  40.3
ViL-S (Zhang et al.| [2021] 45 218 449 67.1 49.3 | 41.0 642 44.1

TwinsP-S (Chu et al.| 2021, 44 245 429 658 47.1 | 40.0 627 429
Twins-S (Chu et al. 44 228 434  66.0 473 | 40.3 632 434
Swin-T (Tiu et al. 48 264 422 646 462 | 39.1 616  42.0
DAT-T (Xia et al.| 2022 48 272 444 676 485 | 404 642 431
CSWin-T (Dong et al.|[2022 42 279 46.7 68.6 51.3 | 42.2 65.6 454
DWAViT_ﬁT_I-T cos OuLTIrs 42 255 46.2  69.2 50.8 | 41.7 65.9 44.7
DWAVIT-T|[quad] (Ours) 42 255 46.6 69.6 51.3 | 42.2 66.3 45.7
63 336 404 61.1 442 | 364 577 388

64 302 42.0 644 456 | 39.0 616 421

60 261 446 66.3 485 | 40.7 63.8  43.7

) 64 302 44.6 667 489 | 409 63.8  44.2

Twins-B (Chu et al.| 2021a) 76 340 452  67.6 493 | 415 645  44.8
Swin-S (Liu et al.| 2021) 69 354 44.8 66.6 489 | 409 634  44.2
CSWin-S (Dong et al.| [2022) 54 342 479 701 526 | 432  67.1  46.2
DAT-S 69 378 471  69.9 515 | 425 66.7 454
DWAVIT-S[cos| (Ours 64 338 48.0 707 52.6 | 43.3 67.6 465
DWAVIT-S[quad] (Ours) 64 338 48.2 70.8 52.8 | 43.3 67.7 46.6
X101-64 (Xie et al. pg[b 101 403 428 638 473 | 384 60.6 413
PVT-L (]Wl%mg ct al.| 2021 81 364 429 650 46.6 | 39.5 619 425
CSWin-B (Dong et al. \2_0@ 97 526 48.7 704 53.9 | 43.9 678 47.3
DWAViT-B[cos| (Ours 97 462 486 711 53,7 | 43.6 68.0 46.9
DWAVIT-B[quad] (Ours) 97 462 486 71.2 53.6 | 43.6 679 471

is half of that in the previous stage. We use the model pretrained on ImageNet-1K and fine-tune it on the
COCO dataset with 1x and 3 x schedule with 12 and 36 epochs, respectively.

The results on object detection and instance segmentation of our model and the baseline models with Mask
R-CNN framework with 1x schedule are illustrated in Table The baseline methods include
the latest ViT models such as CSwin (Dong et all, [2022) and DAT (Xia et all 2022). Specifically, Swin
Transformer 2021)), DAT (Xia et al., [2022) and CSwin (Dong et al., [2022) are baselines for exact
comparison. These baselines and our method adopt MMDetection toolbox (Chen et al. |2019)) to perform
the experiment and use models pre-trained on ImageNet-1K only as the feature extractor. For tiny-sized
models the experimental results show that the DWAVIT-T can achieve on par or better result against that of
CSWin (Dong et al., [2022)). For instance, the APY, of DWAViT-T(quad) can achieve 69.6%, which is 1.0%
higher than that of CSWin (Dong et al.,[2022). And the AP™ of DWAVIT-T(quad) is 42.2%, which is on
par with that of CSWin (Dong et all|2022). The DWAViIT-S with quadratic self-attention can outperform
all the baseline methods on all the metrics. The AP® and AP™ can reach 48.2% and 43.3%, respectively.
Furthermore, DWAViT-B can achieve best results on APY, and AP.

