
Search Algorithm Portfolios with Multithreaded Components

Takumi Shimoda, Alex Fukunaga
Graduate School of Arts and Sciences

The University of Tokyo
takumi35shimoda@yahoo.co.jp, fukunaga@idea.c.u-tokyo.ac.jp

Abstract

One successful approach to parallel satisficing search is a
search algorithm portfolio, where each processor executes an
independent search process. Portfolios are competitive with
parallel search algorithms where threads use shared Open/-
Closed lists. We investigate the scalability of portfolios vs.
parallel search algorithm with shared Open/Closed, and show
that the benefits due to diversification of portfolio searches
hit a plateau, after which adding additional independent com-
ponents yield diminishing marginal returns. We show that
hybrid portfolio/cooperative algorithms where each portfolio
component is a multi-threaded, shared Open/Closed search
algorithm can significantly outperform both pure portfolios as
well as pure shared Open/Closed parallel search algorithms.

1 Introduction
Parallelization is important in order to maximize search
algorithm performance on modern, multi-core CPUs. In
the case of cost-optimal search, parallelization of the stan-
dard A* algorithm (Hart, Nilsson, and Raphael 1968)
is somewhat well understood, and practical approaches
where multi-threaded approaches which share one or more
Open/Closed lists have been proposed (Burns et al. 2010;
Kishimoto, Fukunaga, and Botea 2013; Phillips, Likhachev,
and Koenig 2014; Fukunaga et al. 2017).

On the other hand, parallelization is not well understood
for satisficing search where the object is to quickly find any
valid solution path (regardless of path cost). Greedy Best
First Search (GBFS; Doran and Michie 1966) is a widely
used satisficing search algorithm. One straightforward ap-
proach to GBFS parallelization is a cooperative approach,
where all threads share global Open and Closed lists, and
all threads expand states from the shared Open according
to some best-first criterion. However, the performance of
cooperative parallel GBFS is non-monotonic with respect
to resource usage – there is a significant risk that using k
threads can result in significantly worse performance than
using fewer than k threads. It has been shown experimen-
tally that cooperative parallel GBFS can expand orders of
magnitude more states than GBFS (Kuroiwa and Fukunaga
2019), and it has been shown theoretically that KPGBFS, a
straightforward instance of cooperative parallel GBFS, can

expand arbitrarily many more states than GBFS (Kuroiwa
and Fukunaga 2020).

A major obstacle to cooperative parallelization of GBFS
using shared Open/Closed has been that unlike parallel
cost-optimal search, there is no obvious set of states which a
parallel satisficing search must explore in order to be consid-
ered a “correct” or “efficient” parallelization of the sequen-
tial algorithm. Heusner, Keller, and Helmert (2017) identi-
fied the Bench Transition System (BTS ), the set of all states
that can be expanded by GBFS under some tie-breaking pol-
icy (conversely, if a state is not in the BTS, there does not
exist any tie-breaking strategy for GBFS which will expand
that state). Thus, the set of states in the BTS is a natural can-
didate for an upper bound on the set of states which should
be expanded by a parallel GBFS.

OBAT (Shimoda and Fukunaga 2025b) is a recently pro-
posed algorithm that constrains search by (1) expanding
only states in the BTS and (2) avoiding simultaneous ex-
ploration of multiple benches. This guarantees an upper
bound on the number of states expanded relative to sequen-
tial GBFS with some tie-breaking policy. However, enforc-
ing these constraints incurs a performance penalty with re-
spect to the state expansion/evaluation rate. Since these al-
gorithms prevent expansion of any state unless it is certain
that the state satisfies the expansion constraints, threads can
be forced to be idle while they wait until a state which satis-
fies the expansion constraint becomes available in the shared
Open .

An alternative approach to parallelization is a portfolio
(Huberman, Lukose, and Hogg 1997; Gomes and Selman
2001), where multiple components independently search the
space in parallel. PGBFS is a straightforward portfolio-
based approach for parallelizing GBFS which executes k in-
dependent components of GBFS, where each component is a
1-thread GBFS instance which uses a different tie-breaking
policy and has its own Open and Closed lists. No compo-
nent can affect the search behavior of any other component.
This kind of portfolio can perform well on search spaces
where searching multiple regions of the search space can
avoid being trapped in some region. Furthermore, if one of
the components executes standard sequential GBFS, then it
is trivially guaranteed that this approach spends no more



than k times the number of node expansions. However, as
k increases, it is possible that diversifying the search in this
manner has diminishing returns.

