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Abstract

As Large Language Models (LLMs) continue
to scale, understanding how effectively their
internal capacity is utilized becomes increas-
ingly important, especially for inference-time
efficiency. While existing scaling laws relate
model size to loss and compute, they offer little
insight into the representational dynamics of in-
dividual components. In this work, we focus on
the Feed-Forward Network (FFN), a dominant
sub-block in decoder-only transformers, and
recast FFN width selection as a spectral utiliza-
tion problem. We introduce a lightweight, dif-
ferentiable diagnostic suite comprising: Hard
Rank (Participation Ratio), Soft Rank (spec-
tral entropy), Spectral Concentration, and the
composite Spectral Utilization Index (SUI), de-
signed to quantify how many latent directions
are meaningfully activated. Our spectral au-
dit across GPT-2, LLaMA, and nGPT mod-
els reveals that spectral utilization grows with
model size but not monotonically with width,
often peaking at intermediate dimensions (e.g.,
D = 2048). We identify clear instances of
spectral collapse, where wider FFNs concen-
trate variance into a narrow subspace, leaving
much of the latent space unused.

1 Introduction

As Large Language Models (LLMs) continue to
grow in scale and complexity, a fundamental ques-
tion arises: How effectively is their internal ca-
pacity utilized? Despite the availability of empiri-
cal scaling laws that relate model performance to
width, depth, and data size, these laws provide little
visibility into how efficiently different components
operate. They abstract away the internal dynamics
of transformer blocks, leaving open critical ques-
tions about representational usage.

Among these blocks, the Feed-Forward Network
(FEN) subcomponents have received limited analyt-
ical attention. Though they constitute a substantial
fraction of parameters in decoder-only architec-
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tures, their contribution to internal efficiency re-
mains poorly understood. FFNs play a key role
in maintaining feature diversity, preserving token
isotropy, and enabling signal propagation. Yet
width configurations—such as the widely used 4 x
expansion in GPT or 2.67x in LLaMA—are often
adopted as static heuristics, rather than grounded
design choices.

This raise the critical questions: Is increasing
FFN width always beneficial for expressivity? How
many latent directions are actually used in prac-
tice? Can we quantify representational efficiency
beyond FLOPs and loss?

We address these questions by reframing FFN
width selection as a spectral utilization problem.
Through a careful analysis of FFN-layer activa-
tions, we identify two distinct failure modes: spec-
tral collapse, where increased width compresses
representational variance into a narrow subspace,
and spectral dilution, where variance is dispersed
thinly across many low-signal dimensions. These
behaviors indicate internal inefficiency, regardless
of model size or perplexity performance.

To study these dynamics, we conduct a compre-
hensive spectral audit of FFNs in transformer mod-
els spanning GPT-2, LLaMA, and nGPT. Our evalu-
ation covers width multipliers r € {1,2.67,4, 6, 8}



and model sizes from 70M to 250M parameters.
For each FFN layer, we compute the full eigen-
spectrum of its covariance matrix (post-activation)
across training steps, layers.

We quantify spectral utilization using four in-
terpretable and computationally efficient metrics:
Hard Spectral Rank: based on the Participation
Ratio (PR), measuring the number of dominant di-
rections activated; Soft Spectral Rank: information-
theoretic based rank measure, capturing how vari-
ance is distributed across the spectrum; Spectral
Concentration: via Eigenvalue Early Enrichment,
assessing how much variance is captured by lead-
ing eigenvalues; and finally Spectral Utilization
Index (SUI): a composite metric that harmonically
combines hard and soft rank to balance localized
and distributed representations.

Our empirical findings reveal three key insights.
First, spectral utilization increases with model size,
confirming that larger models activate more dimen-
sions and better exploit their representational ca-
pacity. Second, increasing FFN width does not
always improve utilization. In fact, we observe a
clear peak at intermediate widths (e.g., D = 2048),
beyond which metrics such as SUI and effective
dimension (eDim) stagnate or decline—indicating
spectral dilution. Third, we uncover sublinear spec-
tral scaling laws linking FFN width to effective
rank, with best-fit exponents 5 < 1 for both hard
and soft rank metrics. These patterns suggest that
widening FFNs beyond a certain point results in di-
minishing returns, and that internal dimensionality
can often be trimmed without performance loss.

