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(a) Explicit 3D-Aware Concept Representation (b) Robustness vs. Interpretability Trade-off 
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Figure 1: CAVE - Concept Aware Volumes for Explanations. (a) We learn 3D object volumes
(left), here ellipsoids, with concept representations. Each concept captures distinct local features
of objects (color coded). At inference (right), these concepts are matched with 2D image features,
achieving robust and interpretable image classification. (b) CAVE achieves the best robustness
vs. interpretability tradeoff across methods (higher is better on both axes). Here, we measure
robustness with OOD accuracy (%) on Occluded Pascal3D+ (Wang et al., 2020), and interpretability
with concept spatial localisation (i.e., how well an explanation generated by a method overlaps with
ground-truth human-annotated object parts in Pascal-Part (Chen et al., 2014); defined in App. G.2).

ABSTRACT

With the rise of deep neural networks, especially in safety-critical applications,
robustness and interpretability are crucial to ensure their trustworthiness. Recent
advances in 3D-aware classifiers that map image features to volumetric representa-
tion of objects, rather than relying solely on 2D appearance, have greatly improved
robustness on out-of-distribution (OOD) data. Such classifiers have not yet been
studied from the perspective of interpretability. Meanwhile, current concept-based
XAI methods often neglect OOD robustness. We aim to address both aspects with
CAVE – Concept Aware Volumes for Explanations – a new direction that uni-
fies interpretability and robustness in image classification. We design CAVE as
a robust and inherently interpretable classifier that learns sparse concepts from
3D object representation. We further propose 3D Consistency (3D-C), a metric
to measure spatial consistency of concepts. Unlike existing metrics that rely on
human-annotated parts on images, 3D-C leverages ground-truth object meshes
as a common surface to project and compare explanations across concept-based
methods. CAVE achieves competitive classification performance while discover-
ing consistent and meaningful concepts across images in various OOD settings.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved impressive performance in diverse domains ranging
from healthcare to autonomous driving. However, their decision-making processes remain largely
opaque and often rely on spurious correlations (Noohdani et al., 2024). In high-stake applications,
for instance, in the medical domain, autonomous systems or judicial justice, ensuring both inter-
pretability and robustness is not just desirable – it is essential for safety and trustworthiness.
To overcome such issues and make networks more transparent and interpretable, various approaches
have been proposed in the scope of explainable AI (XAI). Notably, post-hoc methods generate
concept-based explanations for pre-trained networks, providing insights into their decision-making
process without altering the underlying architecture (Fel et al., 2023b; Ancona et al., 2018; Erion
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Figure 2: CAVE (Ours) discovers consistent concept for Motorbike images under challenging
OOD nuisances in OOD-CV dataset. Columns correspond to inputs with different OOD nui-
sances: underwater, fog, shape, and context. Rows show attributions from NOVUM + ICE (best
post-hoc), TesNet (best ad-hoc) and Ours. CAD mesh (right) visualises the class-level 3D consis-
tency of a concept, where highlighted regions visualise the aggregated concept attributions across
test images. CAVE produces more consistent and localised explanations, NOVUM + ICE and Tes-
Net detect concepts inconsistently under nuisances. See App. L1 for full qualitative comparison.

et al., 2021; Hesse et al., 2021; Fel et al., 2023a). However, such methods only approximate the
model’s computations, and thus do not provide a faithful explanation. In contrast, another line of
research enforces interpretability directly during training, making aspects of the model inherently
interpretable and ensuring that the explanations remain faithful to its computations (Chen et al.,
2019; Nauta et al., 2023a; Alvarez Melis & Jaakkola, 2018; Nauta et al., 2021; Oikarinen et al.,
2023). Yet, these models are often not designed with robustness in mind (cf. Fig. 1b).
DNNs in real-world scenarios typically encounter distribution shifts over time such as occlusions, or
adverse weather conditions in the case of autonomous driving. If the model is not OOD-robust, any
explanations extracted from the model representation are unreliable. In fact, under foggy weather or
changing contexts, most methods often fail to identify consistent and meaningful explanations (cf.
Fig. 2). In an orthogonal line of research, incorporating 3D compositional object representations into
the training pipeline significantly improves OOD robustness, yet these classifiers remain inherently
opaque, leaving a critical gap in understanding their decision making (Jesslen et al., 2024). They are
also restricted to training settings where ground-truth 3D poses are available.
This landscape exposes a key gap in the interpretability and robustness of image classification. We
address it with CAVE — Concept Aware Volumes for Explanations — a framework for image
classification that is both OOD-robust and inherently interpretable. CAVE builds on the idea of
representing each class with a neural object volume (NOV) introduced in NOVUM (Jesslen et al.,
2024), where simple shapes such as cuboids or spheres are densely distributed with Gaussian fea-
tures on the surface. These Gaussian features are then aligned with the latent image features for
classification. While this improves OOD robustness, these dense features remain opaque and offer
little semantic insights. CAVE overcomes this by representing objects with ellipsoid NOVs, from
which a sparse dictionary of high-level concepts is learned (cf. Fig. 1a). Additionally, we leverage
zero-shot estimated object orientation from Wang et al. (2025b), thereby alleviating the reliance on
pose annotations during training in 3D-aware architectures such as NOVUM. Once concepts are
learned, they can be attributed to pixel spaces for explanations. Standard attribution methods such
as layer-wise relevance propagation (LRP) however unfaithfully leak relevances in 3D-aware archi-
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tectures with non-standard layers. We modify LRP to account for volumetric representations such
as NOVs in 3D-aware architectures, while also ensuring its relevance conservation property.
For concept evaluation, existing consistency metrics often assume that learned concepts are aligned
with human-annotated object parts (Huang et al., 2023; Behzadi-Khormouji & Oramas, 2023), even
though good model performance does not require such alignment. We thus propose 3D consistency
(3D-C), which uses ground-truth 3D object meshes as a common surface to project and compare
concepts, allowing consistency to be measured without relying on part annotations.
In summary, our main contributions include:

(i) CAVE as a robust and inherently-interpretable image classifier through ellipsoid NOVs.
Our concept basis is spatially-aware, and its explanations are model-faithful,

(ii) an adaptation of LRP for concept attribution in classifiers with volumetric representations,

(iii) and a novel part-annotation-free consistency metric 3D-C that captures the spatial coher-
ence of concepts across viewpoints and OOD nuisances.

In comparision to various XAI methods, both post-hoc and inherently interpretable approaches,
CAVE shows a favorable balance of OOD robustness and interpretability, with improvements across
metrics such as OOD accuracy, object coverage, spatial localisation, and concept consistency.

2 RELATED WORK

Leveraging 3D supervision. 3D information is useful for 2D feature representations in downstream
tasks like segmentation and depth estimation, but these require rich multi-view data (Yue et al., 2024;
Hou et al., 2021; Fu et al., 2024). Another broad line of recent work investigates structured 3D
geometry reasoning using neural fields, wireframe representations, or multi-view constraints (Xue
et al., 2024; Liu et al., 2024; Xue et al., 2020; Tan et al., 2023; Xiao et al., 2023). Recently, NOVUM
pioneers using 3D information for robust classification, by considering 3D pose information to fit
cuboid NOVs to an image (Jesslen et al., 2024). This line of work forms the basis of our approach.
Learning without 3D supervision. In 3D-aware image classifiers such as NOVUM, model train-
ing requires ground-truth 3D pose annotations to align NOVs with the object in the image. This
requirement significantly limits applicability, as such annotations are expensive to obtain and often
unavailable in real-world datasets. Recent work proposes zero-shot object orientation estimation
models, e.g., Orient-Anything (Wang et al., 2025b), which extract pose information given an input
image. CAVE adopts such pose estimators to remove the need for annotated 3D poses in training.
Concept-based explanations. A major line of work in XAI focuses on discovering concept rep-
resentations. Post-hoc concept extraction methods such as CRAFT (Fel et al., 2023b; 2024) and
ICE (Zhang et al., 2021) factorise model activations to uncover latent concepts, while MCD (Viel-
haben et al., 2023) uses sparse subspace clustering to identify concept subspaces, and PCX (Dreyer
et al., 2024) learns concepts from relevance maps. These approaches offer implicit interpretability,
and only approximate its computation (i.e., not model-faithful). A different class of approaches
makes the model predictions themselves explicitly interpretable by design. Concept Bottleneck
Models (CBMs) (Koh et al., 2020; Oikarinen et al., 2023) introduce a dedicated concept layer whose
units correspond to human-understandable concepts, thus providing explicit semantic interpretabil-
ity. Similarly, prototype-based networks such as ProtoPNet (Chen et al., 2019) and its follow-up
works (Wang et al., 2021; Nauta et al., 2023a; Wang et al., 2025a) learn prototypical image features
whose presence is used for prediction, offering explicit visual interpretability through prototype pro-
jection. CAVE is faithful-by-design and implicitly interpretable: its internal units arise through un-
supervised discovery rather than explicit semantic or prototype supervision. We therefore compare
CAVE with both post-hoc concept discovery methods (CRAFT, ICE, MCD, PCX) and faithful-by-
design interpretable models (LF-CBM, ProtoPNet, TesNet, PIP-Net, MGProto). This allows us to
assess concept quality across implicit versus explicit approaches, while comparing predictive per-
formance among faithful-by-design models.
Evaluating concept explanations. Prior works assess concepts along several axes: (i) spatial lo-
calisation to ground-truth bounding boxes or masks, (ii) object coverage, i.e. how well they attend
to different parts of the object, and (iii) consistency across instances (Huang et al., 2023; Behzadi-
Khormouji & Oramas, 2023; Huang et al., 2024; Zhu et al., 2025). Such metrics are limited for two
reasons: they require human-annotated object parts, and model training often optimises for task per-
formance rather than part alignment. To complement these metrics, we propose 3D-C, a consistency
measure of concept across samples without requiring part annotations.
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3 PRELIMINARIES: NEURAL OBJECT VOLUMES (NOVS) AND NOVUM
In this section, we provide a recap of neural object volumes (NOVs) and NOVUM (Jesslen et al.,
2024), as they are essential for defining our method CAVE in Section 4.
Notations. In a supervised setting, an image classifier consists of a feature extractor E(·) and a
classification layer ϕ(·). Given an input image x ∈ RH×W×C , the feature extractor produces a
feature map Fx = E(x) ∈ RH′×W ′×C′

. Here, H ′ ≤ H and W ′ ≤ W denote the spatial dimension
of the latent representation of x and need not correspond to pixel resolution. C ′ denotes the number
of latent channels. We use fi = Ei(x) to indicate the L2-normalised latent feature vector for the i-th
pixel of feature map Fx in raster order. The classification decision is computed as y = ϕ(Fx).
Neural Object Volumes (NOVs). A NOV is a volumetric approximation of an object class y (cf.
Fig. 3), and consists of a set of K 3D Gaussians. In NOVUM, the NOVs are instantiated as cuboids
with Gaussians evenly distributed on their surface. The k-th Gaussian is defined by its center µ(k)

y ∈
R3 with fixed unit variance, and is associated with an L2-normalised feature vector g(k)y ∈ RC′

.
Hence, each Gaussian in a NOV is assigned a fixed 3D coordinate on the surface of a canonical
object shape and form a structured volumetric representation. We define the matrix of Gaussian
features for the object class y as Gy ∈ RK×C′

, which have the same channel dimension C ′ as latent
features Fx from the backbone model and will be later used to match with the Fx. Extending this
notation, the complete matrix of Gaussian features across all N object classes can be represented
as G = [G1;G2; . . . ;GN ] ∈ RNK×C′

. During training of NOVUM, these NOVs G are learned to
align with latent image features Fx, orienting the volumes through ground-truth 3D pose annotations
(see also Appendix F for training objectives). Intuitively, matching image latent features to Gaussian
features guided by the pose annotations aligns the image representation with the canonical 3D object
geometry, allowing Gaussians to correspond to consistent object geometry.

Concept j
	ℎ!"#
(%)  = '(∑)*'

( 𝑔!"#
())

Gaussian
 𝑔!"#
()) 	

NOVUM CAVE (Ours)

Gaussian
 𝑔!"#
()) 	

?

