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Abstract001

As Large Language Models (LLMs) continue002
to scale, understanding how effectively their003
internal capacity is utilized becomes increas-004
ingly important, especially for inference-time005
efficiency. While existing scaling laws relate006
model size to loss and compute, they offer little007
insight into the representational dynamics of in-008
dividual components. In this work, we focus on009
the Feed-Forward Network (FFN), a dominant010
sub-block in decoder-only transformers, and011
recast FFN width selection as a spectral utiliza-012
tion problem. We introduce a lightweight, dif-013
ferentiable diagnostic suite comprising: Hard014
Rank (Participation Ratio), Soft Rank (spec-015
tral entropy), Spectral Concentration, and the016
composite Spectral Utilization Index (SUI), de-017
signed to quantify how many latent directions018
are meaningfully activated. Our spectral au-019
dit across GPT-2, LLaMA, and nGPT mod-020
els reveals that spectral utilization grows with021
model size but not monotonically with width,022
often peaking at intermediate dimensions (e.g.,023
D = 2048). We identify clear instances of024
spectral collapse, where wider FFNs concen-025
trate variance into a narrow subspace, leaving026
much of the latent space unused.027

1 Introduction028

As Large Language Models (LLMs) continue to029

grow in scale and complexity, a fundamental ques-030

tion arises: How effectively is their internal ca-031

pacity utilized? Despite the availability of empiri-032

cal scaling laws that relate model performance to033

width, depth, and data size, these laws provide little034

visibility into how efficiently different components035

operate. They abstract away the internal dynamics036

of transformer blocks, leaving open critical ques-037

tions about representational usage.038

Among these blocks, the Feed-Forward Network039

(FFN) subcomponents have received limited analyt-040

ical attention. Though they constitute a substantial041

fraction of parameters in decoder-only architec-042
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Figure 1: Scaling Laws for LLaMA-130M models

tures, their contribution to internal efficiency re- 043

mains poorly understood. FFNs play a key role 044

in maintaining feature diversity, preserving token 045

isotropy, and enabling signal propagation. Yet 046

width configurations—such as the widely used 4× 047

expansion in GPT or 2.67× in LLaMA—are often 048

adopted as static heuristics, rather than grounded 049

design choices. 050

This raise the critical questions: Is increasing 051

FFN width always beneficial for expressivity? How 052

many latent directions are actually used in prac- 053

tice? Can we quantify representational efficiency 054

beyond FLOPs and loss? 055

We address these questions by reframing FFN 056

width selection as a spectral utilization problem. 057

Through a careful analysis of FFN-layer activa- 058

tions, we identify two distinct failure modes: spec- 059

tral collapse, where increased width compresses 060

representational variance into a narrow subspace, 061

and spectral dilution, where variance is dispersed 062

thinly across many low-signal dimensions. These 063

behaviors indicate internal inefficiency, regardless 064

of model size or perplexity performance. 065

To study these dynamics, we conduct a compre- 066

hensive spectral audit of FFNs in transformer mod- 067

els spanning GPT-2, LLaMA, and nGPT. Our evalu- 068

ation covers width multipliers r ∈ {1, 2.67, 4, 6, 8} 069
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and model sizes from 70M to 250M parameters.070

