
Extended Abstract Track 2022 NeurIPS Workshop on Symmetry and Geometry in Neural Representations

Exact Visualization of Deep Neural Network Geometry and
Decision Boundary

Ahmed Imtiaz Humayun imtiaz@rice.edu

Rice University

Randall Balestriero rbalestriero@meta.com

Meta AI Research, FAIR

Richard Baraniuk richb@rice.edu

Rice University

Editors: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Arianna Di Bernardo, Nina Miolane

Abstract

Visualizing Deep Network (DN) geometry and decision boundaries remains a key challenge
even today. In fact, despite the dire need for such methods e.g. to assess the quality of
a trained model, to compare models, to interpret decisions, the community at large still
relies on crude approximations. For example, computing the decision boundary of a model,
say on a 2d slice of their input space, is done through gradient descent and sampling with
dichotomy search. In this paper, we lean on the rich theory of Continuous Piece-Wise Linear
(CPWL) DNs to provide, for the first time, a method that provably produces the exact
geometry (CPWL partition) and decision boundary of any DN employing nonlinearities
such as ReLU, Leaky-ReLU, and max-pooling. Using the proposed method, we are able
to not only visualize the decision boundary but also obtain its spanning space, i.e., we can
sample arbitrarily many inputs that provably lie on the model’s decision boundary, up to
numerical precision. We explore how such methods can be used to interpret architectural
choices e.g. using convolutional architectures instead of fully-connected neural networks.

1. Introduction

Deep learning and in particular Deep Networks (DNs) have redefined the landscape of
machine learning and pattern recognition. Although current DNs employ a variety of tech-
niques that improve their performances, their core operation remains unchanged, mostly
consisting of sequentially mapping an input vector x to a sequence of L feature maps zℓ,
ℓ = 1, . . . , L by applying successive simple nonlinear transformations, often coined layers,
as in

zℓ+1 = a
(
W ℓzℓ + bℓ

)
, ℓ = 0, . . . , L− 1 (1)

with z0 = x, W ℓ the weight matrix, bℓ the bias vector, and a an activation operator that
applies a scalar nonlinear activation function a to each element of its vector input. The
parametrization of W ℓ, bℓ controls the type of layer employed e.g. circulant matrix for
convolutional layer.

Interpreting the geometry of a DN is not a trivial task since many different parameters can
lead to the same input-output mapping. A common example is obtained by permuting the

© 2022 A.I. Humayun, R. Balestriero & R. Baraniuk.



Humayun Balestriero Baraniuk

rows ofW ℓ, bℓ and the columns ofW ℓ+1 any number of layer(s). It is clear that while overall
mapping remains unchanged the parameters of the network differ. As a result, practitioners
have relied on different solutions to interpret what has been learned by a model by looking
at activations instead of looking at the weights of the network (Yosinski et al., 2015; Jalwana
et al., 2021). One important method for model interpretation is to find the closest point to a
training sample x that lies on the model’s decision boundary (Somepalli et al., 2022), which
finds practical use for active learning (Locatelli et al., 2018) and adversarial robustness (He
et al., 2018). In this setting, one commonly performs gradient updates from an initial guess
x based on an objective reaches its minimum whenever its argument lies on the model’s
decision boundary. Although alternative and more efficient solutions have been developed,
most of the progress has focused on providing more optimized losses and sampling strategies
(Somepalli et al., 2022; He et al., 2018). In short, there still exists a strong need to develop
an exact method, up to machine precision, that is able to compute the decision boundary
of a given DN.

In this paper, we focus on the family of DNs obtained by restricting a, the activation
functions, to be Continuous Piece-Wise Linear (CPWL) as is the case with the eponymous
(leaky-)ReLU, absolute value, max-pooling. In this setting, the entire DN will itself become
a CPWL operator, and we will demonstrate how from this observation alone, it is possible
to probe the DN’s geometry, and in particular the DN’s decision boundary, in an exact
manner. Echoing our previous example, such precise characterization will enable use to,
e.g., sample arbitrarily many samples that lie on the DN’s decision boundary, opening
new avenues for interpretability. Furthermore, leaning on the CPWL form of the DN, we
demonstrate that its geometry can be entirely described by its input space partition and
per-region affine mappings which again, we will be able to obtain in closed-form. All in
all, we provide a tractable and efficient method to visualize and quantitatively interpret the
geometry of Deep Neural Networks, opening new doors to interpretability and visualization.