The results on object detection and instance segmentation of our our model and the baseline models with
Mask R-CNN (He et all, [2017) framework with 3x schedule are illustrated in Table [l The baseline methods

include the latest ViT models such as MViTv2 (Li et al [2022), DAT (Xia et al., [2022) and DAViT (Xia et al.
2022). Specifically, Swin Transformer (Liu et al. 2021, Focal Transformer (Yang et all, [2021]), XciT (Al

et al] [2021)), DAT and CSwin (Dong et al., |2022) are baselines for exact comparison.
The experimental results show that the DWAVIT can achieve on par or better result with latest baseline
methods. For DWAVIT-T, the AP? can achieve 48.8%, which is 0.4% higher than that of MViTv2-T
. the AP,, of DWAVIT-T is 43.8%, which is on par with that of MViTv2-T . The
DWAVIT-S achieves 49.1% on AP® and 44.4% on AP™, which outperforms all the baseline methods. And the
experimental results suggest that our DWAViT-B can outperform the Swin-B on this task.
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Table 4: Object detection and instance segmentation performance the our model and the baseline models
with Mask R-CNN framework. The model is trained with 3x scheme. The FLOPs are measured at resolution
800 x 1280. [cos] and [quad] denote cosine and quadratic function, respectively.

Backbone | #Param(M) #FLOPs(G) | AP® AP, APY | AP™ AP APR
ResNet-50 (He et al.| [2016) 44 260 41.0 617 449 | 371 584 401
ConvNeXt-T (Liu et al.| [2022b) 48 262 462  67.9 50.8 | 41.7 65.0 44.9
PVT-S (Wang et al.|[2021) 44 245 43.0 653 469 | 39.9 625 428
ViL-S (Zhang et al.| 2021} 45 218 471 68.7 515 | 427 659  46.2
TwinsP-S (Chu et al.|[2021a) 44 245 46.8  69.3 51.8 | 426 66.3  46.0
Twins-S (Chu et al.| [2021a) 44 228 46.8 69.2 512 | 426 66.3 458
Swin-T (Liu et al.| [2021) 48 264 46.0 68.2 502 | 41.6 651 448
Focal-T (Yang et al.| 2021 49 291 472 69.4 519 | 42.7 665 459
PVTv2-B2 (Wang et al.| 2022b 45 309 478  69.7 526 | 43.1 668  46.7
XciT-S12/8 m 43 550 47.0  68.9 51.7 | 423 66.0 454
DaViT-T (Ding et al. | 48 363 46.5 681 496 | 32.3 50.6  59.9
DAT-T (Xia et al.|[2022) 48 272 471 69.2 516 | 424  66.1 455
MViTv2-T (Li et al. @@ 44 279 482 70.9 53.3 | 438 679 47.2
DWAVIT-T[cos] (Ours 42 255 484 704 531 | 435 677 471
DWAVIT-T[quad] (Ours) 42 255 48.8 70.7 53.6 | 43.8 68.1 47.1
Res101 (He et al.[[2016 63 336 428 632 471 | 385 60.1 413
ConvNeXt-S (Liu et al.|[2022b 70 348 479 70.0 527 | 429 669 462
PVT-M (Wang et al.| 2021 64 302 442 66.0 482 | 40.5 631 435
Vil-M QZT‘I:hang et al. ﬁzom 60 261 446 663 485 | 40.7 638  43.7
TwinsP-B (Chu et al.| [2021a 64 302 479 701 525 | 432 672  46.3
Twins-B (Chu et al.| 2021a) 76 340 480 69.5 527 | 43.0 668  46.6
Swin-S (Liu et al.| [2021) 69 354 485 702 535 | 433 673  46.6
Focal-S (Yang et al.|[2021) 71 401 488 70.5 53.6 | 438 677 472
PVTv2-B3 (Wang et al.| [2022b) 65 397 484  69.8 53.3 | 432 669  46.7
XCiT-M24/8 (Ali et al.| [2021) 99 1448 48.5 70.3 534 | 43.7 675  46.9
DAT-S 69 378 49.0 70.0 533 | 43.6 674  47.0
DWAVIT-S[cos] (Ours 64 338 484 70.0 53.3 | 43.6 674 470
DWAViT-S[quad] (Ours) 64 338 49.1 70.8 53.5 | 44.0 68.2 474
101 493 444 649 488 | 39.7 619 426