For each FFN layer, we compute the full eigen-071

spectrum of its covariance matrix (post-activation)072

across training steps, layers.073

We quantify spectral utilization using four in-074

terpretable and computationally efficient metrics:075

Hard Spectral Rank: based on the Participation076

Ratio (PR), measuring the number of dominant di-077

rections activated; Soft Spectral Rank: information-078

theoretic based rank measure, capturing how vari-079

ance is distributed across the spectrum; Spectral080

Concentration: via Eigenvalue Early Enrichment,081

assessing how much variance is captured by lead-082

ing eigenvalues; and finally Spectral Utilization083

Index (SUI): a composite metric that harmonically084

combines hard and soft rank to balance localized085

and distributed representations.086

Our empirical findings reveal three key insights.087

First, spectral utilization increases with model size,088

confirming that larger models activate more dimen-089

sions and better exploit their representational ca-090

pacity. Second, increasing FFN width does not091

always improve utilization. In fact, we observe a092

clear peak at intermediate widths (e.g., D = 2048),093

beyond which metrics such as SUI and effective094

dimension (eDim) stagnate or decline—indicating095

spectral dilution. Third, we uncover sublinear spec-096

tral scaling laws linking FFN width to effective097

rank, with best-fit exponents β < 1 for both hard098

and soft rank metrics. These patterns suggest that099

widening FFNs beyond a certain point results in di-100

minishing returns, and that internal dimensionality101

can often be trimmed without performance loss.102

Contributions. This work makes four key con-103

tributions: Conceptual. We reframe FFN width104

selection as a spectral utilization problem and for-105

malize two failure modes—spectral collapse and106

spectral dilution—to diagnose under- and over-107

capacity conditions in transformer blocks. Archi-108

tectural. We conduct the first layer-wise spectral109

audit across GPT-2, LLaMA, and nGPT variants,110

analyzing FFNs under varying width multipliers111

and normalization configurations. Our results re-112

veal strong layer-wise heterogeneity and challenge113

the use of fixed-width heuristics. Algorithmic.114

We introduce a lightweight, differentiable diagnos-115

tic suite—Participation Ratio, Spectral Entropy,116

Eigenvalue Early Enrichment, and the Spectral Uti-117

lization Index—for quantifying representational us-118

age. We also provide a closed-form estimator of119

effective dimension: Keff = 1 + (D − 1) · SUI120

Empirical. Across 70M, 130M, and 250M pa-121

rameter models, we establish sub-linear power laws 122

relating FFN width to spectral ranks, quantify how 123

LayerNorm placement modulates utilization dy- 124

namics. 125

2 Related Work 126

Cost-aware neural scaling. Early work (Ka- 127

plan et al., 2020) formalised the now-canonical 128

loss-vs-compute power law for language models, 129

later refined by Chinchilla scaling laws (Hoffmann 130

et al., 2022), who showed that existing models are 131

compute-sub-optimal because they are too large 132

and under-trained. Sardana et al. (2024) extend 133

this frontier to the deployment setting: for traffic 134

∼10B requests the compute-optimal point shifts 135

to smaller models trained on more tokens, low- 136

ering inference cost. (Paquette et al., 2024) de- 137

rive a four-plus-three-phase diagram that predicts 138

which factor—capacity, optimizer noise, or fea- 139

ture embedding—dominates under a fixed bud- 140

get Orthogonal cost axes matter too: (Tao et al., 141

2024) reveal that vocabulary size must grow with 142

width, while Kumar et al. (Kumar et al., 2025) 143

introduce precision-aware laws that treat lower- 144

precision training as shrinking the effective param- 145

eter count. (Choshen et al., 2024) offer statistically 146

robust procedures for fitting such laws from small 147

pilot runs. Collectively, these studies motivate our 148

spectral-utilization laws as a complementary effi- 149

ciency axis, tracking latent-space usage rather than 150

surface-level FLOPs. 151

Universality and representational capacity. 152

(Ruan et al., 2024) show that once efficiency offsets 153

are normalized, ∼100 heterogeneous checkpoints, 154

from GPT-2 to PaLM, collapse onto a single sig- 155

moidal curve. The Physics of LMs series reaches a 156

similar conclusion for factual knowledge, finding 157

a near-constant ∼ 2 bits/parameter ceiling across 158

architectures (Allen-Zhu and Li, 2025). Martin et 159

al. (Martin and Mahoney, 2021) first linked such 160

universality to heavy-tailed eigenspectrum and im- 161

plicit self-regularization; (Staats et al., 2024) refine 162

this by showing that small singular values encode 163

critical information in pretrained transformers, and 164

(Dovonon et al., 2024) connect spectrum collapse 165

to transformer over-smoothing. 166

Architectural and domain-specific scaling 167

Scaling exponents are not architecture-agnostic: 168

() find that the best inductive bias flips with 169

scale—Switch-Transformers rule at small N , Per- 170

formers at mid-scale, vanilla attention later. (Ca- 171
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bannes et al., 2024) derive precise laws for172