2. The Geometry and Decision Boundary of Continuous Piece-Wise
Linear Deep Networks

The goal of this section is to first introduce basic notations and concepts associated with
CPWL DNs (Sec. 2.1), and then develop our method that consists of building the exact DN
input space partition, and the DN’s decision boundary that lives on it (Sec. 2.2); empirical
studies based on our method will be provided in Sec. 2.3.

2.1. Deep Networks as Continuous Piece-Wise Linear Operators

One of the most fundamental functional form for a nonlinear function emerges from poly-
nomials, and in particular, spline operators. In all generality a spline is a mapping which
has locally degree P polynomials on each region ω of its input space partition Ω, with the
additional constraints that the first P − 1 derivatives of those polynomials are continuous
throughout the domain i.e. imposing a smoothness constraint when moving from one region
to any of its neighbor.

More formally and for the context of DNs we will particularly focus on affine splines, i.e.,
spline operators with P = 1 and only constrained to enforce continuity throughout the

2



Exact Visualization of Deep Neural Network Geometry and Decision Boundary

domain. In this setting, the partition Ω of the DN’s domain RS , along with per-region
affine mapping parameters (Aω, bω) corresponding to the slope matrix and offset vector
respectively, enable to express the entire input-output mapping of a DN S as

S(x) =
∑
ω∈Ω

(Aωx+ bω)1{x∈ω}, (2)

with Aω, bω being different for each region ω ∈ Ω yet fulfilling the continuity constraint
on S, i.e., S ∈ C0(RS). The charming property of DNs is that those mappings and the
partition are defined implicitly through the composition of affine and nonlinear operators
and thus continuity always holds and unconstrained optimization of the DNs’ parameters
can be employed. Such formulations of DNs have been extensively employed as it makes
theoretical studies amenable to actual DNs without any simplification while leveraging the
rich literature on spline theory, e.g., in approximation theory (Cheney and Light, 2009),
optimal control (Egerstedt and Martin, 2009), statistics (Fantuzzi et al., 2002) and related
fields.

Figure 1: (Left) Decision boundary visualization for an MLP with width 50 and depth 3,
trained on fashion-MNIST. Dark red line represents the learned decision boundary while
black lines represent the spline partition of the network. (Middle Left) Samples from
the decision boundary between classes Top and Trouser. The samples have distinguishable
attributes present from both classes. (Middle Right) Decision boundary and partition
visualization of a convolutional neural network trained on MNIST, with two convolutional
layers and one hidden fully connected layer of width 50. One of the digit 3 samples is
misclassified by the network as digit 2. (Right) Samples from the decision boundary
between digits 2 and 3 of MNIST. Wall time required for finding the partitions is 8 min 16
s for the MLP and 21 min 9 s for the CNN.

2.2. Exact Computation of Their Partition and Decision Boundary

The key property that we will be leveraging in this section to obtain the decision boundary
of a DN, is that given its partition Ω and the per-region affine mappings, adding an extra
linear classifier on top exactly amounts as having a linear classifier within each region ω ∈ Ω
of the DN’s input space. To see that, notice that the linear classifier is linear w.r.t. the
output of S, and that within each region of its partition, S is also linear. Although the
decision boundary is nonlinear when looking at the whole domain, it becomes linear when
restricted to different regions ω of that domain.

3



Humayun Balestriero Baraniuk

As a result, to visualize the decision boundary of a DN, we must first find the spline partition
induced by its architecture and parameters, to then project the decision boundary to the
input space within each of those regions. Based on this finding, we propose to first develop
an optimized algorithm that will provide one with the partition Ω of a given DN which
applies even if employing convolution and/or residual layers (Balestriero and Baraniuk,
2020). Let the DN be represented as a composition of L affine layers, with per-layer affine
parameters {W ℓ, bℓ}L−1

ℓ=0 . For ease of discussion, suppose the network has a ReLU non-
linearity which we denote as σ and thus each layer produces its output given some input
zℓ−1 via

zℓ = σ(W ℓzℓ−1 + bℓ).