We propose a hybrid portfolio approach for paralleliz-
ing GBFS, where each of the portfolio components is a
multi-threaded, shared-Open/Closed parallel GBFS, e.g., a
24-component portfolio consisting of six, 4-thread OBATS

components. This combines the strengths of the cooperative
parallel algorithms and portfolios, while reducing impact of
the scale-related issues with each approach. We show that
hybrid portfolios can significantly outperform both cooper-
ative approaches and pure portfolios.

The rest of the paper is structured as follows. Section 2
reviews background and previous work on cooperative and
portfolio approaches to GBFS parallelization. Section 3 ex-
perimentally evaluates the scalability cooperative and port-
folio approaches. Section 4 proposes and evaluates hybrid
GBFS portfolios, which use multi-threaded GBFS compo-
nents within a parallel portfolio. Section 5 concludes with a
discussion and directions for future work.

2 Preliminaries and Background
K-Parallel GBFS (KPGBFS) K-Parallel BFS (Vidal,
Bordeaux, and Hamadi 2010) is a straightforward, baseline
parallelization of BFS. All threads share a single Open and
Closed . Each thread locks Open to remove a state s with the
lowest f -value in Open , locks Closed to check duplicates
and add succ(s) to Closed , and locks Open to add succ(s)
to Open . KPGBFS is KPBFS with f(s) = h(s).

KPGBFS is an unconstrained, cooperative parallel algo-
rithm. It can expand states which are not in the Bench Tran-
sition System, and in general, it can expand arbitrarily more
states than sequential GBFS (Kuroiwa and Fukunaga 2020).

One Bench At a Time (OBAT) One Bench At a Time
(OBAT) is a constrained parallel algorithm based on KPG-
BFS. OBAT does not expand any states that would not be
expanded by GBFS under any tie-breaking strategy. Fur-
thermore, OBAT guarantees an upper bound on the num-
ber of node expansions relative to sequential GBFS (Shi-
moda and Fukunaga 2025b). OBATS is an enhanced ver-
sion of OBAT with Separate Generation and Evaluation
(SGE), which parallelizes both state evaluations and expan-
sions, and improves thread utilization (Shimoda and Fuku-
naga 2025a).

PGBFS In PGBFS, k independent 1-thread components
of GBFS are executed, each with its own Open and Closed
lists. Each component expands a node with the best h-value
from its local Open . Previous work has shown that the
search trajectory of best-first search varies significantly de-
pending on tie-breaking (Asai and Fukunaga 2017). There-
fore, diversity of search behavior is implemented by using
a different policy for breaking ties among states with the
same h-value. One component uses FIFO tie-breaking, an-
other component used LIFO tie-breaking, and k− 2 compo-
nents use random tie-breaking.

Since 1 component is executing the baseline sequential
GBFS, PGBFS trivially guarantees that the parallel portfolio

will expand at most k-times the number of states expanded
by the baseline sequential GBFS before finding a solution,
assuming that all threads execute at the same speed

Shared evaluation cache Although each component of a
portfolio search the state independently, a simple way to
allow the components to cooperate without affecting the
search trajectories of the other components is a shared cache
of state evaluations. This eliminates wasted CPU resources
due to re-evaluating states which were previously evaluated
by other portfolio components.

All portfolios evaluated in this paper use a shared evalua-
tion cache.

3 Scalability of Cooperative Parallel Search
and Portfolios

First, we investigate the scalability of cooperative parallel
search and portfolios as the number of threads is increased.

We evaluate the performance of KPGBFS, OBATS , and
PGBFS on k = 8, 12, 24 threads. As a baseline, we also
evaluate sequential GBFS. With k = 1 thread, the search
behavior (expansion order) of sequential GBFS, KPGBFS,
OBATS , and PGBFS are identical.

We evaluated the algorithms using a set of instances
based on the Autoscale-21.11 satisficing benchmark set
(42 STRIPS domains, 30 instances/domain, 1260 total in-
stances) (Torralba, Seipp, and Sievers 2021). However, for
domains where (1) all methods without GBFS solved all in-
stances (i.e., the instances were too easy), and (2) an instance
generator for the domain is available in the Autoscale repos-
itory, we replaced the Autoscale-21.11 instances with more
difficult instances generated using the Autoscale generator.
Specifically, these were agricola, gripper and miconic.