Figure 3: CAVE adopts ellipsoid NOVs and pro-
duces a sparse set of concepts that replace the
dense thousands of Gaussians in NOVUM, thus
providing more interpretable explanations.

Classification with NOVs in NOVUM is done
through feature matching between the back-
bone image features Fx and the set of learned
3D object representation NOVs G. This opera-
tion aligns each feature fi ∈ Fx with the most
similar Gaussian feature across G. The logit for
class y is computed by summing over all spa-
tial locations where feature fi is matched to a
Gaussian feature of y

sy = ϕ(Fx,Gy) =
∑
i

max
k

fi · g(k)y (1)

The class with the highest score sy is the pre-
dicted label y∗. This formulation gives rise to
3D-aware classification through a bag-of-words
feature matching mechanism, where image fea-
tures are directly compared against 3D-aware
Gaussian features. However, this classification
process remains inherently opaque. The num-
ber of Gaussian features involved in the match-
ing step in the order of thousands makes it difficult to interpret which features contribute to the final
decision (cf. Fig. 3, left). In the next Section 4, we describe our method CAVE, which replace
dense Gaussian features and instead operates on a sparse dictionary of representative Gaussian fea-
tures. We refer to these representations as concept-based NOVs, an interpretable concept basis for
3D-aware classification (cf. Fig. 3, right).

4 CAVE: CONCEPT-AWARE VOLUMES FOR EXPLANATIONS

Our goal is to build an image classifier with two key properties: (i) robust classification in OOD
settings, and (ii) inherently interpretable model predictions. While specific solutions exist for each
property individually, combining them remains far from trivial. Building upon NOVUM, our method
leverages volumetric object representations to simultaneously achieve both robustness and inter-
pretability. In Section 4.1, we show how to extract a sparse set of interpretable concepts from dense
Gaussian features on NOVs, which then form our concept-based NOVs for inherently interpretable
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(c) Classification with Concept Matching Eq. (2) for Each Class 
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(b) Interpretable Concept-based Neural Object Volumes
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Figure 4: CAVE – Concept Aware Volumes for Explanations, a framework for robust conceptual
reasoning and classification through 3D-aware concept-based neural object volumes (NOVs). In
this visual illustration, colors indicate the top-5 concepts within each class. For classification, CAVE
combines (a) extracted image features Fx and (b) interpretable concept-aware NOVs H through a
bag-of-word concept matching (c) with equation 2, where each feature fi ∈ Fx is best aligned
with H by cosine similarity. Correct classification happens when many image features activates Car
concepts, while concepts in other classes fail to align with any feature (crossed-out arrows).

classification. Figure 4 gives an overview of our method CAVE. We further attribute these concepts
from the model prediction, through these concept-based NOVs, to the input image for explanations
using our modified LRP. Then, in Section 4.2, we discuss how to improve learning NOVs through
more expressive shapes and introducing weak 3D supervision with estimated poses for CAVE, thus
extending its applicability to settings without ground-truth 3D pose annotations.

4.1 IDENTIFYING AND ATTRIBUTING CONCEPTS THROUGH NOVS

From NOVs to Concept-Based NOVs. To achieve an inherently interpretable NOV-based classifier,
we identify a meaningful concept basis from each NOV and replace the latter with these concepts
(cf. Fig. 4b). Formally, for a NOV Gy ∈ RK×C′

of class y, we formulate our class-wise concept
extraction problem through the lens of dictionary learning (Mairal et al., 2014; Fel et al., 2024):

(W⋆
y ,H⋆

y) = arg min
Wy,Hy

∥Gy −WyH⊤
y ∥2F

where the weight matrix W∗
y ∈ RK×D and the dictionary of D concept vectors H∗

y =

[h
(1)
y , . . . , h

(D)
y ]T ∈ RD×C′

minimize the element-wise distance between our Gaussian features
Gy and WyHT

y . In the case of hard clustering, the weight matrix W∗
y reduces to a discrete assign-

ment matrix, where each row is a one-hot encoding that corresponds to only one concept. This
allows clustering to be much more interpretable than methods with less sparse weight matrices.
We adopted K-Means clustering for its balance of accuracy, concept sparsity, and alignment to the
learned NOVs. We refer to our ablation on concept extraction methods in Appendix J.
The extracted concept dictionary H∗

y is now seen as a sparse and interpretable concept-based NOV
to replace the original dense NOV Gy (cf. Fig. 3). We modulate the original feature matching
ϕ(Fx,G) in NOVUM with concept matching ϕ(Fx,H) that establishes correspondences between
Fx and new volumetric representation H = [H∗

1;H∗
2; . . . ;H∗

N ] ∈ RND×C′
. Eq. (1) thus becomes

sy = ϕ(Fx,Hy) =
∑
i

max
j≤D

fi · h(j)
y (2)

This reformulation, illustrated in Fig. 4b-c, enables feature matching against a compact and inter-
pretable concept set instead of thousands of Gaussians, yielding sparser representations, stronger
robustness, and more confident predictions compared to NOVUM (cf. Fig. 7). Both fi and h

(j)
y are

5
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(a) Cuboid (b) Sphere (c) Ellipsoid (d) Prototype CAD

More accurate shape approximation

2D Image

Figure 5: NOV shapes for approximating object class Bicycle. Here Gaussians are evenly dis-
tributed on the surface of each volumetric type.

L2-normalised. Thus each dot product fi · h(j)
y in Eq. (2) is a cosine similarity in [−1, 1] which

defines latent feature–concept alignment. Importantly, the score in Eq. (2) is computed exactly from
activations of these volumetric concepts, preserving the faithfulness that NOVUM (Jesslen et al.,
2024) also has while adding interpretability through sparse concept representations. These concepts
emerge implicitly as geometrically-grounded units through unsupervised clustering of Gaussian fea-
tures, while prototype-based methods and CBMs learn concepts explicitly.
Attributing concepts with NOV-aware LRP. We aim to provide interpretable explanations on the
input-level for our NOV-based concepts H, thereby demonstrating the model’s reasoning through
neural volumetric concepts. To achieve this, we build on LRP, a well-established attribution method
that traces relevances from the model’s prediction back to the input pixels (Bach et al., 2015; Ot-
suki et al., 2024). A key principle of LRP is the conservation property, which requires the total
relevance to remain constant throughout the network (Otsuki et al., 2024). However, we empiri-
cally find that when directly applied to NOV-based architectures, LRP fails to uphold this property
and instead unfaithfully leaks relevances (cf. Appendix Fig. I1). We address this by introducing a
redistribution rule that preserves the conservation property through the concept-matching operator
ϕ(Fx,H), ensuring that the total relevance assigned to input pixels equals that at the concept level∑

fi∈Fx
Rfi =

∑
h∈H Rϕ(h) = Ry∗ . This NOV-aware extension allows us to correctly attribute

predictions through volumetric concepts with LRP, enabling robust and reliable concept explana-
tions even under challenging OOD conditions. Full derivation is provided in Appendix C.

4.2 EXTENDING NOVS: WEAK 3D SUPERVISION AND MORE EXPRESSIVE SHAPES

Learning with weak 3D supervision. One notable limitation of NOV-based classifiers is that
they assume access to ground-truth 3D pose annotations during training (Jesslen et al., 2024).
Here, we relax this requirement by training CAVE with estimated object orientations from Orient-
Anything (Wang et al., 2025b). While the weaker supervision introduces some performance drop,
especially under OOD nuisances (cf. Appendix E2), it shows that NOV-based classifiers can operate
without explicit pose annotations, allowing for better scalability. Unless stated otherwise, we use
CAVE with estimated poses for a fair comparison to ad-hoc baselines in our setting.
More accurate shape approximation. Typically, NOV-based classifiers such as NOVUM use sim-
ple shapes such as cuboids and spheres, which provide a coarse volumetric approximation of objects.
We broaden the scope by adapting NOVs to more expressive geometries: ellipsoids and prototype
CADs (cf. Fig. 5), which serve as basis for our concept extraction. We adopt ellipsoid NOVs in our
setup, given their favorable trade-off between OOD accuracy and interpretability (cf. Appendix H).

5 3D CONSISTENCY OF CONCEPTS

Evaluating concept consistency is challenging. Prior works often rely on part annotations (Huang
et al., 2023; Behzadi-Khormouji & Oramas, 2023; Huang et al., 2024), which do not necessarily
reflect what models actually learn, since training optimises task accuracy rather than alignment
with pre-defined parts. Object geometry, however, provides a natural reference: if a concept is
meaningful, it should consistently map to the same semantic region of the object under different
poses or OOD factors. We call this property 3D consistency (3D-C) (cf. Fig. 6, in-distribution).
For instance, the concept “front part of a motorbike” is consistent if its attributions refer to the same
part under distribution shifts such as weather, shape, or context (cf. Fig. 2, OOD). Our 3D-C thus
complements existing metrics with a principled alternative independent of part annotations.
To compute the 3D-C score of a concept h in class y, we project its positive attributions A+(x, h) ∈
RH×W from test images x ∈ Xy onto the CAD model of class y. This projection uses ground-truth
3D poses when available, and estimated poses from Orient-Anything (Wang et al., 2025b) otherwise.
Formally, we define the mapping Ωy : RH×W → R|Qy|, where Qy denotes the set of triangles in
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Figure 6: CAVE (Ours) produces most consistent concepts across different classes, compared to
NOVUM + ICE (best post-hoc) and TesNet (best ad-hoc). We highlight how consistent a concept by
aggregating concept relevance scores from all class-wise test images onto object mesh, and report
class-wise 3D-C scores below each row. Higher 3D-C means more consistent mapping to the same
region. See Tab. 1 for full quantitative comparison with baselines.

the CAD model of class y that represents the object’s surface. Given a concept h and an input image
x of class y, Ωy maps the positive attribution map A+(x, h), onto the corresponding oriented CAD
model and aggregates, for each triangle q ∈ Qy , the sum of all projected attributions falling onto it.
We denote by (i, j) a pixel position in A+(x, h) and by A+(xij , h) the positive attribution given to
this pixel. Concretely, we define the output vector Ωy(A

+(x, h)) component-wise as:

Ωy

(
A+(x, h)

)
q
:=

∑
(i,j)∈P(q)

y

A+(xij , h), (3)

where P(q)
y is the set of pixel positions (i, j) whose projection falls onto triangle q ∈ Qy of the

CAD model of class y. For each concept h, we normalise the concept attribution A+(x, h) such that∑
(i,j)∈{1,...,H}×{1,...,W} A

+(xij , h) = 1. The 3D-C score for concept h across Xy is defined as:

3D-C(Xy, h) = 1− 1

2

 1

n2
y

∑
x̸=x′∈Xy

∥∥Ωy(A
+(x, h))− Ωy(A

+(x′, h))
∥∥
1

 (4)

which is normalised to [0, 1], where ny is the number of test images in Xy in which concept h is
present. We exclude concepts that occur in fewer than τ% of test images of class y (here, we choose
τ = 50), as they may appear spuriously consistent when evaluated on too few test samples. See
Appendix D for further details on visualisation of concept consistency on object meshes.