81 364 44.5 66.0 483 | 40.7 634  43.7

107 496 485 69.8 532 | 434 668  46.9

97 462 49.8 71.2 54.8 | 44.5 68.6 47.8

DWAVIT-B[quad] (Ours) 97 462 494 711 546 | 444 68.6 47.8

Table [5| show the performance of of our our model and the baseline models with Cascade Mask R-CNN (Cai,
& Vasconcelos| 2018)) framework on object detection and instance segmentation. Swin Transformer
12021)) and DAT (Xia et al. 2022) are the major baselines for the exact comparison. The experimental results
show that our DWAVIT outperforms baseline methods. DWAVIT-T can achieves 52.2% on AP’ and 45.1%
on AP™, and DWAVIT-S can achieves 52.5% on AP’ and 45.6% on AP™. The DWAViT-S with quadratic
self-attention can achieve 45.6% and 49.9% on AP™ and AP, respectively, which is 0.1% and 0.3% higher

than that of DAT-S (Xia et al, [2022).

4.3 ADE20K Semantic Segmentation

In this section, we further investigate the performance of our proposed model on semantic segmentation task.
The Upernet (Xiao et al., 2018)) framework is adopted. Our model and the baseline methods are evaluated
on benchmark ADE20K (Zhou et all 2017). For fair comparison, we follow the training procedure from
previous works (Ding et al., [2022; Dong et all 2022) and perform the experiment with MMSegmentation
toolbox (Contributors| [2020). The image is resized to 512 x 512 and train the model with 160K iterations.
the mloU is adopted as the metric. The results of experiment are illustrated in Table @ and Table (see

Appendix). SWin Transformer (Liu et al. [2021)), Focal Transformer (Yang et all [2021), XciT (Ali et al.|

2021), DaViT (Xia et al.,2022) and DAT (Xia et al.,[2022) are the baselines for exact comparison. Those
methods are also implemented with MMSegmentation toolbox (Contributors| [2020). Besides, Upernet

2018)) is adopted as the framework and models pre-trained on ImageNet-1K only are used as the feature

11
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Table 5:  Object detection and instance segmentation performance the our model and the baseline models
with Cascade Mask R-CNN framework. The model is trained with 3x scheme. The FLOPs are measured at
resolution 800 x 1280. [cos] and [quad] denote cosine and quadratic function, respectively.

Backbone | #Param(M) #FLOPs(G) | AP® AP}, APY | AP™ APl APR

Res50 (He et al.| [2016 82 739 46.3 643 505 | 40.1 617 434

Swin-T (Liu et al.| [2021 86 745 50.5 69.3 549 | 43.7 66.6 47.1
DAT-T (Xia et al.| 2022 36 750 51.3 70.1 55.8 | 445 67.5 48.1
DWAVIT-T[cos] (Ours) 80 734 52.2 71.0 57.0 | 45.1 68.3 49.0

DWAVIT-T[quad] (Ours) 80 734 51.0 70.6 56.7 | 449 68.5 488
X101-32 (Xie et al.| [2017) 101 819 481 66.5 524 | 416 639 452
Swin-S (Liu et al.| [2021 107 838 51.8 704 56.3 | 44.7 679 485
DAT-S (Xia et al.| [2022 107 807 527 717 57.2 | 455 69.1 49.3
DWAVIT-S[cos] (Ours) 102 817 52.5 71.3  57.0 | 45.6 68.9  49.6

DWAVIT-S[quad] (Ours) 102 817 52.5 714 57.2 | 45.6 68.9 49.9
X101-64 (Xie et al.| [2017) 140 972 483 664 523 | 417  64.0 45.1
Swin-B (Liu et al.| [2021) 145 982 51.9 70.9 56.5 | 45.0 68.4  48.7
DWAVIT-Blcos| (Ours 134 940 52.5 71.3  57.0 | 45.6 69.0 49.6

DWAVIT-B[quad] (Ours) 134 940 52.8 71.6 57.3 | 45.7 69.1 49.5

Table 6: The semantic segmentation performance of DWAViIT-T and baselines on ADE20k. The FLOPs are
calculated with resolution 512 x 2048. [cos| and [quad] denote cosine and quadratic function, respectively.

