

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTERPRETABLE 3D NEURAL OBJECT VOLUMES FOR ROBUST CONCEPTUAL REASONING

Anonymous authors

Paper under double-blind review

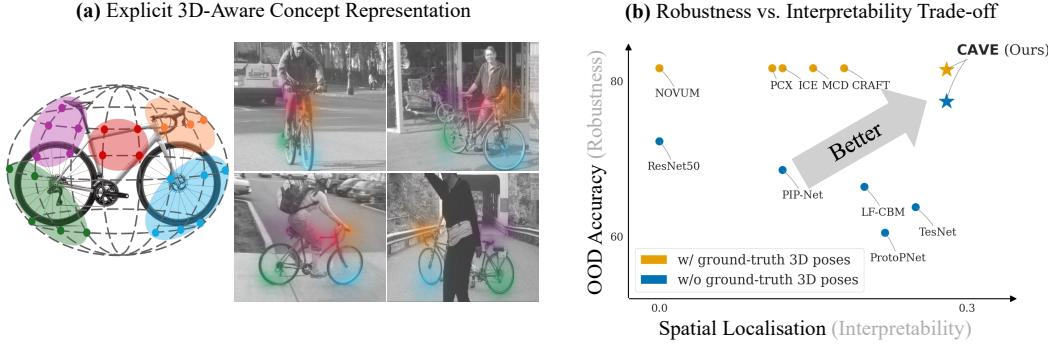


Figure 1: **CAVE - Concept Aware Volumes for Explanations.** (a) We learn 3D object volumes (left), here **ellipsoids**, with concept representations. Each concept captures distinct local features of objects (color coded). At inference (right), these concepts are matched with 2D image features, achieving robust and interpretable image classification. (b) **CAVE achieves the best robustness vs. interpretability tradeoff** across methods (higher is better on both axes). Here, we measure robustness with OOD accuracy (%) on Occluded Pascal3D+ (Wang et al., 2020), and interpretability with concept spatial localisation (i.e., how well an explanation generated by a method overlaps with ground-truth human-annotated object parts in Pascal-Part (Chen et al., 2014); defined in App. G.2).

ABSTRACT

With the rise of deep neural networks, especially in safety-critical applications, *robustness and interpretability* are crucial to ensure their trustworthiness. Recent advances in 3D-aware classifiers that map image features to volumetric representation of objects, rather than relying solely on 2D appearance, have greatly improved robustness on out-of-distribution (OOD) data. Such classifiers have not yet been studied from the perspective of interpretability. Meanwhile, current concept-based XAI methods often neglect OOD robustness. We aim to address both aspects with **CAVE – Concept Aware Volumes for Explanations** – a new direction that unifies interpretability and robustness in image classification. We design CAVE as a robust and inherently interpretable classifier that learns sparse concepts from 3D object representation. We further propose *3D Consistency* (*3D-C*), a metric to measure spatial consistency of concepts. Unlike existing metrics that rely on human-annotated parts on images, *3D-C* leverages ground-truth object meshes as a common surface to project and compare explanations across concept-based methods. CAVE achieves competitive classification performance while discovering consistent and meaningful concepts across images in various OOD settings.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved impressive performance in diverse domains ranging from healthcare to autonomous driving. However, their decision-making processes remain largely opaque and often rely on spurious correlations (Noohdani et al., 2024). In high-stake applications, for instance, in the medical domain, autonomous systems or judicial justice, ensuring both *interpretability and robustness* is not just desirable – it is essential for safety and trustworthiness. To overcome such issues and make networks more transparent and interpretable, various approaches have been proposed in the scope of explainable AI (XAI). Notably, post-hoc methods generate concept-based explanations for pre-trained networks, providing insights into their decision-making process without altering the underlying architecture (Fel et al., 2023b; Ancona et al., 2018; Erion



Figure 2: **CAVE (Ours) discovers consistent concept for Motorbike images under challenging OOD nuisances in OOD-CV dataset.** Columns correspond to inputs with different OOD nuisances: *underwater*, *fog*, *shape*, and *context*. Rows show attributions from NOVUM + ICE (best post-hoc), TesNet (best ad-hoc) and Ours. CAD mesh (right) visualises the **class-level 3D consistency** of a concept, where **highlighted regions** visualise the aggregated concept attributions across test images. CAVE produces more consistent and localised explanations, NOVUM + ICE and TesNet detect concepts inconsistently under nuisances. See App. L1 for full qualitative comparison.

et al., 2021; Hesse et al., 2021; Fel et al., 2023a). However, such methods only approximate the model’s computations, and thus do not provide a faithful explanation. In contrast, another line of research enforces interpretability directly during training, making aspects of the model inherently interpretable and ensuring that the explanations remain faithful to its computations (Chen et al., 2019; Nauta et al., 2023a; Alvarez Melis & Jaakkola, 2018; Nauta et al., 2021; Oikarinen et al., 2023). Yet, these models are often not designed with robustness in mind (cf. Fig. 1b).

DNNs in real-world scenarios typically encounter distribution shifts over time such as occlusions, or adverse weather conditions in the case of autonomous driving. If the model is not OOD-robust, any explanations extracted from the model representation are unreliable. In fact, under foggy weather or changing contexts, most methods often fail to identify consistent and meaningful explanations (cf. Fig. 2). In an orthogonal line of research, incorporating 3D compositional object representations into the training pipeline significantly improves OOD robustness, yet these classifiers remain inherently opaque, leaving a critical gap in understanding their decision making (Jessen et al., 2024). They are also restricted to training settings where ground-truth 3D poses are available.

This landscape exposes a key gap in the interpretability and robustness of image classification. We address it with **CAVE** — Concept Aware Volumes for Explanations — a framework for image classification that is both OOD-robust and inherently interpretable. CAVE builds on the idea of representing each class with a neural object volume (NOV) introduced in NOVUM (Jessen et al., 2024), where simple shapes such as cuboids or spheres are densely distributed with Gaussian features on the surface. These Gaussian features are then aligned with the latent image features for classification. While this improves OOD robustness, these dense features remain opaque and offer little semantic insights. CAVE overcomes this by representing objects with ellipsoid NOVs, from which a **sparse dictionary of high-level concepts** is learned (cf. Fig. 1a). Additionally, we leverage zero-shot estimated object orientation from Wang et al. (2025b), thereby alleviating the reliance on pose annotations during training in 3D-aware architectures such as NOVUM. Once concepts are learned, they can be attributed to pixel spaces for explanations. Standard attribution methods such as layer-wise relevance propagation (LRP) however unfaithfully leak relevances in 3D-aware archi-

108 tectures with non-standard layers. We modify LRP to account for volumetric representations such
 109 as NOVs in 3D-aware architectures, while also ensuring its relevance conservation property.
 110 For concept evaluation, existing consistency metrics often assume that learned concepts are aligned
 111 with human-annotated object parts (Huang et al., 2023; Behzadi-Khormouji & Oramas, 2023), even
 112 though good model performance does not require such alignment. We thus propose **3D consistency**
 113 (**3D-C**), which uses ground-truth 3D object meshes as a common surface to project and compare
 114 concepts, allowing consistency to be measured without relying on part annotations.

115 In summary, our main **contributions** include:

- 116 (i) CAVE as a robust and inherently-interpretable image classifier through ellipsoid NOVs.
 117 Our concept basis is spatially-aware, and its explanations are model-faithful,
- 118 (ii) an adaptation of LRP for concept attribution in classifiers with volumetric representations,
- 119 (iii) and a novel part-annotation-free consistency metric 3D-C that captures the spatial coherence
 120 of concepts across viewpoints and OOD nuisances.

122 In comparision to various XAI methods, both post-hoc and inherently interpretable approaches,
 123 CAVE shows a favorable balance of OOD robustness and interpretability, with improvements across
 124 metrics such as OOD accuracy, object coverage, spatial localisation, and concept consistency.

125 2 RELATED WORK

127 **Leveraging 3D supervision.** 3D information is useful for 2D feature representations in downstream
 128 tasks like segmentation and depth estimation, but these require rich multi-view data (Yue et al., 2024;
 129 Hou et al., 2021; Fu et al., 2024). Another broad line of recent work investigates structured 3D
 130 geometry reasoning using neural fields, wireframe representations, or multi-view constraints (Xue
 131 et al., 2024; Liu et al., 2024; Xue et al., 2020; Tan et al., 2023; Xiao et al., 2023). Recently, NOVUM
 132 pioneers using 3D information for robust classification, by considering 3D pose information to fit
 133 cuboid NOVs to an image (Jesslen et al., 2024). This line of work forms the basis of our approach.

134 **Learning without 3D supervision.** In 3D-aware image classifiers such as NOVUM, model training
 135 requires ground-truth 3D pose annotations to align NOVs with the object in the image. This
 136 requirement significantly limits applicability, as such annotations are expensive to obtain and often
 137 unavailable in real-world datasets. Recent work proposes zero-shot object orientation estimation
 138 models, e.g., Orient-Anything (Wang et al., 2025b), which extract pose information given an input
 139 image. CAVE adopts such pose estimators to remove the need for annotated 3D poses in training.

140 **Concept-based explanations.** A major line of work in XAI focuses on discovering *concept representations*. Post-hoc concept extraction methods such as CRAFT (Fel et al., 2023b; 2024) and
 141 ICE (Zhang et al., 2021) factorise model activations to uncover latent concepts, while MCD (Viel-
 142 haben et al., 2023) uses sparse subspace clustering to identify concept subspaces, and PCX (Dreyer
 143 et al., 2024) learns concepts from relevance maps. These approaches offer *implicit interpretability*,
 144 and only approximate its computation (i.e., not model-faithful). A different class of approaches
 145 makes the model predictions themselves *explicitly interpretable* by design. Concept Bottleneck
 146 Models (CBMs) (Koh et al., 2020; Oikarinen et al., 2023) introduce a dedicated concept layer whose
 147 units correspond to human-understandable concepts, thus providing *explicit semantic interpretability*.
 148 Similarly, prototype-based networks such as ProtoPNet (Chen et al., 2019) and its follow-up
 149 works (Wang et al., 2021; Nauta et al., 2023a; Wang et al., 2025a) learn prototypical image features
 150 whose presence is used for prediction, offering *explicit visual interpretability* through prototype pro-
 151 jection. CAVE is *faithful-by-design* and *implicitly interpretable*: its internal units arise through un-
 152 supervised discovery rather than explicit semantic or prototype supervision. We therefore compare
 153 CAVE with both post-hoc concept discovery methods (CRAFT, ICE, MCD, PCX) and faithful-by-
 154 design interpretable models (LF-CBM, ProtoPNet, TesNet, PIP-Net, MGProto). This allows us to
 155 assess concept quality across implicit versus explicit approaches, while comparing predictive per-
 156 formance among faithful-by-design models.

157 **Evaluating concept explanations.** Prior works assess concepts along several axes: (i) *spatial lo-*
 158 *calisation* to ground-truth bounding boxes or masks, (ii) *object coverage*, i.e. how well they attend
 159 to different parts of the object, and (iii) *consistency* across instances (Huang et al., 2023; Behzadi-
 160 Khormouji & Oramas, 2023; Huang et al., 2024; Zhu et al., 2025). Such metrics are limited for two
 161 reasons: they require human-annotated object parts, and model training often optimises for task per-
 162 formance rather than part alignment. To complement these metrics, we propose **3D-C**, a consistency
 163 measure of concept across samples without requiring part annotations.

162 3 PRELIMINARIES: NEURAL OBJECT VOLUMES (NOVs) AND NOVUM 163

164 In this section, we provide a recap of neural object volumes (NOVs) and NOVUM (Jessen et al.,
165 2024), as they are essential for defining our method CAVE in Section 4.

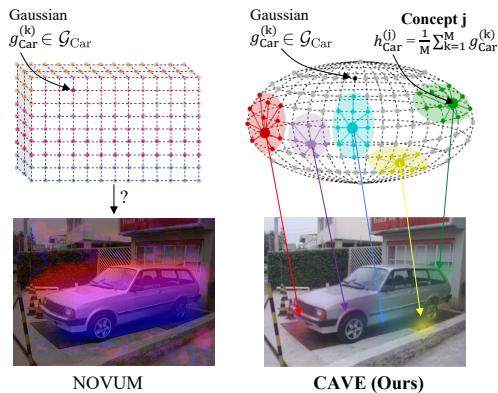
166 **Notations.** In a supervised setting, an image classifier consists of a feature extractor $\mathcal{E}(\cdot)$ and a
167 classification layer $\phi(\cdot)$. Given an input image $x \in \mathbb{R}^{H \times W \times C}$, the feature extractor produces a
168 feature map $F_x = \mathcal{E}(x) \in \mathbb{R}^{H' \times W' \times C'}$. Here, $H' \leq H$ and $W' \leq W$ denote the spatial dimension
169 of the latent representation of x and need not correspond to pixel resolution. C' denotes the number
170 of latent channels. We use $f_i = \mathcal{E}_i(x)$ to indicate the L2-normalised latent feature vector for the i -th
171 pixel of feature map F_x in raster order. The classification decision is computed as $y = \phi(F_x)$.

172 **Neural Object Volumes (NOVs).** A NOV is a volumetric approximation of an object class y (cf.
173 Fig. 3), and consists of a set of K 3D Gaussians. In NOVUM, the NOVs are instantiated as cuboids
174 with Gaussians evenly distributed on their surface. The k -th Gaussian is defined by its center $\mu_y^{(k)} \in$
175 \mathbb{R}^3 with fixed unit variance, and is associated with an L2-normalised feature vector $g_y^{(k)} \in \mathbb{R}^{C'}$.
176 Hence, each Gaussian in a NOV is assigned a fixed 3D coordinate on the surface of a canonical
177 object shape and form a structured volumetric representation. We define the matrix of Gaussian
178 features for the object class y as $\mathcal{G}_y \in \mathbb{R}^{K \times C'}$, which have the same channel dimension C' as latent
179 features F_x from the backbone model and will be later used to match with the F_x . Extending this
180 notation, the complete matrix of Gaussian features across all N object classes can be represented
181 as $\mathcal{G} = [\mathcal{G}_1; \mathcal{G}_2; \dots; \mathcal{G}_N] \in \mathbb{R}^{NK \times C'}$. During training of NOVUM, these NOVs \mathcal{G} are learned to
182 align with latent image features F_x , orienting the volumes through ground-truth 3D pose annotations
183 (see also Appendix F for training objectives). Intuitively, matching image latent features to Gaussian
184 features guided by the pose annotations aligns the image representation with the canonical 3D object
185 geometry, allowing Gaussians to correspond to consistent object geometry.

186 **Classification with NOVs in NOVUM** is done
187 through **feature matching** between the back-
188 bone image features F_x and the set of learned
189 3D object representation NOVs \mathcal{G} . This opera-
190 tion aligns each feature $f_i \in F_x$ with the most
191 similar Gaussian feature across \mathcal{G} . The logit for
192 class y is computed by summing over all spatial
193 locations where feature f_i is matched to a
Gaussian feature of y

$$194 s_y = \phi(F_x, \mathcal{G}_y) = \sum_i \max_k f_i \cdot g_y^{(k)} \quad (1)$$

195 The class with the highest score s_y is the pre-
196 dicted label y^* . This formulation gives rise to
197 3D-aware classification through a bag-of-words
198 feature matching mechanism, where image fea-
199 tures are directly compared against 3D-aware
200 Gaussian features. However, this classification
201 process remains inherently opaque. The num-
202 ber of Gaussian features involved in the match-
203 ing step in the order of thousands makes it difficult to interpret which features contribute to the final
204 decision (cf. Fig. 3, left). In the next Section 4, we describe our method CAVE, which replace
205 dense Gaussian features and instead operates on a sparse dictionary of representative Gaussian fea-
206 tures. We refer to these representations as **concept-based NOVs**, an interpretable concept basis for
207 3D-aware classification (cf. Fig. 3, right).



208 Figure 3: CAVE adopts ellipsoid NOVs and
209 produces a sparse set of concepts that replace the
210 dense thousands of Gaussians in NOVUM, thus
211 providing more interpretable explanations.