associative-memory matrices, while (Shi et al.,173

2024) explain why larger models sometimes under-174

perform on time-series by introducing a look-back-175

aware law. Fort (Fort, 2025) frames robustness176

itself as a scaling phenomenon, showing adversar-177

ial attack resistance stays nearly constant across178

two orders of magnitude in model size. Finally,179

Li et al. (Lyu et al., 2025) present an analytically180

solvable attention that yields closed-form power181

laws, offering a theoretical baseline.182

These threads underscore that scaling is multi-183

faceted, bending with inductive bias, data modality,184

precision, and security constraints, precisely the185

facets our spectral scaling laws aim to highlight186

across GPT-2, LLaMA, and nGPT.187

3 Method188

In this section, we explain our methodology for189

extracting layer-wise covariance spectra from FFN190

internal representation, and describe the four spec-191

tral metrics that quantify spectral utilization, and192

capture various aspect of spectrum (e.g., uniformity193

vs spikes). We finish with the end-to-end algorithm194

and a short complexity analysis.195

3.1 Preliminaries and Eigendecomposition196

Notation Let an L-layer transformer be given.197

Each transformer consist of an FFN layer whose198

hidden width is D; the width multiplier (relative199

to the model’s embedding size d) is denoted r =200

D/d. Formally, FFN with gating activation (e.g.,201

SwiGLU in LLaMA (Touvron et al., 2023)) repre-202

sented as FFN(x) = Wdown(σ(Wgatex)⊙(Wupx)),203

where ⊙ represents element-wise multiplication204

and σ is activation function such as SiLU (Elfwing205

et al., 2018). The pre-activation (output of the first206

linear projection) and pos-activation (before the207

down-projection) is represented as PreAct(X) =208

Wgatex and PostAct(X) = σ((Wgatex)⊙ (Wupx)).209

Activation sampling and co-variance matrix210

formation During training step t we sample a mini-211

batch of N tokens from each FFN layer’s (ℓ) post-212

activation X
(ℓ,t)
post ∈ RN×D. We compute the covari-213

ance using all N tokens without any sub-sampling214

or statistical approximations to capture the true215

behavior of the model. Further, we compute an216

unbiased covariance matrix for all tokens in the217

batch as follows:218

Σ =
(X − µ)T (X − µ)

N − 1
∈ RD×D. (1) 219

For each covariance matrix, we perform eigen- 220

decomposition to obtain the eigenvalues Σv = λv. 221

The eigenvalues are sorted in descending order: 222

λ1 ≥ λ2 ≥ . . . ≥ λD ≥ 0. All subsequent metrics 223

depend only on this spectrum. 224

3.2 Spectral Utilization Metrics 225

When a feed-forward block is widened, the key 226

question shifts from how many parameters did we 227

add? to how many of those additional directions 228

does the model actually use? To quantify this no- 229

tion of use, we analyze the eigenspectrum of the 230

post-activation covariance matrix and distill it into 231

four metrics, each lies in the range [0, 1] and can 232

be computed in O(D) time (Table 1). 233

Hard spectral rank. Participation Ratio (PR) 234

acts as a hard counter of dominant directions. Since 235

PR squares the first spectral moment and divides by 236

the second, it is particularly sensitive to prominent 237

eigenvalues: even a single large spike can signif- 238

icantly cap its value, whereas numerous smaller 239

eigenvalues have minimal impact (Gao et al., 2017; 240

Hu and Sompolinsky, 2022). Hence, PR effectively 241

rounds off all but the strongest axes, a hard spike- 242

sensitive estimate. 243

Soft Spectral Rank. It complements PR by mea- 244

suring the Shannon entropy of the full eigenvalue 245

distribution (Skean et al., 2025; Wei et al., 2024; 246

Garrido et al., 2023; De Domenico and Biamonte, 247

2016; Anand et al., 2011; Passerini and Severini, 248

2008), by converting eigenspectrum into a probabil- 249

ity distributions as pi = λi/
∑

j λj . Normalizing 250

to [0, 1] yields a smooth measure of dimensional- 251

ity that captures long-tail variance patterns. Thus, 252

while hard rank is sensitive to dominant peaks, 253

soft rank responds to tail behavior. Describing 254

the pair as hard and soft therefore captures their 255

complementary sensitivities: former reacts sharply 256

to collapse (variance concentrated in a few axes), 257

whereas the latter flags spectral dilution, variance 258

diffused so widely that no direction carries signifi- 259

cant weight. 260

Spectral Utilization Index SUI combines hard 261

and soft spectral ranks into a unified measure of 262

spectral utilization. Hard and soft ranks indepen- 263

dently capture opposing failure modes–spectral 264

collapse versus dilution. To effectively combine 265

these metrics, we adopt their harmonic mean, as it 266
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Table 1: Spectral utilization metrics for characterizing the FFN latent space utilization. Hard and Soft Rank capture
absolute participation and entropy-based ranks in the native [1, D] scale, while their normalized forms yield bounded
[0, 1] utilization scores. Spectral concentration measures front-loading of variance, SUI balances hard and soft ranks,
and eDim translates spectral patterns into an interpretable effective dimension.