Backbone ‘ #Param(M) #FLOPs(G) mloU

Swin-T (Liu et al., [2021) 59 945 44.5
Focal-T (Yang et al., [2021) 62 998 45.8
XciT-S12/16 (Ali et al.l, [2021]) 54 966 45.9
XciT-$12/8 (ATi et al), 2021) 53 1237 46.6
DaViT-T (Ding et all, [2022) 60 940 46.3
DAT-T (Xia et al. @l) 60 957 45.5
DWAVIT-T|[cos] (Ours) 52 930 47.5
DWAVIT-T[quad] (Ours) 52 930 454

extractor for theu baselines and our method. The results show that our DWAVIT with cosine self-attention
function can outperform the baselines. Besides, the performance of our model with cosine function is also
much better than that of our model with quadratic function. The mIoU of DWAVIT-T can reach 47.5% ,
which outperforms other baseline methods like DAT-T 2022)), DaViT-T (Ding et al) [2022) and
XciT-S . The mIoU of DWAVIT-S and DWAVIT-B can reach 49.3% and 49.5%, respectively,
which can outperform other baseline models like DAT and DaViT (Ding et al., 2022).

4.4 Runtime Analysis

In this section we quantitatively evaluate the actual runtime of our model during the training on image
classification, object detection and semantic segmentation tasks. Specifically, for image classification task, we
fix the batch to 100 and compare the runtime of our model with that of Swin Transformer 2021]).
For object detection and semantic segmentation, we adopt the Mask R-CNN and Upernet as the framework
and set the batch size to 2. All the experiments are implemented on a single A100 GPU and we report the
average time per iteration. Table illustrates the runtime of our model and the Swin Transformer
on image classification task. The results suggest that our model would be more time-consuming
than that of Swin Transformer due to the different form of self-attention function and local
window mechanism. Basically, the time taken by our model is almost twice that of Swin Transformer
let al) [2021). However, the actual runtime does not blow up when the size of our model scales up. The
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Table 7:  Object detection and instance segmentation performance the our DWAVIT with angular self-
attention and scaled dot-product self-attention in Mask R-CNN framework. The model is trained with 3x
scheme. The FLOPs are measured at resolution 800 x 1280. The [dot product], [cos] and [quad] denote
scaled dot-product, cosine and quadratic function, respectively.

Backbone | #Param(M) #FLOPs(G) | AP* APS, APY | AP™ AP APR

DWAVIT-T[dot product] 42 255 484 703 53.2 | 435 675 47.1
DWAVIT-T|[cos] 42 255 484 704  53.1 | 435 677 47.1
DWAVIT-T|[quad] 42 255 48.8 70.7 53.6 | 43.8 68.1 47.1

Table 8: The performance of our proposed DWAViIT Table 9: The performance of our proposed DWAVIT
with angular self-attention and scaled dot-product with angular self-attention and scaled dot-product
self-attention on the ImageNet-1K classification. The self-attention on the ADE20k semantic segmentation.

resolution of the image is 224 x 224. FLOPs are calculated with resolution 512 x 2048.
Model | Param(M) FLOPs(G) Top-1 Acc Backbone ‘ Param(M) FLOPs(G) mloU
DWAVIT-T[dot product] 22.7 4.2 82.5 DWAVIT-T|[dot product] 52 930 44.7
DWAViT-T[cos] 22.7 42 82.7 DWAViT-T]cos] 52 930 47.5
DWAVIT-T[quad] 22.7 4.2 82.8 DWAVIT-T[quad] 52 930 454

Table 10: The performance of DeiT-S and CSwin-T with angular self-attention and scaled dot-product
self-attention on the ImageNet-1K classification. The resolution of the image is 224 x 224. The dot product,
cos and quad in the square bracket denote scaled dot-product, cosine and quadratic function, respectively.