All algorithms use the FF heuristic (Hoffmann and
Nebel 2001) as the heuristic evaluation function. Each run
had a time limit of 5 min, 2.5GB RAM/thread (e.g., 8
threads: 20GB total) limit on an Intel Xeon CPU E5-2670
v3@2.30GHz processor. KPGBFS and OBATS use FIFO
tie-breaking. Table 1 shows the coverage (number solved out
of 1260), and the geometric means of the number of states
expanded until a solution is found, and the state evaluation
rates for the 334/1260 instances which were solved by all
algorithms evaluated in this paper.

Decreasing Evaluation Rates in Cooperative Parallel
Search In order to guarantee that the number of states ex-
panded is bounded relative to sequential GBFS, OBATS fo-
cuses the search on one specific region of the search space
(BTS bench) at a time. Depending on the structure of the
search space, enforcing this constraint imposes an inherent
limit on the amount of parallelization that can be obtained,
as threads must remain idle if they cannot guarantee that
they will expand a state within the same bench as the one
the search is currently focusing on. Thus, although Tables
1a-1b show that the performance (coverage, expansions)
of OBATS improves as the number of threads increases,
OBATS achieves a significantly lower state expansion rate
on many instances than KPGBFS and PGBFS, which never
require threads to be idle (Table 1c). Furthermore, the gap



#threads 1threads 8 threads 12 threads 24 threads
GBFS 375 - - -
KPGBFS - 477 488 530
OBATS - 477 516 536
PGBFS - 550 564 570

(a) Coverage (number of problems solved out of 1260)
#threads 1threads 8 threads 12 threads 24 threads
GBFS 906 - - -
KPGBFS - 1920 2162 2808
OBATS - 1268 1209 1287
PGBFS - 2732 3787 6850

(b) Number of states expanded (geometric mean)
#threads 1threads 8 threads 12 threads 24 threads
GBFS 5603 - - -
KPGBFS - 32283 44472 75625
OBATS - 21835 26501 34393
PGBFS - 32468 44570 68330

(c) State evaluation rate (states/second, geometric mean)

Table 1: Evaluation on 1260 instances. Means in Tables 1b-
1c are for 334 instances solved by all algorithms

between the evaluation rates of OBATS vs. KPGBFS and
PGBFS increases as the number of threads increases.

Diminishing Marginal Utility with Additional Compo-
nents in Portfolios In contrast, PGBFS, a pure portfolio
algorithm, relies on diversity of search behavior of its com-
ponents for success, simultaneously exploring multiple re-
gions of the search space (more specifically, as each com-
ponent in PGBFS is GBFS with a different tie-breaking
policy, PGBFS simultaneously explores multiple regions in
the Bench Transition System). All of its components are
independent, so it achieves high evaluation rates (Table
1c). However, the effect of diversity does not necessarily
scale indefinitely as the number of portfolio components in-
creases, and there can be diminishing returns to adding more
diversity as the number of threads increases. Although the
coverage increases from 377 to 550 as the number of compo-
nents increases from 1 (GBFS) to 8, the rate of improvement
drops rapidly. Increasing from 8 to 12 threads increases cov-
erage by 14, and increasing from 12 to 24 threads only yields
an increase of 6 additional problems (564 vs 570) solved.

There are two possible reasons for the diminishing
marginal utility of additional portfolio components. First, as
components are added, there is an increasing probability that
search is being (at least partially) duplicated among the com-
ponents. Second, depending on the domain, it may be better
to focus the search on one (or a few) regions of the BTS
instead of searching many regions simultaneously.

Duplicated Search in Portfolios We define the external
hit rate of the shared cache evaluation cache as the fraction
of states evaluated which (according to the cache) were pre-
viously evaluated by another portfolio component (exclud-
ing the current component). This rate can be used as a proxy
for measuring the amount of redundant search being per-
formed by the portfolio components. Figure 1 shows that ex-

ternal hit rates for PGBFS increase significantly as the num-
ber of threads increases from 8 to 24 (i.e., search redundancy
increases as the number of threads increases).