Contributions. This work makes four key con-
tributions: Conceptual. We reframe FFN width
selection as a spectral utilization problem and for-
malize two failure modes—spectral collapse and
spectral dilution—to diagnose under- and over-
capacity conditions in transformer blocks. Archi-
tectural. We conduct the first layer-wise spectral
audit across GPT-2, LLaMA, and nGPT variants,
analyzing FFNs under varying width multipliers
and normalization configurations. Our results re-
veal strong layer-wise heterogeneity and challenge
the use of fixed-width heuristics. Algorithmic.
We introduce a lightweight, differentiable diagnos-
tic suite—Participation Ratio, Spectral Entropy,
Eigenvalue Early Enrichment, and the Spectral Uti-
lization Index—for quantifying representational us-
age. We also provide a closed-form estimator of
effective dimension: Ker =1+ (D — 1) - SUI

Empirical. Across 70M, 130M, and 250M pa-

rameter models, we establish sub-linear power laws
relating FFN width to spectral ranks, quantify how
LayerNorm placement modulates utilization dy-
namics.

2 Related Work

Cost-aware neural scaling. Early work (Ka-
plan et al., 2020) formalised the now-canonical
loss-vs-compute power law for language models,
later refined by Chinchilla scaling laws (Hoffmann
et al., 2022), who showed that existing models are
compute-sub-optimal because they are too large
and under-trained. Sardana et al. (2024) extend
this frontier to the deployment setting: for traffic
~10B requests the compute-optimal point shifts
to smaller models trained on more tokens, low-
ering inference cost. (Paquette et al., 2024) de-
rive a four-plus-three-phase diagram that predicts
which factor—capacity, optimizer noise, or fea-
ture embedding—dominates under a fixed bud-
get Orthogonal cost axes matter too: (Tao et al.,
2024) reveal that vocabulary size must grow with
width, while Kumar et al. (Kumar et al., 2025)
introduce precision-aware laws that treat lower-
precision training as shrinking the effective param-
eter count. (Choshen et al., 2024) offer statistically
robust procedures for fitting such laws from small
pilot runs. Collectively, these studies motivate our
spectral-utilization laws as a complementary effi-
ciency axis, tracking latent-space usage rather than
surface-level FLOPs.

Universality and representational capacity.
(Ruan et al., 2024) show that once efficiency offsets
are normalized, ~100 heterogeneous checkpoints,
from GPT-2 to PalLM, collapse onto a single sig-
moidal curve. The Physics of LMs series reaches a
similar conclusion for factual knowledge, finding
a near-constant ~ 2 bits/parameter ceiling across
architectures (Allen-Zhu and Li, 2025). Martin et
al. (Martin and Mahoney, 2021) first linked such
universality to heavy-tailed eigenspectrum and im-
plicit self-regularization; (Staats et al., 2024) refine
this by showing that small singular values encode
critical information in pretrained transformers, and
(Dovonon et al., 2024) connect spectrum collapse
to transformer over-smoothing.

Architectural and domain-specific scaling
Scaling exponents are not architecture-agnostic:
() find that the best inductive bias flips with
scale—Switch-Transformers rule at small NV, Per-
formers at mid-scale, vanilla attention later. (Ca-



bannes et al., 2024) derive precise laws for
associative-memory matrices, while (Shi et al.,
2024) explain why larger models sometimes under-
perform on time-series by introducing a look-back-
aware law. Fort (Fort, 2025) frames robustness
itself as a scaling phenomenon, showing adversar-
ial attack resistance stays nearly constant across
two orders of magnitude in model size. Finally,
Liet al. (Lyu et al., 2025) present an analytically
solvable attention that yields closed-form power
laws, offering a theoretical baseline.

These threads underscore that scaling is multi-
faceted, bending with inductive bias, data modality,
precision, and security constraints, precisely the
facets our spectral scaling laws aim to highlight
across GPT-2, LLaMA, and nGPT.

3 Method

In this section, we explain our methodology for
extracting layer-wise covariance spectra from FFN
internal representation, and describe the four spec-
tral metrics that quantify spectral utilization, and
capture various aspect of spectrum (e.g., uniformity
vs spikes). We finish with the end-to-end algorithm
and a short complexity analysis.