212 4 CAVE: CONCEPT-AWARE VOLUMES FOR EXPLANATIONS

213 Our goal is to build an image classifier with two key properties: (i) robust classification in OOD
214 settings, and (ii) inherently interpretable model predictions. While specific solutions exist for each
215 property individually, combining them remains far from trivial. Building upon NOVUM, our method
leverages volumetric object representations to simultaneously achieve both robustness and inter-
pretability. In Section 4.1, we show how to extract a sparse set of interpretable concepts from dense
Gaussian features on NOVs, which then form our concept-based NOVs for inherently interpretable

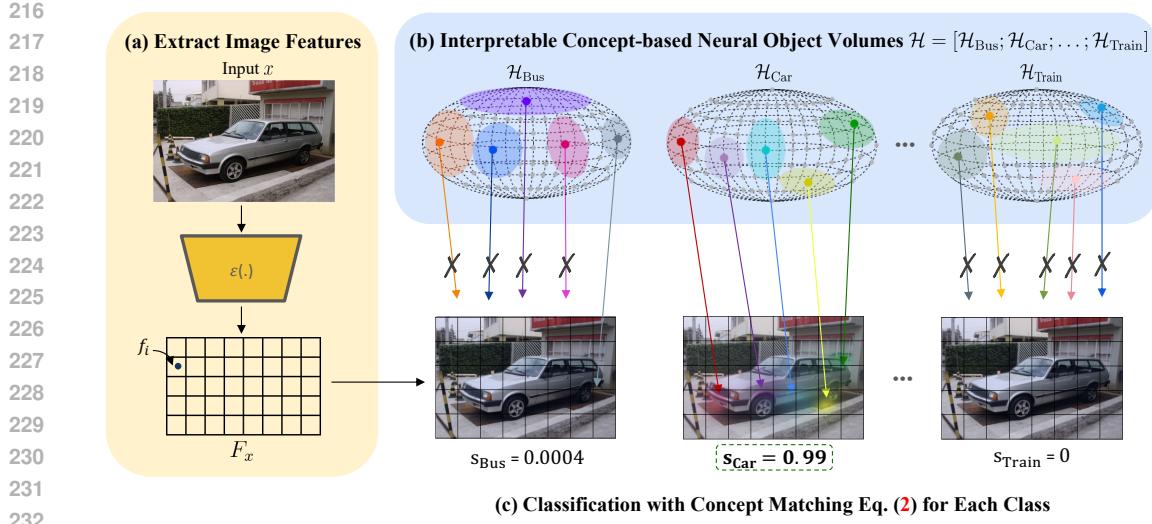


Figure 4: **CAVE – Concept Aware Volumes for Explanations**, a framework for robust conceptual reasoning and classification through 3D-aware **concept-based neural object volumes** (NOVs). In this visual illustration, colors indicate the top-5 concepts within each class. For classification, CAVE combines (a) extracted image features F_x and (b) interpretable concept-aware NOVs \mathcal{H} through a bag-of-word concept matching (c) with equation 2, where each feature $f_i \in F_x$ is best aligned with \mathcal{H} by cosine similarity. Correct classification happens when many image features activates Car concepts, while concepts in other classes fail to align with any feature (crossed-out arrows).

classification. Figure 4 gives an overview of our method CAVE. We further attribute these concepts from the model prediction, through these concept-based NOVs, to the input image for explanations using our modified LRP. Then, in Section 4.2, we discuss how to improve learning NOVs through more expressive shapes and introducing weak 3D supervision with estimated poses for CAVE, thus extending its applicability to settings without ground-truth 3D pose annotations.

4.1 IDENTIFYING AND ATTRIBUTING CONCEPTS THROUGH NOVs

From NOVs to Concept-Based NOVs. To achieve an inherently interpretable NOV-based classifier, we identify a meaningful concept basis from each NOV and replace the latter with these concepts (cf. Fig. 4b). Formally, for a NOV $\mathcal{G}_y \in \mathbb{R}^{K \times C'}$ of class y , we formulate our class-wise concept extraction problem through the lens of dictionary learning (Mairal et al., 2014; Fel et al., 2024):

$$(\mathcal{W}_y^*, \mathcal{H}_y^*) = \arg \min_{\mathcal{W}_y, \mathcal{H}_y} \|\mathcal{G}_y - \mathcal{W}_y \mathcal{H}_y^T\|_F^2$$

where the weight matrix $\mathcal{W}_y^* \in \mathbb{R}^{K \times D}$ and the dictionary of D concept vectors $\mathcal{H}_y^* = [h_y^{(1)}, \dots, h_y^{(D)}]^T \in \mathbb{R}^{D \times C'}$ minimize the element-wise distance between our Gaussian features \mathcal{G}_y and $\mathcal{W}_y \mathcal{H}_y^T$. In the case of hard clustering, the weight matrix \mathcal{W}_y^* reduces to a discrete assignment matrix, where each row is a one-hot encoding that corresponds to only one concept. This allows clustering to be much more interpretable than methods with less sparse weight matrices. We adopted K-Means clustering for its balance of accuracy, concept sparsity, and alignment to the learned NOVs. We refer to our ablation on concept extraction methods in Appendix J. The extracted concept dictionary \mathcal{H}_y^* is now seen as a *sparse and interpretable concept-based NOV* to replace the original dense NOV \mathcal{G}_y (cf. Fig. 3). We modulate the original feature matching $\phi(F_x, \mathcal{G})$ in NOVUM with **concept matching** $\phi(F_x, \mathcal{H})$ that establishes correspondences between F_x and new volumetric representation $\mathcal{H} = [\mathcal{H}_1^*; \mathcal{H}_2^*; \dots; \mathcal{H}_N^*] \in \mathbb{R}^{ND \times C'}$. Eq. (1) thus becomes

$$s_y = \phi(F_x, \mathcal{H}_y) = \sum_i \max_{j \leq D} f_i \cdot h_y^{(j)} \quad (2)$$

This reformulation, illustrated in Fig. 4b-c, enables feature matching against a compact and interpretable concept set instead of thousands of Gaussians, yielding sparser representations, stronger robustness, and more confident predictions compared to NOVUM (cf. Fig. 7). Both f_i and $h_y^{(j)}$ are

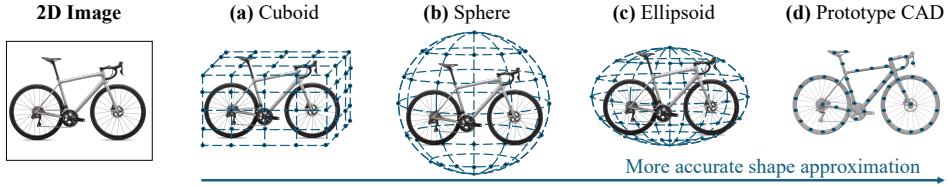


Figure 5: **NOV shapes for approximating object class Bicycle.** Here Gaussians are evenly distributed on the surface of each volumetric type.

L2-normalised. Thus each dot product $f_i \cdot h_y^{(j)}$ in Eq. (2) is a cosine similarity in $[-1, 1]$ which defines latent feature-concept alignment. Importantly, the score in Eq. (2) is computed exactly from activations of these volumetric concepts, preserving the faithfulness that NOVUM (Jesslen et al., 2024) also has while adding interpretability through sparse concept representations. These concepts emerge implicitly as geometrically-grounded units through unsupervised clustering of Gaussian features, while prototype-based methods and CBMs learn concepts explicitly.

Attributing concepts with NOV-aware LRP. We aim to provide interpretable explanations on the input-level for our NOV-based concepts \mathcal{H} , thereby demonstrating the model’s reasoning through neural volumetric concepts. To achieve this, we build on LRP, a well-established attribution method that traces relevances from the model’s prediction back to the input pixels (Bach et al., 2015; Otsuki et al., 2024). A key principle of LRP is the conservation property, which requires the total relevance to remain constant throughout the network (Otsuki et al., 2024). However, we empirically find that when directly applied to NOV-based architectures, LRP fails to uphold this property and instead unfaithfully leaks relevances (cf. Appendix Fig. II). We address this by introducing a redistribution rule that preserves the conservation property through the concept-matching operator $\phi(F_x, \mathcal{H})$, ensuring that the total relevance assigned to input pixels equals that at the concept level $\sum_{f_i \in F_x} R_{f_i} = \sum_{h \in \mathcal{H}} R_\phi(h) = R_y^*$. This NOV-aware extension allows us to correctly attribute predictions through volumetric concepts with LRP, enabling robust and reliable concept explanations even under challenging OOD conditions. Full derivation is provided in Appendix C.

4.2 EXTENDING NOVs: WEAK 3D SUPERVISION AND MORE EXPRESSIVE SHAPES

Learning with weak 3D supervision. One notable limitation of NOV-based classifiers is that they assume access to ground-truth 3D pose annotations during training (Jesslen et al., 2024). Here, we relax this requirement by training CAVE with estimated object orientations from Orient-Anything (Wang et al., 2025b). While the weaker supervision introduces some performance drop, especially under OOD nuisances (cf. Appendix E2), it shows that NOV-based classifiers can operate without explicit pose annotations, allowing for better scalability. Unless stated otherwise, we use CAVE with estimated poses for a fair comparison to ad-hoc baselines in our setting.

More accurate shape approximation. Typically, NOV-based classifiers such as NOVUM use simple shapes such as cuboids and spheres, which provide a coarse volumetric approximation of objects. We broaden the scope by adapting NOVs to more expressive geometries: ellipsoids and prototype CADs (cf. Fig. 5), which serve as basis for our concept extraction. We adopt **ellipsoid NOVs** in our setup, given their favorable trade-off between OOD accuracy and interpretability (cf. Appendix H).

5 3D CONSISTENCY OF CONCEPTS

Evaluating concept consistency is challenging. Prior works often rely on part annotations (Huang et al., 2023; Behzadi-Khormouji & Oramas, 2023; Huang et al., 2024), which do not necessarily reflect what models actually learn, since training optimises task accuracy rather than alignment with pre-defined parts. Object geometry, however, provides a natural reference: if a concept is meaningful, it should consistently map to the same semantic region of the object under different poses or OOD factors. We call this property **3D consistency** (3D-C) (cf. Fig. 6, in-distribution). For instance, the concept “front part of a motorbike” is consistent if its attributions refer to the same part under distribution shifts such as weather, shape, or context (cf. Fig. 2, OOD). Our 3D-C thus complements existing metrics with a principled alternative independent of part annotations. To compute the 3D-C score of a concept h in class y , we project its positive attributions $A^+(x, h) \in \mathbb{R}^{H \times W}$ from test images $x \in \mathcal{X}_y$ onto the CAD model of class y . This projection uses ground-truth 3D poses when available, and estimated poses from Orient-Anything (Wang et al., 2025b) otherwise. Formally, we define the mapping $\Omega_y : \mathbb{R}^{H \times W} \rightarrow \mathbb{R}^{|\mathcal{Q}_y|}$, where \mathcal{Q}_y denotes the set of triangles in

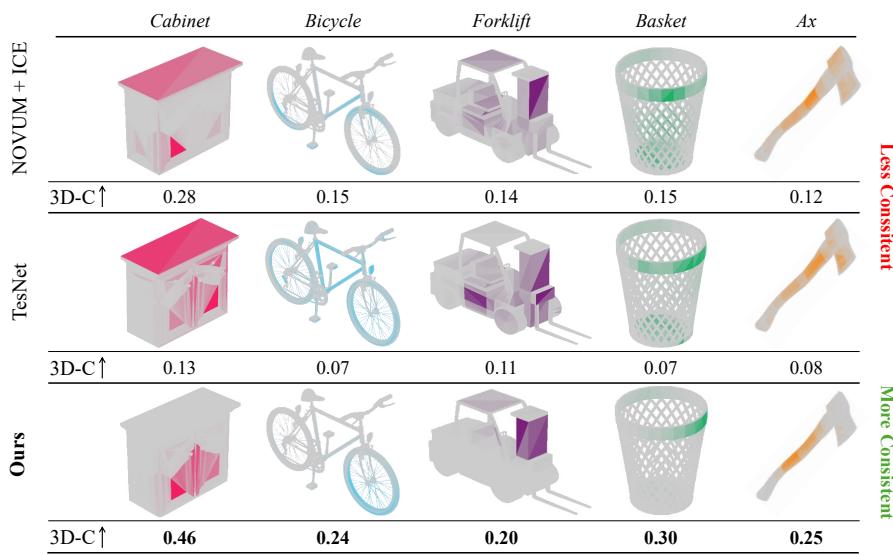


Figure 6: **CAVE (Ours) produces most consistent concepts across different classes**, compared to NOVUM + ICE (best post-hoc) and TesNet (best ad-hoc). We highlight how consistent a concept by aggregating concept relevance scores from all class-wise test images onto object mesh, and report **class-wise 3D-C scores** below each row. Higher 3D-C means more consistent mapping to the same region. See Tab. 1 for full quantitative comparison with baselines.

the CAD model of class y that represents the object’s surface. Given a concept h and an input image x of class y , Ω_y maps the positive attribution map $A^+(x, h)$, onto the corresponding oriented CAD model and aggregates, for each triangle $q \in \mathcal{Q}_y$, the sum of all projected attributions falling onto it. We denote by (i, j) a pixel position in $A^+(x, h)$ and by $A^+(x_{ij}, h)$ the positive attribution given to this pixel. Concretely, we define the output vector $\Omega_y(A^+(x, h))$ component-wise as:

$$\Omega_y(A^+(x, h))_q := \sum_{(i, j) \in \mathcal{P}_y^{(q)}} A^+(x_{ij}, h), \quad (3)$$

where $\mathcal{P}_y^{(q)}$ is the set of pixel positions (i, j) whose projection falls onto triangle $q \in \mathcal{Q}_y$ of the CAD model of class y . For each concept h , we normalise the concept attribution $A^+(x, h)$ such that $\sum_{(i, j) \in \{1, \dots, H\} \times \{1, \dots, W\}} A^+(x_{ij}, h) = 1$. The 3D-C score for concept h across \mathcal{X}_y is defined as:

$$3D\text{-}C(\mathcal{X}_y, h) = 1 - \frac{1}{2} \left[\frac{1}{n_y^2} \sum_{x \neq x' \in \mathcal{X}_y} \|\Omega_y(A^+(x, h)) - \Omega_y(A^+(x', h))\|_1 \right] \quad (4)$$

which is normalised to $[0, 1]$, where n_y is the number of test images in \mathcal{X}_y in which concept h is present. We exclude concepts that occur in fewer than $\tau\%$ of test images of class y (here, we choose $\tau = 50$), as they may appear spuriously consistent when evaluated on too few test samples. See Appendix D for further details on visualisation of concept consistency on object meshes.

6 EXPERIMENTS

Datasets and metrics. We evaluate CAVE with weak 3D supervision on *classification accuracy* and *3D-C* in two settings: (i) *in-distribution* on Pascal3D+ (Xiang et al., 2014) and large-scale ImageNet3D (Ma et al., 2024), and (ii) *OOD* on OccludedP3D+ (Wang et al., 2020) (3 occlusion levels on Pascal3D+) and OOD-CV (Zhao et al., 2022) (nuisances in pose, shape, context, texture, and weather). We further assess *spatial localisation* (weighted IoU with attributions) and *object coverage* (concept comprehensiveness) on Pascal-Part (Chen et al., 2014), and *concept faithfulness* to model’s predictions (Wang et al., 2024; Böhle et al., 2022; Rudin, 2019; Adebayo et al., 2018). See also Appendix G for dataset and metric details.

Baselines. For comparison, we apply common post-hoc concept-based methods CRAFT (Fel et al., 2023b), MCD (Vielhaben et al., 2023), ICE (Zhang et al., 2021), and PCX (Dreyer et al., 2024) on

378	379	Models	Localise. \uparrow	Coverage \uparrow	3D Consistency (3D-C.) \uparrow				
			Pascal-Part	Pascal3D+	ImageNet3D	OccludedP3D+	OOD-CV		
380	381	Post-hoc	NOVUM + CRAFT (Fel et al., 2023b)	0.18	0.42	0.28	0.26	0.15	0.15
			NOVUM + MCD (Vielhaben et al., 2023)	0.15	0.34	0.16	0.25	0.11	0.14
			NOVUM + ICE (Zhang et al., 2021)	0.12	0.44	0.28	0.27	0.15	0.15
			NOVUM + PCX (Dreyer et al., 2024)	0.11	0.33	0.10	0.21	0.08	0.11
			LF-CBM (Oikarinen et al., 2023)	0.20	0.56	0.15	0.14	0.13	0.11
383	384	Ad-hoc	ProtoPNet (Chen et al., 2019)	0.22	0.43	0.19	0.13	0.21	0.09
			TesNet (Wang et al., 2021)	0.25	0.44	0.20	0.18	0.18	0.12
			PIP-Net (Nauta et al., 2023a)	0.12	0.13	0.09	0.09	0.07	0.00
			MGProto (Wang et al., 2025a)	0.25	0.35	0.19	0.16	0.16	0.07
			CAVE (Ours)	0.28 (± 0.001)	0.80 (± 0.002)	0.40 (± 0.001)	0.40 (± 0.001)	0.23 (± 0.006)	0.24 (± 0.002)
385	386		CAVE (with full 3D supervision)	0.28 (± 0.001)	0.87 (± 0.002)	0.42 (± 0.001)	0.43 (± 0.0003)	0.23 (± 0.010)	0.26 (± 0.001)

Table 1: **Concept interpretability evaluation** using *spatial localisation* (whether concepts align with human-annotated parts), *object coverage* (extent of concept coverage over the object), and *3D consistency* (3D-C) (concept stability across 3D viewpoints, independent of part annotations). CAVE trained with full 3D supervision, i.e., ground-truth 3D poses, are shown in gray text. Our CAVE produces concepts that are spatially localised, sufficiently diverse to cover the object, and robustly consistent across both in-distribution and OOD settings. We report our results as the mean (\pm std) across 10 random seeds.