Metric Definition Range Qualitative signal Interpretation Cost

Hard Spectral Rank PR =
(
∑

i λi)
2∑

i λ
2
i

, P̃R = PR−1
D−1 [0, 1] Spikes → collapse Dominant spikes O(D)∗

Soft Spectral Rank eR = exp

(
−
∑
i

pi log pi

)
, ẽR =

eR − 1

D − 1
[0, 1] Long tails → dilution Uniformity of spread O(D)

Spectral Concentration SC =
2

D
×

D∑
k=1

(∑k
i=1 λi∑D
i=1 λi

− k

D

)
[0, 1] Strength of spikes Front-loadedness O(D)

Spectral Utilization Index SUI =
2P̃R · ẽR
P̃R + ẽR

[0, 1] Penalizes both extremes Balanced utilization O(1)†

Effective dimension eDim = 1 + (D − 1)SUI [1, D] # active PCs # active dimensions O(1)
∗Once eigenvalues are sorted; †Once ranks known

strongly penalizes imbalance: the harmonic mean267

sharply drops if either input is low, ensuring SUI268

attains high scores only when both metrics indi-269

cate balanced utilization. By rewarding spectra that270

avoid extremes and peak when a moderate num-271

ber of principal directions carry most variance, SUI272

thus provides a robust, intuitive, and parameter-free273

indicator of overall spectral behavior.274

Spectral concentration. Practitioners not just275

about how many directions are active, but also276

about where the variance is concentrated. Spec-277

tral concentration measures the area between the278

cumulative eigen-spectrum and a uniform base-279

line (Marbut et al., 2023), where a higher value280

indicates that variance predominantly concentrates281

within the leading principal components, whereas282

lower value implies a more uniform distribution283

of variance across the spectrum. Thus, unlike pre-284

vious metrics, it distinguishes spectra that utilize285

different fractions of the available latent space.286

Finally, we convert SUI into an integer-valued287

measure called Effective Dimension (eDim), which288

directly represents the approximate number of ac-289

tive principal components. This makes interpre-290

tation more intuitive, particularly it simplifies ab-291

stract ratio into an absolute counts over abstract292

ratios and simplifies comparisons across layers of293

varying widths.294

Why these specific metrics? The hard and soft295

ranks offer complementary perspectives on spec-296

tral utilization: one highlights spectra dominated297

by a few large eigenvalues, while the other captures298

cases with many small eigenvalues spread over a299

long tail. Spectral concentration metric comple-300

ments these ranks by pinpointing precisely where301

variance accumulates. SUI unifies the two ranks 302

into a single robust metric, penalizing both spec- 303

tral extremes, and eDim further translates this into 304

an intuitive count of active principal components. 305

Collectively, these metrics map each layer onto 306

an interpretable three-dimensional spectrum: col- 307

lapse versus dilution, front-loaded versus dispersed 308

variance, and overall spectral efficiency. 309

4 Experimental Results 310

In this section, we present our empirical findings 311

on the spectral scaling laws in by varying the hid- 312

den dimension sizes of FFNs. We primarily use 313

Hard and Soft utilization to investigate how each 314

scales with the hidden dimension D for three sizes 315

of LLaMA models (70M, 130M, 250M). To study 316

how effectively FFNs leverage increasing hidden di- 317

mensions, we trained LLaMA models from scratch 318

on C4 datasets. For each scale, we varied the hid- 319

den dimension D across four values: 768, 2048, 320

3072, and 4608. 321

4.1 Spectral Rank Scaling Laws 322

HardRank obeys a steep negative power law. 323

Figure 2 (a–c) shows a clear power-law decay 324

of HardRank with width, with exponents βHR ∈ 325

[−0.47,−0.93] and R2 = 0.61–0.92. Dominant 326

directions grow sub-linearly; beyond D ≈ 3k the 327

model gains < 0.01 additional high-variance axes 328

per 1 000 new parameters. This early saturation 329

signals that over-provisioning starts well before 330

the 4 608-dimensional setting commonly used in 331

practice. 332

SoftRank reveals heterogeneous tail behav- 333

ior. The bottom row of Figure 2 shows a more nu- 334

4



1000
Hidden Dimension (D)

10 3

10 2

H
ar

dR
an

k

R 2 = 0.864

D = 768

D = 2048
D = 3072

D = 4608

Scaling Law for HardRank: = 0.720

D 0.720

Observed HardRank

(a) LLaMA-70M (PreLN)