3.1 Preliminaries and Eigendecomposition

Notation Let an L-layer transformer be given.
Each transformer consist of an FFN layer whose
hidden width is D; the width multiplier (relative
to the model’s embedding size d) is denoted r =
D/d. Formally, FFN with gating activation (e.g.,
SwiGLU in LLaMA (Touvron et al., 2023)) repre-
sented as FFN(z) = Waown(0(Weaae®) © (Wyp)),
where © represents element-wise multiplication
and o is activation function such as SiLU (Elfwing
et al., 2018). The pre-activation (output of the first
linear projection) and pos-activation (before the
down-projection) is represented as PreAct(X) =
Waaew and PostAct(X) = o((Weaew) © (Wyp)).

Activation sampling and co-variance matrix
formation During training step ¢ we sample a mini-
batch of N tokens from each FFN layer’s (¢) post-
activation X éﬁg € RV*D_ We compute the covari-
ance using all IV tokens without any sub-sampling
or statistical approximations to capture the true
behavior of the model. Further, we compute an
unbiased covariance matrix for all tokens in the
batch as follows:

(X —w)"(X —p)

N1 e RPXP. (1)

Y —

For each covariance matrix, we perform eigen-
decomposition to obtain the eigenvalues v = Av.
The eigenvalues are sorted in descending order:
A1 > Ag > ... > Ap > 0. All subsequent metrics
depend only on this spectrum.

3.2 Spectral Utilization Metrics

When a feed-forward block is widened, the key
question shifts from how many parameters did we
add? to how many of those additional directions
does the model actually use? To quantify this no-
tion of use, we analyze the eigenspectrum of the
post-activation covariance matrix and distill it into
four metrics, each lies in the range [0, 1] and can
be computed in O(D) time (Table 1).

Hard spectral rank. Participation Ratio (PR)
acts as a hard counter of dominant directions. Since
PR squares the first spectral moment and divides by
the second, it is particularly sensitive to prominent
eigenvalues: even a single large spike can signif-
icantly cap its value, whereas numerous smaller
eigenvalues have minimal impact (Gao et al., 2017;
Hu and Sompolinsky, 2022). Hence, PR effectively
rounds off all but the strongest axes, a hard spike-
sensitive estimate.

Soft Spectral Rank. It complements PR by mea-
suring the Shannon entropy of the full eigenvalue
distribution (Skean et al., 2025; Wei et al., 2024,
Garrido et al., 2023; De Domenico and Biamonte,
2016; Anand et al., 2011; Passerini and Severini,
2008), by converting eigenspectrum into a probabil-
ity distributions as p; = A;/ >_; A;. Normalizing
to [0, 1] yields a smooth measure of dimensional-
ity that captures long-tail variance patterns. Thus,
while hard rank is sensitive to dominant peaks,
soft rank responds to tail behavior. Describing
the pair as hard and soft therefore captures their
complementary sensitivities: former reacts sharply
to collapse (variance concentrated in a few axes),
whereas the latter flags spectral dilution, variance
diffused so widely that no direction carries signifi-
cant weight.

Spectral Utilization Index SUI combines hard
and soft spectral ranks into a unified measure of
spectral utilization. Hard and soft ranks indepen-
dently capture opposing failure modes—spectral
collapse versus dilution. To effectively combine
these metrics, we adopt their harmonic mean, as it



Table 1: Spectral utilization metrics for characterizing the FFN latent space utilization. Hard and Soft Rank capture
absolute participation and entropy-based ranks in the native [1, D] scale, while their normalized forms yield bounded
[0, 1] utilization scores. Spectral concentration measures front-loading of variance, SUI balances hard and soft ranks,
and eDim translates spectral patterns into an interpretable effective dimension.

Metric Definition Range Qualitative signal Interpretation Cost
_ (Zz >‘i)2 R — PR—1 ; ; : *
Hard Spectral Rank PR = S PR = T [0,1] Spikes — collapse Dominant spikes O(D)
iNi
~ R—-1

Soft Spectral Rank eR = exp < Zp,; log pi> ,eR = eD - [0,1] Long tails — dilution ~ Uniformity of spread ~ O(D)

i
. 2 &Nk .