4 Hybrid Portfolios: Portfolios with
Multi-Threaded Components

Cooperative search and portfolios are orthogonal ap-
proaches. We therefore propose hybrid portfolios, which are
portfolios where each component can be a multithreaded,
cooperative parallel search algorithm.

Each component in a k-thread hybrid portfolio has fewer
threads than a full k-thread cooperative search algorithm,
and a k-thread hybrid portfolio has fewer components than a
pure k-thread portfolio. Thus, hybrid portfolios seek to ob-
tain the benefits of both cooperative search and portfolios,
while avoiding the scaling issues of both approaches by hav-
ing fewer components and fewer threads per component.

We evaluate two specific classes of hybrid portfolios:

• POBATS : A hybrid portfolio where all components are
instances of OBATS .

• PKPGBFS: A hybrid portfolio where all components are
instances of KPGBFS.

For both POBATS and PKGBFS, one of the portfo-
lio components uses FIFO tie-breaking, another component
uses LIFO tie-breaking, and the remaining components use
random tie-breaking.

Since every component of POBATS is an OBATS in-
stance which is constrained to only expand states in the BTS,
POBATS is guaranteed to only expand states in the BTS, i.e.,
POBATS will only expand a state if sequential GBFS with
some tie-breaking will expand it. On the other hand, since
KPGBFS is not constrained to search the BTS, PKGBFS
search behavior is also similarly unconstrained.

We focus more on POBATS because it searches the same
Bench Transition System as GBFS and PGBFS, and is more
interesting with respect to the question: “what is the best
search strategy to explore the same, constrained search
space as GBFS?”

In general, we could allocate the k total threads in the
portfolio arbitrarily, e.g., a 24-thread POBATS configura-
tion composed of one 7-thread OBATS component, one 13-
thread OBATS component, and one 4-thread OBATS com-
ponent. In this paper, we only evaluate configurations which
allocate k threads among m components, each with the same

Figure 1: PGBFS External hit rate, k = 8 vs. k = 24 threads.
diagonal lines is y = x



#threads 8 threads 12 threads 24 threads
PGBFS 550 564 570
PKPGBFS 542 560 579
POBATS 540 570 591

(a) Coverage (number of problems solved out of 1260)
#threads 8 threads 12 threads 24 threads
PGBFS 2732 3787 6850
PKPGBFS 1981 2461 4018
POBATS 1346 1754 3108

(b) Number of states expanded (geometric mean)
#threads 8 threads 12 threads 24 threads
PGBFS 32468 44570 68330
PKPGBFS 31430 43540 75036
POBATS 26040 36428 56859

(c) State evaluation rate (states/second, geometric mean)

Table 2: Autoscale-21.11/IPC-based benchmark results
(1260 instances total). Means in Tables 2b-Table 2c are for
334 instances solved by all algorithms

number of threads. Thus, we denote hybrid portfolio config-
urations as AlgorithmNamem,n, where m is the number of
components and n is the number of threads per component.

Experimental Evaluation We evaluated the performance
of PGBFS , POBATS and PKPGBFS with 8, 12, 24 threads.
The POBATS and PKPGBFS configurations all use 4-thread
components, so we evaluated POBATS

2,4 and PKGBFS2,4

on 8 threads, POBATS
3,4 and PKGBFS3,4 on 12 threads,

and POBATS
6,4 and PKGBFS6,4 on 24 threads. We used

the same experimental setup as in Section 3
Table 2 shows the coverage (number solved out of 1260),

and the geometric means of the number of states expanded
until a solution is found, and the state evaluation rates for
the 334/1260 instances which were solved by all algorithms.
Figure 2 shows the number of states expanded, state evalua-
tion rates, and search times for all instances.

Table 2a shows that while the hybrid portfolios and PG-
BFS have comparable coverage up to k = 12 threads, the hy-
brid portfolios significantly outperform PGBFS on k = 24
threads (as well as OBATS and KPGBFS from Table 1).

Let ρ =(∆coverage)/(∆k), the marginal improvement in
coverage as the number of threads k increases. When k in-
creases from 8 to 12, ρ = 18/4 for PKGBFS and ρ = 30/4
for OBATS . When k increases from 12 to 24, ρ = 19/12
for PKGBFS, ρ = 21/12 for OBATS . Thus, as k increases,
the performance (coverage) of OBATS and PKGBFS scaled
better than PGBFS.