6 EXPERIMENTS

Datasets and metrics. We evaluate CAVE with weak 3D supervision on classification accuracy
and 3D-C in two settings: (i) in-distribution on Pascal3D+ (Xiang et al., 2014) and large-scale
ImageNet3D (Ma et al., 2024), and (ii) OOD on OccludedP3D+ (Wang et al., 2020) (3 occlusion
levels on Pascal3D+) and OOD-CV (Zhao et al., 2022) (nuisances in pose, shape, context, texture,
and weather). We further assess spatial localisation (weighted IoU with attributions) and object
coverage (concept comprehensiveness) on Pascal-Part (Chen et al., 2014), and concept faithfulness
to model’s predictions (Wang et al., 2024; Böhle et al., 2022; Rudin, 2019; Adebayo et al., 2018).
See also Appendix G for dataset and metric details.
Baselines. For comparison, we apply common post-hoc concept-based methods CRAFT (Fel et al.,
2023b), MCD (Vielhaben et al., 2023), ICE (Zhang et al., 2021), and PCX (Dreyer et al., 2024) on

7
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Models
Localise. ↑ Coverage ↑ 3D Consistency (3D-C.) ↑

Pascal-Part Pascal3D+ ImageNet3D OccludedP3D+ OOD-CV

Po
st

-h
oc

NOVUM + CRAFT (Fel et al., 2023b) 0.18 0.42 0.28 0.26 0.15 0.15
NOVUM + MCD (Vielhaben et al., 2023) 0.15 0.34 0.16 0.25 0.11 0.14
NOVUM + ICE (Zhang et al., 2021) 0.12 0.44 0.28 0.27 0.15 0.15
NOVUM + PCX (Dreyer et al., 2024) 0.11 0.33 0.10 0.21 0.08 0.11

A
d-

ho
c

LF-CBM (Oikarinen et al., 2023) 0.20 0.56 0.15 0.14 0.13 0.11
ProtoPNet (Chen et al., 2019) 0.22 0.43 0.19 0.13 0.21 0.09
TesNet (Wang et al., 2021) 0.25 0.44 0.20 0.18 0.18 0.12
PIP-Net (Nauta et al., 2023a) 0.12 0.13 0.09 0.09 0.07 0.00
MGProto (Wang et al., 2025a) 0.25 0.35 0.19 0.16 0.16 0.07

CAVE (Ours) 0.28 (± 0.001) 0.80 (± 0.002) 0.40 (± 0.001) 0.40 (± 0.001) 0.23 (± 0.006) 0.24 (± 0.002)
CAVE (with full 3D supervision) 0.28 (± 0.001) 0.87 (± 0.002) 0.42 (± 0.001) 0.43 (± 0.0003) 0.23 (± 0.010) 0.26 (± 0.001)

Table 1: Concept interpretability evaluation using spatial localisation (whether concepts align
with human-annotated parts), object coverage (extent of concept coverage over the object), and
3D consistency (3D-C) (concept stability across 3D viewpoints, independent of part annotations).
CAVE trained with full 3D supervision, i.e., ground-truth 3D poses, are shown in gray text. Our
CAVE produces concepts that are spatially localised, sufficiently diverse to cover the object, and
robustly consistent across both in-distribution and OOD settings. We report our results as the mean
(± std) across 10 random seeds.

Models W/o Ground-truth
3D Pose

In-distribution Out-of-distribution (OOD)
Pascal3D+ ImageNet3D Occluded P3D+ OOD-CV

LF-CBM (Oikarinen et al., 2023) Yes 98.4 83.3 66.4 73.5
ProtoPNet (Chen et al., 2019) Yes 97.4 74.0 60.5 71.2
TesNet (Wang et al., 2021) Yes 97.6 77.9 63.8 70.1
PIP-Net (Nauta et al., 2023a) Yes 95.7 51.0 68.6 60.0
MGProto (Wang et al., 2025a) Yes 97.2 64.2 73.8 72.3
CAVE (Ours) Yes 99.0 (± 0.03) 84.6 (± 0.02) 76.8 (± 0.51) 80.3 (± 0.27)

CAVE (with full 3D supervision) No 99.4 (± 0.02) 88.5 (± 0.03) 81.3 (± 0.30) 84.0 (± 0.21)
NOVUM (with full 3D supervision) No 99.5 88.3 81.7 81.3

Table 2: Classification accuracy (%, ↑) comparison. We compare CAVE (Ours) trained with no 3D
supervision (using Orient-Anything (Wang et al., 2025b)) against inherently interpretable models
across both in-distribution and OOD datasets. Best and second best are highlighted. CAVE and
NOVUM with full supervision, i.e., ground-truth 3D poses, are shown in gray text. CAVE achieves
consistently higher accuracy, especially in OOD settings. CAVE with weak supervision delivers
competitive accuracy without ground-truth 3D pose, with only a modest gap to full supervision. We
report our results as the mean (± std) across 10 random seeds.

NOVUM to make it concept-interpretable. We further consider LF-CBM (Oikarinen et al., 2023),
and the prototype learning approaches ProtoPNet (Chen et al., 2019), TesNet (Wang et al., 2021),
PIP-Net (Nauta et al., 2023a), and MGProto (Wang et al., 2025a), which are all inherently inter-
pretable. We use ResNet-50 backbone for all methods. Post-hoc baselines extract concepts from
NOVUM activations. Unless explicitly stated, CAVE is learned with weak 3D supervision. The
number of concepts per class is fixed to D = 20 across all methods for a fair comparison. See
Appendix G for full implementation details1.

6.1 CAVE DISCOVERS SPATIALLY CONSISTENT CONCEPTS

Both NOVUM (Jesslen et al., 2024) and CAVE are faithful-by-design, since their predictions de-
compose exactly over internal units (Gaussian features in NOVUM, region-level concepts in CAVE).
CAVE achieves implicit interpretability by learning sparse, structured concept units from NOVUM’s
fine-grained Gaussian features, effectively grouping them into geometrically-meaningful concepts.
We further evaluate concepts on: (i) spatial localisation, (ii) object coverage to measure the extent
of concept comprehensiveness, and (iii) 3D-C to assess concept consistency across settings. We
summarise our results in Tab. 1.
On Pascal-Part, CAVE with weak 3D supervision still provides stronger concept localisation and
coverage than both ad-hoc baselines and post-hoc methods applied to NOVUM with full 3D super-
vision. In particular, CAVE discovers diverse concepts that sufficiently cover on average ∼ 80% of
the object, whereas the next best method LF-CBM reaches only ∼ 56%. We hypothesise that this
higher coverage also supports CAVE in identifying concepts, for example, under occlusion.

1Code will be released upon publication.
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For 3D-C, post-hoc methods ICE and CRAFT benefit from the 3D supervision in NOVUM and
extract more spatially consistent concepts compared to inherently interpretable baselines on in-
distribution data. Their consistency, however, remains lower than CAVE’s. In OOD scenarios, all
methods show a decline in consistency. CAVE maintains the highest scores and thus comparatively
shows that its concepts are more stable under distribution shifts. While only roughly approximated
through an ellipsoid, CAVE’s concepts still consistently map to meaningful and diverse regions on
the object mesh, even under OOD shifts in Fig. 2 and complex structures in Fig. 6.

6.2 CAVE MAINTAINS COMPETITIVE CLASSIFICATION ACCURACIES

The goal of CAVE is to be both robust and interpretable. We measure robustness in terms of OOD
accuracy on OccludedP3D+ and OOD-CV, and further report accuracy on in-distribution Pascal3D+
and ImageNet3D (cf. Tab. 2). We compare only to inherently interpretable methods, omitting post-
hoc methods as they do not modify the underlying classification of NOVUM.
Across all datasets, CAVE with ground-truth 3D poses achieves performance competitive with
NOVUM, even slightly surpassing it on large-scale ImageNet3D (+0.2%) and OOD-CV (+2.7%),
while using much sparser representations. With weak supervision (no ground-truth 3D poses),
CAVE shows comparatively mild drops in performance on ImageNet3D and OOD-CV relative to
ground truth pose supervision. In the following, we report CAVE without ground-truth 3D poses.
On in-distribution Pascal3D+, all methods perform relatively well. However, when scaling to Ima-
geNet3D, prototypical networks sharply degrade, with even the strongest TesNet almost 8% lower
than CAVE (vs. 1.4% gap on the comparably small Pascal3D+). Under occlusion ranging 20−80%
of the image in OccludedP3D+, CAVE outperforms the competitors by around 10%. Similarly, on
OOD-CV, CAVE performs best (80.4% acc) with LF-CBM a distant second (73.5% acc) and other
methods performing much worse. In summary, CAVE provides a unique combination of inherent
interpretability and robustness to OOD data unmatched by existing work.

6.3 ABLATIONS

Consistency across concept count. We study how the spatial consistency of concepts varies with
the number of class-wise concepts D. As shown in Tab. 3, our 3D-C scores improve with more
concepts under heavy occlusion, but overall remain stable across concept counts across settings.

Concept count Pascal3D+ ImageNet3D OccludedP3D+ OOD-CV
in-dist. in-dist. [20− 40%] occ. [40− 60%] occ. [60− 80%] occ. avg. OOD nuisances

D = 5 0.38 (± 0.004) 0.42 (± 0.002) 0.27 (± 0.002) 0.22 (± 0.01) 0.17 (± 0.01) 0.22 (± 0.005) 0.24 (± 0.003)
D = 10 0.39 (± 0.003) 0.41 (± 0.001) 0.28 (± 0.003) 0.21 (± 0.005) 0.19 (± 0.02) 0.23 (± 0.007) 0.24 (± 0.001)
D = 20 0.40 (± 0.001) 0.40 (± 0.001) 0.29 (± 0.002) 0.21 (± 0.002) 0.20 (± 0.02) 0.23 (± 0.006) 0.24 (± 0.002)
D = 40 0.41 (± 0.004) 0.40 (± 0.001) 0.29 (± 0.001) 0.22 ( ± 0.001) 0.21 (± 0.01) 0.24 (± 0.003) 0.23 (± 0.001)

Table 3: 3D-C across concept count per class D ∈ {5, 10, 20, 40} of our CAVE with weak 3D
supervision. The results are reported as mean (± std) across 10 random seeds.

Sparsity–accuracy tradeoff. We study the effect of varying the number of class-wise concepts D
in CAVE (5–90) compared to NOVUM’s fixed ∼1130 Gaussians per class (cf. Fig. 7a, b). CAVE
achieves competitive accuracy with far fewer concepts, with a knee around D = 20, yielding ∼98%
sparser representations that match or even slightly exceed NOVUM’s performance, especially under
OOD shifts. CAVE also produces more confident predictions with clearer class separation (Fig. 7c).
NOV-aware LRP. Our NOV-aware LRP yields spatially coherent attributions, even under OOD
conditions such as snow and heavy occlusion, whereas vanilla LRP (Bach et al., 2015) and Grad-
CAM (Selvaraju et al., 2017) produce scattered explanations (cf. Fig 8). Empirically, vanilla LRP
unfaithfully leaks relevance compared to our formulation (cf. Appendix Fig. I1). Our full ablation
in Appendix I shows that our NOV-aware LRP is essential for reliable concept attribution.

7 DISCUSSION

CAVE preserves NOVUM’s faithfulness while providing implicit interpretability. Its geometrically-
grounded concepts emerge through unsupervised clustering and are directly used for prediction.
While this differs from explicitly interpretable models, e.g., CBMs and prototype networks, which
enforce semantic or visual grounding through supervision, all these approaches are faithful-by-
design, concept-based models. Thus, we compare CAVE against these baselines for assessing con-
cept quality and predictive performance across explicit and implicit forms of interpretability.
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Figure 7: CAVE replace 1130 dense Gaussians in NOVUM with a compact concept dictio-
nary, yielding ∼ 98% sparser representations that match or slightly exceed the performance
of NOVUM especially in OOD settings. Both are trained with 3D supervision for a fair compari-
son. We report mean accuracy in (a) and (b) across 10 random seeds, with shaded regions as ±2σ
for better visibility, where σ is the standard deviation. (c) shows improved model prediction; more
confident predictions indicate a clearer class separation, which improves reliability (Hendrycks &
Gimpel, 2017) and explanation confidence (Nauta et al., 2023b).

Sn
ow

NOV-aware LRP Vanilla LRP GradCAMInput

40
-6

0%
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Figure 8: Our NOV-aware LRP correctly attributes concepts and yields localised explanations,
even under different OOD settings: snow and 40–60% occlusion. Colors indicate the top-5 class-
wise concepts per row and are not comparable across rows. See full ablation in Appendix Fig. I2.

Our 3D-C metric requires reference object meshes to assess the spatial consistency of concepts.
While this limits evaluation to datasets with reliable CAD models such as Pascal3D+ (Xiang et al.,
2014) and ImageNet3D (Ma et al., 2024), advances in large-scale object meshes (Deitke et al., 2023)
and mesh generation from text (Siddiqui et al., 2024) or image (Yan et al., 2025) are making high-
quality proxies increasingly accessible. We expect paired image–mesh benchmarks to become more
common, which in turn enables wider practical use of 3D-C in XAI evaluation.
While our experiments focus on single-object settings, CAVE is not inherently limited to this regime.
The method can be extended by first detecting object candidates and then applying our concept
matching to each detected region, following standard pipelines in pose estimation and object-centric
3D understanding (Khirodkar et al., 2022). We consider this a promising direction for future work.
Our current formulation assumes a fixed canonical shape, which is effective for rigid and moderately
varying categories but does not directly capture highly non-rigid classes such as humans. We leave
this for future work. Furthermore, our weak supervision relies on Orient-Anything (Wang et al.,
2025b) for pose estimation, which, although effective, is not perfect across all object categories (cf.
Fig. E3). Nevertheless, we expect the fast progress in foundation models to further strengthen this
component. Finally, we discuss challenging failure cases in Appendix K.