Note that our implementation is easily extended to activation functions that are arbitrary
affine splines e.g. ReLU, Leaky-ReLU, sawtooth. Each layer ℓ mapping can be considered a
projection of incoming vectors zℓ−1 onto a set of hyperplanes in the input space of the layer,
defined by ⟨wℓ

i , z
ℓ−1⟩+ bℓi = 0, where wℓ

i is the i-th element of W ℓ and bℓi is the i-th element
of bℓ. Each hyperplane projection gives the pre-activation of that layer for the corresponding
output dimension. For a subsequent ReLU activation, vectors from the negative half-space
created by the hyperplane are mapped to zero, while vectors from the positive half-space
are mapped linearly. The key observation that one should notice is that the activations are
linear except at 0. Therefore, for each layer, we have a set of hyperplanes in the input space
of the layer which define the position of the non-linearities. Building on this intuition, for
each layer our algorithm finds the set of convex polytopes formed by the intersection of
hyperplanes, where each polytope represents a linear region. The pseudocode for finding
the complete spline partition and the decision boundary can therefore be summarized as
below:

• Given a bounded input domain, iterate through the first layer (ℓ = 1) hyperplanes
⟨wℓ

i , z
ℓ⟩ + bℓi = 0 and cut the input domain to form convex polytopes. For each

polytope ω the operation performed by the layer is an affine operation via parameters
Aℓ

ω = qℓω ⊙W ℓ and bℓω = qℓω ⊙bℓ, where qℓω is the activation pattern corresponding to
the ω polytope of the ℓ-th layer. Project the polytopes to the next layer via region-wise
affine operation zℓ+1 = Aℓ

ωz
ℓ + bℓ

• For layers {1, 2...L− 2} use the layer hyperplanes to partition the incoming polytopes
and update the region-wise affine parameters. For each new region ω in layer ℓ input
formed by cutting region ω′ from layer {ℓ′ = ℓ− 1} output, the affine parameters will
be {Aℓ

ω, b
ℓ
ω}={qℓω ⊙W ℓAℓ′

ω′ , qℓω ⊙ bℓ + qℓω ⊙W ℓbℓ
′
ω′}.

• For networks trained with softmax output activations, during inference we can con-
sider the output activation as a max since the decision boundary between classes
occurs when the argmax differs. Therefore, the decision boundary between classes
{i, j} at the final layer input can be expressed by the hyperplane ⟨wℓ

i−wℓ
j , z

ℓ⟩+bℓi−bℓj .
We therefore project the null space of the hyperplanes in layer L−1 to the input space
to get the decision boundaries in the input space.

While the above method is generalized for arbitrary input dimensionality, it can be com-
putationally expensive. In particular, it is well known that the number of regions with a

4



Exact Visualization of Deep Neural Network Geometry and Decision Boundary

Architecture Dataset Parameters Avg Vol
Avg Number
of Vertices

Ecc
Number of
Regions

MLP
MNIST 44,860 3.144e-4 3 102e7 318

Fashion-MNIST 44,860 4.991e-4 3 36e7 1364

CONV
MNIST 39,780 1.134e-5 3 17e7 8814

Fashion-MNIST 39,780 3.54e-5 3 14e7 28222

Table 1: Statistics of the spline partitions formed by fully-connected (MLP) and Convolu-
tional neural networks. For each dataset, the same 2D slice and input domain is used to find
the partition regions. Convolutional neural networks form a significantly higher number of
regions compared to MLPs even with less parameters. The mean eccentricity and volume
across regions is also significantly lower for convolutional neural networks.

partition Ω and the complexity of each region ω e.g. its number of faces and vertices, grow
exponentially with respect to input dimensionality, even for the simplest one layer DNs.
Therefore, in our implementation, given three points x1,x2 and x3 we can define 2D slice
of the input space through those points. We consider a bounded domain on this slice to
compute the partition boundary. For the examples presented in Fig. 1, we consider two
different classes for each network. We pick two of the closest training samples from the
classes, along with a third point that is the nearest neighbor to one of the samples chosen.
Therefore, we consider a square domain centered on the centroid of the three points.