1000
Hidden Dimension (D)

10 2

H
ar

dR
an

k

R 2 = 0.606

D = 768
D = 2048

D = 3072

D = 4608

Scaling Law for HardRank: = 0.475

D 0.475

Observed HardRank

(b) LLaMA-130M (PreLN)

1000
Hidden Dimension (D)

10 2

H
ar

dR
an

k

R 2 = 0.923

D = 768

D = 2048 D = 3072

D = 4608

Scaling Law for HardRank: = 0.928

D 0.928

Observed HardRank

(c) LLaMA-250M (PreLN)

1000
Hidden Dimension (D)

10 1

3×10 2

4×10 2

6×10 2So
ft

R
an

k

R 2 = 0.410

D = 768 D = 2048 D = 3072

D = 4608

Scaling Law for SoftRank: = 0.172

D 0.172

Observed SoftRank

(d) LLaMA-70M (PreLN)

1000
Hidden Dimension (D)

10 1

2×10 1

3×10 1

So
ft

R
an

k

R 2 = 0.001

D = 768

D = 2048

D = 3072 D = 4608

Scaling Law for SoftRank: = 0.007

D 0.007

Observed SoftRank

(e) LLaMA-130M (PreLN)

1000
Hidden Dimension (D)

10 1

2×10 1

3×10 1

So
ft

R
an

k

R 2 = 0.730

D = 768

D = 2048 D = 3072

D = 4608

Scaling Law for SoftRank: = 0.261

D 0.261

Observed SoftRank

(f) LLaMA-250M (PreLN)

Figure 2: Empirical scaling laws for the HardRank (top row) and SoftRank (bottom row) across different FFN
hidden dimensions D in LLaMA variants. Each subplot shows the observed rank utilization values (blue markers
with error bars measured across layers) alongside a fitted power-law trend (red dashed line). The negative exponents
(β) and high R2 values support a “spectral collapse” pattern, whereby effective rank declines as D increases.

Table 2: Summary of spectral-utilization metrics and fitted scaling exponents. The right-most columns list the
power-law slope for HardRank and SoftRank, quantifying how sharply each metric saturates as width increases.

D=768 D=2048 D=3072 D=4608 Scaling Laws Parameters

HRank SRank SUI eDim HRank SRank SUI eDim HRank SRank SUI eDim HRank SRank SUI eDim HRank(β,R2) SRank(β,R2)

70M 0.011 0.118 0.021 17 0.007 0.113 0.013 27 0.006 0.121 0.011 36 0.003 0.078 0.005 25 -0.72 0.864 -0.172 0.410
130M 0.016 0.182 0.029 23 0.018 0.259 0.034 71 0.009 0.182 0.017 54 0.007 0.190 0.013 60 -0.475 0.606 0.007 0.001
250M 0.030 0.272 0.054 42 0.012 0.226 0.024 49 0.012 0.232 0.022 69 0.005 0.156 0.009 44 -0.928 0.923 -0.261 0.730