8 CONCLUSION

We proposed CAVE, a 3D-aware image classifier that introduces concept-based NOVs to jointly
achieve OOD robustness and interpretability, while also removing the need for ground-truth 3D
poses. This enables faithful, concept-based explanations while retaining strong task performance
across OOD settings. We further complement existing XAI metrics with our novel 3D-C to measure
concept consistency, relaxing prior assumptions on alignment with pre-defined part annotations.
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Interpretable 3D Neural Object Volumes
for Robust Conceptual Reasoning

Appendix
This supplement provides additional technical details, experimental setup, ablations, and qualitative
results supporting our work on robust and interpretable 3D-aware classification with CAVE. We
strongly encourage readers to review NOV-aware LRP in Section C, and its corresponding ablation
in Section I which highlights the stability of our proposed LRP adaptation, as well as the additional
randomly sampled qualitative examples from our method CAVE in Section L.
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A CLASS- AND NUISANCE-WISE ANALYSIS UNDER OOD SETTINGS

We analyse class-wise performance of CAVE (weak 3D supervision) under different occlusion levels
(Sec. A.1) and OOD nuisances (Sec. A.2). We further analyse whether pose errors introduced by
Orient Anything estimates affect our model performance in Sec. A.3.

A.1 CLASS-WISE ACCURACY AND 3D CONSISTENCY UNDER OCCLUSION

Overall, CAVE maintains strong class-wise accuracy and 3D consistency under mild occlusion (L1),
with performance degrading gradually as occlusion increases. The drop is most pronounced for
classes such as Boat, Chair, and Train. A similar trend appears in the 3D-C scores.

Occlusion Level � M ê á v � � □ T é � � allAeroplane Bicycle Boat Bottle Bus Car Chair Dining Table Motorbike Sofa Train TV Monitor

L0 [0%] (in-distribution) 99.67 99.86 99.26 99.85 98.48 99.72 91.78 99.53 98.79 99.57 95.90 100.00 99.0 (±0.03)

L1 [20− 40% occluded] 96.78 98.20 92.41 98.06 86.32 97.99 85.58 96.48 94.45 98.32 78.58 99.55 94.8 (± 0.12)
L2 [40− 60% occluded] 83.51 90.44 73.30 93.88 62.38 87.63 71.49 85.08 84.02 94.89 57.10 91.03 82.8 (± 0.40)
L3 [60− 80% occluded] 40.60 62.60 41.05 81.35 21.44 52.81 44.81 60.24 52.41 83.71 32.35 57.41 52.7 (± 0.96)

Table A1: Class-wise Accuracy on Pascal3D+ (in-distribution) and OccludedP3D+ (L1, L2, L3
occlusion). We report overall accuracy (not the average of class-wise accuracies) in the last column.
See Fig. A1 for class-wise statistical variance across seeds.

Occlusion Level � M ê á v � � □ T é � � avgAeroplane Bicycle Boat Bottle Bus Car Chair Dining Table Motorbike Sofa Train TV Monitor

L0 [0%] (in-distribution) 0.220 0.235 0.174 0.694 0.343 0.299 0.430 0.456 0.248 0.561 0.385 0.799 0.404 (± 0.0014)

L1 [20− 40% occluded] 0.153 0.150 0.115 0.497 0.219 0.186 0.325 0.383 0.152 0.336 0.241 0.681 0.287 (± 0.0018)
L2 [40− 60% occluded] 0.105 0.104 0.085 0.380 0.149 0.117 0.255 0.288 0.094 0.204 0.169 0.581 0.211 (± 0.0015)
L3 [60− 80% occluded] — 0.075 — 0.268 — 0.069 0.103 0.186 0.076 0.118 — 0.436 0.200 (± 0.0166)

Table A2: Class-wise 3D Consistency Scores on Pascal3D+ (L0, in-distribution) and Occlud-
edP3D+ (L1, L2, L3 occlusion). We report the average 3D-C scores as mean (± std) and class-wise
mean 3D-C scores only for readability. We denote — for classes that do not have consistent con-
cepts. See Fig. A2 for class-wise statistical variance across seeds.
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Figure A1: Class-wise accuracy on Pascal3D+ (L0, in-distribution) and OccludedP3D+ (L1,
L2, L3 occlusion) across 10 random seeds. For precise values, refer Tab. A1.

A.2 OOD ATTRIBUTE (NUISANCE)-WISE ACCURACY AND 3D CONSISTENCY

We show class-wise and attribute (OOD nuisance)-wise performance of our CAVE with weak 3D
supervision on OOD-CV dataset (Zhao et al., 2022). Across OOD attributes, we observe that pose is
the most challenging nuisance factor, leading to the largest drop in both accuracy and 3D-C across
classes. Weather is the second most difficult attribute, likely due to reduced visibility and contrast
in rainy or foggy conditions, as we have seen in qualitative examples in Fig. 2. In contrast, context,
shape, and texture shifts result in comparatively moderate changes, with performance remaining
relatively stable across most classes. These trends hold consistently across 10 random seeds and are
reflected in both accuracy and 3D consistency metrics.
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Figure A2: Class-wise 3D-C on Pascal3D+ (L0, in-distribution) and OccludedP3D+ (L1, L2,
L3 occlusion) across 10 random seeds. For precise values, refer Tab. A2.

OOD Attribute Context Pose Shape Texture Weather all

Accuracy (%, ↑) 82.95 (± 0.20) 72.77 (± 0.77) 81.22 (±0.65) 83.27 (± 0.61) 77.61 (± 0.39) 80.3 (± 0.27)
3D-C (↑) 0.236 (± 0.006) 0.227 (± 0.018) 0.239 (± 0.004) 0.238 (± 0.004) 0.234 (± 0.009) 0.235 (± 0.002)

Table A3: Attribute-wise performance, both accuracy and 3D-C across 10 random seeds, where
context, pose, shape, texture, and weather constitute 25%, 8%, 15%, 22%, and 30% of the OOD-CV
dataset. The last column reports the overall score computed over all attributes. We further break
down the scores class-wise in Tab. A4 & Tab. A5 .

OOD Attribute � M ê v � � □ T é � allAeroplane Bicycle Boat Bus Car Chair Dining Table Motorbike Sofa Train

Context 81.10 (± 1.06) 88.92 (± 0.42) 89.83 (± 1.34) 66.40 (± 0.92) 69.86 (± 0.91) 74.05 (± 0.85) 85.19 (± 0.67) 84.66 (± 0.97) 94.62 (± 0.43) 75.81 (± 1.20) 82.95 (± 0.20)
Pose 87.59 (± 1.78) 86.77 (± 1.38) 79.39 (± 2.05) 21.91 (± 1.75) 65.56 (± 2.17) 31.54 (± 2.43) 33.33 (± 0.00) 92.86 (± 0.00) 75.00 (± 0.00) 89.50 (± 3.69) 72.77 (±0.77)
Shape 93.88 (± 0.57) 90.89 (± 1.45) 87.50 (± 1.96) 90.00 (± 0.00) 65.52 (± 2.30) 71.17 (± 1.20) 62.33 (± 2.59) 93.49 (± 1.47) 85.47 (± 0.44) 63.33 (± 2.87) 81.22 (± 0.65)
Texture 97.43 (± 1.16) 84.05 (± 1.00) 89.19 (± 1.56) 90.17 (± 0.91) 90.62 (± 1.77) 58.35 (± 0.89) 83.68 (± 1.32) 91.11 (± 0.65) 88.62 (± 1.01) 69.50 (± 4.08) 83.27 (± 0.61)
Weather 84.69 (± 0.85) 92.63 (± 1.22) 81.83 (± 1.62) 55.82 (± 1.52) 54.74 (± 1.25) 87.14 (± 2.02) 30.00 (± 0.00) 91.28 (± 0.64) 75.00 (± 0.00) 84.31 (± 1.46) 77.61 (± 0.39)

Table A4: Attribute-wise accuracy per class of OOD-CV dataset averaged across 10 random
seeds. We report the accuracy for each Pascal3D+ class under each OOD attribute (context, pose,
shape, texture, weather), averaged across seeds. For each OOD attribute, we additionally report the
overall accuracy computed over the union of all classes (rather than averaging class-wise accuracies),
along with its statistical variance across seeds (last column).

OOD Attribute � M ê v � � □ T é � avgAeroplane Bicycle Boat Bus Car Chair Dining Table Motorbike Sofa Train

Context 0.152 0.159 0.129 0.235 0.164 0.239 0.394 0.175 0.401 0.309 0.236 (± 0.006)
Pose 0.155 0.164 0.127 0.247 0.169 0.212 0.375 0.169 0.338 0.307 0.227 (± 0.018)
Shape 0.157 0.162 0.131 0.246 0.148 0.242 0.392 0.176 0.422 0.310 0.239 (± 0.004)
Texture 0.150 0.173 0.136 0.235 0.163 0.235 0.393 0.174 0.416 0.300 0.238 (± 0.004)
Weather 0.153 0.156 0.131 0.228 0.156 0.229 0.411 0.176 0.387 0.305 0.234 (± 0.009)

Table A5: Attribute 3D-C (↑) scores per class averaged across 10 random seeds. We report mean
3D-C attribute scores for each Pascal3D+ class and OOD factor: context, pose, shape, texture, and
weather. For class-wise attribute-wise statistical variance, refer Fig. A3. We further report average
score across classes for each attribute along with its statistical variance across seeds (last column).

A.3 CLASS-WISE SENSITIVITY TO POSE ESTIMATION ERROR

We further examine class-wise accuracy and 3D-C to training pose estimation error in Fig. A4.
We find that accuracy does not strongly degrade for classes with substantial pose ambiguity (e.g.,
Dining Table, Boat with azimuth error > 20◦). In contrast, 3D-C exhibits a mild downward trend
as azimuth error increases, which is expected because 3D consistency directly measures geometric
alignment. We hypothesise that, since CAVE is trained on Orient Anything’s estimated poses, it in-
herits symmetric ambiguities present in those estimates. At inference time, symmetric objects (e.g.,
a left–right symmetric boat) still activate the correct class concepts even if the pose is mirrored; a
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Figure A3: Class-wise 3D-C for each OOD attribute in OOD-CV dataset across 10 random
seeds. For precise values, refer Tab. A5.

concept trained to fire on the left may instead fire on the right, without affecting the final classifi-
cation. This symmetry-induced “flip” effect naturally explains why classification accuracy remains
stable while 3D-C scores decrease for classes with higher pose error.

Metric � M ê á v � � □ T é � �
Aeroplane Bicycle Boat Bottle Bus Car Chair Dining Table Motorbike Sofa Train TV Monitor

Azimuth error (◦) 10.14 12.92 26.94 6.86 7.25 6.71 10.09 20.15 12.03 8.58 8.46 9.53

Table A6: Class-wise Mean Azimuth Pose Error (in degrees ◦) between Orient-Anything predic-
tions and ground-truth pose on Pascal3D+.
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Figure A4: Class-wise accuracy (left) and 3D-C (right) as a function of training pose errors
(azimuth) in degree (◦) across occlusion levels. The icons and their corresponding class names are
defined in Tab. A6.
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B ON IMPLICIT VERSUS EXPLICIT INTERPRETABILITY

Interpretability methods differ not only in whether they provide post-hoc explanations or are faithful-
by-design, but also in how the underlying concepts acquire meaning. Two complementary paradigms
have emerged in the literature.