2.3. Impact of Architecture on Partitions Properties

Computing the exact partition boundary finds many applications, not only to visualize
and sample the decision boundary (see Fig. 1). We explore some alternative interesting
directions in this section.

First, we explore the impact of the DN’s architecture. We see that the choice of archi-
tecture can have significant effect on the partitioning induced by a deep neural network
(Tab. 1). For a given dataset, we fix the input domain and switch between convolutional
and fully connected architectures to draw emphasis on the effect of the symmetries induced
by a convolutional layer. We see that in convolutional architectures, there is a significantly
higher number of partition regions formed, which is an indication of higher complexity of
the learned model (Montufar et al., 2014). We also see that the eccentricity and volume of
the polytopes are significantly smaller for convolutional architectures compared to fully con-
nected architectures, indicating more uniform partition shapes and higher partition density.
These can also be visualized in Fig. 1.

3. Conclusions

We present the first provable method to visualize and sample the decision boundary of
deep neural networks with CPWL non-linearities. Our presented methods may allow many
future avenues of exploration and understanding of neural network geometries.

5



Humayun Balestriero Baraniuk

Acknowledgements

Humayun and Baraniuk were supported by NSF grants CCF1911094, IIS-1838177, and IIS-
1730574; ONR grants N00014-18-12571, N00014-20-1-2534, and MURI N00014-20-1-2787;
AFOSR grant FA9550-22-1-0060; and a Vannevar Bush Faculty Fellowship, ONR grant
N00014-18-1-2047.

References

Randall Balestriero and Richard G Baraniuk. Mad max: Affine spline insights into deep
learning. Proceedings of the IEEE, 2020.

Elliott Ward Cheney and William Allan Light. A course in approximation theory, volume
101. American Mathematical Soc., 2009.

Magnus Egerstedt and Clyde Martin. Control theoretic splines: optimal control, statistics,
and path planning. Princeton University Press, 2009.

Cesare Fantuzzi, Silvio Simani, Sergio Beghelli, and Riccardo Rovatti. Identification of
piecewise affine models in noisy environment. International Journal of Control, 75(18):
1472–1485, 2002.

Warren He, Bo Li, and Dawn Song. Decision boundary analysis of adversarial examples. In
ICLR, 2018. URL https://openreview.net/forum?id=BkpiPMbA-.

Mohammad AAK Jalwana, Naveed Akhtar, Mohammed Bennamoun, and Ajmal Mian.
Cameras: Enhanced resolution and sanity preserving class activation mapping for image
saliency. In CVPR, pages 16327–16336, 2021.

Andrea Locatelli, Alexandra Carpentier, and Samory Kpotufe. An adaptive strategy for
active learning with smooth decision boundary. In Algorithmic Learning Theory, pages
547–571. PMLR, 2018.

Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number
of linear regions of deep neural networks. In Advances in Neural Information Processing
systems, pages 2924–2932, 2014.

Gowthami Somepalli, Liam Fowl, Arpit Bansal, Ping Yeh-Chiang, Yehuda Dar, Richard
Baraniuk, Micah Goldblum, and Tom Goldstein. Can neural nets learn the same model
twice? investigating reproducibility and double descent from the decision boundary per-
spective. In CVPR, pages 13699–13708, 2022.

Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Understanding
neural networks through deep visualization. ICML Deep Learning Workshop, page 12,
2015.

6

https://openreview.net/forum?id=BkpiPMbA-

	Introduction
	The Geometry and Decision Boundary of Continuous Piece-Wise Linear Deep Networks
	Deep Networks as Continuous Piece-Wise Linear Operators
	Exact Computation of Their Partition and Decision Boundary
	Impact of Architecture on Partitions Properties

	Conclusions