Spectral Concentration SC = D> Z Zgl LD [0,1] Strength of spikes Front-loadedness o(D)

k=1 i=1 "
I 2PR - eR _ g
Spectral Utilization Index SUI = PR+ R [0,1]  Penalizes both extremes ~ Balanced utilization ~ O(1)T
e
Effective dimension eDim =1+ (D — 1)SUI (1, D] # active PCs # active dimensions  O(1)

*Once eigenvalues are sorted; fOnce ranks known

strongly penalizes imbalance: the harmonic mean
sharply drops if either input is low, ensuring SUI
attains high scores only when both metrics indi-
cate balanced utilization. By rewarding spectra that
avoid extremes and peak when a moderate num-
ber of principal directions carry most variance, SUI
thus provides a robust, intuitive, and parameter-free
indicator of overall spectral behavior.

Spectral concentration. Practitioners not just
about how many directions are active, but also
about where the variance is concentrated. Spec-
tral concentration measures the area between the
cumulative eigen-spectrum and a uniform base-
line (Marbut et al., 2023), where a higher value
indicates that variance predominantly concentrates
within the leading principal components, whereas
lower value implies a more uniform distribution
of variance across the spectrum. Thus, unlike pre-
vious metrics, it distinguishes spectra that utilize
different fractions of the available latent space.

Finally, we convert SUI into an integer-valued
measure called Effective Dimension (eDim), which
directly represents the approximate number of ac-
tive principal components. This makes interpre-
tation more intuitive, particularly it simplifies ab-
stract ratio into an absolute counts over abstract
ratios and simplifies comparisons across layers of
varying widths.

Why these specific metrics? The hard and soft
ranks offer complementary perspectives on spec-
tral utilization: one highlights spectra dominated
by a few large eigenvalues, while the other captures
cases with many small eigenvalues spread over a
long tail. Spectral concentration metric comple-
ments these ranks by pinpointing precisely where

variance accumulates. SUI unifies the two ranks
into a single robust metric, penalizing both spec-
tral extremes, and eDim further translates this into
an intuitive count of active principal components.
Collectively, these metrics map each layer onto
an interpretable three-dimensional spectrum: col-
lapse versus dilution, front-loaded versus dispersed
variance, and overall spectral efficiency.

4 Experimental Results

In this section, we present our empirical findings
on the spectral scaling laws in by varying the hid-
den dimension sizes of FFNs. We primarily use
Hard and Soft utilization to investigate how each
scales with the hidden dimension D for three sizes
of LLaMA models (70M, 130M, 250M). To study
how effectively FFNs leverage increasing hidden di-
mensions, we trained LLaMA models from scratch
on C4 datasets. For each scale, we varied the hid-
den dimension D across four values: 768, 2048,
3072, and 4608.

4.1 Spectral Rank Scaling Laws

HardRank obeys a steep negative power law.
Figure 2 (a—c) shows a clear power-law decay
of HardRank with width, with exponents Sgr €
[—0.47,—0.93] and R? = 0.61-0.92. Dominant
directions grow sub-linearly; beyond D ~ 3k the
model gains < 0.01 additional high-variance axes
per 1000 new parameters. This early saturation
signals that over-provisioning starts well before
the 4 608-dimensional setting commonly used in
practice.

SoftRank reveals heterogeneous tail behav-
ior. The bottom row of Figure 2 shows a more nu-
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Figure 2: Empirical scaling laws for the HardRank (top row) and SoftRank (bottom row) across different FFN
hidden dimensions D in LLaMA variants. Each subplot shows the observed rank utilization values (blue markers
with error bars measured across layers) alongside a fitted power-law trend (red dashed line). The negative exponents
() and high R? values support a “spectral collapse” pattern, whereby effective rank declines as D increases.

Table 2: Summary of spectral-utilization metrics and fitted scaling exponents. The right-most columns list the
power-law slope for HardRank and SoftRank, quantifying how sharply each metric saturates as width increases.