Explicit interpretability. Models in this category impose architectural or training-time constraints
that bind internal units directly to human-understandable notions. CBMs (Koh et al., 2020; Oikari-
nen et al., 2023) explicitly supervise units to correspond to semantic concepts such as object at-
tributes or part labels. Prototype-based networks (e.g., ProtoPNet (Chen et al., 2019) and its vari-
ants (Wang et al., 2021; Nauta et al., 2023a; Wang et al., 2025a)) explicitly ground units by enforcing
a prototype layer and projecting prototypes onto representative input patches, yielding “this looks
like that” explanations. In both cases, the interpretability is explicit because the model is guided
toward semantic or visually grounded concepts during training. These approaches are therefore
faithful-by-design and offer direct, easily inspectable explanations.

Implicit interpretability. In contrast, implicitly interpretable approaches do not impose semantic
supervision or dedicated prototype objectives. Instead, they rely on structure that emerges from the
model’s learned representation. Post-hoc concept discovery methods such as CRAFT (Fel et al.,
2023b), ICE (Zhang et al., 2021), MCD (Vielhaben et al., 2023), and PCX (Dreyer et al., 2024) ex-
tract interpretable structure from trained models by clustering or factorising latent activations. These
methods provide implicit interpretability but are not faithful, as their concepts do not participate in
the model’s forward computation.

CAVE occupies a distinct position within this paradigm: although its concepts are obtained im-
plicitly through unsupervised clustering rather than semantic or prototype supervision, these units
are geometrically grounded and integrated directly into the model’s decision pathway. This yields
faithfulness-by-design while still achieving interpretability implicitly from the geometric and fea-
ture structure of the NOV representation. The resulting region-level concepts differ from the atomic
Gaussian features in NOVUM (Jesslen et al., 2024) by providing a coarser, more coherent, and
easier-to-inspect basis for prediction that can be visualised post-hoc with our adapted LRP. Im-
portantly, each CAVE centroid (concept) is a linear combination of NOVUM’s Gaussian features
and therefore lies within the span of the original predictive units. CAVE’s concept dictionary thus
remains in the same predictive subspace while offering a more compact and interpretable represen-
tation, preserving both accuracy and faithfulness.

Inherent interpretability of CAVE. To contextualise CAVE’s interpretability within the litera-
ture, we draw on Molnar’s taxonomy of intrinsic (inherent) interpretability. Molnar highlights that
models can be inherently interpretable even when they “mix both interpretability by design and
post-hoc interpretability”, with his examples being models whose structure makes their computa-
tion transparent and complexity appropriately constrained, even if individual components require
post-hoc visualisation to be inspected (Molnar, 2025). CAVE thus fits the same paradigm of in-
herent interpretability: its prediction is transparent by design, decomposing exactly over a small
dictionary of region-level concepts derived from Gaussian features, while our adapted LRP is used
for post-hoc concept visualisation.
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C LAYER-WISE RELEVANCE PROPAGATION FOR 3D-AWARE CLASSIFIERS

As mentioned in Section 4.1, layer-wise relevance propagation (LRP) defined for standard architec-
tures unfaithfully leaks relevances when attributing NOV-based concepts to image pixels. To enable
tracing relevance from the model’s prediction backward through the concept-based NOVs H to the
input image (Bach et al., 2015; Otsuki et al., 2024), we extend LRP to our 3D-aware setting with
volumetric object representation. In doing so, we also ensure that the key conservation property of
LRP is preserved, i.e., total relevance remains constant throughout the network (Otsuki et al., 2024).

In the following, we briefly explain vanilla LRP with ϵ−rule that is defined for standard feedforward
network (cf. Sec. C.1), and formulate NOV-aware LRP for NOVUM and CAVE-like architectures
(cf. Fig. C1, Sec. C.2). Specifically, this is tailored to two layers: (i) upsampling by concatenation,
and (ii) volume concept matching, that do not exist in standard architectures. We further show how
to estimate concept-wise importance scores and visualise concepts in Section C.3.

C.1 VANILLA LRP WITH ϵ−RULE

Standard LRP with ϵ−rule propagates relevances backward through network layers l + 1 to layer l:

Ri =
∑
j

aiwij∑
i′ ai′wi′j + ϵ sign(ai′wi′j)

Rj (C.1)

where ai is the activation of neuron i in layer l, wij is the weight connecting neuron i in layer l to
neuron j in layer l+ 1, Rj is the relevance of neuron j and Ri is the relevance to propagate back to
neuron i. Here the ϵ− rule is introduce to dampen relevance when the denominator gets arbitrarily
small (Springenberg et al., 2015). An important property of LRP is its relevance conservation,
meaning: ∑

i

Ri =
∑
j

Rj (C.2)

which is often violated if relevances are not attributed faithfully through the network.

C.2 LRP WITH CONSERVATION FOR CAVE

As described, vanilla LRP does not handle non-standard operation such as upsampling by con-
catenation (no weight matrix defines a simple mapping from input to output channels), or concept
matching via NOVs, which introduces structured multiplicative interactions between image features
and NOV-based concepts. We thus formulate the LRP redistribution rule for these layers.

(i) Upsampling by concatenation. Similar to NOVUM (Jesslen et al., 2024), the basic CAVE con-
tains a feature extractor which consists of a ResNet-50 backbone followed by three upsampling
layers with concatenation. In this design, each upsampling layer combines feature maps from ear-
lier layers, preserving fine-grained details important for 3D-aware classification. Let us consider an
upsampling layer U , which concatenates in the channel dimension feature maps Av ∈ RH1×W1×C1

and Av+l ∈ RH2×W2×C2 from two non-consecutive layers. Av+l is padded to A′
v+l ∈ RH1×W1×C2

to maintain spatial consistency. We denote this concatenation operation as AU = Av ⊕ A
′

v+l. Let
us further denote RU , Rv, and Rv+l as the relevance scores at the upsampling layer and two non-
consecutive layers, respectively. R

′

v+l is the padded relevance of Rv+l. By conservation property, it
should hold that RU = Rv ⊕R

′

v+l. We define a relevance-preserving splitting as follows:

R
′

v+l = RU [: H1, : W1, : C2], Rv+l = R
′

v+l · 1(Av+l)

Rv = RU [H1 : 2H1,W1 : 2W1, C2 : (C1 + C2)]

where 1(.) is the indicator function that is 1 for original non-padded elements in Av+l and 0 other-
wise. After three upsampling layers, we obtain our feature map Fx for 3D-aware concept matching.

(ii) Volume concept matching. For the concept matching Φ(Fx,H) between NOVs-based concepts
H and image features Fx ∈ RH×W×C , let the output be sΦ ∈ RH×W . We further denote RΦ ∈
RH×W as the relevance for the feature matching layer, and RFx

∈ RH×W×C as the relevance of the
feature map Fx. To ensure spatial consistency, a relevance score ri ∈ RΦ is first directly mapped to
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Figure C1: NOV-aware relevance propagation in CAVE. Top: At upsampling layer U , feature
maps Av and Av+l from non-consecutive layers are concatenated along channel dimension after
padding for consistency. Relevance score RU is split into Rv and R

′

v+l, where R
′

v+l is padded
Rv+l. Bottom: We ensure spatial consistency by mapping relevance RΦ at matching layer to corre-
sponding feature fi ∈ Fx, then distributing channel-wise with NOV-weighted feature importance.

the corresponding feature fi ∈ Fx, and then further distributed channel-wise for each channel c (cf.
Fig. C1). We get

Rspatial
Fx

(i) = RΦ(i) = r =

C∑
j=1

rj =

C∑
j=1

(fi ⊙Hfi)(j) ,

RFx
(i, c) = Rspatial

Fx
(i) · (fi ⊙Hfi)(c)∑

j

(fi ⊙Hfi)(j)

where Hfi denotes the matching NOV-based concept for fi, and ⊙ denotes element-wise multiplica-
tion. We integrate our formulation with LRP with conservation for ResNet-50 (Otsuki et al., 2024).
In Section I, we provide the full comparisons between our NOV-aware LRP and other common
attribution methods, including vanilla LRP.

C.3 EXPLANATIONS THROUGH VOLUME ALIGNMENT

Concept Importance through NOVs. Our next goal is to estimate the importance of all class-wise
concepts in H∗

y using the NOV-aware LRP attributions. The intuition behind this is straightforward:
starting from the model’s softmax output, we trace back relevance to each concept. The concept
importance score is then determined using its x% quantile (e.g., 90th percentile) across the training
dataset to capture the most representative high-relevance values while being robust to outliers. We
denote the matching NOV-based concept in H for the feature map Fx as ∆Fx→H. We compute the
relevance for a concept h(j)

y ∈ H of class y by aggregating the relevance scores, denoted Rϕ, at all
spatial locations i where ∆Fx→H(i) = h

(j)
y . Formally, it is defined as:

R
h
(j)
y

=
∑

i∈H×W

Rϕ · 1
∆Fx→H(i)=h

(j)
y

Concept visualisation. We visualise class-wise NOV concepts h(j)
y ∈ H by redistributing their rel-

evance scores R
h
(j)
y

(Sec. C.2) to pixel space and highlighting locations with positive contributions.
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D FURTHER DETAILS ON 3D CONSISTENCY OF CONCEPTS

As introduced in Section 5, our 3D consistency (3D-C) metric evaluates whether a concept remains
consistent across test images of the same class. Unlike prior metrics (Huang et al., 2023; Behzadi-
Khormouji & Oramas, 2023; Huang et al., 2024), our 3D-C removes the need for part annotations
and avoids assuming that concepts must align with human-defined parts, an assumption often not
enforced explicitly during training. Instead, 3D-C complements existing measures such as spatial
localisation and object coverage by leveraging object geometry to project concept attributions onto
a common 3D space (cf. Fig D1). In this section, we further describe 3D-C visualisation details.

Figure D1: CAVE (Ours) shows more consistent concepts compared to both post-hoc and ad-
hoc methods. Here, we show top-5 most important (left to right, color-coded) concepts of class
Bicycle for each method. CAVE visually shows better concept consistency in comparision to strong
baselines (see also quantitative evaluation in Tab. 1).
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Object mesh. For each object class y, we load the canonical CAD mesh available in the datasets
such as Pascal3D+ (Xiang et al., 2014) and ImageNet3D (Ma et al., 2024). Since these meshes fol-
low a CAD-centric coordinate convention that is inconsistent with the camera system of PyTorch3D,
we apply a pre-processing step to re-align the axes, i.e.:

(
x
y
z

)
CAD

7→

(
x
z
−y

)
camera

Rendering. Rendering is performed with PyTorch3D. We use an image canvas of 640 × 800, and
adjust camera intrinsics such that focal lengths are scaled to preserve field of view, and the principal
point is placed at the image center. Addtionally, we adopt a spherical camera at radius 15, elevation
30◦, and azimuth −40◦. Rasterisation is done with a single face per pixel and no blur radius.

Concept attribution projections onto object mesh. Concept attributions are then projected onto
the mesh. For each concept h, we use its positive attributions A+(x, h) defined as:

A+(x, h) = max
(
0, A(x, h)

)
to highlight regions that contribute to this concept h. We assign these values as per-face textures
on the CAD mesh and render with PyTorch3D, where barycentric interpolation distributes per-face
attributions to pixels, yielding a dense per-pixel attribution map.

3D-C visualisation. For visualisation, we first render a neutral base mesh to provide geometric
context and occlusion boundaries. Positive attributions A+(x, h) for a concept h are then overlaid
as a heatmap on this render, given the pixel-to-face mapping from the projection step. To characterise
the overall spatial footprint of the concept h, we aggregate attributions across all test images x ∈ Xy

of class y, i.e.:
A+

agg(h) =
∑
x∈Xy

A+(x, h)

followed by min–max normalisation to [0, 1] for the final visualisation. This naturally provides a
direct visual illustration to the 3D-C metric scores, showing concept consistency across instances.