395	396	Models	W/o Ground-truth 3D Pose	In-distribution		Out-of-distribution (OOD)	
				Pascal3D+	ImageNet3D	Occluded P3D+	OOD-CV
397	398	LF-CBM (Oikarinen et al., 2023)	Yes	98.4	83.3	66.4	73.5
399	400	ProtoPNet (Chen et al., 2019)	Yes	97.4	74.0	60.5	71.2
401	402	TesNet (Wang et al., 2021)	Yes	97.6	77.9	63.8	70.1
403	404	PIP-Net (Nauta et al., 2023a)	Yes	95.7	51.0	68.6	60.0
405	406	MGProto (Wang et al., 2025a)	Yes	97.2	64.2	73.8	72.3
407	408	CAVE (Ours)	Yes	99.0 (± 0.03)	84.6 (± 0.02)	76.8 (± 0.51)	80.3 (± 0.27)
409	410	CAVE (with full 3D supervision)	No	99.4 (± 0.02)	88.5 (± 0.03)	81.3 (± 0.30)	84.0 (± 0.21)
411	412	NOVUM (with full 3D supervision)	No	99.5	88.3	81.7	81.3

Table 2: **Classification accuracy (%)** comparison. We compare CAVE (Ours) trained with no 3D supervision (using Orient-Anything (Wang et al., 2025b)) against inherently interpretable models across both in-distribution and OOD datasets. **Best** and **second best** are highlighted. CAVE and NOVUM with full supervision, i.e., ground-truth 3D poses, are shown in gray text. CAVE achieves consistently higher accuracy, especially in OOD settings. CAVE with weak supervision delivers competitive accuracy without ground-truth 3D pose, with only a modest gap to full supervision. We report our results as the mean (\pm std) across 10 random seeds.

NOVUM to make it concept-interpretable. We further consider LF-CBM (Oikarinen et al., 2023), and the prototype learning approaches ProtoPNet (Chen et al., 2019), TesNet (Wang et al., 2021), PIP-Net (Nauta et al., 2023a), and MGProto (Wang et al., 2025a), which are all inherently interpretable. We use ResNet-50 backbone for all methods. Post-hoc baselines extract concepts from NOVUM activations. Unless explicitly stated, CAVE is learned with weak 3D supervision. The number of concepts per class is fixed to $D = 20$ across all methods for a fair comparison. See Appendix G for full implementation details¹.

6.1 CAVE DISCOVERS SPATIALLY CONSISTENT CONCEPTS

Both NOVUM (Jesslen et al., 2024) and CAVE are faithful-by-design, since their predictions decompose exactly over internal units (Gaussian features in NOVUM, region-level concepts in CAVE). CAVE achieves implicit interpretability by learning sparse, structured concept units from NOVUM’s fine-grained Gaussian features, effectively grouping them into geometrically-meaningful concepts. We further evaluate concepts on: (i) spatial localisation, (ii) object coverage to measure the extent of concept comprehensiveness, and (iii) 3D-C to assess concept consistency across settings. We summarise our results in Tab. 1.

On Pascal-Part, CAVE with weak 3D supervision still provides stronger concept localisation and coverage than both ad-hoc baselines and post-hoc methods applied to NOVUM with full 3D supervision. In particular, CAVE discovers diverse concepts that sufficiently cover on average $\sim 80\%$ of the object, whereas the next best method LF-CBM reaches only $\sim 56\%$. We hypothesise that this higher coverage also supports CAVE in identifying concepts, for example, under occlusion.

¹Code will be released upon publication.

432 For 3D-C, post-hoc methods ICE and CRAFT benefit from the 3D supervision in NOVUM and
 433 extract more spatially consistent concepts compared to inherently interpretable baselines on in-
 434 distribution data. Their consistency, however, remains lower than CAVE’s. In OOD scenarios, all
 435 methods show a decline in consistency. CAVE maintains the highest scores and thus comparatively
 436 shows that its concepts are more stable under distribution shifts. While only roughly approximated
 437 through an ellipsoid, CAVE’s concepts still consistently map to meaningful and diverse regions on
 438 the object mesh, even under OOD shifts in Fig. 2 and complex structures in Fig. 6.

439 6.2 CAVE MAINTAINS COMPETITIVE CLASSIFICATION ACCURACIES

440 The goal of CAVE is to be **both** robust and interpretable. We measure robustness in terms of OOD
 441 accuracy on OccludedP3D+ and OOD-CV, and further report accuracy on in-distribution Pascal3D+
 442 and ImageNet3D (cf. Tab. 2). We compare only to inherently interpretable methods, omitting post-
 443 hoc methods as they do not modify the underlying classification of NOVUM.

444 Across all datasets, CAVE with ground-truth 3D poses achieves performance competitive with
 445 NOVUM, even slightly surpassing it on large-scale ImageNet3D (+0.2%) and OOD-CV (+2.7%),
 446 while using much sparser representations. With weak supervision (no ground-truth 3D poses),
 447 CAVE shows comparatively mild drops in performance on ImageNet3D and OOD-CV relative to
 448 ground truth pose supervision. In the following, we report CAVE *without* ground-truth 3D poses.
 449 On in-distribution Pascal3D+, all methods perform relatively well. However, when scaling to Im-
 450 ageNet3D, prototypical networks sharply degrade, with even the strongest TesNet almost 8% lower
 451 than CAVE (vs. 1.4% gap on the comparably small Pascal3D+). Under occlusion ranging 20 – 80%
 452 of the image in OccludedP3D+, CAVE outperforms the competitors by around 10%. Similarly, on
 453 OOD-CV, CAVE performs best (80.4% acc) with LF-CBM a distant second (73.5% acc) and other
 454 methods performing much worse. In summary, CAVE provides a unique combination of inherent
 455 interpretability and robustness to OOD data unmatched by existing work.

456 6.3 ABLATIONS

457 **Consistency across concept count.** We study how the spatial consistency of concepts varies with
 458 the number of class-wise concepts D . As shown in Tab. 3, our 3D-C scores improve with more
 459 concepts under heavy occlusion, but overall remain stable across concept counts across settings.

Concept count	Pascal3D+		ImageNet3D		OccludedP3D+			OOD-CV
	in-dist.	in-dist.	[20 – 40%] occ.	[40 – 60%] occ.	[60 – 80%] occ.	avg.		
$D = 5$	0.38 (± 0.004)	0.42 (± 0.002)	0.27 (± 0.002)	0.22 (± 0.01)	0.17 (± 0.01)	0.22 (± 0.005)	0.24 (± 0.003)	
$D = 10$	0.39 (± 0.003)	0.41 (± 0.001)	0.28 (± 0.003)	0.21 (± 0.005)	0.19 (± 0.02)	0.23 (± 0.007)	0.24 (± 0.001)	
$D = 20$	0.40 (± 0.001)	0.40 (± 0.001)	0.29 (± 0.002)	0.21 (± 0.002)	0.20 (± 0.02)	0.23 (± 0.006)	0.24 (± 0.002)	
$D = 40$	0.41 (± 0.004)	0.40 (± 0.001)	0.29 (± 0.001)	0.22 (± 0.001)	0.21 (± 0.01)	0.24 (± 0.003)	0.23 (± 0.001)	

466 Table 3: **3D-C across concept count per class $D \in \{5, 10, 20, 40\}$ of our CAVE with weak 3D**
 467 **supervision.** The results are reported as mean (\pm std) across 10 random seeds.

468 **Sparsity-accuracy tradeoff.** We study the effect of varying the number of class-wise concepts D
 469 in CAVE (5–90) compared to NOVUM’s fixed ~ 1130 Gaussians per class (cf. Fig. 7a, b). CAVE
 470 achieves competitive accuracy with far fewer concepts, with a knee around $D = 20$, yielding $\sim 98\%$
 471 sparser representations that match or even slightly exceed NOVUM’s performance, especially under
 472 OOD shifts. CAVE also produces more confident predictions with clearer class separation (Fig. 7c).

473 **NOV-aware LRP.** Our NOV-aware LRP yields spatially coherent attributions, even under OOD
 474 conditions such as snow and heavy occlusion, whereas vanilla LRP (Bach et al., 2015) and Grad-
 475 CAM (Selvaraju et al., 2017) produce scattered explanations (cf. Fig 8). Empirically, vanilla LRP
 476 unfaithfully leaks relevance compared to our formulation (cf. Appendix Fig. II). Our full ablation
 477 in Appendix I shows that our NOV-aware LRP is essential for reliable concept attribution.

478 7 DISCUSSION

479 CAVE preserves NOVUM’s faithfulness while providing *implicit interpretability*. Its geometrically-
 480 grounded concepts emerge through unsupervised clustering and are directly used for prediction.
 481 While this differs from explicitly interpretable models, e.g., CBMs and prototype networks, which
 482 enforce semantic or visual grounding through supervision, all these approaches are faithful-by-
 483 design, concept-based models. Thus, we compare CAVE against these baselines for assessing con-
 484 cept quality and predictive performance across explicit and implicit forms of interpretability.

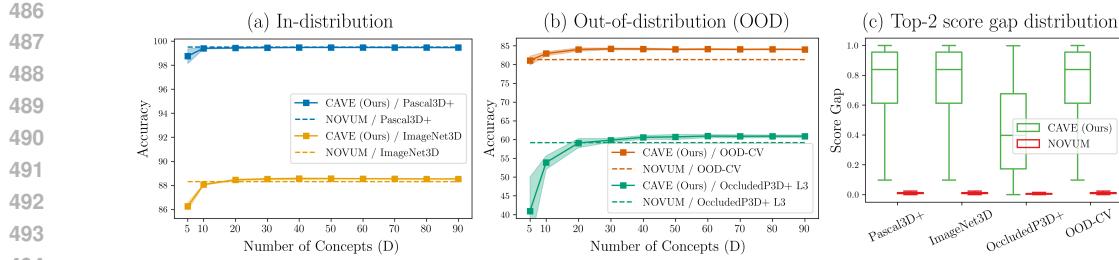


Figure 7: **CAVE replace 1130 dense Gaussians in NOVUM with a compact concept dictionary**, yielding $\sim 98\%$ sparser representations that **match or slightly exceed the performance** of NOVUM especially in OOD settings. Both are trained with 3D supervision for a fair comparison. We report mean accuracy in (a) and (b) across 10 random seeds, with shaded regions as $\pm 2\sigma$ for better visibility, where σ is the standard deviation. (c) shows improved model prediction; more confident predictions indicate a clearer class separation, which improves reliability (Hendrycks & Gimpel, 2017) and explanation confidence (Nauta et al., 2023b).

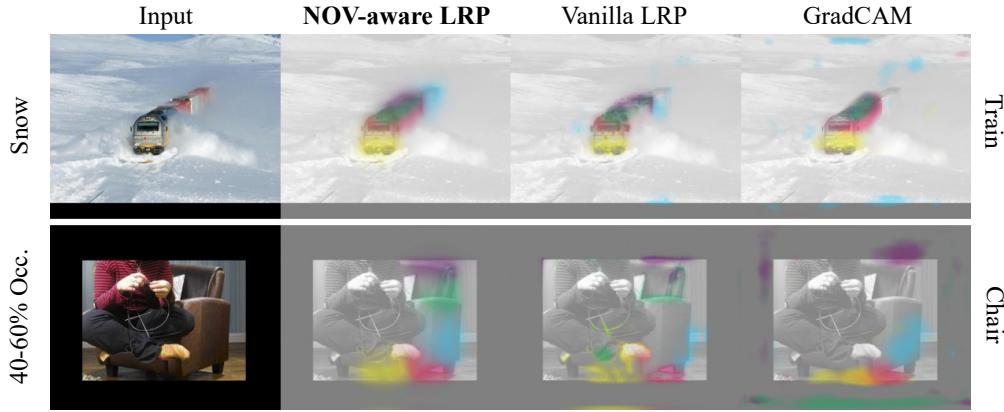


Figure 8: **Our NOV-aware LRP correctly attributes concepts and yields localised explanations, even under different OOD settings**: snow and 40–60% occlusion. Colors indicate the top-5 class-wise concepts per row and are not comparable across rows. See full ablation in Appendix Fig. I2.

Our 3D-C metric requires reference object meshes to assess the spatial consistency of concepts. While this limits evaluation to datasets with reliable CAD models such as Pascal3D+ (Xiang et al., 2014) and ImageNet3D (Ma et al., 2024), advances in large-scale object meshes (Deitke et al., 2023) and mesh generation from text (Siddiqui et al., 2024) or image (Yan et al., 2025) are making high-quality proxies increasingly accessible. We expect paired image–mesh benchmarks to become more common, which in turn enables wider practical use of 3D-C in XAI evaluation.

While our experiments focus on single-object settings, CAVE is not inherently limited to this regime. The method can be extended by first detecting object candidates and then applying our concept matching to each detected region, following standard pipelines in pose estimation and object-centric 3D understanding (Khirodkar et al., 2022). We consider this a promising direction for future work. Our current formulation assumes a fixed canonical shape, which is effective for rigid and moderately varying categories but does not directly capture highly non-rigid classes such as humans. We leave this for future work. Furthermore, our weak supervision relies on Orient-Anything (Wang et al., 2025b) for pose estimation, which, although effective, is not perfect across all object categories (cf. Fig. E3). Nevertheless, we expect the fast progress in foundation models to further strengthen this component. Finally, we discuss challenging failure cases in Appendix K.

8 CONCLUSION

We proposed **CAVE**, a 3D-aware image classifier that introduces concept-based NOVs to **jointly achieve OOD robustness and interpretability**, while also removing the need for ground-truth 3D poses. This enables faithful, concept-based explanations while retaining strong task performance across OOD settings. We further complement existing XAI metrics with our novel 3D-C to measure concept consistency, relaxing prior assumptions on alignment with pre-defined part annotations.

540 REFERENCES
541

542 Julius Adebayo, Justin Gilmer, Michael Muellly, Ian Goodfellow, Moritz Hardt, and Been Kim.
543 Sanity checks for saliency maps. *Advances in neural information processing systems*, 31, 2018.

544 David Alvarez Melis and Tommi Jaakkola. Towards robust interpretability with self-explaining
545 neural networks. *Advances in neural information processing systems*, 31, 2018.

546 Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. Towards better understand-
547 ing of gradient-based attribution methods for deep neural networks. In *International Confer-
548 ence on Learning Representations*, 2018. URL <https://openreview.net/forum?id=Sy21R9JAW>

549

550 Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller,
551 and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by layer-wise
552 relevance propagation. *PloS one*, 10(7):e0130140, 2015.

553

554 Hamed Behzadi-Khormouji and José Oramas. A protocol for evaluating model interpretation meth-
555 ods from visual explanations. In *Proceedings of the IEEE/CVF Winter Conference on Applications*
556 *of Computer Vision*, pp. 1421–1429, 2023.

557

558 Moritz Böhle, Mario Fritz, and Bernt Schiele. B-cos networks: Alignment is all we need for in-
559 terpretability. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*,
560 2022.

561

562 Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks
563 like that: deep learning for interpretable image recognition. *Advances in neural information*
564 *processing systems*, 32, 2019.

565

566 Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and Alan Yuille. De-
567 tect what you can: Detecting and representing objects using holistic models and body parts. In
568 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1971–1978,
569 2014.

570

571 Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
572 Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A universe of
573 10m+ 3d objects. *Advances in Neural Information Processing Systems*, 36:35799–35813, 2023.

574

575 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
576 ierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
577 pp. 248–255. Ieee, 2009.

578

579 Maximilian Dreyer, Reduan Achitbat, Wojciech Samek, and Sebastian Lapuschkin. Understanding
580 the (extra-) ordinary: Validating deep model decisions with prototypical concept-based expla-
581 nations. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*,
582 pp. 3491–3501, 2024.

583

584 Gabriel Erion, Joseph D Janizek, Pascal Sturmfels, Scott M Lundberg, and Su-In Lee. Improving
585 performance of deep learning models with axiomatic attribution priors and expected gradients.
586 *Nature machine intelligence*, 3(7):620–631, 2021.

587

588 Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
589 The pascal visual object classes (voc) challenge. *International journal of computer vision*, 88(2):
590 303–338, 2010.

591

592 Thomas Fel, Mélanie Ducoffe, David Vigouroux, Rémi Cadène, Mikael Capelle, Claire Nicodème,
593 and Thomas Serre. Don’t lie to me! robust and efficient explainability with verified perturbation
594 analysis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
595 nition*, pp. 16153–16163, 2023a.

596

597 Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi
598 Cadène, and Thomas Serre. Craft: Concept recursive activation factorization for explainability.
599 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
600 2711–2721, 2023b.