D=768 D=2048 D=3072 D=4608 Scaling Laws Parameters
HRank SRank SUI eDim HRank SRank SUI eDim HRank SRank SUI eDim HRank SRank SUI eDim HRank(3,R?)  SRank(3,R?)
70M 0.011 0.118 0.021 17 0.007  0.113  0.013 27 0.006  0.121 0.011 36 0.003  0.078 0.005 25 -0.72  0.864 -0.172 0.410
130M  0.016 0.182 0.029 23 0.018 0.259 0.034 71 0.009 0.182 0.017 54 0.007  0.190 0.013 60 -0.475 0.606 0.007 0.001
250M 0.030 0272 0.054 42 0.012  0.226 0.024 49 0.012 0.232 0.022 69 0.005  0.156 0.009 44 -0.928 0.923 -0.261 0.730

anced trend: SoftRank exhibits strikingly different
scaling patterns across model sizes. For the 70M
model, SoftRank decays mildly (Bsg = —0.17),
indicating that the spectrum’s tail is progressively
under-utilized. In contrast, the 130M variant shows
a statistically zero slope (Ssr ~ 0), where variance
is merely diluted across many faint modes while the
tail remains populated. The largest 250M model
demonstrates a different pattern, with both Hard-
and Soft-Rank declining (8sg = —0.26), signaling
true spectral collapse in which neither head nor tail
keeps pace with width.

Two failure modes: spectral dilution vs. col-
lapse Comparing the trajectories of Hard- and Soft-
Rank allows us to disambiguate under-capacity phe-
nomena: Spectral dilution occurs when HardRank
falls but SoftRank stays flat (LLaMA-130 M).
Widening introduces numerous weak directions
without increasing dominant variance, spreading
information thinly. Conversely, spectral collapse

manifests when both ranks fall (LLaMA-250 M).
Even the low-energy subspace is left empty, in-
dicating genuine over-capacity. These modes are
invisible to either metric alone; the joint view is
essential.

Composite diagnostics. Table 2 shows that
SUI decreases monotonically for every checkpoint
(e.g., 70 M: 0.021 — 0.005), while eDim satu-
rates around 40-50 regardless of D. Because SUI
penalizes a drop in either rank, its steady decline
confirms that no part of the spectrum scales pro-
portionally with width.

Implications for model design. Our findings
suggest three key principles for efficient model de-
sign: (1) Stop widening early—for Pre-LN LLaMA,
increasing D beyond ~3,000 yields diminishing
spectral returns; (2) Monitor SUI during training—it
offers a one-line diagnostic that flags wasted pa-
rameters before full convergence; and (3) Layer-
wise adaptation beats uniform scaling—the hetero-
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Figure 3: Power-law templates for spectral concentration. Cumulative-variance curves generated from synthetic
power-law spectra A\, o< k~ for three latent sizes (D = 768, 2048, 3072). Larger exponents («v) front-load variance
and push the curve upward. Coloured call-outs report the concentration value reached by benchmark cut-offs.

Table 3: Quantitative summary of the curves in Fig 3. For each « and hidden size D we list the variance carried by
the top-1 eigenvalue, and cumulative variance captured by the first 10%, 25% and 50% principal components, along
with the concentration score. The results show sharp transition around o ~ 1.2: below it at least half the spectrum

is needed to explain 80% of the variance (dilution), above it fewer than 10% directions suffice (collapse).

o Top-1 eigenvalue Variance @ 10% dimensions  Variance @ 25% dimensions ~ Variance @ 50% dimensions  Spectral Concentration
768 2048 3072 768 2048 3072 768 2048 3072 768 2048 3072 768 2048 3072
08 6.9% 5.4% 49% 519% 54.3% 55.2% 68.4%  70.0% 70.5% 83.1%  84.0% 84.3% 057 0.59 0.59
1.0 138% 122% 11.6% 682% 72.0% 73.3% 80.8% 83.1% 83.9% 90.4%  91.6% 91.9% 0.72 0.76 0.77
1.2 234% 222% 21.8% 819% 859% 87.2% 90.1%  92.3% 93.0% 95.4%  96.4% 96.7%  0.85 0.88 0.89
1.5 394% 389% 388% 939% 96.3% 97.0% 97.2% 98.3% 98.6% 98.8%  99.3% 99.4% 095 097 0.97
20 608% 60.8% 60.8% 993% 99.7% 99.8% 99.8%  99.9% 99.9% 99.9% 100.0% 100.0% 0.99 1.00 1.00

geneous behavior across checkpoints suggests allo-
cating width dynamically, pruning collapsing lay-
ers and selectively widening those still far from
dilution. By grounding width decisions in spectral
utilization rather than parameter counts, practition-
ers can trim model size without sacrificing repre-
sentational power, a crucial step towards efficient-
inference at scale.