Limitations and scope. While our 3D-C metric relies on class-level CAD meshes and face-level
attribution aggregation, which may smooth out very fine-grained details, this design ensures scala-
bility across large datasets and consistency of evaluation. By not enforcing alignment with human-
annotated parts, 3D-C sidesteps annotation biases and instead directly reflects the model’s own con-
cept structure. Finally, canonical meshes do not capture all intra-class shape variations. Yet, they
provide a stable reference geometry that enables meaningful comparisons of concept consistency
across object instances.
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E LEARNING WITH WEAK SUPERVISION

Recent advance in object orientation estimation, such as Orient-Anything (Wang et al., 2025b),
allows us to relax the constraints on pose annotations during training 3D-aware classifiers. We
study how accurate Orient-Anything estimated poses are compared to ground-truth poses in Pas-
cal3D+ (Xiang et al., 2014) and ImageNet3D (Ma et al., 2024) in Tab. E1. With the tolerance
X = 60◦, Orient-Anything poses achieves near-perfect accuracy on polar and rotation estimation
on both Pascal3D+ and ImageNet3D. For azimuth estimation, Orient-Anything performs better on
Pascal3D+ (∼ 96%) while struggles on larger-scale dataset like ImageNet3D ( ∼ 72%). A stricter
tolerance thresholds introduce performance drops on both datasets. Our inspection shows that fail-
ures of Orient-Anything in predicting object pose often occur with symmetric objects such as tables
and boats, where correct orientation is often ambiguous. See also Fig. E2 and Fig. E3 for qualitative
visualisations.

Class Label Azimuth Estimation ↑ Polar Estimation ↑ Rotation Estimation ↑
60°(π3 ) 30°(π6 ) 10°( π

18 ) 60°(π3 ) 30°(π6 ) 10°( π
18 ) 60°(π3 ) 30°(π6 ) 10°( π

18 )

Pascal3D+ 96.70 93.92 71.58 99.77 98.82 86.25 99.57 99.14 93.09
ImageNet3D 72.32 48.06 27.63 94.69 79.92 51.31 96.92 95.10 90.11

Table E1: Accuracy (%, ↑) of zero-shot orientation estimation by Orient–Anything (Wang et al.,
2025b) on training images of Pascal3D+ and ImageNet3D. Accuracy is reported within different
tolerances of ±X◦ with X◦ = {60◦, 30◦, 10◦} (i.e., {π/3, π/6, π/18} radians).

Figure E1: Prediction Confidence on Pascal3D+ of Orient–Anything (Wang et al., 2025b)
across Azimuth, Polar and Rotation with respect to different tolerences of ±X◦ with X◦ =
{60◦, 30◦, 10◦} (i.e., {π/3, π/6, π/18} radians). Orient–Anything produces consistently high-
confidence predictions across both correctly and incorrectly classified samples.

Orient-Anything poses can be treated as pseudo ground-truth, enabling weakly supervised training
of CAVE without requiring manual pose annotations. Importantly, CAVE maintains competitive
performance across all datasets, even under weaker supervision (see Tab. E2), while being substan-
tially more parameter-efficient by representing each class with only D = 20 concepts (roughly 98%
fewer than NOVUM’s 1130 Gaussians per class).
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Figure E2: Qualitative visualisation of accurate pose predictions (azimuth error < 10◦) by
Orient–Anything (Wang et al., 2025b).
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Figure E3: Qualitative visualisation of inaccurate pose predictions (azimuth error > 60◦) by
Orient–Anything (Wang et al., 2025b).
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Models
Ground-truth 3D Pose Orient-Anything 3D Pose

P3D+ IN-3D Occ-P3D+ OOD-CV P3D+ IN-3D Occ-P3D+ OOD-CV

NOVUM 99.5 88.3 81.7 81.3 98.4 85.7 77.3 79.7
CAVE (ours) 99.4 88.5 81.5 84.0 99.0 84.7 77.4 80.4

Table E2: Accuracy (%, ↑) of NOVUM (Jesslen et al., 2024) and CAVE (ours) under full super-
vision (ground-truth pose) and less supervision (generated pose via Orient-Anything (Wang et al.,
2025b)). Results are reported on two in-distribution datasets Pascal3D+ (P3D+) and ImageNet3D
(IN-3D), and two OOD datasets OccludedP3D+( Occ-P3D+) and OOD-CV. Best scores are in bold.
CAVE uses D = 20 concepts/class, roughly 98% sparser than NOVUM (1130 Gaussians/class).
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F 3D-AWARE CLASSIFICATION WITH NOVUM

Training. NOVUM (Jesslen et al., 2024) is trained using a feature-extractor backbone such as
ResNet-50 and, for each class, a neural object volume (NOV) composed of 3D Gaussian primitives
that emit feature vectors, as defined in Section 3. Full details of the training pipeline can be found
in the original paper, but we provide here an overview of the different objectives that come into play
during the training of NOVUM. During training, three main objectives are used:

• Intra-object discriminative loss: Gaussians gl ∈ Gy , also can be written as g(l)y to be con-
sistent with the main paper, of a class NOV are trained to produce distinguishable features,
thus different object regions are represented by different primitives.

• Discriminative feature loss across classes: features produced by Gaussians of one class ȳ,
i.e., gm ∈ Gȳ , are encouraged to be distinct from those of other classes y.

• Background contrastive loss: the model is trained to separate object features fi ∈ Fx from
background features B, ensuring focus on object-specific regions.

Formally, we define the constrastive learning

L(G,B) = −
∑
y

K∑
k=1

ok · log eκfk→i·gk∑
gl∈Gy

gl /∈Nk

eκfk→i·gl + ωβ

∑
βn∈B

eκfk→i·βn + ωȳ

∑
gm∈Gȳ

eκfk→i·gm
, (F.1)

where ok ∈ {0, 1} indicates the Gaussian visibility, κ is a concentration hyperparameter which
determines the spread of the von-Mieses-Fisher distribution of the Gaussians gk, ωB and ω†̄ indicate
the probability that an image feature fi ∈ Fx corresponds to the background features B or Gaussians
of a class ȳ, and Nk = {gr : ∥µk − µr∥ < δ, k ̸= r} is the neighborhood of a Gaussian gk with
mean µk defined within a radius δ. Furthermore, fk→i denotes the extracted feature fi that Gaussian
gk projects to.

Importantly, all these losses require 3D pose supervision, which is provided by the dataset. Since
each Gaussian primitive must be projected from 3D to the 2D image plane, the knowledge of the
object pose is necessary. We relax this constraint in our CAVE with weak supervision from Orient-
Anything (Wang et al., 2025b) estimated pose, and find that replacing ground-truth poses with noisy
pseudo ground-truth still yields strong performance in in-distribution and OOD settings (cf. Sec. E).
Additionally, we note that during training, the intra-object discriminative loss encourages nearby
Gaussians to remain close in feature space while pushing apart those that are spatially distant. This
reduces the influence of their spatial arrangement on the learned representation. To support this,
NOVUM demonstrates that replacing the underlying cuboid shape with a sphere, an ellipsoid or a
prototype CAD has minimal effect on model accuracy (cf. Appendix Tab. H1).

Inference. At inference time, NOVUM classifies images by matching backbone features against the
dense set of Gaussian features learned for each class. Each image feature is compared to the ∼ 1130
Gaussians per class, and the class score is obtained by aggregating the maximum similarity responses
across spatial locations. As shown in Fig. 7, this dense matching yields only a thin decision margin,
making predictions less robust and, more importantly, difficult to interpret. In contrast, our approach
drastically reduces the number of Gaussians, producing clearer decision boundaries and enabling a
more transparent understanding of how predictions arise.

Visualisation of NOVUM’s feature matching. Given NOVUM’s explicit volumetric object rep-
resentations, i.e., NOVs, the visualisation of its feature matching between the learned Gaussian
features and image features may give some insights into which parts of the images contribute the
most to the classification decision (cf. Fig. 3). Nevertheless, its classification relies on thousands of
Gaussian matches do not align with semantic parts or human-understandable concepts.
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G ADDITIONAL EXPERIMENTAL DETAILS

In this section, we provide a comprehensive review of our experimental setting to ensure repro-
ducibility for future research. We will release the codebase and relevant checkpoints upon publica-
tion. We first describe the datasets (Sec. G.1) and interpretability metrics G.2 in our experiments.
Finally, we detail training hyperparameters used in our CAVE and baselines in Section G.3.

G.1 DATASETS

We follow the setup in NOVUM (Jesslen et al., 2024), which evaluates on three datasets Pas-
cal3D+ (Xiang et al., 2014), OccludedP3D+ (Wang et al., 2020) and OOD-CV (Zhao et al., 2022),
and extend this setting to include the large-scale ImageNet3D (Ma et al., 2024). We further evaluate
concept interpretability on Pascal-Part (Chen et al., 2014).

Pascal3D+. The Pascal3D+ dataset (Xiang et al., 2014) is a common benchmark for 3D object
understanding. It augments 12 object class from the PASCAL VOC detection dataset (Everingham
et al., 2010) with 3D annotations, and further includes images from ImageNet (Deng et al., 2009)
for these categories. In total, Pascal3D+ consists of roughly 30000 images, with 8505 Pascal images
and 22394 ImageNet images. Each class consists of about 3000 images on average, covering a wide
range of viewpoints and intra-class shape variations.

ImageNet3D. The ImageNet3D dataset (Ma et al., 2024) is a large-scale dataset of natural images
that extends the ImageNet dataset Deng et al. (2009) with pose annotations. It contains 200 diverse
object classes, and consists of more than 86000 images in total. Only 189 object classes are currently
available in ImageNet3D with sufficient annotation quality (Ma et al., 2024).

OclcudedP3D+. The OccludedP3D+ dataset (Wang et al., 2020) is a test benchmark that builds
upon Pascal3D+ (Xiang et al., 2014) and evaluates OOD robustness against three different lev-
els of simulated occlusion, ranging from mild (20-40%) to heavy (60-80%) occlusion. Similar to
Pascal3D+ (Wang et al., 2020), this dataset contains 12 rigid object classes. Respectively, Oc-
cludedP3D+ consists of more than 10400 images for L1 (20-40%) occlusion, 10200 images for L2
(40-60%) occlusion and 9900 images for L3 (60-80%) occlusion.

Out-of-Distribution-CV (OOD-CV). The OOD-CV dataset (Zhao et al., 2022) is a test benchmark
that introduces OOD examples for 10 different object classes. In specific, it has diverse real-world
OOD nuisance factors including shape, 3D pose, texture, context and weather. Overall, the OOD-
CV consists of 2632 images with these aforementioned OOD nuisances collected from the internet
and additionally 2133 test images from Pascal3D+ (Xiang et al., 2014).

Pascal-Part. The Pascal-Part dataset (Chen et al., 2014) introduces additional human-annotated part
labels for the PASCAL VOC 2010 (Everingham et al., 2010) dataset. It covers 20 object classes,
consisting of 10103 training and validation images and 9637 test images. Additionally, it provides
silhouette annotations for classes without consistent parts such as Boat. We filter the dataset to
include 12 object classes in Pascal3D+ and cross-reference them to identify test images that also
appear in Pascal3D+. We use this dataset to evaluate two metrics introduced by prior works, namely
spatial localisation and object coverage, that will be described formally in Section G.2 below.

G.2 METRICS

In the following, we further describe interpretability metrics used in our evaluation.

Model faithfulness evaluates whether a concept truly reflects what the model uses to make a pre-
diction (Rudin, 2019; Böhle et al., 2022). By design, inherently-interpretable models are model-
faithful, while post-hoc methods, which only approximate model computations, are not. Ensuring
model faithfulness is important, since it determines whether an explanation can be trusted, for ex-
ample, in safety-critical and high-stake downstream applications.

Spatial localisation evaluates whether an explanation of a concept is spatially well-localised within
a ground-truth object part (Huang et al., 2023; Behzadi-Khormouji & Oramas, 2023; Schulz et al.,
2020). Localisation can be measured by Intersection-over-Union (IoU) between concept explanation
and semantic part annotations, but this does not differentiate between pixels with varying attribution
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strengths, treating all contributing pixels equally. Therefore, we use IoU weighted with attributions,
defined similarly to Dice-Sørensen coefficient that has been previously used in XAI evaluation (He
et al., 2023). Specifically, given an input image x, we denote the attribution of a concept h at each
pixel location (i, j) as Ah(i, j). Then, the spatial localisation score of concept h with respect to part
bk in image x is computed as:

SLh,k(x) =

∑
i,j A

+
h (i, j) · 1k(i, j) + 1h(i, j) · 1k(i, j)∑

i,j 1h(i, j) +
∑

i,j 1k(i, j)
(G.1)

where A+
h (i, j) is the positive attribution given at pixel (i, j), and score SLh,k(x) ∈ [0, 1] with

higher being better. A concept h with a good spatial localisation not only has high attributions in
ground-truth region bk but also covers it well. As described, this metric requires human-annotated
parts and will be evaluated on Pascal-Part (Chen et al., 2014). For each image and each concept,
we identify the ground-truth part that the concept is most aligned with and compute the spatial
localisation score with respect to that part. The spatial localisation for concept h in image x is thus
defined as:

SLh(x) = max
k

SLh,k(x)

These per-image scores for a concept h are then averaged across all test images of the same class
to obtain a concept-level localisation score. These concept-level scores are then averaged per class.
The dataset-level score is then obtained by averaging these per-class scores, and reported in Tab. 1.