594 Thomas Fel, Victor Boutin, Louis Béthune, Rémi Cadène, Mazda Moayeri, Léo Andéol, Mathieu
 595 Chalvidal, and Thomas Serre. A holistic approach to unifying automatic concept extraction and
 596 concept importance estimation. *Advances in Neural Information Processing Systems*, 36, 2024.
 597

598 Stephanie Fu, Mark Hamilton, Laura E. Brandt, Axel Feldmann, Zhoutong Zhang, and William T.
 599 Freeman. Featup: A model-agnostic framework for features at any resolution. In *The Twelfth
 600 International Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=GkJiNn2QDF>.
 601

602 Sheng He, Yanfang Feng, P Ellen Grant, and Yangming Ou. Segmentation ability map: Interpret
 603 deep features for medical image segmentation. *Medical image analysis*, 84:102726, 2023.
 604

605 Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
 606 examples in neural networks. In *International Conference on Learning Representations*, 2017.
 607 URL <https://openreview.net/forum?id=Hkg4TI9x1>.
 608

609 Robin Hesse, Simone Schaub-Meyer, and Stefan Roth. Fast axiomatic attribution for neural net-
 610 works. *Advances in Neural Information Processing Systems*, 34:19513–19524, 2021.
 611

612 Ji Hou, Saining Xie, Benjamin Graham, Angela Dai, and Matthias Nießner. Pri3d: Can 3d priors
 613 help 2d representation learning? In *Proceedings of the IEEE/CVF International Conference on
 Computer Vision*, pp. 5693–5702, 2021.
 614

615 Qihan Huang, Mengqi Xue, Wenqi Huang, Haofei Zhang, Jie Song, Yongcheng Jing, and Min-
 616 gli Song. Evaluation and improvement of interpretability for self-explainable part-prototype
 617 networks. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 2011–2020, 2023.
 618

619 Qihan Huang, Jie Song, Jingwen Hu, Haofei Zhang, Yong Wang, and Mingli Song. On the concept
 620 trustworthiness in concept bottleneck models. In *Proceedings of the AAAI Conference on Artificial
 621 Intelligence*, volume 38, pp. 21161–21168, 2024.
 622

623 Artur Jesslen, Guofeng Zhang, Angtian Wang, Wufei Ma, Alan Yuille, and Adam Kortylewski.
 624 Novum: Neural object volumes for robust object classification. In *European Conference on Com-
 625 puter Vision*, pp. 264–281. Springer, 2024.
 626

627 Rawal Khirodkar, Shashank Tripathi, and Kris Kitani. Occluded human mesh recovery. In *Proceed-
 628 ings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 1715–1725,
 629 2022.
 630

631 Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
 632 Percy Liang. Concept bottleneck models. In *International Conference on Machine Learning*, pp.
 5338–5348. PMLR, 2020.
 633

634 Xianpeng Liu, Ce Zheng, Ming Qian, Nan Xue, Chen Chen, Zhebin Zhang, Chen Li, and Tianfu Wu.
 635 Multi-view attentive contextualization for multi-view 3d object detection. In *Proceedings of the
 636 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 16688–16698,
 June 2024.
 637

638 Wufei Ma, Guofeng Zhang, Qihao Liu, Guanning Zeng, Adam Kortylewski, Yaoyao Liu, and Alan
 639 Yuille. Imagenet3d: Towards general-purpose object-level 3d understanding. *Advances in Neural
 640 Information Processing Systems*, 37:96127–96149, 2024.
 641

642 Julien Mairal, Francis Bach, Jean Ponce, et al. Sparse modeling for image and vision processing.
Foundations and Trends® in Computer Graphics and Vision, 8(2-3):85–283, 2014.
 643

644 Christoph Molnar. *Interpretable Machine Learning*. 3 edition, 2025. ISBN 978-3-911578-03-5.
 645 URL <https://christophm.github.io/interpretable-ml-book>.
 646

647 Meike Nauta, Ron Van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-
 648 grained image recognition. In *Proceedings of the IEEE/CVF conference on computer vision and
 649 pattern recognition*, pp. 14933–14943, 2021.

648 Meike Nauta, Jörg Schlötterer, Maurice Van Keulen, and Christin Seifert. Pip-net: Patch-based
 649 intuitive prototypes for interpretable image classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2744–2753, 2023a.
 650

651 Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg
 652 Schlötterer, Maurice Van Keulen, and Christin Seifert. From anecdotal evidence to quantitative
 653 evaluation methods: A systematic review on evaluating explainable ai. *ACM Computing Surveys*,
 654 55(13s):1–42, 2023b.
 655

656 Fahimeh Hosseini Noohdani, Parsa Hosseini, Aryan Yazdan Parast, Hamidreza Yaghoubi Araghi,
 657 and Mahdieh Soleymani Baghshah. Decompose-and-compose: A compositional approach to
 658 mitigating spurious correlation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 27662–27671, 2024.
 659

660 Tuomas Oikarinen, Subhro Das, Lam M Nguyen, and Tsui-Wei Weng. Label-free concept bottleneck
 661 models. In *The Eleventh International Conference on Learning Representations*, 2023.
 662

663 Seitaro Otsuki, Tsumugi Iida, Félix Doublet, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu
 664 Fujiyoshi, and Komei Sugiura. Layer-wise relevance propagation with conservation property for
 665 resnet. In *European Conference on Computer Vision*, pp. 349–364. Springer, 2024.
 666

667 Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and
 668 use interpretable models instead. *Nature machine intelligence*, 1(5):206–215, 2019.
 669

670 Karl Schulz, Leon Sixt, Federico Tombari, and Tim Landgraf. Restricting the flow: Information
 671 bottlenecks for attribution. *arXiv preprint arXiv:2001.00396*, 2020.
 672

673 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 674 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based localization.
 675 In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626, 2017.
 676

677 Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
 678 Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-only
 679 transformers. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 19615–19625, 2024.
 680

681 Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg. Smoothgrad:
 682 removing noise by adding noise. *arXiv preprint arXiv:1706.03825*, 2017.
 683

684 Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A. Riedmiller. Striving for
 685 simplicity: The all convolutional net. In *International Conference on Learning Representations, Workshop Track Proceedings*, 2015.
 686

687 Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
 688 *International Conference on Machine Learning*, pp. 3319–3328. PMLR, 2017.
 689

690 Bin Tan, Nan Xue, Tianfu Wu, and Gui-Song Xia. Nope-sac: Neural one-plane ransac for sparse-view
 691 planar 3d reconstruction. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 692 45(12):15233–15248, 2023. doi: 10.1109/TPAMI.2023.3314745.
 693

694 Johanna Vielhaben, Stefan Blücher, and Nils Strodthoff. Multi-dimensional concept discovery
 695 (mcd): A unifying framework with completeness guarantees. *Trans. Mach. Learn. Res.*, 2023,
 696 2023.
 697

698 Angtian Wang, Yihong Sun, Adam Kortylewski, and Alan L Yuille. Robust object detection under
 699 occlusion with context-aware compositionalnets. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12645–12654, 2020.
 700

701 Bor-Shiun Wang, Chien-Yi Wang, and Wei-Chen Chiu. Mcpnet: An interpretable classifier via
 702 multi-level concept prototypes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10885–10894, 2024.
 703

702 Chong Wang, Yuanhong Chen, Fengbei Liu, Yuyuan Liu, Davis James McCarthy, Helen Frazer,
 703 and Gustavo Carneiro. Mixture of gaussian-distributed prototypes with generative modelling for
 704 interpretable and trustworthy image recognition. *IEEE Transactions on Pattern Analysis and*
 705 *Machine Intelligence*, 2025a.

706 Jiaqi Wang, Huafeng Liu, Xinyue Wang, and Liping Jing. Interpretable image recognition by con-
 707 structing transparent embedding space. In *Proceedings of the IEEE/CVF International Confer-
 708 ence on Computer Vision*, pp. 895–904, 2021.

709

710 Zehan Wang, Ziang Zhang, Tianyu Pang, Chao Du, Hengshuang Zhao, and Zhou Zhao. Orient any-
 711 thing: Learning robust object orientation estimation from rendering 3d models. In *Forty-second*
 712 *International Conference on Machine Learning*, 2025b. URL [https://openreview.net/](https://openreview.net/forum?id=x4yTgv2WkJ)
 713 [forum?id=x4yTgv2WkJ](https://openreview.net/forum?id=x4yTgv2WkJ).

714 Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond pascal: A benchmark for 3d object
 715 detection in the wild. In *IEEE winter conference on applications of computer vision*, pp. 75–82.
 716 IEEE, 2014.

717

718 Yuxi Xiao, Nan Xue, Tianfu Wu, and Gui-Song Xia. Level-s \hat{s} fm: Structure from motion on
 719 neural level set of implicit surfaces. In *Proceedings of the IEEE/CVF Conference on Computer*
 720 *Vision and Pattern Recognition (CVPR)*, pp. 17205–17214, June 2023.

721 Nan Xue, Tianfu Wu, Song Bai, Fudong Wang, Gui-Song Xia, Liangpei Zhang, and Philip H.S.
 722 Torr. Holistically-attracted wireframe parsing. In *Proceedings of the IEEE/CVF Conference on*
 723 *Computer Vision and Pattern Recognition (CVPR)*, June 2020.

724

725 Nan Xue, Bin Tan, Yuxi Xiao, Liang Dong, Gui-Song Xia, Tianfu Wu, and Yujun Shen. Neat: Dis-
 726 tillting 3d wireframes from neural attraction fields. In *Proceedings of the IEEE/CVF Conference*
 727 *on Computer Vision and Pattern Recognition (CVPR)*, pp. 19968–19977, June 2024.

728 Xingguang Yan, Han-Hung Lee, Ziyu Wan, and Angel X Chang. An object is worth 64×64 pixels:
 729 Generating 3d object via image diffusion. In *2025 International Conference on 3D Vision (3DV)*,
 730 pp. 123–133. IEEE, 2025.

731

732 Yuanwen Yue, Anurag Das, Francis Engelmann, Siyu Tang, and Jan Eric Lenssen. Improving 2d
 733 feature representations by 3d-aware fine-tuning. In *European Conference on Computer Vision*,
 734 pp. 57–74. Springer, 2024.

735 Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A Ehinger, and Benjamin IP Rubinstein. In-
 736 vertible concept-based explanations for cnn models with non-negative concept activation vectors.
 737 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11682–11690,
 738 2021.

739

740 Bingchen Zhao, Shaozuo Yu, Wufei Ma, Mingxin Yu, Shenxiao Mei, Angtian Wang, Ju He, Alan
 741 Yuille, and Adam Kortylewski. Ood-cv: A benchmark for robustness to out-of-distribution shifts
 742 of individual nuisances in natural images. In *European conference on computer vision*, pp. 163–
 743 180. Springer, 2022.

744

745 Zhijie Zhu, Lei Fan, Maurice Pagnucco, and Yang Song. Interpretable image classification via non-
 746 parametric part prototype learning. In *Proceedings of the Computer Vision and Pattern Recog-
 747 nition Conference*, pp. 9762–9771, 2025.

748

749

750

751

752

753

754

755

756
 757
 758
 759
 760

Interpretable 3D Neural Object Volumes for Robust Conceptual Reasoning

761
 762
 763
 764
 765
 766
 767

Appendix

768 This supplement provides additional technical details, experimental setup, ablations, and qualitative
 769 results supporting our work on robust and interpretable 3D-aware classification with CAVE. We
 770 **strongly encourage** readers to review NOV-aware LRP in Section C, and its corresponding ablation
 771 in Section I which highlights the stability of our proposed LRP adaptation, as well as the additional
 772 *randomly sampled* qualitative examples from our method CAVE in Section L.

773	(A) Class- and Nuisance-wise Analysis under OOD Settings	16
774	(B) On Implicit versus Explicit Interpretability	19
775	(C) Layer-wise Relevance Propagation for 3D-Aware Classifiers	20
776	(D) Further Details on 3D Consistency of Concepts	22
777	(E) Learning with Weak Supervision	24
778	(F) 3D-Aware Classification with NOVUM	28
779	(G) Additional Experimental Details	29
780	(H) <u>Ablation</u>: Shape of Neural Object Volumes	33
781	(I) <u>Ablation</u>: Attributing Concepts with NOV-aware LRP	35
782	(J) <u>Ablation</u>: Concept Extraction on Neural Object Volumes	37
783	(K) Discussion of Failure Cases	39
784	(L) Additional Qualitative Examples	40
785	(M) The Use of Large Language Models (LLMs)	49

796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

810 A CLASS- AND NUISANCE-WISE ANALYSIS UNDER OOD SETTINGS 811

812 We analyse class-wise performance of CAVE (weak 3D supervision) under different occlusion levels
813 (Sec. A.1) and OOD nuisances (Sec. A.2). We further analyse whether pose errors introduced by
814 Orient Anything estimates affect our model performance in Sec. A.3.

816 A.1 CLASS-WISE ACCURACY AND 3D CONSISTENCY UNDER OCCLUSION 817

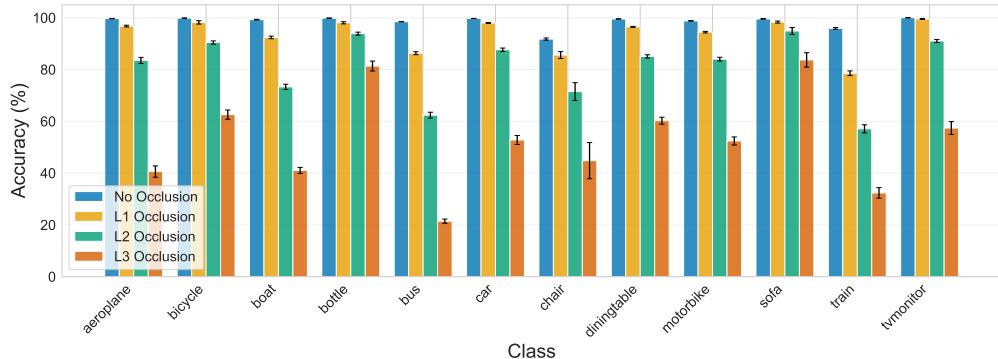
818 Overall, CAVE maintains strong class-wise accuracy and 3D consistency under mild occlusion (L1),
819 with performance degrading gradually as occlusion increases. The drop is most pronounced for
820 classes such as Boat, Chair, and Train. A similar trend appears in the 3D-C scores.

Occlusion Level	Aeroplane	Bicycle	Boat	Bottle	Bus	Car	Chair	Dining Table	Motorbike	Sofa	Train	TV Monitor	all
L0 [0%] (in-distribution)	99.67	99.86	99.26	99.85	98.48	99.72	91.78	99.53	98.79	99.57	95.90	100.00	99.0 (± 0.03)
L1 [20 – 40% occluded]	96.78	98.20	92.41	98.06	86.32	97.99	85.58	96.48	94.45	98.32	78.58	99.55	94.8 (± 0.12)
L2 [40 – 60% occluded]	83.51	90.44	73.30	93.88	62.38	87.63	71.49	85.08	84.02	94.89	57.10	91.03	82.8 (± 0.40)
L3 [60 – 80% occluded]	40.60	62.60	41.05	81.35	21.44	52.81	44.81	60.24	52.41	83.71	32.35	57.41	52.7 (± 0.96)

822 Table A1: **Class-wise Accuracy on Pascal3D+ (in-distribution) and OccludedP3D+ (L1, L2, L3
823 occlusion).** We report overall accuracy (not the average of class-wise accuracies) in the last column.
824 See Fig. A1 for class-wise statistical variance across seeds.

Occlusion Level	Aeroplane	Bicycle	Boat	Bottle	Bus	Car	Chair	Dining Table	Motorbike	Sofa	Train	TV Monitor	avg
L0 [0%] (in-distribution)	0.220	0.235	0.174	0.694	0.343	0.299	0.430	0.456	0.248	0.561	0.385	0.799	0.404 (± 0.0014)
L1 [20 – 40% occluded]	0.153	0.150	0.115	0.497	0.219	0.186	0.325	0.383	0.152	0.336	0.241	0.681	0.287 (± 0.0018)
L2 [40 – 60% occluded]	0.105	0.104	0.085	0.380	0.117	0.255	0.288	0.094	0.204	0.169	0.581	0.211 (± 0.0015)	
L3 [60 – 80% occluded]	—	0.075	—	0.268	—	0.069	0.103	0.186	0.076	0.118	—	0.436	0.200 (± 0.0166)

830 Table A2: **Class-wise 3D Consistency Scores on Pascal3D+ (L0, in-distribution) and OccludedP3D+ (L1, L2, L3
831 occlusion).** We report the average 3D-C scores as mean (\pm std) and class-wise
832 mean 3D-C scores only for readability. We denote — for classes that do not have consistent
833 concepts. See Fig. A2 for class-wise statistical variance across seeds.



834 Figure A1: **Class-wise accuracy on Pascal3D+ (L0, in-distribution) and OccludedP3D+ (L1,
835 L2, L3 occlusion) across 10 random seeds.** For precise values, refer Tab. A1.

836 A.2 OOD ATTRIBUTE (NUISANCE)-WISE ACCURACY AND 3D CONSISTENCY

837 We show class-wise and attribute (OOD nuisance)-wise performance of our CAVE with weak 3D
838 supervision on OOD-CV dataset (Zhao et al., 2022). Across OOD attributes, we observe that *pose* is
839 the most challenging nuisance factor, leading to the largest drop in both accuracy and 3D-C across
840 classes. *Weather* is the second most difficult attribute, likely due to reduced visibility and contrast
841 in rainy or foggy conditions, as we have seen in qualitative examples in Fig. 2. In contrast, *context*,
842 *shape*, and *texture* shifts result in comparatively moderate changes, with performance remaining
843 relatively stable across most classes. These trends hold consistently across 10 random seeds and are
844 reflected in both accuracy and 3D consistency metrics.