4.2 Scaling Laws for Spectral Concentration

We investigate the spectral concentration of FFNs
activation covariance matrices by modeling their
eigenvalue distribution via a truncated power-law:
Ao k™ k=1,..., D, where the exponent «
controls how variance is distributed across eigen-
directions. While traditional rank-based metrics
(e.g., Hard and Soft Spectral Ranks) integrate in-
formation from all eigenvalues, they often over-
look crucial details in the distribution’s shape, such
as distinguishing between sharply peaked spectra
with extensive flat tails and those smoothly decay-
ing. The proposed power-law scaling framework di-
rectly addresses this limitation, isolating the shape
characteristics of spectral distributions. Higher val-
ues of « yield spectra sharply concentrated (front-
loaded) among leading directions, indicating incip-
ient collapse, whereas lower values produce more

uniform (diluted) distributions, indicative of subop-
timal variance allocation (Fig. 3).

Empirically, several robust trends emerge from
our analysis. Spectral concentration, monotoni-
cally increases with a: as « rises from 0.8 to 2.0,
it grows consistently from around 0.57 to nearly
0.99 (Table 3). Once eigenvalues decay faster than
k=2, variance is predominantly concentrated in the
initial directions, becoming effectively dimension-
invariant and independent of model width. This in-
variance enables meaningful comparisons of FFN
efficiency across models of different sizes by align-
ing them on a common spectral utilization axis.

For larger o« > 1.5, over 90% of variance resides
within merely the top 10% of principal components
(Table 3). Conversely, at smaller values (« = 0.8),
capturing the same variance requires more than
50% of components, leading to a state we term
”spectral dilution.” Notably, activations in prevalent
models such as LLaMA typically exhibit interme-
diate spectral concentration (o ~ 1.1-1.3), thereby
balancing effective dimensionality and representa-
tional compactness, avoiding the extremes of either
spectral dilution or collapse.
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4.3 Spectral Scaling Dynamics

As shown in Figure 4, during the first 2K to 3K
training steps the spectral landscape is still fluid:
both Hard- and Soft-Rank curves rise steeply and
the fitted 3 coefficients fluctuate, accompanied by
low R2. This early volatility warns against draw-
ing scaling-law conclusions from partially trained
checkpoints. Around step 5K the exponents set-
tle and R? surpasses 0.6, suggesting that a stable
power-law relation has emerged. Averaged over
the final 1K steps we obtain S,.q = —0.38 and
Bsos = +0.07.

A further observation is that the rank trajectories
in panels (c) and (d) preserve their vertical ordering
throughout training: wider configurations always
sit above narrower ones for Soft-Rank and below
for Hard-Rank. Hence the eventual utilization hier-
archy is determined surprisingly early, suggesting
that practitioners can estimate the utility of a width
choice long before full convergence.

5 Case Study for Spectral Utilization

Training Stability in PostLN LLaMA-250M
Spectral collapse in Post-LayerNorm blocks.
We observe a strong correlation between spectral
health and the performance of LLaMA-250M when
the FFN width is increased. In the vanilla Post-
LayerNorm setup, spectral dynamics remain stable
only for the narrowest FFN width (1d). However,
scaling the width to 2.67d or 4d leads to a rapid col-
lapse of spectral diversity: the hard-rank plunges
to < 1073 and the concentration saturates to =~ 1.0
within the first few thousand steps (Figure 5a). This
spectral collapse signifies that most of the variance
is funneled into one or two dominant directions,
leaving the majority of the ~ 3000 latent dimen-
sions inactive. As a result, model performance

deteriorates sharply, with test perplexity exceeding
consistent with the figures reported in Table 4.
Weight Normalization enables high-rank spectra
and best perplexity. Employing weight normal-
ization (WNorm) (Salimans and Kingma, 2016)
within each FFN significantly mitigates this col-
lapse. The hard-rank stabilizes in the 1072-10~!
range, while spectral concentration settles around
0.25-0.3, indicating that hundreds of latent direc-
tions carry meaningful variance. This richer and
more distributed latent basis translates into notably
better performance: perplexities of 25.1 (at 2.67d)
and 24.3 (at 4d), both outperforming the vanilla 1d
baseline (27.1). These results affirm that maintain-
ing a non-degenerate spectrum not only prevents
collapse but actively enhances downstream predic-
tive performance.
Table 4: Vanilla PostLN in LLaMa-250M becomes un-
stable at higher FFN dimensions, causing spikes in PPL
values. Adding Weight Normalization or Hyperspher-
ical Normalization to the FFN linear layers stabilizes
training (former outperforms the latter across all scales).