anced trend: SoftRank exhibits strikingly different335

scaling patterns across model sizes. For the 70M336

model, SoftRank decays mildly (βSR = −0.17),337

indicating that the spectrum’s tail is progressively338

under-utilized. In contrast, the 130M variant shows339

a statistically zero slope (βSR ≈ 0), where variance340

is merely diluted across many faint modes while the341

tail remains populated. The largest 250M model342

demonstrates a different pattern, with both Hard-343

and Soft-Rank declining (βSR = −0.26), signaling344

true spectral collapse in which neither head nor tail345

keeps pace with width.346

Two failure modes: spectral dilution vs. col-347

lapse Comparing the trajectories of Hard- and Soft-348

Rank allows us to disambiguate under-capacity phe-349

nomena: Spectral dilution occurs when HardRank350

falls but SoftRank stays flat (LLaMA-130 M).351

Widening introduces numerous weak directions352

without increasing dominant variance, spreading353

information thinly. Conversely, spectral collapse354

manifests when both ranks fall (LLaMA-250 M). 355

Even the low-energy subspace is left empty, in- 356

dicating genuine over-capacity. These modes are 357

invisible to either metric alone; the joint view is 358

essential. 359

Composite diagnostics. Table 2 shows that 360

SUI decreases monotonically for every checkpoint 361

(e.g., 70 M: 0.021 → 0.005), while eDim satu- 362

rates around 40–50 regardless of D. Because SUI 363

penalizes a drop in either rank, its steady decline 364

confirms that no part of the spectrum scales pro- 365

portionally with width. 366

Implications for model design. Our findings 367

suggest three key principles for efficient model de- 368

sign: (1) Stop widening early–for Pre-LN LLaMA, 369

increasing D beyond ∼3,000 yields diminishing 370

spectral returns; (2) Monitor SUI during training–it 371

offers a one-line diagnostic that flags wasted pa- 372

rameters before full convergence; and (3) Layer- 373

wise adaptation beats uniform scaling–the hetero- 374
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Figure 3: Power-law templates for spectral concentration. Cumulative-variance curves generated from synthetic
power-law spectra λk ∝ k−α for three latent sizes (D = 768, 2048, 3072). Larger exponents (α) front-load variance
and push the curve upward. Coloured call-outs report the concentration value reached by benchmark cut-offs.

Table 3: Quantitative summary of the curves in Fig 3. For each α and hidden size D we list the variance carried by
the top-1 eigenvalue, and cumulative variance captured by the first 10%, 25% and 50% principal components, along
with the concentration score. The results show sharp transition around α ≈ 1.2: below it at least half the spectrum
is needed to explain 80% of the variance (dilution), above it fewer than 10% directions suffice (collapse).

α
Top-1 eigenvalue Variance @ 10% dimensions Variance @ 25% dimensions Variance @ 50% dimensions Spectral Concentration

768 2048 3072 768 2048 3072 768 2048 3072 768 2048 3072 768 2048 3072

0.8 6.9% 5.4% 4.9% 51.9% 54.3% 55.2% 68.4% 70.0% 70.5% 83.1% 84.0% 84.3% 0.57 0.59 0.59
1.0 13.8% 12.2% 11.6% 68.2% 72.0% 73.3% 80.8% 83.1% 83.9% 90.4% 91.6% 91.9% 0.72 0.76 0.77
1.2 23.4% 22.2% 21.8% 81.9% 85.9% 87.2% 90.1% 92.3% 93.0% 95.4% 96.4% 96.7% 0.85 0.88 0.89
1.5 39.4% 38.9% 38.8% 93.9% 96.3% 97.0% 97.2% 98.3% 98.6% 98.8% 99.3% 99.4% 0.95 0.97 0.97
2.0 60.8% 60.8% 60.8% 99.3% 99.7% 99.8% 99.8% 99.9% 99.9% 99.9% 100.0% 100.0% 0.99 1.00 1.00