Table 2c shows that for all k, POBATS has significantly
higher evaluation rate than OBATS .

Figure 3 shows that OBATS and PKGBFS have signifi-
cantly lower external hit rates than PGBFS, i.e., these hybrid
portfolios perform less redundant search than PGBFS.

5 Conclusion
We investigated hybrid portfolios which consist of multi-
threaded components where each independent component

(a) Number of states expanded, “fail”= out of time/memory.

(b) State evaluation rates (states/second).

(c) Search time (seconds) “fail”= out of time/memory.

Figure 2: Comparison of OBATS vs. PGBFS. Diagonal lines
are y = 0.1x, y = x, and y = 10x

is a cooperative algorithm which uses shared Open/Closed
lists. We showed that hybrid portfolios address the scalabil-
ity issues of both pure portfolios (decreasing marginal utility
of additional components) and cooperative algorithms (de-
creasing state evaluation rates due to idle threads). We lim-
ited this study to hybrid portfolios with homogeneous com-
ponents where all components were the same algorithm with
the same number of threads. Future work will investigate hy-
brid portfolios with heterogeneous components.

Figure 3: External hit rate. diagonal lines is y = x



Acknowledgments
This research was supported by JSPS KAKENHI Grant
24K15083.

References
Asai, M.; and Fukunaga, A. 2017. Tie-Breaking Strategies
for Cost-Optimal Best First Search. J. Artif. Intell. Res., 58:
67–121.
Burns, E.; Lemons, S.; Ruml, W.; and Zhou, R. 2010. Best-
First Heuristic Search for Multicore Machines. J. Artif. In-
tell. Res., 39: 689–743.
Doran, J.; and Michie, D. 1966. Experiments with the Graph
Traverser Program. In Proc. Royal Society A: Mathematical,
Physical and Engineering Sciences, volume 294, 235–259.
Fukunaga, A.; Botea, A.; Jinnai, Y.; and Kishimoto, A. 2017.
A Survey of Parallel A*. CoRR, abs/1708.05296.
Gomes, C. P.; and Selman, B. 2001. Algorithm portfolios.
Artif. Intell., 126(1-2): 43–62.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. on Systems Science and Cybernetics,
4(2): 100–107.
Heusner, M.; Keller, T.; and Helmert, M. 2017. Understand-
ing the Search Behaviour of Greedy Best-First Search. In
Proc. SOCS, 47–55.
Hoffmann, J.; and Nebel, B. 2001. The FF Planning System:
Fast Plan Generation through Heuristic Search. J. Artif. In-
tell. Res., 14: 253–302.
Huberman, B.; Lukose, R. M.; and Hogg, T. 1997. An Eco-
nomics Approach to Hard Computational Problems. Sci-
ence, 275(5296): 51–54.
Kishimoto, A.; Fukunaga, A.; and Botea, A. 2013. Evalua-
tion of a simple, scalable, parallel best-first search strategy.
Artif. Intell., 195: 222–248.
Kuroiwa, R.; and Fukunaga, A. 2019. On the Pathological
Search Behavior of Distributed Greedy Best-First Search. In
Proc. ICAPS, 255–263.
Kuroiwa, R.; and Fukunaga, A. 2020. Analyzing and Avoid-
ing Pathological Behavior in Parallel Best-First Search. In
Proc. ICAPS, 175–183.
Phillips, M.; Likhachev, M.; and Koenig, S. 2014. PA*SE:
Parallel A* for Slow Expansions. In Proc. ICAPS, 208–216.
Shimoda, T.; and Fukunaga, A. 2025a. Decoupling
Generation and Evaluation for Parallel Greedy Best-First
Search(extended version). In Proc. SOCS.
Shimoda, T.; and Fukunaga, A. 2025b. Parallel Greedy Best-
First Search with a Bound on Expansions Relative to Se-
quential Search. In Proc. AAAI, 26668–26677.
Torralba, Á.; Seipp, J.; and Sievers, S. 2021. Automatic In-
stance Generation for Classical Planning. In Proc. ICAPS,
376–384.
Vidal, V.; Bordeaux, L.; and Hamadi, Y. 2010. Adaptive
K-Parallel Best-First Search: A Simple but Efficient Al-
gorithm for Multi-Core Domain-Independent Planning. In
Proc. SOCS, 100–107.