Object coverage measures the extent of concept comprehensiveness, i.e., how well discovered con-
cepts cover the object (Zhu et al., 2025). This is especially crucial in case of occlusion, where a
well-covered set of concepts improves robustness as it can still identify other visible, unoccluded
parts. We first normalise the attributions such that the total attribution across all concepts for a given
input image x sums to 1. This means that if the union of all concepts perfectly collides with the
ground-truth object mask, the coverage score is 1. This also ensures a fair and consistent compari-
son across methods. The normalisation is computed as follows:

Ã+
h (i, j) =

A+
h (i, j)∑

h′
∑

i,j A
+
h′(i, j)

(G.2)

For an input image x, we define the object coverage score as

Covobject(x) =
∑
i,j

∑
h

Ã+
h (i, j) · 1bbox/object mask(i, j) (G.3)

Naturally, Covobject(x) ∈ [0, 1] for both cases, with a higher score means better coverage, and thus
a more comprehensive set of concepts. This metric also requires ground-truth object masks, and is
here evaluated on Pascal-Part (Chen et al., 2014). Each test image yields an object-coverage score.
We average these scores over all images of a class to obtain a class-level value, and then average the
class-level values across all classes to obtain the dataset-level score reported in Tab. 1.

3D consistency (3D-C). We propose the 3D-C metric to complement existing evaluation metrics
that relies heavily on pre-defined part labels. We describe this metric in detail in Section D. Our
3D-C allows for evaluation across 4 datasets: Pascal3D+ (Xiang et al., 2014), ImageNet3D (Ma
et al., 2024), OccludedP3D+ (Wang et al., 2020), and OOD-CV (Zhao et al., 2022).

G.3 IMPLEMENTATION DETAILS

Our experimental setting requires training our CAVE as well as baseline methods on two datasets:
Pascal3D+ (Xiang et al., 2014) and ImageNet3D (Ma et al., 2024). Our evaluation on the afore-
mentioned metrics in Section G.2 is then done on five datasets: Pascal3D+ (Xiang et al., 2014),
ImageNet3D (Ma et al., 2024), and two OOD datasets Occluded-P3D+ (Wang et al., 2020) and
OOD-CV (Zhao et al., 2022), and part-annotated Pascal-Part (Chen et al., 2014).

In the following, we detail the training setup for our CAVE as well as for the baselines. For a fair
comparision, our CAVE and all baselines use ResNet-50 backbone. In NOVUM (Jesslen et al.,
2024), the ResNet-50 backbone was extended with two upsampling layers by concatenation for
NOV alignment. Our CAVE adopts the same architecture.
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Training Hyperparameter Value
Input resolution 640× 800
Backbone ResNet-50
Training batch size 38
Total epochs 200
Learning rate 1× 10−4

Learning rate decay ×0.2 every 10 epochs
Momentum update of Gaussian features 0.9
Weight decay 1× 10−4

Gradient accumulation 10 steps
Temperature T 0.07
Noise weight 0.005
Distance threshold 48
Number of background features for momentum update 5

Table G1: Training hyperparameters used in CAVE (Ours) and NOVUM (Jesslen et al., 2024).

CAVE (Ours). Our model training, similar to NOVUM (Jesslen et al., 2024), uses input images of
size 640× 800. The ResNet-50 backbone produces the output feature map Fx by downsampling the
input spatial resolution by a factor of 8. Training on Pascal3D+ takes approximately 24 hours, while
training on ImageNet3D requires about 72 hours on a single NVIDIA H100 GPU. As mentioned
in section 4, we use ellipsoid as volumetric surface of Gaussian features, computing its vertices
and faces based on parametric sampling where a mesh is returned with roughly 1000 vertices. We
summarise our training hyperparamters in the Tab. G1. Once the model is trained, we filter out
Gaussian features with low visibility (< 0.1 of training data), and apply K-Means clustering for
concept extraction with 20 clusters per class (i.e., D = 20 following notation in Sec. 4).

Baselines. For baseline methods, we follow the original implementation, training details, and con-
cept visualisation provided by the authors:

1. For NOVUM (Jesslen et al., 2024), the training follows the same hyperparameters in
Tab. G1. We obtained the model checkpoint for Pascal3D+ from the NOVUM’s code-
base (Jesslen et al., 2024), and trained NOVUM from scratch for ImageNet3D.

2. For post-hoc methods CRAFT (Fel et al., 2023b), ICE (Zhang et al., 2021), and PCX Dreyer
et al. (2024), we used the exact setting provided in their codebases. We set the number of
class-wise concepts to 20. For MCD-SSC, we used completeness threshold of 0.9, which
determines the extent to which the discovered set of concepts jointly cover model predic-
tion. The concepts were extracted from NOVUM’s activations for each method.

3. For LF-CBM (Oikarinen et al., 2023), we followed the codebase instructions to generate a
concept set for each dataset from GPT-3 model, resulting in 441 concepts for Pascal3D+
and 710 concepts for ImageNet3D. We trained a ResNet-50 label-free CBM using their
hyperparameters: input resolution 224 × 224, learning rate 0.1, and batch size 512, CLIP
model ViT-B/16, and interpretability cutoff 0.45. Unlike post-hoc approaches, where the
number of concepts is fixed at 20, label-free CBM learns this number dynamically. For
Pascal3D+, we observed 297 non-zero weights out of 5292, yielding roughly 5% sparsity.
For ImageNet3D, we observed 4058 non-zero weights out of 128709, yiedling 3% sparsity.

4. For prototypical networks such as ProtoPNet (Chen et al., 2019) and TesNet (Wang et al.,
2021), we used the same training hyperparameters from their codebases: input resolution
224 × 224, log as prototype activation function, with regular add-on layers, a training
batch size of 80, and a training push batch size of 75. The learning rates for features,
add-on layers, and prototype vectors are set to 1e − 4, 3e − 3, 3e − 3 respectively, with
a joint learning rate step size of 5. The projection (push) step was performed every 10
epochs. The network was trained for 200 epochs without a warm-up period or extensive
data augmentation to ensure fairness across baselines.

5. For PIP-Net (Nauta et al., 2023a), we trained the network using the hyperparameter settings
from its codebase, with input resolution 224×224. During pre-training, we used batch size
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of 128 and trained for 10 epochs. For the main training phase, we used a batch size of 64
and trained for 200 epochs. The learning rate was set to 0.05 with no weight decay.

We also find that post-hoc methods such as Fel et al. (2023b) threshold their attributions to reduce
noise in their concept visualisations. For a fair qualitative comparision, we apply the same 90%-th
quantile threshold across baselines that requires it for concept visualisation. Our method CAVE does
not require such thresholding, as its attributions are correctly propagated for each concept with our
NOV-aware LRP to input pixels.
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H ABLATION: SHAPE OF NEURAL OBJECT VOLUMES

For fair comparision, we use full 3D supervision, i.e., with ground-truth 3D poses, for both
NOVUM (Jesslen et al., 2024) and CAVE (Ours) in this ablation across different shapes of the neural
volumes, including simpler shapes in NOVUM such as cuboids and spheres, and more expressive
shapes such as ellipsoid and prototype CADs.

At first glance, CAVE is able to match or even slightly exceeding NOVUM’s performance with
roughly D = 20 class-wise concepts, yielding 98% sparser representation compared to NOVUM’s
1130 Gaussians per class (cf. Fig H1).

Figure H1: CAVE with ellipsoid NOVs matches or slightly exceeding NOVUM in most cases
with only D = 20 concepts per class, compared to NOVUM with roughly 1130 Gaussians per class.
Compared to other shapes, ellipsoid NOVs give an advantage in large-scale dataset ImageNet3D,
heavy occlusion in OccludedP3D+ and OOD-CV with challenging nuisances.

Dataset P3D+ ImageNet3D Occluded P3D+ OOD-CV

Occlusion L0 (0%) L0 (0%) L1 (20− 40%) L2 (40− 60%) L3 (60− 80%) 5 Nuisances

Sphere 99.2 85.8 96.7 86.3 57.9 81.6
Ellipsoid 99.4 88.6 97.0 87.5 58.9 82.4
Prototype CAD 99.5 87.7 97.3 88.1 58.6 83.3
Cuboid (default) 99.5 88.3 97.2 88.6 59.2 81.3

Table H1: Accuracy (%, ↑) of 3D-aware classifier NOVUM on two in-distribution dataets Pas-
cal3D+ (P3D+) and ImageNet3D, and on two OOD datasets Occluded-P3D+ and OOD-CV, evalu-
ated across different neural volume shapes. Best and second best are highlighted.

Dataset P3D+ ImageNet3D Occluded P3D+ OOD-CV

Occlusion L0 (0%) L0 (0%) L1 (20− 40%) L2 (40− 60%) L3 (60− 80%) 5 Nuisances

Cuboid 99.4 88.2 96.9 86.6 54.7 82.2
Sphere 99.0 85.3 95.9 85.0 56.5 79.8
Prototype CAD 99.5 87.7 97.1 87.4 59.0 83.5

Ellipsoid (default) 99.4 88.5 97.3 87.8 59.3 84.0

Table H2: Accuracy (%, ↑) of CAVE (ours) with D = 20 class-wise concepts on two in-distribution
dataets Pascal3D+ (P3D+) and ImageNet3D, and on two OOD datasets Occluded-P3D+ and OOD-
CV, evaluated across different neural volume shapes. Best and second best are highlighted.
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Shape IoU ↑ Spatial Localisation ↑ Coverage ↑ 3D-C ↑∪ Parts Object

Cuboid 0.150 0.264 0.368 0.873 0.402
Sphere 0.148 0.263 0.367 0.870 0.394
Ellipsoid 0.156 0.277 0.368 0.865 0.417
Prototype CAD 0.169 0.305 0.378 0.874 0.426

Table H3: Interpretability evaluation of CAVE across different neural volume shapes with D =
20 concepts per object category on Pascal-Part with different benchmark metrics. In specific, Part
IoU, Spatial Localisation (weighted IoU with attributions), Global Coverage assessing both object
coverage and union of annotated parts, and our proposed metric 3D Consistency (3D-C) to assess
spatial consistency of concepts across images. Best and second best are highlighted.

In terms of performance, while there is no consistent gain in NOVUM with a particular NOV shape
(cf. Tab. H1), CAVE with more expressive shapes like ellipsoid and prototype CAD performs rela-
tively better in heavy occlusion (OccludedP3D+ L3), and OOD-CV, improving roughly 2-3% point
in OOD accuracy (cf. Tab H2). We hypothesise that since Gaussians are densely populated in
NOVUM which are then used for classification, having a more accurate shape approximation has
limited effects. Whereas for CAVE, our concept-based NOV representation is approximately 98%
sparser than NOVUM’s 1130 Gaussians per class, and thus the shape matters more in our design.

Additionally, we evaluate how NOV shape influences CAVE’s concept interpretability (cf. Tab. H3).
Prototype CADs score highest across all metrics, consistent with their closer match to the underlying
object geometry. Ellipsoids are only slightly worse yet require no CAD assets and are faster to fit.
Given this empirical trade-off between OOD accuracy and interpretability, we adopt ellipsoid NOVs
in CAVE, instead of using cuboids as in prior work (Jesslen et al., 2024).