geneous behavior across checkpoints suggests allo-375

cating width dynamically, pruning collapsing lay-376

ers and selectively widening those still far from377

dilution. By grounding width decisions in spectral378

utilization rather than parameter counts, practition-379

ers can trim model size without sacrificing repre-380

sentational power, a crucial step towards efficient-381

inference at scale.382

4.2 Scaling Laws for Spectral Concentration383

We investigate the spectral concentration of FFNs384

activation covariance matrices by modeling their385

eigenvalue distribution via a truncated power-law:386

λk ∝ k−α, k = 1, . . . , D, where the exponent α387

controls how variance is distributed across eigen-388

directions. While traditional rank-based metrics389

(e.g., Hard and Soft Spectral Ranks) integrate in-390

formation from all eigenvalues, they often over-391

look crucial details in the distribution’s shape, such392

as distinguishing between sharply peaked spectra393

with extensive flat tails and those smoothly decay-394

ing. The proposed power-law scaling framework di-395

rectly addresses this limitation, isolating the shape396

characteristics of spectral distributions. Higher val-397

ues of α yield spectra sharply concentrated (front-398

loaded) among leading directions, indicating incip-399

ient collapse, whereas lower values produce more400

uniform (diluted) distributions, indicative of subop- 401

timal variance allocation (Fig. 3). 402

Empirically, several robust trends emerge from 403

our analysis. Spectral concentration, monotoni- 404

cally increases with α: as α rises from 0.8 to 2.0, 405

it grows consistently from around 0.57 to nearly 406

0.99 (Table 3). Once eigenvalues decay faster than 407

k−2, variance is predominantly concentrated in the 408

initial directions, becoming effectively dimension- 409

invariant and independent of model width. This in- 410

variance enables meaningful comparisons of FFN 411

efficiency across models of different sizes by align- 412

ing them on a common spectral utilization axis. 413

For larger α ≥ 1.5, over 90% of variance resides 414

within merely the top 10% of principal components 415

(Table 3). Conversely, at smaller values (α ≈ 0.8), 416

capturing the same variance requires more than 417

50% of components, leading to a state we term 418

”spectral dilution.” Notably, activations in prevalent 419

models such as LLaMA typically exhibit interme- 420

diate spectral concentration (α ≈ 1.1–1.3), thereby 421

balancing effective dimensionality and representa- 422

tional compactness, avoiding the extremes of either 423

spectral dilution or collapse. 424
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Figure 4: Training-time evolution of spectral scaling laws for LLaMA-130M (Pre-LN). (a) and (b) track, at every
logged step, the power-law exponent β (blue, left axis) obtained by regressing log(Hard/Soft Rank) against
logDFFN across the four width multipliers {1×, 2.67×, 4×, 6×}; the red curve (right axis) is the corresponding
coefficient of determination R2. (c) and (d) show the raw layer-averaged Hard- and Soft-Rank trajectories for each
width to illustrate the data being fit. Shaded bands are ±1 s.d. over layers.

4.3 Spectral Scaling Dynamics425

As shown in Figure 4, during the first 2K to 3K426

training steps the spectral landscape is still fluid:427

both Hard- and Soft-Rank curves rise steeply and428

the fitted β coefficients fluctuate, accompanied by429

low R2. This early volatility warns against draw-430

ing scaling-law conclusions from partially trained431

checkpoints. Around step 5K the exponents set-432

tle and R2 surpasses 0.6, suggesting that a stable433

power-law relation has emerged. Averaged over434

the final 1K steps we obtain βhard ≈ −0.38 and435

βsoft ≈ +0.07.436

A further observation is that the rank trajectories437

in panels (c) and (d) preserve their vertical ordering438

throughout training: wider configurations always439

sit above narrower ones for Soft-Rank and below440

for Hard-Rank. Hence the eventual utilization hier-441

archy is determined surprisingly early, suggesting442

that practitioners can estimate the utility of a width443

choice long before full convergence.444

5 Case Study for Spectral Utilization445

Training Stability in PostLN LLaMA-250M446

Spectral collapse in Post-LayerNorm blocks.447

We observe a strong correlation between spectral448

health and the performance of LLaMA-250M when449

the FFN width is increased. In the vanilla Post-450

LayerNorm setup, spectral dynamics remain stable451

only for the narrowest FFN width (1d). However,452

scaling the width to 2.67d or 4d leads to a rapid col-453

lapse of spectral diversity: the hard-rank plunges454

to ≲ 10−3 and the concentration saturates to ≈ 1.0455

within the first few thousand steps (Figure 5a). This456

spectral collapse signifies that most of the variance457

is funneled into one or two dominant directions,458

leaving the majority of the ∼ 3000 latent dimen-459

sions inactive. As a result, model performance460

deteriorates sharply, with test perplexity exceeding 461

consistent with the figures reported in Table 4. 462

Weight Normalization enables high-rank spectra 463

and best perplexity. Employing weight normal- 464

ization (WNorm) (Salimans and Kingma, 2016) 465

within each FFN significantly mitigates this col- 466

lapse. The hard-rank stabilizes in the 10−2–10−1 467

range, while spectral concentration settles around 468

0.25–0.3, indicating that hundreds of latent direc- 469

tions carry meaningful variance. This richer and 470

more distributed latent basis translates into notably 471

better performance: perplexities of 25.1 (at 2.67d) 472

and 24.3 (at 4d), both outperforming the vanilla 1d 473

baseline (27.1). These results affirm that maintain- 474

ing a non-degenerate spectrum not only prevents 475

collapse but actively enhances downstream predic- 476

tive performance. 477

Table 4: Vanilla PostLN in LLaMa-250M becomes un-
stable at higher FFN dimensions, causing spikes in PPL
values. Adding Weight Normalization or Hyperspher-
ical Normalization to the FFN linear layers stabilizes
training (former outperforms the latter across all scales).