Model | Param(M) FLOPs(G) Top-1 Acc
DeiT-S (Touvron et al. [2021a)) [dot product) 22 4.6 79.8
DeiT-S (Touvron et al., [2021a)) [cos] 22 4.6 80.0
DeiT-S (Touvron et al., 2021a)) [quad] 22 4.6 80.2

CSwin-T (Dong et al., [2022)[exp] 23 4.3 82.7
CSwin-T (Dong et al. [2022))[cos] 23 4.3 82.9
CSwin-T (Dong et al., |2022)) [quad] 23 4.3 83.0

Table 11: The actual runtime of Swin Transformer and our DWAVIT during the training on ImageNet-1K.
We implement the testing on a single A100 GPU and the batch size is fixed to 100 for all the models. The
average time per iteration is reported.

Model ‘ #Param(M) #FLOPs(G) time_per_iteration(s)
Swin-T (Liu et al}, [2021) 28.3 45 0.15
DWAVIT-T|[cos](Ours) 22.7 4.2 0.29
DWAVIT-T[quad] (Ours) 22.7 4.2 0.31
Swin-S (Liu et al.| [2021) 49.6 8.7 0.23
DWAVIT-S[cos|(Ours) 44.6 8.2 0.43
DWAVIT-S[quad] (Ours) 44.6 8.2 0.48
Swin-B (Liu et al.| [2021) 87.8 15.4 0.30
DWAVIT-Blcos] (Ours) 774 14.3 0.60
DWAVIT-Blquad] (Ours) 7.4 14.3 0.64

runtime of our models on object detection and semantic segmentation is illustrated in Table [[2] and Table T3]
respectively.

4.5 Ablation Study

In the ablation study we aim to compare the performance of our model with traditional scaled dot-product
self-attention and our proposed angular self-attention. In the experiment we replace the angular self-attention
with traditional scaled dot-product self-attention and evaluate the performance on ImageNet-1K classification,
COCO object detection and ADE20K semantic segmentation. We adopt the DWAVIT-T as the backbone
in three tasks. In object detection Mask R-CNN is adopted as the framework and the model is trained
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Table 12: The actual runtime of our DWAVIT during the training on COCO for object detection task. Mask
R-CNN is adopted as the framework. We implement the testing on a single A100 GPU and the batch size is
fixed to 2 for all the models. The average time per iteration is reported.

Backbone | #Param(M) #FLOPs(G) time_per_iteration(s)
DWAVIT-T|cos] 42 255 0.24
DWAVIT-T[quad] 42 255 0.25
DWAVIT-S[cos] 4.6 82 0.29
DWAVIT-S[quad] 44.6 8.2 0.30
DWAVIT-Blcos| 7.4 14.3 0.57
DWAVIT-B|quad] 7.4 14.3 0.57

Table 13: The actual runtime of our DWAVIT during the training on ADE20K for object detection task.
Upernet is adopted as the framework. We implement the testing on a single A100 GPU and the batch size is
fixed to 2 for all the models. The average time per iteration is reported.

Backbone | #Param(M) #FLOPs(G) time_per_iteration(s)
DWAVIT-T]cos] 42 255 0.19
DWAViIT-T]quad] 42 255 0.20
DWAVIT-S[cos] 14.6 82 0.22
DWAVIT-S[quad] 44.6 8.2 0.23
DWAVIT-Blcos] 7.4 14.3 0.56
DWAVIT-B[quad] 77.4 14.3 0.56

with 36 epochs. In semantic segmentation Upernet is adopted as the framework and the model is trained
with 160K iteration. The results of the image classification, object detection and semantic segmentation are
illustrated in Table [£.3] Table [7] and Table [9] respectively. When our model adopt the traditional scaled
dot-product self-attention, the top-1 accuracy would be 0.2% and 0.3% lower than that of cosine function and
quadratic function. On other two tasks the performance of our model with scaled dot-product self-attention
is also lower than that of our model with the proposed angular self-attention. On some tasks the the gap of
the performance is more obvious. For instance, on semantic segmentation our model of scaled dot-product
self-attention only achieve 44.7% of mloU, approximately 3% lower than that of our model with cosine
self-attention. The experimental results suggest our angular self-attention can model the relationship of
the tokens successfully and the angular self-attention is a powerful alternative to the traditional scaled
dot-product self-attention.