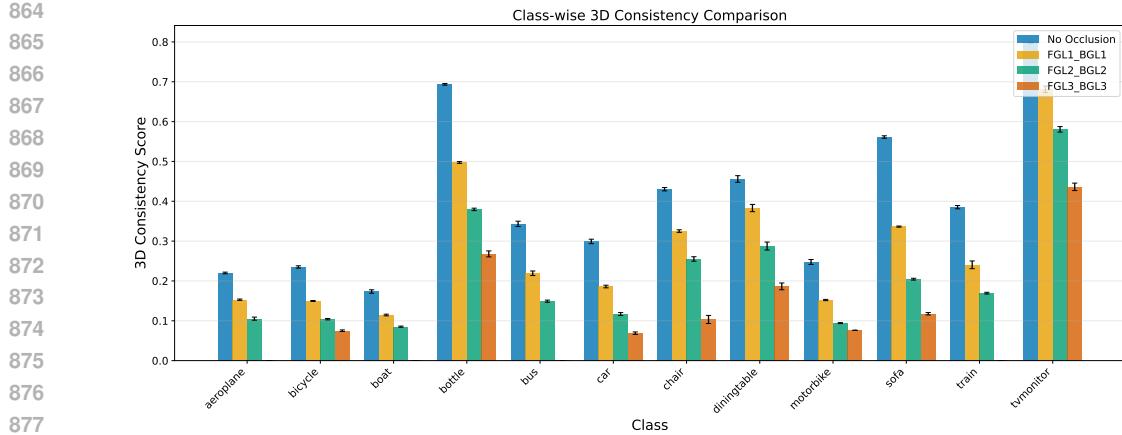


Figure A2: **Class-wise 3D-C on Pascal3D+ (L0, in-distribution) and OccludedP3D+ (L1, L2, L3 occlusion) across 10 random seeds.** For precise values, refer Tab. A2.

OOD Attribute	Context	Pose	Shape	Texture	Weather	all
Accuracy (% \uparrow)	82.95 (± 0.20)	72.77 (± 0.77)	81.22 (± 0.65)	83.27 (± 0.61)	77.61 (± 0.39)	80.3 (± 0.27)
3D-C (\uparrow)	0.236 (± 0.006)	0.227 (± 0.018)	0.239 (± 0.004)	0.238 (± 0.004)	0.234 (± 0.009)	0.235 (± 0.002)

Table A3: **Attribute-wise performance, both accuracy and 3D-C across 10 random seeds,** where *context, pose, shape, texture, and weather* constitute 25%, 8%, 15%, 22%, and 30% of the OOD-CV dataset. The last column reports the overall score computed over all attributes. We further break down the scores class-wise in Tab. A4 & Tab. A5.

OOD Attribute	Aeroplane	Bicycle	Boat	Bus	Car	Chair	Dining Table	Motorbike	Sofa	Train	all
Context	81.10 (± 1.06)	88.92 (± 0.42)	89.83 (± 1.34)	66.40 (± 0.92)	69.86 (± 0.91)	74.05 (± 0.85)	85.19 (± 0.67)	84.66 (± 0.97)	94.62 (± 0.43)	75.81 (± 1.20)	82.95 (± 0.20)
Pose	87.59 (± 1.78)	86.77 (± 1.38)	79.39 (± 2.05)	21.91 (± 1.75)	65.56 (± 2.17)	31.54 (± 2.43)	33.33 (± 0.00)	92.86 (± 0.00)	75.00 (± 0.00)	89.50 (± 3.69)	72.77 (± 0.77)
Shape	93.88 (± 0.57)	90.89 (± 1.45)	87.50 (± 1.96)	90.00 (± 0.00)	65.52 (± 2.30)	71.17 (± 1.20)	62.33 (± 2.59)	93.49 (± 1.47)	85.47 (± 0.44)	63.33 (± 2.87)	81.22 (± 0.65)
Texture	97.43 (± 1.16)	84.05 (± 1.00)	89.19 (± 1.56)	90.17 (± 0.91)	90.62 (± 1.77)	58.35 (± 0.89)	83.68 (± 1.32)	91.11 (± 0.65)	88.62 (± 1.01)	69.50 (± 4.08)	83.27 (± 0.61)
Weather	84.69 (± 0.85)	92.63 (± 1.22)	81.83 (± 1.62)	55.82 (± 1.52)	54.74 (± 1.25)	87.14 (± 2.02)	30.00 (± 0.00)	91.28 (± 0.64)	75.00 (± 0.00)	84.31 (± 1.46)	77.61 (± 0.39)

Table A4: **Attribute-wise accuracy per class of OOD-CV dataset averaged across 10 random seeds.** We report the accuracy for each Pascal3D+ class under each OOD attribute (context, pose, shape, texture, weather), averaged across seeds. For each OOD attribute, we additionally report the overall accuracy computed over the union of all classes (rather than averaging class-wise accuracies), along with its statistical variance across seeds (last column).

OOD Attribute	Aeroplane	Bicycle	Boat	Bus	Car	Chair	Dining Table	Motorbike	Sofa	Train	avg
Context	0.152	0.159	0.129	0.235	0.164	0.239	0.394	0.175	0.401	0.309	0.236 (± 0.006)
Pose	0.155	0.164	0.127	0.247	0.169	0.212	0.375	0.169	0.338	0.307	0.227 (± 0.018)
Shape	0.157	0.162	0.131	0.246	0.148	0.242	0.392	0.176	0.422	0.310	0.239 (± 0.004)
Texture	0.150	0.173	0.136	0.235	0.163	0.235	0.393	0.174	0.416	0.300	0.238 (± 0.004)
Weather	0.153	0.156	0.131	0.228	0.156	0.229	0.411	0.176	0.387	0.305	0.234 (± 0.009)

Table A5: **Attribute 3D-C (\uparrow) scores per class averaged across 10 random seeds.** We report mean 3D-C attribute scores for each Pascal3D+ class and OOD factor: context, pose, shape, texture, and weather. For class-wise attribute-wise statistical variance, refer Fig. A3. We further report average score across classes for each attribute along with its statistical variance across seeds (last column).

A.3 CLASS-WISE SENSITIVITY TO POSE ESTIMATION ERROR

We further examine class-wise accuracy and 3D-C to training pose estimation error in Fig. A4. We find that accuracy does not strongly degrade for classes with substantial pose ambiguity (e.g., Dining Table, Boat with azimuth error $> 20^\circ$). In contrast, 3D-C exhibits a mild downward trend as azimuth error increases, which is expected because 3D consistency directly measures geometric alignment. We hypothesise that, since CAVE is trained on Orient Anything’s estimated poses, it inherits symmetric ambiguities present in those estimates. At inference time, symmetric objects (e.g., a left-right symmetric boat) still activate the correct class concepts even if the pose is mirrored; a

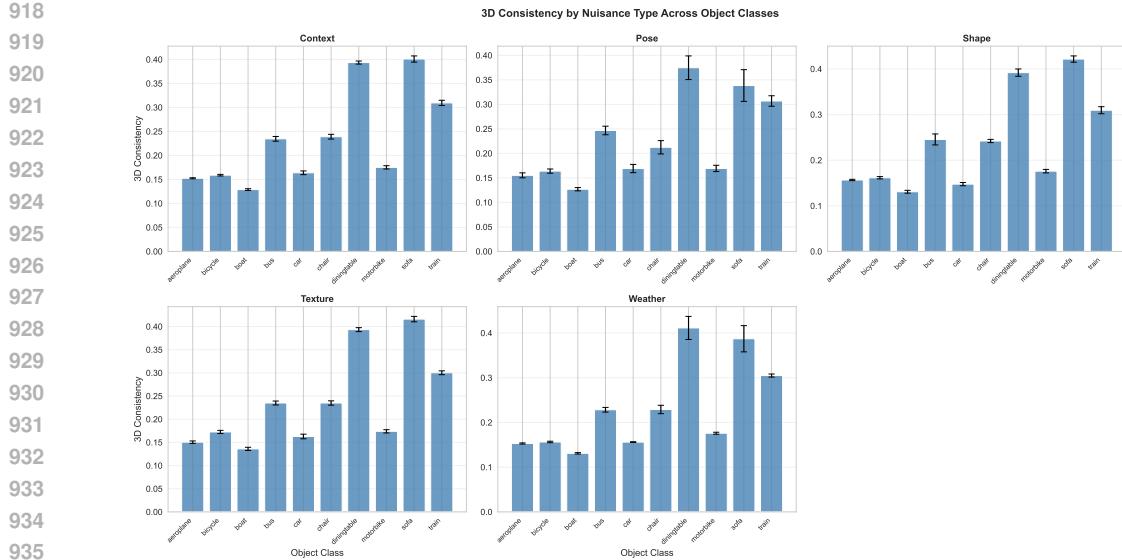


Figure A3: **Class-wise 3D-C for each OOD attribute in OOD-CV dataset across 10 random seeds.** For precise values, refer Tab. A5.

concept trained to fire on the left may instead fire on the right, without affecting the final classification. This symmetry-induced “flip” effect naturally explains why classification accuracy remains stable while 3D-C scores decrease for classes with higher pose error.

Metric	Aeroplane	Bicycle	Boat	Bottle	Bus	Car	Chair	Dining Table	Motorbike	Sofa	Train	TV Monitor
Azimuth error (°)	10.14	12.92	26.94	6.86	7.25	6.71	10.09	20.15	12.03	8.58	8.46	9.53

Table A6: **Class-wise Mean Azimuth Pose Error (in degrees °)** between Orient-Anything predictions and ground-truth pose on Pascal3D+.

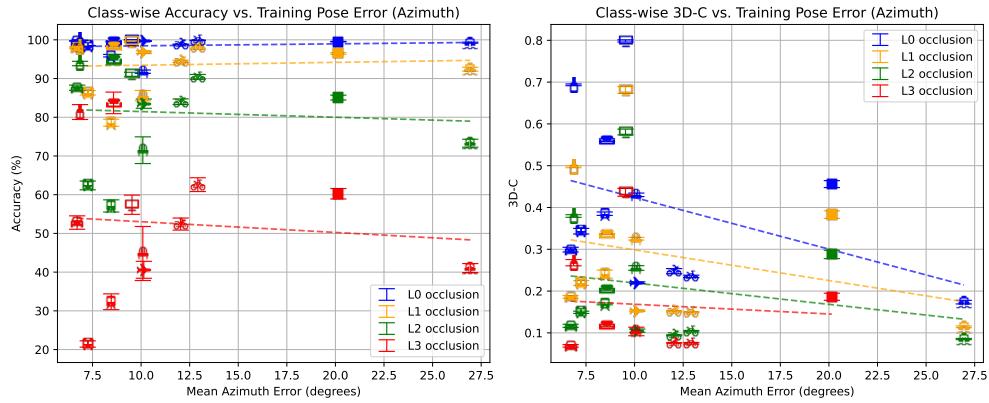


Figure A4: **Class-wise accuracy (left) and 3D-C (right) as a function of training pose errors (azimuth) in degree (°) across occlusion levels.** The icons and their corresponding class names are defined in Tab. A6.

972

973

974

B ON IMPLICIT VERSUS EXPLICIT INTERPRETABILITY

975

Interpretability methods differ not only in whether they provide post-hoc explanations or are faithful-by-design, but also in *how* the underlying concepts acquire meaning. Two complementary paradigms have emerged in the literature.

976

977

978

979

980

Explicit interpretability. Models in this category impose architectural or training-time constraints that bind internal units directly to human-understandable notions. CBMs (Koh et al., 2020; Oikarinen et al., 2023) explicitly supervise units to correspond to semantic concepts such as object attributes or part labels. Prototype-based networks (e.g., ProtoPNet (Chen et al., 2019) and its variants (Wang et al., 2021; Nauta et al., 2023a; Wang et al., 2025a)) explicitly ground units by enforcing a prototype layer and projecting prototypes onto representative input patches, yielding “this looks like that” explanations. In both cases, the interpretability is *explicit* because the model is guided toward semantic or visually grounded concepts during training. These approaches are therefore faithful-by-design and offer direct, easily inspectable explanations.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

Implicit interpretability. In contrast, implicitly interpretable approaches do not impose semantic supervision or dedicated prototype objectives. Instead, they rely on structure that *emerges* from the model’s learned representation. Post-hoc concept discovery methods such as CRAFT (Fel et al., 2023b), ICE (Zhang et al., 2021), MCD (Vielhaben et al., 2023), and PCX (Dreyer et al., 2024) extract interpretable structure from trained models by clustering or factorising latent activations. These methods provide implicit interpretability but are not faithful, as their concepts do not participate in the model’s forward computation.

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Inherent interpretability of CAVE. To contextualise CAVE’s interpretability within the literature, we draw on Molnar’s taxonomy of intrinsic (inherent) interpretability. Molnar highlights that models can be inherently interpretable even when they “mix both interpretability by design and post-hoc interpretability”, with his examples being models whose structure makes their computation transparent and complexity appropriately constrained, even if individual components require post-hoc visualisation to be inspected (Molnar, 2025). CAVE thus fits the same paradigm of inherent interpretability: its prediction is transparent by design, decomposing exactly over a small dictionary of region-level concepts derived from Gaussian features, while our adapted LRP is used for post-hoc concept visualisation.

1026 **C LAYER-WISE RELEVANCE PROPAGATION FOR 3D-AWARE CLASSIFIERS**
 1027

1028 As mentioned in Section 4.1, layer-wise relevance propagation (LRP) defined for standard architectures
 1029 unfaithfully leaks relevances when attributing NOV-based concepts to image pixels. To enable
 1030 tracing relevance from the model’s prediction backward through the concept-based NOVs \mathcal{H} to the
 1031 input image (Bach et al., 2015; Otsuki et al., 2024), we extend LRP to our 3D-aware setting with
 1032 volumetric object representation. In doing so, we also ensure that the key conservation property of
 1033 LRP is preserved, i.e., total relevance remains constant throughout the network (Otsuki et al., 2024).

1034 In the following, we briefly explain vanilla LRP with ϵ -rule that is defined for standard feedforward
 1035 network (cf. Sec. C.1), and formulate **NOV-aware LRP** for NOVUM and CAVE-like architectures
 1036 (cf. Fig. C1, Sec. C.2). Specifically, this is tailored to two layers: (i) upsampling by concatenation,
 1037 and (ii) volume concept matching, that do not exist in standard architectures. We further show how
 1038 to estimate concept-wise importance scores and visualise concepts in Section C.3.

1039 **C.1 VANILLA LRP WITH ϵ -RULE**
 1040

1041 Standard LRP with ϵ -rule propagates relevances backward through network layers $l + 1$ to layer l :

$$1044 R_i = \sum_j \frac{a_i w_{ij}}{\sum_{i'} a_{i'} w_{i'j} + \epsilon \text{sign}(a_{i'} w_{i'j})} R_j \quad (\text{C.1})$$

1046 where a_i is the activation of neuron i in layer l , w_{ij} is the weight connecting neuron i in layer l to
 1047 neuron j in layer $l + 1$, R_j is the relevance of neuron j and R_i is the relevance to propagate back to
 1048 neuron i . Here the ϵ -rule is introduced to dampen relevance when the denominator gets arbitrarily
 1049 small (Springenberg et al., 2015). An important property of LRP is its relevance conservation,
 1050 meaning:

$$1051 \sum_i R_i = \sum_j R_j \quad (\text{C.2})$$

1053 which is often violated if relevances are not attributed faithfully through the network.

1055 **C.2 LRP WITH CONSERVATION FOR CAVE**
 1056

1057 As described, vanilla LRP does not handle non-standard operation such as upsampling by con-
 1058 catenation (no weight matrix defines a simple mapping from input to output channels), or concept
 1059 matching via NOVs, which introduces structured multiplicative interactions between image features
 1060 and NOV-based concepts. We thus formulate the LRP redistribution rule for these layers.

1061 **(i) Upsampling by concatenation.** Similar to NOVUM (Jessen et al., 2024), the basic CAVE con-
 1062 tains a feature extractor which consists of a ResNet-50 backbone followed by three upsampling
 1063 layers with concatenation. In this design, each upsampling layer combines feature maps from ear-
 1064 lier layers, preserving fine-grained details important for 3D-aware classification. Let us consider an
 1065 upsampling layer U , which concatenates in the channel dimension feature maps $A_v \in \mathbb{R}^{H_1 \times W_1 \times C_1}$
 1066 and $A_{v+l} \in \mathbb{R}^{H_2 \times W_2 \times C_2}$ from two non-consecutive layers. A_{v+l} is padded to $A'_{v+l} \in \mathbb{R}^{H_1 \times W_1 \times C_2}$
 1067 to maintain spatial consistency. We denote this concatenation operation as $A_U = A_v \oplus A'_{v+l}$. Let
 1068 us further denote R_U , R_v , and R_{v+l} as the relevance scores at the upsampling layer and two non-
 1069 consecutive layers, respectively. R'_{v+l} is the padded relevance of R_{v+l} . By conservation property, it
 1070 should hold that $R_U = R_v \oplus R'_{v+l}$. We define a relevance-preserving splitting as follows:

$$1072 R'_{v+l} = R_U[:, H_1, : C_2], \quad R_{v+l} = R'_{v+l} \cdot \mathbb{1}(A_{v+l})$$

$$1073 R_v = R_U[H_1 : 2H_1, W_1 : 2W_1, C_2 : (C_1 + C_2)]$$

1075 where $\mathbb{1}(\cdot)$ is the indicator function that is 1 for original non-padded elements in A_{v+l} and 0 other-
 1076 wise. After three upsampling layers, we obtain our feature map F_x for 3D-aware concept matching.