PostLN 1d 2.67d 4d

Vanilla 27.10 1427.91 1431.01
WeightNorm 28.89 25.08 24.27
HypersphericalNorm 31.66 27.92 26.48

Hyperspherical normalization provides stability 478

but with conservative rank. Hyperspherical normal- 479

ization (HNorm) also prevents collapse and pro- 480

motes training stability but results in more conser- 481

vative spectral utilization (Loshchilov et al., 2025; 482

Lee et al., 2025; Karras et al., 2024; Wang and 483

Isola, 2020; Liu et al., 2017). The hard-rank re- 484

mains roughly an order of magnitude above the col- 485

lapse threshold, yet ∼30% lower than the WNorm 486

trace. Spectral concentration is marginally higher, 487
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Figure 5: LLaMA models
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Figure 6: GPT-2 vs nGPT

suggesting a somewhat narrower effective basis.488

Consequently, while HNorm yields stable perfor-489

mance (27.9 at 2.67d and 26.5 at 4d), it does not490

match the perplexity gains achieved with WNorm.491

These findings highlight that collapse prevention is492

a necessary condition, but further lifting the rank493

and ensuring richer variance distribution is critical494

for unlocking the full potential of wider FFNs.495

Activation gating and normalization in GPT2.496

Figure 6 tracks the spectral evolution, and Table 5497

shows perplexity outcomes of GPT-2 variants using498

different activation and normalization schemes un-499

der two FFN widths (1d and 2.67d). The baseline500

GPT-2 with GeLU shows early hard-rank growth501

that quickly saturates around 10−2, while spectral502

concentration remains high (≈ 0.7). This indicates503

a narrow set of dominant directions and leads to504

moderate perplexity (14.07 at 2.67d), with limited505

gain over the 1d baseline (15.63).506

The nGPT configuration augments SwiGLU507

with hyperspherical weight and activation normal-508

ization and a learnable residual eigen-learning rate509

(eigen-LR) (Loshchilov et al., 2025). This combi-510

nation substantially enhances spectral health: hard-511

rank remains two orders of magnitude above col-512

lapse, soft-rank saturates earlier with less fluctu-513

ation, and concentration reduces to ≈ 0.4–a 20%514

improvement over GPT-2. These gains are mir-515

Table 5: Perplexity (PPL) comparison of GPT-2 and
nGPT (Loshchilov et al., 2025) with different activation
functions and FFN dimensions.

GPT-2(GeGLU) GPT-2(SwiGLU) nGPT(SwiGLU)

1d 2.67d 1d 2.67d 1d 2.67d

PPL 15.63 14.07 15.60 14.05 15.01 13.60

rored in performance, with perplexity dropping to 516

13.60 at 2.67d and stabilising to 15.01 at 1d, out- 517

performing both prior setups. 518

6 Limitations 519

This work establishes spectral utilization as a reli- 520

able proxy for FFN width selection, showing that 521

effective rank stabilizes early and peaks around 522

2.5–3d. Normalization prevents collapse, and spec- 523

tral metrics consistently predict perplexity, offering 524

insights for efficient LLM design . 525

Limitations. The study is limited to English 526

decoder-only models up to 250M parameters and 527

does not validate spectral behavior in multilingual 528

or encoder-decoder settings. While spectral met- 529

rics correlate with perplexity, causality remains 530

unproven, and finer-grained subspace analysis may 531

be needed beyond scalar metrics like SUI. Addi- 532

tionally, eigen-computations could pose challenges 533

at extreme scales. 534
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Table 6: Evaluation perplexity (PPL) for LLaMA models across different normalization positioning and FFN
dimensions. The columns 1d, 2.67d, 4d, and 6d represent different FFN width, where d is the model dimension.
The unusually high PPL in PostLN LLaMA-250M indicate training instability.

Model PreLN PostLN MixLN

1d 2.67d 4d 6d 1d 2.67d 4d 6d 1d 2.67d 4d 6d

LLAMA-70M 38.6 34.2 32.4 31.1 38.2 33.6 32.3 31.1 38.7 33.9 32.0 30.7
LLAMA-130M 29.6 26.4 25.8 24.6 29.2 26.7 25.8 25.1 29.2 26.8 25.3 24.3
LLAMA-250M 26.7 24.5 23.3 22.5 27.1 1427.9 1431.0 1436.7 26.8 24.2 23.0 22.5
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Figure 7: LLaMA models
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