Taken together, these results show that CAVE delivers strong OOD accuracy with a highly sparse and
compact concept-based representation across shapes, with more expressive shapes such as ellipsoids
and prototype CADs are slightly better. Among the tested shapes, ellipsoid NOVs offer the best
balance between interpretability and robustness, making them a scalable choice for CAVE, where
3D-aware classification is both inherently interpretable and robust to distribution shifts.
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I ABLATION: ATTRIBUTING CONCEPTS WITH NOV-AWARE LRP

We provide here a more comprehensive quantitative and qualitative evaluation of our proposed NOV-
aware LRP, described in Sec. 4.1 & Sec. C, against common attribution methods for attributing
concepts in 3D-aware architectures like CAVE. These include Vanilla LRP (Bach et al., 2015),
Guided Backpropagation (Springenberg et al., 2015), Smooth Gradients (Smilkov et al., 2017),
GradCAM (Selvaraju et al., 2017), and Integrated Gradients (Sundararajan et al., 2017).

Figure I1: Violin plot on relevance conservation
of Ours vs. Vanilla Layer-wise Relevance Propa-
gation (LRP), where 0 indicates perfect conserva-
tion. Our NOV-aware LRP achieves near-perfect
conservation compared to Vanilla LRP.

In a direct comparison to vanilla LRP (Bach
et al., 2015) that we base our method on, we
show that our NOV-aware LRP enables faithful
attribution of concepts through the NOVs back
to the input pixels, achieving near-perfect rel-
evance conservation. In contrast, vanilla LRP
unfaithfully leaks relevances, where relevance
is either lost or incorrectly redistributed dur-
ing propagation (cf. Fig. I1). Qualitatively in
Fig. I2, we observe spurious relevances visi-
bly appear in background regions or occlusion
masks in vanilla LRP. On the other hand, our
NOV-aware LRP consistently produces sharp,
spatially coherent attributions that remain well-
aligned with the underlying object structure.
This demonstrates not only the technical ben-
efits of adapting LRP to 3D-aware classifiers
with volumetric representations, but also the
practical interpretability gains, where concepts are now more reliably traced back to the input im-
age. Taken together, our results demonstrate the strong effect of NOV-aware LRP in improving the
fidelity of attribution, i.e., by ensuring that relevance is conserved properly during propagation.

Attribution Methods
Localise. ↑ Coverage ↑ 3D Consistency ↑

Pascal-Part Pascal3D+ OccludedP3D+

C
AV

E

Vanilla LRP (ϵ−rule) 0.26 0.73 0.29 0.16
Guided Backprop. 0.25 0.61 0.32 0.19
SmoothGrad 0.23 0.69 0.31 0.16
Grad-CAM 0.12 0.47 0.27 0.13
Integrated Gradients 0.19 0.57 0.35 0.19

NOV-aware LRP (Ours) 0.28 0.80 0.40 0.23

Table I1: Quantitative comparison of different attribution methods for CAVE, evaluated on
spatial localisation, object coverage, and 3D consistency

We further study the effectiveness of our NOV-aware LRP compared to common attribution methods
(cf. Tab. I1). Ours produces concepts with higher spatial localisation, object coverage (i.e., concept
comprehensiveness), and 3D consistent across in-distribution Pascal3D+ (Xiang et al., 2014) and
OOD OccludedP3D+ (Wang et al., 2020). This means that our LRP reformulation allows us to gen-
erate not only highly localised but also semantically comprehensive visualisation of concepts, cover-
ing the object well rather than focusing on a few discriminative fragments (cf. Fig. I2). Furthermore,
NOV-aware LRP maintains strong consistency across 3D views, outperforming all baselines on Pas-
cal3D+ (0.40 vs. 0.35 from Integrated Gradients) and OccludedP3D+ (0.23 vs. 0.19 from Guided
Backpropagation and Integrated Gradients). The gains are particularly pronounced under occlusion,
where reliable attribution is more challenging.
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Figure I2: Our NOV-aware LRP (second row) yields better-localised, more stable visualisation
of top-5 concepts across both in-distribution and OOD settings, while vanilla LRP and other
common attribution methods show scattered explanations on the image background or occlusion
masks. From left → right, the first input image comes from in-distribution Pascal3D+ (Xiang et al.,
2014), the next two from OccludedP3D+ (Wang et al., 2020) with different levels of occlusion, and
the last three from OOD-CV (Zhao et al., 2022).
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J ABLATION: CONCEPT EXTRACTION ON NEURAL OBJECT VOLUMES
(NOVS)

Figure J1: Representation spaces derived from neural object volumes G (left) and activations of
features (right) of all classes in Pascal3D+.

An advantage of an image classifier with NOVs is that it enhances the separation of the representa-
tion space, ensuring that Gaussian features from different classes remain well-distinguished (Jesslen
et al., 2024). Naturally, this is also the case for activations of features within the same classifier (cf.
Fig. J1), which then leads us to examine where concept extraction is most effective. Our CAVE
framework extracts class-wise concepts directly from neural object volumes G, whereas traditional
methods rely on activations from training features. We explore whether G provides a more mean-
ingful concept space by following three key steps:

1. extracting concepts using low-rank approximations (e.g., NMF). For a fair comparison, we
use NMF as our extraction method because it is known to effectively extract meaningful and
interpretable concepts from activations (Fel et al., 2024). Note that NMF is not guaranteed
to be the optimal choice for neural volumes G,

2. projecting activations into the concept space, and
3. train a K-means clustering model on training image activations and evaluate it on test acti-

vations across different occlusion levels for concept separation.

A well-structured concept space should produce well-separated and compact clusters, which can be
evaluated using the Silhouette Score and Davies-Bouldin Index (DBI). The Silhouette Score ranges
from [−1, 1], where 1 indicates optimal separation and values near 0 suggest overlapping clusters.
In contrast, the Davies-Bouldin Index measures the ratio of intra-cluster dispersion to inter-cluster
separation, with lower values indicating better-separated, more compact clusters. We also show
2D low-dimensional representations comparing the concept spaces of neural volumes and training
activations across different classes in Fig. J2.

Occlusion 0 [20, 40] [40, 60] [60, 80]

NOVs G 0.343 0.333 0.335 0.338
Activations 0.034 0.040 0.037 0.033

Table J1: Silhouette scores (↑) averaged across all classes in Pascal3D+, comparing concept spaces
derived from neural object volumes G and traditional activations. Higher scores indicate more com-
pact clusters, with values close to 1 representing well-structured concept spaces. Results are reported
across different occlusion levels in %.

As we extract concepts from NOVs, there are different established approaches to obtain the de-
composition Gy ≈ WyHT

y , specifically K-Means, Principal Component Analysis (PCA) and Non-
negative Matrix Factorisation (NMF). We aim to strategically select the concept extraction method
that encourages disentangled, part-based concepts while maintaining competitive performance and
faithfulness. To do so, we conduct a small ablation and compare in terms of three key metrics:
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Occlusion 0 [20, 40] [40, 60] [60, 80]

NOVs G 1.154 1.155 1.162 1.137
Activations 2.365 2.348 2.306 2.318

Table J2: Davies-Bouldin Index (↓) averaged across all classes in Pascal3D+, comparing concept
spaces derived from neural object volumes G and traditional activations. Lower score means better
cluster separation.

Boat Bottle Car Dining Table

Figure J2: t-SNE projection of concept embeddings in neural volume space (top) vs. activation
space (bottom) for four classes in Pascal3D+. Concepts in neural volume space are more well-
separated and compact compared to those extracted from activation space.

(i) accuracy, (ii) sparsity, and (iii) feature distribution distance (FDD). Here, sparsity is measured
following the approach in Fel et al. (2024), which quantifies how sparse the weight matrix W∗

y is.
FDD measures the divergence between the original distribution of Gy and its new representation Hy ,
thereby quantifying how faithful the latter preserves the former. After evaluating these three metrics,
we select K-Means clustering as concept identification in CAVE.

Accuracy (%, ↑) Sparsity (↑) FDD (↓)

K-Means 99.36 0.95 0.32
PCA 99.39 0.00 0.39
NMF 99.25 0.63 0.83

NOVUM 99.5 – –

Table J3: Ablation on concept extraction methods. The concept extraction methods are applied
on the neural volumes Gy ∈ G in image classifier NOVUM with D = 20 concepts. Each result is
averaged across all classes from Pascal3D+.
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K DISCUSSION OF FAILURE CASES

While CAVE achieves significant improvement in both robustness and interpretability, some inherent
limitations of 3D-aware classification remain.

Figure K1: CAVE identifies concept across mul-
tiple objects (left) but occasionally misses (right).

First, CAVE is trained on object-centric images
and orients its ellipsoid NOVs to the primary
object to learn Gaussian features for concept
dictionary extraction. This in turn allows for
spatially consistent and localised explanations.
In multi-object classification tasks where mul-
tiple instances of the same objects are present,
CAVE surprisingly can still identify concepts
across objects, even though its training is not
optimised for multi-object scenes. In some
cases, however, CAVE identifies concepts on
the central object and abstains from others (cf.
Fig. K1). While this behavior is consistent with
object-centric learning of 3D-aware classifiers,
improving CAVE further in multi-object scenes
would be an interesting future direction.

Second, we study cases where CAVE fails to find spatially consistent concepts in most test images.
For example, in class Boat of ImageNet3D (Ma et al., 2024), the same concept only localises on
the stern in some images, while to both bow and stern in others. This can be attributed to the fact that
boats do not have a consistent set of parts across subcategories, as also observed in the Pascal-Part
dataset (Chen et al., 2014), as well as because of object symmetries. In fact, when the two ends are
visually similar, the concept generalises to hull ends, rather than only on stern (cf. Fig. K2).

Figure K2: For the same concept in the Boat class of ImageNet3D, CAVE detects only stern in
some cases (first two columns), while both hull ends in others (last two columns).

Figure K3: Under OOD factors, CAVE correctly
detects front wheel (above) but can occasionally
activates back wheel or other parts (below) under
strong perspective shift or object deformation.

We further investigated how OOD nuisances af-
fect concept consistency. In in-distribution set-
tings such as Pascal3D+ (Xiang et al., 2014)
and ImageNet3D (Ma et al., 2024), CAVE’s
3D-C scores of Bicycle are roughly 0.24. Un-
der distribution shift in OOD-CV (Zhao et al.,
2022), the score drops to about 0.16, albeit still
substantially higher than all baselines, which
fail to detect any consistent concepts. We in-
vestigate examples where CAVE shows incon-
sistency, and find that for example concept such
as front wheel activates also on back wheel un-
der strong perspective shift, or when the bicycle
is severely deformed (cf. Fig. K3).
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L ADDITIONAL QUALITATIVE EXAMPLES
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Figure L1: CAVE (Ours) produces more spatially consistent and localised explanations for
OOD images of class Motorbike compared to all baselines.
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Figure L2: CAVE (Ours) produces more spatially consistent and localised explanations for
OOD images of class Bus compared to all baselines.
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Figure L3: CAVE (Ours) produces more spatially consistent and localised explanations for
OOD images of class Bicycle compared to all baselines.
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Figure L4: CAVE (Ours) produces more spatially consistent and localised explanations for
OOD images of class Boat compared to all baselines.
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Figure L5: CAVE (Ours) produces more spatially consistent and localised explanations for
OOD images of class Chair compared to all baselines.
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Figure L6: CAVE (Ours) detects consistent concepts across different ImageNet3D classes. For
each class, the concept is sampled randomly, and the images associated with that concept are also
sampled randomly, both with seed 42.
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Figure L7: CAVE (Ours) detects consistent concepts across different ImageNet3D classes. For
each class, the concept is sampled randomly, and the images associated with that concept are also
sampled randomly, both with seed 42.
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Figure L8: CAVE (Ours) detects consistent concepts across different ImageNet3D classes. For
each class, the concept is sampled randomly, and the images associated with that concept are also
sampled randomly, both with seed 42.
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Figure L9: CAVE (Ours) detects consistent concepts across different ImageNet3D classes and
refrains from detection when the concepts are not visible in the image. For each class, the con-
cept is sampled randomly, and the images associated with that concept are also sampled randomly,
both with seed 42.
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M THE USE OF LARGE LANGUAGE MODELS

All scientific contributions, including the proposed method, experimental design, results, and analy-
ses are solely our own work. We made minimal use of large language model, specifically ChatGPT,
to only assist with the polishing of this paper, including:

(i) formatting tables and figures in latex (strictly for presentation), and
(ii) refining sentence structure for clarity and conciseness
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