1077 **(ii) Volume concept matching.** For the concept matching $\Phi(F_x, \mathcal{H})$ between NOVs-based concepts
 1078 \mathcal{H} and image features $F_x \in \mathbb{R}^{H \times W \times C}$, let the output be $s_\Phi \in \mathbb{R}^{H \times W}$. We further denote $R_\Phi \in$
 1079 $\mathbb{R}^{H \times W}$ as the relevance for the feature matching layer, and $R_{F_x} \in \mathbb{R}^{H \times W \times C}$ as the relevance of the
 feature map F_x . To ensure spatial consistency, a relevance score $r_i \in R_\Phi$ is first directly mapped to

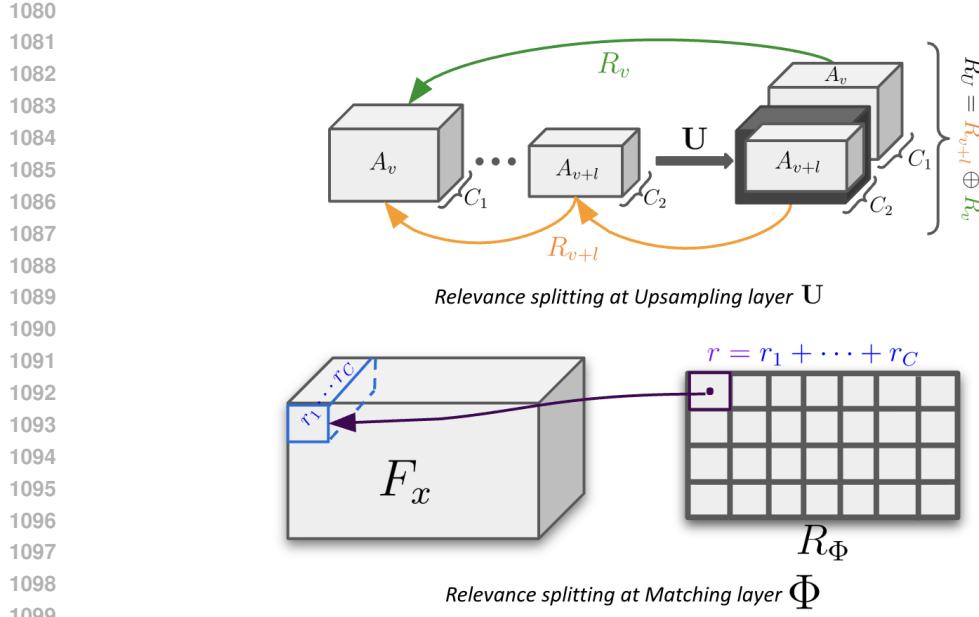


Figure C1: **NOV-aware relevance propagation in CAVE.** **Top:** At upsampling layer U , feature maps A_v and A_{v+l} from non-consecutive layers are concatenated along channel dimension after padding for consistency. Relevance score R_U is split into R_v and R'_{v+l} , where R'_{v+l} is padded R_{v+l} . **Bottom:** We ensure spatial consistency by mapping relevance R_Φ at matching layer to corresponding feature $f_i \in F_x$, then distributing channel-wise with NOV-weighted feature importance.

the corresponding feature $f_i \in F_x$, and then further distributed *channel-wise* for each channel c (cf. Fig. C1). We get

$$R_{F_x}^{\text{spatial}}(i) = R_\Phi(i) = r = \sum_{j=1}^C r_j = \sum_{j=1}^C (f_i \odot \mathcal{H}_{f_i})(j),$$

$$R_{F_x}(i, c) = R_{F_x}^{\text{spatial}}(i) \cdot \frac{(f_i \odot \mathcal{H}_{f_i})(c)}{\sum_j (f_i \odot \mathcal{H}_{f_i})(j)}$$

where \mathcal{H}_{f_i} denotes the matching NOV-based concept for f_i , and \odot denotes element-wise multiplication. We integrate our formulation with LRP with conservation for ResNet-50 (Otsuki et al., 2024). In Section I, we provide the full comparisons between our NOV-aware LRP and other common attribution methods, including vanilla LRP.

C.3 EXPLANATIONS THROUGH VOLUME ALIGNMENT

Concept Importance through NOVs. Our next goal is to estimate the importance of all class-wise concepts in \mathcal{H}_y^* using the NOV-aware LRP attributions. The intuition behind this is straightforward: starting from the model’s softmax output, we trace back relevance to each concept. The concept importance score is then determined using its $x\%$ quantile (e.g., 90th percentile) across the training dataset to capture the most representative high-relevance values while being robust to outliers. We denote the matching NOV-based concept in \mathcal{H} for the feature map F_x as $\Delta_{F_x \rightarrow \mathcal{H}}$. We compute the relevance for a concept $h_y^{(j)} \in \mathcal{H}$ of class y by aggregating the relevance scores, denoted R_ϕ , at all spatial locations i where $\Delta_{F_x \rightarrow \mathcal{H}}(i) = h_y^{(j)}$. Formally, it is defined as:

$$R_{h_y^{(j)}} = \sum_{i \in H \times W} R_\phi \cdot \mathbb{1}_{\Delta_{F_x \rightarrow \mathcal{H}}(i) = h_y^{(j)}}$$

Concept visualisation. We visualise class-wise NOV concepts $h_y^{(j)} \in \mathcal{H}$ by redistributing their relevance scores $R_{h_y^{(j)}}$ (Sec. C.2) to pixel space and highlighting locations with positive contributions.

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145 D FURTHER DETAILS ON 3D CONSISTENCY OF CONCEPTS
1146
1147
1148
1149
1150

As introduced in Section 5, our 3D consistency (3D-C) metric evaluates whether a concept remains consistent across test images of the same class. Unlike prior metrics (Huang et al., 2023; Behzadi-Khormouji & Oramas, 2023; Huang et al., 2024), our 3D-C removes the need for part annotations and avoids assuming that concepts must align with human-defined parts, an assumption often not enforced explicitly during training. Instead, 3D-C complements existing measures such as spatial localisation and object coverage by leveraging object geometry to project concept attributions onto a common 3D space (cf. Fig D1). In this section, we further describe 3D-C visualisation details.

1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869

1188
 1189 **Object mesh.** For each object class y , we load the canonical CAD mesh available in the datasets
 1190 such as Pascal3D+ (Xiang et al., 2014) and ImageNet3D (Ma et al., 2024). Since these meshes fol-
 1191 low a CAD-centric coordinate convention that is inconsistent with the camera system of PyTorch3D,
 1192 we apply a pre-processing step to re-align the axes, i.e.:
 1193

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix}_{\text{CAD}} \mapsto \begin{pmatrix} x \\ z \\ -y \end{pmatrix}_{\text{camera}}$$

1197 **Rendering.** Rendering is performed with PyTorch3D. We use an image canvas of 640×800 , and
 1198 adjust camera intrinsics such that focal lengths are scaled to preserve field of view, and the principal
 1199 point is placed at the image center. Additionally, we adopt a spherical camera at radius 15, elevation
 1200 30° , and azimuth -40° . Rasterisation is done with a single face per pixel and no blur radius.
 1201

1202 **Concept attribution projections onto object mesh.** Concept attributions are then projected onto
 1203 the mesh. For each concept h , we use its positive attributions $A^+(x, h)$ defined as:
 1204

$$A^+(x, h) = \max(0, A(x, h))$$

1205 to highlight regions that contribute to this concept h . We assign these values as per-face textures
 1206 on the CAD mesh and render with PyTorch3D, where barycentric interpolation distributes per-face
 1207 attributions to pixels, yielding a dense per-pixel attribution map.
 1208

1209 **3D-C visualisation.** For visualisation, we first render a neutral base mesh to provide geometric
 1210 context and occlusion boundaries. Positive attributions $A^+(x, h)$ for a concept h are then overlaid
 1211 as a heatmap on this render, given the pixel-to-face mapping from the projection step. To characterise
 1212 the overall spatial footprint of the concept h , we aggregate attributions across all test images $x \in \mathcal{X}_y$
 1213 of class y , i.e.:
 1214

$$A_{\text{agg}}^+(h) = \sum_{x \in \mathcal{X}_y} A^+(x, h)$$

1215 followed by min–max normalisation to $[0, 1]$ for the final visualisation. This naturally provides a
 1216 direct visual illustration to the 3D-C metric scores, showing concept consistency across instances.
 1217

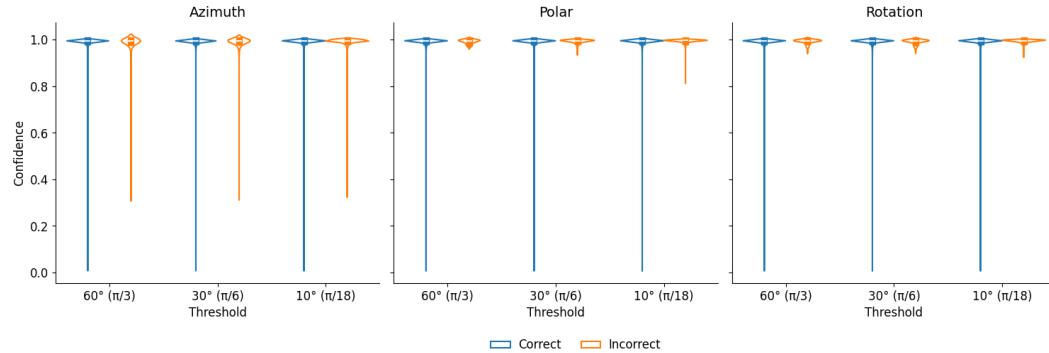
1218 **Limitations and scope.** While our 3D-C metric relies on class-level CAD meshes and face-level
 1219 attribution aggregation, which may smooth out very fine-grained details, this design ensures scal-
 1220 ability across large datasets and consistency of evaluation. By not enforcing alignment with human-
 1221 annotated parts, 3D-C sidesteps annotation biases and instead directly reflects the model’s own con-
 1222 cept structure. Finally, canonical meshes do not capture all intra-class shape variations. Yet, they
 1223 provide a stable reference geometry that enables meaningful comparisons of concept consistency
 1224 across object instances.
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241

1242 **E LEARNING WITH WEAK SUPERVISION**
 1243

1244 Recent advance in object orientation estimation, such as Orient-Anything (Wang et al., 2025b),
 1245 allows us to relax the constraints on pose annotations during training 3D-aware classifiers. We
 1246 study how accurate Orient-Anything estimated poses are compared to ground-truth poses in Pas-
 1247 cal3D+ (Xiang et al., 2014) and ImageNet3D (Ma et al., 2024) in Tab. E1. With the tolerance
 1248 $X = 60^\circ$, Orient-Anything achieves near-perfect accuracy on polar and rotation estimation
 1249 on both Pascal3D+ and ImageNet3D. For azimuth estimation, Orient-Anything performs better on
 1250 Pascal3D+ ($\sim 96\%$) while struggles on larger-scale dataset like ImageNet3D ($\sim 72\%$). A stricter
 1251 tolerance thresholds introduce performance drops on both datasets. Our inspection shows that fail-
 1252 ures of Orient-Anything in predicting object pose often occur with symmetric objects such as tables
 1253 and boats, where correct orientation is often ambiguous. See also Fig. E2 and Fig. E3 for qualitative
 1254 visualisations.

Class Label	Azimuth Estimation \uparrow			Polar Estimation \uparrow			Rotation Estimation \uparrow		
	$60^\circ(\frac{\pi}{3})$	$30^\circ(\frac{\pi}{6})$	$10^\circ(\frac{\pi}{18})$	$60^\circ(\frac{\pi}{3})$	$30^\circ(\frac{\pi}{6})$	$10^\circ(\frac{\pi}{18})$	$60^\circ(\frac{\pi}{3})$	$30^\circ(\frac{\pi}{6})$	$10^\circ(\frac{\pi}{18})$
Pascal3D+	96.70	93.92	71.58	99.77	98.82	86.25	99.57	99.14	93.09
ImageNet3D	72.32	48.06	27.63	94.69	79.92	51.31	96.92	95.10	90.11

1255 Table E1: **Accuracy (%)**, \uparrow of zero-shot orientation estimation by Orient-Anything (Wang et al.,
 1256 2025b) on training images of Pascal3D+ and ImageNet3D. Accuracy is reported within different
 1257 tolerances of $\pm X^\circ$ with $X^\circ = \{60^\circ, 30^\circ, 10^\circ\}$ (i.e., $\{\pi/3, \pi/6, \pi/18\}$ radians).

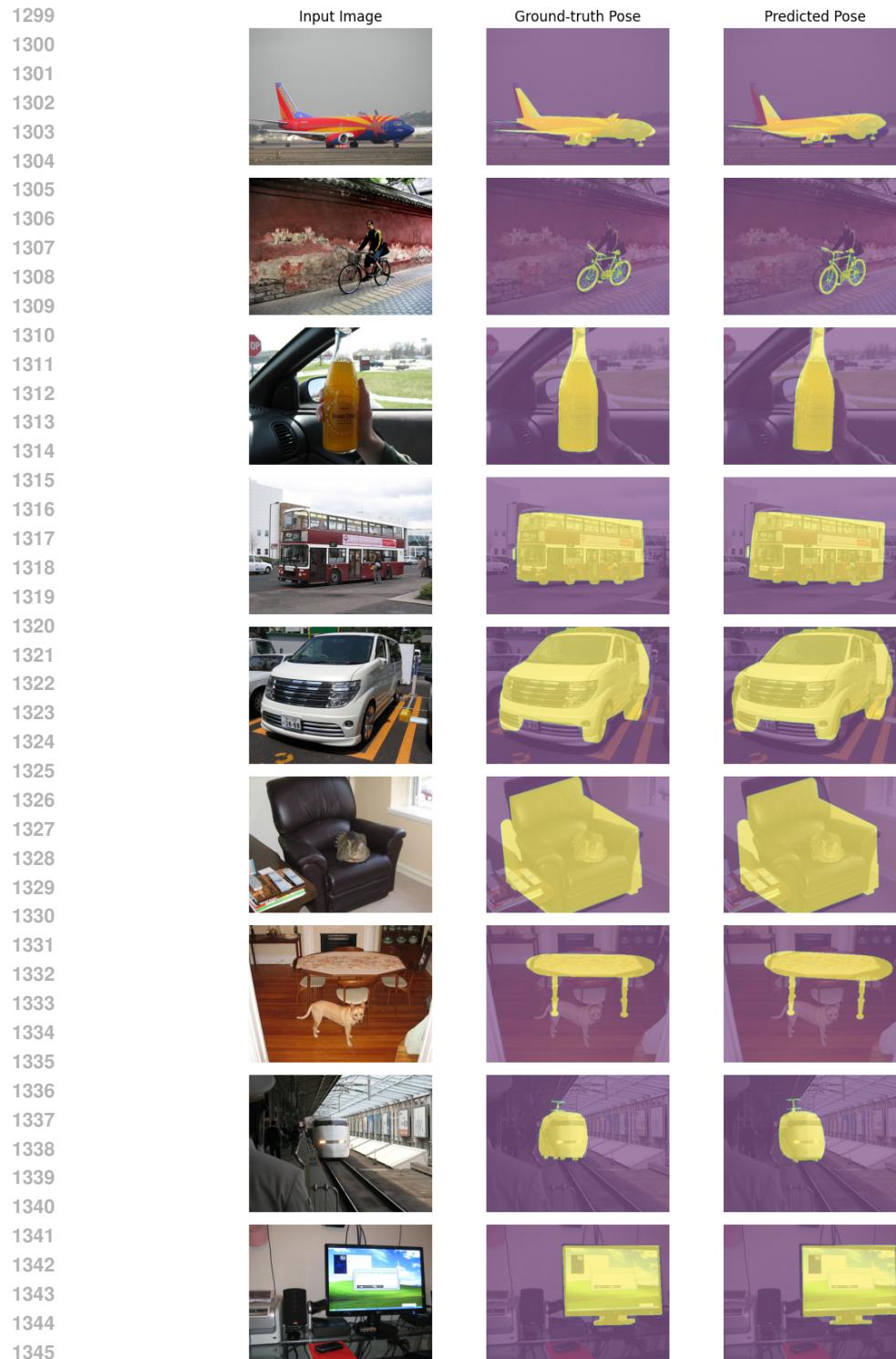


1258 Figure E1: **Prediction Confidence on Pascal3D+ of Orient-Anything (Wang et al., 2025b)**
 1259 across **Azimuth, Polar and Rotation** with respect to different tolerances of $\pm X^\circ$ with $X^\circ =$
 1260 $\{60^\circ, 30^\circ, 10^\circ\}$ (i.e., $\{\pi/3, \pi/6, \pi/18\}$ radians). Orient-Anything produces consistently high-
 1261 confidence predictions across both correctly and incorrectly classified samples.