PostLN 1d 2.67d 4d

Vanilla 27.10 1427.91 1431.01
WeightNorm 28.89 25.08  24.27
HypersphericalNorm  31.66  27.92  26.48

Hyperspherical normalization provides stability
but with conservative rank. Hyperspherical normal-
ization (HNorm) also prevents collapse and pro-
motes training stability but results in more conser-
vative spectral utilization (Loshchilov et al., 2025;
Lee et al., 2025; Karras et al., 2024; Wang and
Isola, 2020; Liu et al., 2017). The hard-rank re-
mains roughly an order of magnitude above the col-
lapse threshold, yet ~30% lower than the WNorm
trace. Spectral concentration is marginally higher,
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(a) GPT-2 (GeLU)

(b) GPT-2 (SiLU)
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Figure 5: LLaMA models
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Figure 6: GPT-2 vs nGPT

suggesting a somewhat narrower effective basis.
Consequently, while HNorm yields stable perfor-
mance (27.9 at 2.67d and 26.5 at 4d), it does not
match the perplexity gains achieved with WNorm.
These findings highlight that collapse prevention is
a necessary condition, but further lifting the rank
and ensuring richer variance distribution is critical
for unlocking the full potential of wider FFNs.

Activation gating and normalization in GPT2.
Figure 6 tracks the spectral evolution, and Table 5
shows perplexity outcomes of GPT-2 variants using
different activation and normalization schemes un-
der two FFN widths (1d and 2.67d). The baseline
GPT-2 with GeLU shows early hard-rank growth
that quickly saturates around 102, while spectral
concentration remains high (= 0.7). This indicates
a narrow set of dominant directions and leads to
moderate perplexity (14.07 at 2.67d), with limited
gain over the 1d baseline (15.63).

The nGPT configuration augments SwiGLU
with hyperspherical weight and activation normal-
ization and a learnable residual eigen-learning rate
(eigen-LR) (Loshchilov et al., 2025). This combi-
nation substantially enhances spectral health: hard-
rank remains two orders of magnitude above col-
lapse, soft-rank saturates earlier with less fluctu-
ation, and concentration reduces to =~ 0.4—a 20%
improvement over GPT-2. These gains are mir-

Table 5: Perplexity (PPL) comparison of GPT-2 and
nGPT (Loshchilov et al., 2025) with different activation
functions and FFN dimensions.

GPT-2(GeGLU) GPT-2(SwiGLU) nGPT(SwiGLU)
Id  267d 1d 267 1d  2.67d
PPL 1563 1407 1560 1405 1501 13.60

rored in performance, with perplexity dropping to
13.60 at 2.67d and stabilising to 15.01 at 1d, out-
performing both prior setups.

6 Limitations

This work establishes spectral utilization as a reli-
able proxy for FFN width selection, showing that
effective rank stabilizes early and peaks around
2.5-3d. Normalization prevents collapse, and spec-
tral metrics consistently predict perplexity, offering
insights for efficient LLM design .

Limitations. The study is limited to English
decoder-only models up to 250M parameters and
does not validate spectral behavior in multilingual
or encoder-decoder settings. While spectral met-
rics correlate with perplexity, causality remains
unproven, and finer-grained subspace analysis may
be needed beyond scalar metrics like SUI. Addi-
tionally, eigen-computations could pose challenges
at extreme scales.
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Table 6: Evaluation perplexity (PPL) for LLaMA models across different normalization positioning and FFN
dimensions. The columns 1d, 2.67d, 4d, and 6d represent different FFN width, where d is the model dimension.
The unusually high PPL in PostLN LLaMA-250M indicate training instability.

PreLLN PostLN MixLLN
1d 2.67d 4d 6d 1d 2.67d 4d 6d 1d 2.67d 4d 6d

LLAMA-70M 386 342 324 311 382 336 323 31.1 387 339 320 307
LLAMA-130M 29.6 264 258 246 292 267 258 251 29.2 268 253 243
LLAMA-250M 26.7 245 233 225 27.1 14279 1431.0 1436.7 26.8 242 23.0 225

Model
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Figure 7: LLaMA models
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