We further investigate the performance of our angular self-attention by replacing the scaled dot-product self-
attention with our angular self-attention in other vision transformer models. Table [10| shows the performance
of DeiT-S (Touvron et al., |2021al) and CSWin-T (Dong et al., 2022) on ImageNet-1K image classification
with scaled dot-product self-attention and our proposed angular self-attention. The experimental results
suggest that when the existing vision transformer models are equipped with our angular self-attention, the
performance on the image classification can be improved. It further validates that our angular self-attention
is a competitive alternative for the existing scaled dot-product self-attention.

5 Conclusions

In this paper, we propose the dual-window mechanism and angular self-attention. The dual-window mechanism
divide the feature maps into even/odd number of local window in each stage alternatively for the information
exchange of the local windows. In angular self-attention, the traditional scaled dot-product operation is
replaced by our proposed quadratic and cosine functions. The proposed angular function can also model
the relationship of tokens in the long range. Based on dual-window mechanism and angular self-attention,
we propose a new vision transformer backbone called dual-windowed angular vision transformer. Extensive
experiments show that our backbone can achieve competitive performance on the tasks such image classification,
object detection and semantic segmentation against other strong baselines.
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Broader Impact. This work proposed a new architecture of vision transformer called DWAVIT featured
by angular self-attention and dual local window mechanism. Our model is proven to achieve competitive
performance in downstream tasks such as object detection and semantic segmentation and has the enormous
potential to be used in various practical scenarios. In particular, object detection is one of the most promising
applications of vision transformers in the real world and it is often used in systems which require extensive
interaction with the surrounding environment visually. For instance, autonomous vehicles require a large
number of object detectors to identify the pedestrians and other vehicles nearby and the safety and the
trustworthiness of vision transformers are critical in this area. Though our proposed model can achieve
promising results on object detection and other tasks, some critical issues such as adversarial robustness and
trustworthiness are quite under-explored and further investigation is necessarily required.
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A Appendix

The proof of Proposition [I] is provided below.
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Proof 1 Assume 0y < 601 < ... < 0;_1 for angles between the target query and all the keys. J is the total
number of the tokens. V is the value vector. According to our angular self-attention, the embedding of target
tokens can be expressed as:

0=14 3 exp(s(t) /Y,

— éexp(s(fo))(vo " exp(w)‘ﬁ T+
+ eXP(M)VJ—I) (8)
= éexp(s(eo) )(VO +w Vi + ...+ OJJ,1VJ,1),

xVo+wiVi+--+wr_1Vy_1,

where w; = exp(w) and C is normalization coefficient. Since 6; > 6y and s(6;) < s(6p), w; € (0,1).

Table 14: The semantic segmentation performance of DWAVIT-S, DWAViIT-B and baselines on ADE20k.
The FLOPs are calculated with resolution 512 x 2048. [cos] and [quad] denote cosine and quadratic function,
respectively.

Backbone | #Param(M) #FLOPs(G) mloU
ResNet-101 (He et al., 2016) 86 1029 44.9
XCiT-524/16 (Ali et al., [2021) 76 1053 46.9
TwinsP-B (Chu et al.| [2021a) 74 977 47.1
XCiT-M24/16 (Ali et al. 2%[) 112 1213 47.6
Swin-S (Liu et al.| 2021 81 1038 47.6
Twins-B (Chu et al), [2021 89 1020 47.7
Focal-S ( 2021 85 1130 48.0
DaViT-T 81 1030 48.8
DAT-T (Xia et al., 2022 83 1079 48.3
DWAVIT-S|cos| (Ours 75 1015 49.3
DWAVIT-S[quad] (Ours) 75 1015 47.8
XCiT-M24/8 (Ali et al.L 2021 110 2161 48.4
Swin-B (Liu et al] [2021) 121 1841 48.1
Focal-B (Yang et al., 2021 126 1354 49.0
DaViT-B (Ding et al.-|, 2022 121 1175 49.4
DAT-B (Xia et al., 2022 121 1212 49.4
DWAVIT-BJcos] (Ours 108 1143 49.5
DWAVIT-B[quad] (Ours) 108 1143 47.9
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