1262 Orient-Anything poses can be treated as pseudo ground-truth, enabling weakly supervised training
 1263 of CAVE without requiring manual pose annotations. Importantly, CAVE maintains competitive
 1264 performance across all datasets, even under weaker supervision (see Tab. E2), while being substan-
 1265 tially more parameter-efficient by representing each class with only $D = 20$ concepts (roughly 98%
 1266 fewer than NOVUM’s 1130 Gaussians per class).

1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296
1297
1298



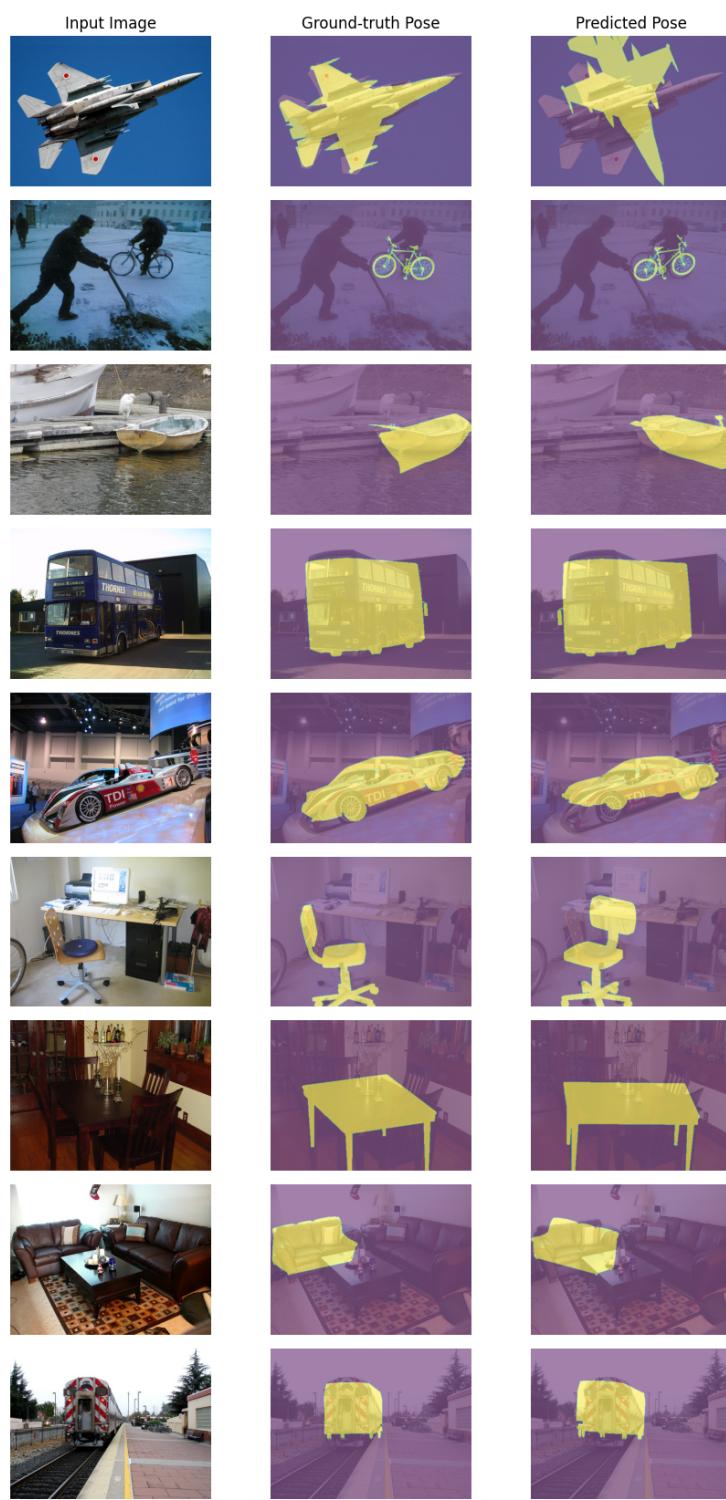
1348
1349 Figure E2: **Qualitative visualisation of accurate pose predictions** (azimuth error < 10°) by
Orient-Anything (Wang et al., 2025b).

1350

1351

1352

1353



1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Figure E3: **Qualitative visualisation of inaccurate pose predictions** (azimuth error $> 60^\circ$) by Orient-Anything (Wang et al., 2025b).

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426

Models	Ground-truth 3D Pose				Orient-Anything 3D Pose			
	P3D+	IN-3D	Occ-P3D+	OOD-CV	P3D+	IN-3D	Occ-P3D+	OOD-CV
NOVUM	99.5	88.3	81.7	81.3	98.4	85.7	77.3	79.7
CAVE (ours)	99.4	88.5	81.5	84.0	99.0	84.7	77.4	80.4

1427
 1428
 1429
 1430
 1431
 1432 Table E2: **Accuracy (%)** of NOVUM (Jesslen et al., 2024) and CAVE (ours) under full super-
 1433 vision (ground-truth pose) and less supervision (generated pose via Orient-Anything (Wang et al.,
 1434 2025b)). Results are reported on two in-distribution datasets Pascal3D+ (P3D+) and ImageNet3D
 1435 (IN-3D), and two OOD datasets OccludedP3D+(Occ-P3D+) and OOD-CV. Best scores are in **bold**.
 1436 CAVE uses $D = 20$ concepts/class, roughly 98% sparser than NOVUM (1130 Gaussians/class).
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

1458 F 3D-AWARE CLASSIFICATION WITH NOVUM
1459
1460
1461

1462 **Training.** NOVUM (Jessen et al., 2024) is trained using a feature-extractor backbone such as
1463 ResNet-50 and, for each class, a neural object volume (NOV) composed of 3D Gaussian primitives
1464 that emit feature vectors, as defined in Section 3. Full details of the training pipeline can be found
1465 in the original paper, but we provide here an overview of the different objectives that come into play
1466 during the training of NOVUM. During training, three main objectives are used:
1467

- 1468 • *Intra-object discriminative loss*: Gaussians $g_l \in \mathcal{G}_y$, also can be written as $g_y^{(l)}$ to be
1469 consistent with the main paper, of a class NOV are trained to produce distinguishable features,
1470 thus different object regions are represented by different primitives.
- 1471 • *Discriminative feature loss across classes*: features produced by Gaussians of one class \bar{y} ,
1472 i.e., $g_m \in \mathcal{G}_{\bar{y}}$, are encouraged to be distinct from those of other classes y .
- 1473 • *Background contrastive loss*: the model is trained to separate object features $f_i \in F_x$ from
1474 background features \mathcal{B} , ensuring focus on object-specific regions.

1475 Formally, we define the contrastive learning
1476

$$1478 \mathcal{L}(\mathcal{G}, \mathcal{B}) = - \sum_y \sum_{k=1}^K o_k \cdot \log \frac{e^{\kappa f_k \rightarrow i \cdot g_k}}{\sum_{\substack{g_l \in \mathcal{G}_y \\ g_l \notin \mathcal{N}_k}} e^{\kappa f_k \rightarrow i \cdot g_l} + \omega_{\mathcal{B}} \sum_{\beta_n \in \mathcal{B}} e^{\kappa f_k \rightarrow i \cdot \beta_n} + \omega_{\bar{y}} \sum_{g_m \in \mathcal{G}_{\bar{y}}} e^{\kappa f_k \rightarrow i \cdot g_m}}, \quad (F.1)$$

1482 where $o_k \in \{0, 1\}$ indicates the Gaussian visibility, κ is a concentration hyperparameter which
1483 determines the spread of the von-Mises-Fisher distribution of the Gaussians g_k , $\omega_{\mathcal{B}}$ and $\omega_{\bar{y}}$ indicate
1484 the probability that an image feature $f_i \in F_x$ corresponds to the background features \mathcal{B} or Gaussians
1485 of a class \bar{y} , and $\mathcal{N}_k = \{g_r : \|\mu_k - \mu_r\| < \delta, k \neq r\}$ is the neighborhood of a Gaussian g_k with
1486 mean μ_k defined within a radius δ . Furthermore, $f_k \rightarrow i$ denotes the extracted feature f_i that Gaussian
1487 g_k projects to.

1488 Importantly, all these losses require 3D pose supervision, which is provided by the dataset. Since
1489 each Gaussian primitive must be projected from 3D to the 2D image plane, the knowledge of the
1490 object pose is necessary. We relax this constraint in our CAVE with weak supervision from Orient-
1491 Anything (Wang et al., 2025b) estimated pose, and find that replacing ground-truth poses with noisy
1492 pseudo ground-truth still yields strong performance in in-distribution and OOD settings (cf. Sec. E).
1493 Additionally, we note that during training, the intra-object discriminative loss encourages nearby
1494 Gaussians to remain close in feature space while pushing apart those that are spatially distant. This
1495 reduces the influence of their spatial arrangement on the learned representation. To support this,
1496 NOVUM demonstrates that replacing the underlying cuboid shape with a sphere, an ellipsoid or a
1497 prototype CAD has minimal effect on model accuracy (cf. Appendix Tab. H1).

1498 **Inference.** At inference time, NOVUM classifies images by matching backbone features against the
1499 dense set of Gaussian features learned for each class. Each image feature is compared to the ~ 1130
1500 Gaussians per class, and the class score is obtained by aggregating the maximum similarity responses
1501 across spatial locations. As shown in Fig. 7, this dense matching yields only a thin decision margin,
1502 making predictions less robust and, more importantly, difficult to interpret. In contrast, our approach
1503 drastically reduces the number of Gaussians, producing clearer decision boundaries and enabling a
1504 more transparent understanding of how predictions arise.

1505 **Visualisation of NOVUM’s feature matching.** Given NOVUM’s explicit volumetric object
1506 representations, i.e., NOVs, the visualisation of its feature matching between the learned Gaussian
1507 features and image features may give some insights into which parts of the images contribute the
1508 most to the classification decision (cf. Fig. 3). Nevertheless, its classification relies on thousands of
1509 Gaussian matches do not align with semantic parts or human-understandable concepts.

1510
1511

1512 **G ADDITIONAL EXPERIMENTAL DETAILS**
 1513

1514 In this section, we provide a comprehensive review of our experimental setting to ensure repro-
 1515 ducibility for future research. We will release the codebase and relevant checkpoints upon publica-
 1516 tion. We first describe the datasets (Sec. G.1) and interpretability metrics G.2 in our experiments.
 1517 Finally, we detail training hyperparameters used in our CAVE and baselines in Section G.3.

1518
 1519 **G.1 DATASETS**
 1520

1521 We follow the setup in NOVUM (Jesslen et al., 2024), which evaluates on three datasets Pas-
 1522 cal3D+ (Xiang et al., 2014), OccludedP3D+ (Wang et al., 2020) and OOD-CV (Zhao et al., 2022),
 1523 and extend this setting to include the large-scale ImageNet3D (Ma et al., 2024). We further evaluate
 1524 concept interpretability on Pascal-Part (Chen et al., 2014).

1525 **Pascal3D+.** The Pascal3D+ dataset (Xiang et al., 2014) is a common benchmark for 3D object
 1526 understanding. It augments 12 object class from the PASCAL VOC detection dataset (Everingham
 1527 et al., 2010) with 3D annotations, and further includes images from ImageNet (Deng et al., 2009)
 1528 for these categories. In total, Pascal3D+ consists of roughly 30000 images, with 8505 Pascal images
 1529 and 22394 ImageNet images. Each class consists of about 3000 images on average, covering a wide
 1530 range of viewpoints and intra-class shape variations.

1531 **ImageNet3D.** The ImageNet3D dataset (Ma et al., 2024) is a large-scale dataset of natural images
 1532 that extends the ImageNet dataset (Deng et al. (2009) with pose annotations. It contains 200 diverse
 1533 object classes, and consists of more than 86000 images in total. Only 189 object classes are currently
 1534 available in ImageNet3D with sufficient annotation quality (Ma et al., 2024).

1535 **OccludedP3D+.** The OccludedP3D+ dataset (Wang et al., 2020) is a test benchmark that builds
 1536 upon Pascal3D+ (Xiang et al., 2014) and evaluates OOD robustness against three different lev-
 1537 els of simulated occlusion, ranging from mild (20-40%) to heavy (60-80%) occlusion. Similar to
 1538 Pascal3D+ (Wang et al., 2020), this dataset contains 12 rigid object classes. Respectively, Oc-
 1539 cludedP3D+ consists of more than 10400 images for L1 (20-40%) occlusion, 10200 images for L2
 1540 (40-60%) occlusion and 9900 images for L3 (60-80%) occlusion.

1541 **Out-of-Distribution-CV (OOD-CV).** The OOD-CV dataset (Zhao et al., 2022) is a test benchmark
 1542 that introduces OOD examples for 10 different object classes. In specific, it has diverse real-world
 1543 OOD nuisance factors including *shape*, *3D pose*, *texture*, *context* and *weather*. Overall, the OOD-
 1544 CV consists of 2632 images with these aforementioned OOD nuisances collected from the internet
 1545 and additionally 2133 test images from Pascal3D+ (Xiang et al., 2014).

1546 **Pascal-Part.** The Pascal-Part dataset (Chen et al., 2014) introduces additional human-annotated part
 1547 labels for the PASCAL VOC 2010 (Everingham et al., 2010) dataset. It covers 20 object classes,
 1548 consisting of 10103 training and validation images and 9637 test images. Additionally, it provides
 1549 silhouette annotations for classes without consistent parts such as *Boat*. We filter the dataset to
 1550 include 12 object classes in Pascal3D+ and cross-reference them to identify test images that also
 1551 appear in Pascal3D+. We use this dataset to evaluate two metrics introduced by prior works, namely
 1552 *spatial localisation* and *object coverage*, that will be described formally in Section G.2 below.

1553
 1554 **G.2 METRICS**
 1555

1556 In the following, we further describe interpretability metrics used in our evaluation.

1557 **Model faithfulness** evaluates whether a concept truly reflects what the model uses to make a pre-
 1558 diction (Rudin, 2019; Böhle et al., 2022). By design, inherently-interpretable models are model-
 1559 faithful, while post-hoc methods, which only approximate model computations, are not. Ensuring
 1560 model faithfulness is important, since it determines whether an explanation can be trusted, for ex-
 1561 ample, in safety-critical and high-stake downstream applications.

1562 **Spatial localisation** evaluates whether an explanation of a concept is spatially well-localised within
 1563 a ground-truth object part (Huang et al., 2023; Behzadi-Khormouji & Oramas, 2023; Schulz et al.,
 1564 2020). Localisation can be measured by Intersection-over-Union (IoU) between concept explanation
 1565 and semantic part annotations, but this does not differentiate between pixels with varying attribution

strengths, treating all contributing pixels equally. Therefore, we use IoU weighted with attributions, defined similarly to Dice-Sørensen coefficient that has been previously used in XAI evaluation (He et al., 2023). Specifically, given an input image x , we denote the attribution of a concept h at each pixel location (i, j) as $A_h(i, j)$. Then, the spatial localisation score of concept h with respect to part b_k in image x is computed as:

$$SL_{h,k}(x) = \frac{\sum_{i,j} A_h^+(i, j) \cdot \mathbb{1}_k(i, j) + \mathbb{1}_h(i, j) \cdot \mathbb{1}_k(i, j)}{\sum_{i,j} \mathbb{1}_h(i, j) + \sum_{i,j} \mathbb{1}_k(i, j)} \quad (\text{G.1})$$

where $A_h^+(i, j)$ is the positive attribution given at pixel (i, j) , and score $SL_{h,k}(x) \in [0, 1]$ with higher being better. A concept h with a good spatial localisation not only has high attributions in ground-truth region b_k but also covers it well. As described, this metric requires human-annotated parts and will be evaluated on Pascal-Part (Chen et al., 2014). For each image and each concept, we identify the ground-truth part that the concept is most aligned with and compute the spatial localisation score with respect to that part. The spatial localisation for concept h in image x is thus defined as:

$$SL_h(x) = \max_k SL_{h,k}(x)$$

These per-image scores for a concept h are then averaged across all test images of the same class to obtain a concept-level localisation score. These concept-level scores are then averaged per class. The dataset-level score is then obtained by averaging these per-class scores, and reported in Tab. 1.

Object coverage measures the extent of concept comprehensiveness, i.e., how well discovered concepts cover the object (Zhu et al., 2025). This is especially crucial in case of occlusion, where a well-covered set of concepts improves robustness as it can still identify other visible, unoccluded parts. We first normalise the attributions such that the total attribution across all concepts for a given input image x sums to 1. This means that if the union of all concepts perfectly collides with the ground-truth object mask, the coverage score is 1. This also ensures a fair and consistent comparison across methods. The normalisation is computed as follows:

$$\tilde{A}_h^+(i, j) = \frac{A_h^+(i, j)}{\sum_{h'} \sum_{i,j} A_{h'}^+(i, j)} \quad (\text{G.2})$$

For an input image x , we define the object coverage score as

$$\text{Cov}_{\text{object}}(x) = \sum_{i,j} \sum_h \tilde{A}_h^+(i, j) \cdot \mathbb{1}_{\text{bbox/object mask}}(i, j) \quad (\text{G.3})$$

Naturally, $\text{Cov}_{\text{object}}(x) \in [0, 1]$ for both cases, with a higher score means better coverage, and thus a more comprehensive set of concepts. This metric also requires ground-truth object masks, and is here evaluated on Pascal-Part (Chen et al., 2014). Each test image yields an object-coverage score. We average these scores over all images of a class to obtain a class-level value, and then average the class-level values across all classes to obtain the dataset-level score reported in Tab. 1.

3D consistency (3D-C). We propose the 3D-C metric to complement existing evaluation metrics that relies heavily on pre-defined part labels. We describe this metric in detail in Section D. Our 3D-C allows for evaluation across 4 datasets: Pascal3D+ (Xiang et al., 2014), ImageNet3D (Ma et al., 2024), OccludedP3D+ (Wang et al., 2020), and OOD-CV (Zhao et al., 2022).

G.3 IMPLEMENTATION DETAILS

Our experimental setting requires training our CAVE as well as baseline methods on two datasets: Pascal3D+ (Xiang et al., 2014) and ImageNet3D (Ma et al., 2024). Our evaluation on the aforementioned metrics in Section G.2 is then done on five datasets: Pascal3D+ (Xiang et al., 2014), ImageNet3D (Ma et al., 2024), and two OOD datasets Occluded-P3D+ (Wang et al., 2020) and OOD-CV (Zhao et al., 2022), and part-annotated Pascal-Part (Chen et al., 2014).

In the following, we detail the training setup for our CAVE as well as for the baselines. For a fair comparison, our CAVE and all baselines use ResNet-50 backbone. In NOVUM (Jesslen et al., 2024), the ResNet-50 backbone was extended with two upsampling layers by concatenation for NOV alignment. Our CAVE adopts the same architecture.

Training Hyperparameter	Value
Input resolution	640×800
Backbone	ResNet-50
Training batch size	38
Total epochs	200
Learning rate	1×10^{-4}
Learning rate decay	$\times 0.2$ every 10 epochs
Momentum update of Gaussian features	0.9
Weight decay	1×10^{-4}
Gradient accumulation	10 steps
Temperature T	0.07
Noise weight	0.005
Distance threshold	48
Number of background features for momentum update	5

Table G1: Training hyperparameters used in CAVE (Ours) and NOVUM (Jesslen et al., 2024).

CAVE (Ours). Our model training, similar to NOVUM (Jesslen et al., 2024), uses input images of size 640×800 . The ResNet-50 backbone produces the output feature map F_x by downsampling the input spatial resolution by a factor of 8. Training on Pascal3D+ takes approximately 24 hours, while training on ImageNet3D requires about 72 hours on a single NVIDIA H100 GPU. As mentioned in section 4, we use ellipsoid as volumetric surface of Gaussian features, computing its vertices and faces based on parametric sampling where a mesh is returned with roughly 1000 vertices. We summarise our training hyperparameters in the Tab. G1. Once the model is trained, we filter out Gaussian features with low visibility (< 0.1 of training data), and apply K-Means clustering for concept extraction with 20 clusters per class (i.e., $D = 20$ following notation in Sec. 4).

Baselines. For baseline methods, we follow the original implementation, training details, and concept visualisation provided by the authors:

1. For NOVUM (Jesslen et al., 2024), the training follows the same hyperparameters in Tab. G1. We obtained the model checkpoint for Pascal3D+ from the NOVUM’s codebase (Jesslen et al., 2024), and trained NOVUM from scratch for ImageNet3D.
2. For post-hoc methods CRAFT (Fel et al., 2023b), ICE (Zhang et al., 2021), and PCX Dreyer et al. (2024), we used the exact setting provided in their codebases. We set the number of class-wise concepts to 20. For MCD-SSC, we used completeness threshold of 0.9, which determines the extent to which the discovered set of concepts jointly cover model prediction. The concepts were extracted from NOVUM’s activations for each method.
3. For LF-CBM (Oikarinen et al., 2023), we followed the codebase instructions to generate a concept set for each dataset from GPT-3 model, resulting in 441 concepts for Pascal3D+ and 710 concepts for ImageNet3D. We trained a ResNet-50 label-free CBM using their hyperparameters: input resolution 224×224 , learning rate 0.1, and batch size 512, CLIP model ViT-B/16, and interpretability cutoff 0.45. Unlike post-hoc approaches, where the number of concepts is fixed at 20, label-free CBM learns this number dynamically. For Pascal3D+, we observed 297 non-zero weights out of 5292, yielding roughly 5% sparsity. For ImageNet3D, we observed 4058 non-zero weights out of 128709, yielding 3% sparsity.
4. For prototypical networks such as ProtoPNet (Chen et al., 2019) and TesNet (Wang et al., 2021), we used the same training hyperparameters from their codebases: input resolution 224×224 , log as prototype activation function, with regular add-on layers, a training batch size of 80, and a training push batch size of 75. The learning rates for features, add-on layers, and prototype vectors are set to $1e-4, 3e-3, 3e-3$ respectively, with a joint learning rate step size of 5. The projection (push) step was performed every 10 epochs. The network was trained for 200 epochs without a warm-up period or extensive data augmentation to ensure fairness across baselines.
5. For PIP-Net (Nauta et al., 2023a), we trained the network using the hyperparameter settings from its codebase, with input resolution 224×224 . During pre-training, we used batch size

1674 of 128 and trained for 10 epochs. For the main training phase, we used a batch size of 64
1675 and trained for 200 epochs. The learning rate was set to 0.05 with no weight decay.
1676

1677 We also find that post-hoc methods such as [Fel et al. \(2023b\)](#) threshold their attributions to reduce
1678 noise in their concept visualisations. For a fair qualitative comparision, we apply the same 90%-th
1679 quantile threshold across baselines that requires it for concept visualisation. Our method CAVE does
1680 not require such thresholding, as its attributions are correctly propagated for each concept with our
1681 NOV-aware LRP to input pixels.

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

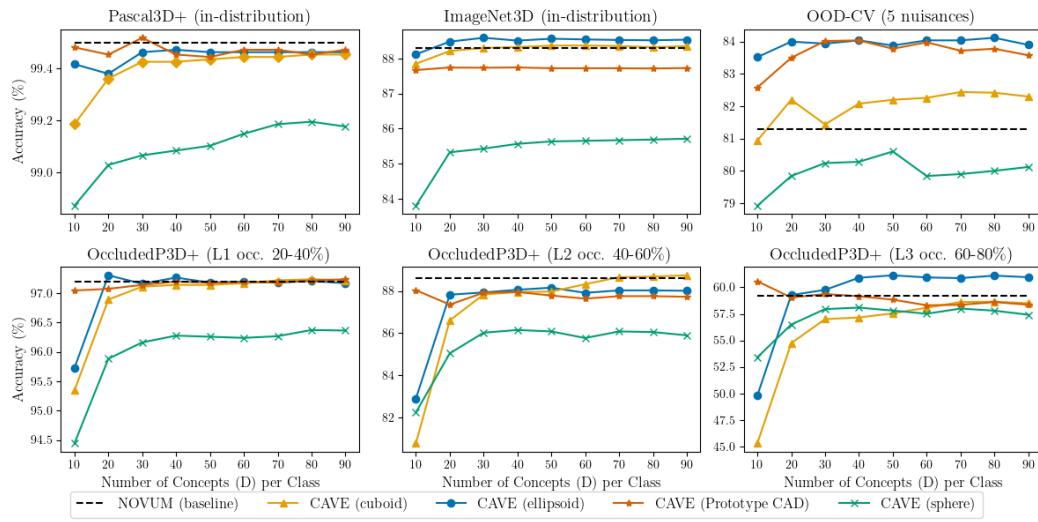
1726

1727

1728 H ABLATION: SHAPE OF NEURAL OBJECT VOLUMES

1730 For fair comparision, we use full 3D supervision, i.e., with ground-truth 3D poses, for both
 1731 NOVUM (Jesslen et al., 2024) and CAVE (Ours) in this ablation across different shapes of the neural
 1732 volumes, including simpler shapes in NOVUM such as cuboids and spheres, and more expressive
 1733 shapes such as ellipsoid and prototype CADs.

1734 At first glance, CAVE is able to match or even slightly exceeding NOVUM’s performance with
 1735 roughly $D = 20$ class-wise concepts, yielding 98% sparser representation compared to NOVUM’s
 1736 1130 Gaussians per class (cf. Fig H1).
 1737



1755 Figure H1: **CAVE with ellipsoid NOVs matches or slightly exceeding NOVUM** in most cases
 1756 with only $D = 20$ concepts per class, compared to NOVUM with roughly 1130 Gaussians per class.
 1757 Compared to other shapes, ellipsoid NOVs give an advantage in large-scale dataset ImageNet3D,
 1758 heavy occlusion in OccludedP3D+ and OOD-CV with challenging nuisances.
 1759

Dataset	P3D+	ImageNet3D	Occluded P3D+			OOD-CV
Occlusion	L0 (0%)	L0 (0%)	L1 (20 – 40%)	L2 (40 – 60%)	L3 (60 – 80%)	5 Nuisances
Sphere	99.2	85.8	96.7	86.3	57.9	81.6
Ellipsoid	99.4	88.6	97.0	87.5	58.9	82.4
Prototype CAD	99.5	87.7	97.3	88.1	58.6	83.3
Cuboid (default)	99.5	<u>88.3</u>	<u>97.2</u>	88.6	59.2	81.3

1768 Table H1: **Accuracy (%)** of 3D-aware classifier NOVUM on two in-distribution dataests Pas-
 1769 cal3D+ (P3D+) and ImageNet3D, and on two OOD datasets Occluded-P3D+ and OOD-CV, eval-
 1770 uated across different neural volume shapes. **Best** and second best are highlighted.
 1771

Dataset	P3D+	ImageNet3D	Occluded P3D+			OOD-CV
Occlusion	L0 (0%)	L0 (0%)	L1 (20 – 40%)	L2 (40 – 60%)	L3 (60 – 80%)	5 Nuisances
Cuboid	99.4	88.2	96.9	86.6	54.7	82.2
Sphere	99.0	85.3	95.9	85.0	56.5	79.8
Prototype CAD	99.5	87.7	<u>97.1</u>	<u>87.4</u>	<u>59.0</u>	<u>83.5</u>
Ellipsoid (default)	99.4	88.5	97.3	87.8	59.3	84.0

1779 Table H2: **Accuracy (%)** of CAVE (ours) with $D = 20$ class-wise concepts on two in-distribution
 1780 dataests Pascal3D+ (P3D+) and ImageNet3D, and on two OOD datasets Occluded-P3D+ and OOD-
 1781 CV, evaluated across different neural volume shapes. **Best** and second best are highlighted.
 1782

Shape	$IoU \uparrow$	$Spatial\ Localisation \uparrow$	\cup	$Coverage \uparrow$ Parts	$Object \uparrow$	$3D\text{-}C \uparrow$
Cuboid	0.150	0.264		0.368	0.873	0.402
Sphere	0.148	0.263		0.367	0.870	0.394
Ellipsoid	0.156	0.277		0.368	0.865	0.417
Prototype CAD	0.169	0.305		0.378	0.874	0.426

Table H3: **Interpretability evaluation of CAVE across different neural volume shapes** with $D = 20$ concepts per object category on Pascal-Part with different benchmark metrics. In specific, *Part IoU*, *Spatial Localisation* (weighted IoU with attributions), *Global Coverage* assessing both object coverage and union of annotated parts, and our proposed metric *3D Consistency* (3D-C) to assess spatial consistency of concepts across images. **Best** and second best are highlighted.

In terms of performance, while there is no consistent gain in NOVUM with a particular NOV shape (cf. Tab. H1), CAVE with more expressive shapes like ellipsoid and prototype CAD performs relatively better in heavy occlusion (OccludedP3D+ L3), and OOD-CV, improving roughly 2-3% point in OOD accuracy (cf. Tab H2). We hypothesise that since Gaussians are densely populated in NOVUM which are then used for classification, having a more accurate shape approximation has limited effects. Whereas for CAVE, our concept-based NOV representation is approximately 98% **sparser** than NOVUM’s 1130 Gaussians per class, and thus the shape matters more in our design.

Additionally, we evaluate how NOV shape influences CAVE’s concept interpretability (cf. Tab. H3). Prototype CADs score highest across all metrics, consistent with their closer match to the underlying object geometry. Ellipsoids are only slightly worse yet require no CAD assets and are faster to fit. Given this empirical trade-off between OOD accuracy and interpretability, we **adopt ellipsoid NOVs** in CAVE, instead of using cuboids as in prior work (Jesslen et al., 2024).

Taken together, these results show that CAVE delivers strong OOD accuracy with a highly sparse and compact concept-based representation across shapes, with more expressive shapes such as ellipsoids and prototype CADs are slightly better. Among the tested shapes, ellipsoid NOVs offer the best balance between interpretability and robustness, making them a scalable choice for CAVE, where 3D-aware classification is both inherently interpretable and robust to distribution shifts.

1836 I ABLATION: ATTRIBUTING CONCEPTS WITH NOV-AWARE LRP

1838 We provide here a more comprehensive quantitative and qualitative evaluation of our proposed NOV-
 1839 aware LRP, described in Sec. 4.1 & Sec. C, against common attribution methods for attributing
 1840 concepts in 3D-aware architectures like CAVE. These include Vanilla LRP (Bach et al., 2015),
 1841 Guided Backpropagation (Springenberg et al., 2015), Smooth Gradients (Smilkov et al., 2017),
 1842 GradCAM (Selvaraju et al., 2017), and Integrated Gradients (Sundararajan et al., 2017).

1843 In a direct comparison to vanilla LRP (Bach
 1844 et al., 2015) that we base our method on, we
 1845 show that our NOV-aware LRP enables faithful
 1846 attribution of concepts through the NOVs back
 1847 to the input pixels, achieving near-perfect rel-
 1848 evance conservation. In contrast, vanilla LRP
 1849 unfaithfully leaks relevances, where relevance
 1850 is either lost or incorrectly redistributed dur-
 1851 ing propagation (cf. Fig. 11). Qualitatively in
 1852 Fig. 12, we observe spurious relevances visi-
 1853 bly appear in background regions or occlusion
 1854 masks in vanilla LRP. On the other hand, our
 1855 NOV-aware LRP consistently produces sharp,
 1856 spatially coherent attributions that remain well-
 1857 aligned with the underlying object structure.
 1858 This demonstrates not only the technical ben-
 1859 efits of adapting LRP to 3D-aware classifiers
 1860 with volumetric representations, but also the
 1861 practical interpretability gains, where concepts
 1862 are now more reliably traced back to the input
 1863 image. Taken together, our results demonstrate
 1864 the strong effect of NOV-aware LRP in improv-
 1865 ing the fidelity of attribution, i.e., by ensuring
 1866 that relevance is conserved properly during
 1867 propagation.

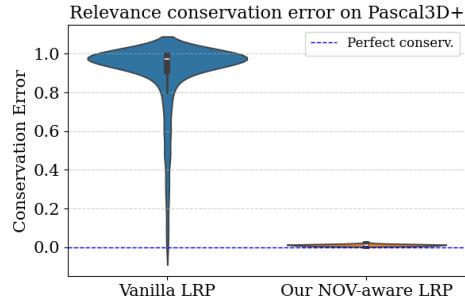


Figure 11: **Violin plot on relevance conservation** of Ours vs. Vanilla Layer-wise Relevance Propagation (LRP), where 0 indicates perfect conservation. Our NOV-aware LRP achieves near-perfect conservation compared to Vanilla LRP.

Attribution Methods	<i>Localise.</i> \uparrow	<i>Coverage</i> \uparrow	<i>3D Consistency</i> \uparrow	
	Pascal-Part		Pascal3D+	OccludedP3D+
CAVE	Vanilla LRP (ϵ -rule)	<u>0.26</u>	<u>0.73</u>	0.29
	Guided Backprop.	0.25	0.61	0.32
	SmoothGrad	0.23	0.69	0.31
	Grad-CAM	0.12	0.47	0.27
	Integrated Gradients	0.19	0.57	<u>0.35</u>
	NOV-aware LRP (Ours)	0.28	0.80	0.40
				0.23

Table I1: **Quantitative comparison of different attribution methods for CAVE**, evaluated on *spatial localisation*, *object coverage*, and *3D consistency*

1876 We further study the effectiveness of our NOV-aware LRP compared to common attribution methods
 1877 (cf. Tab. I1). Ours produces concepts with higher spatial localisation, object coverage (i.e., concept
 1878 comprehensiveness), and 3D consistent across in-distribution Pascal3D+ (Xiang et al., 2014) and
 1879 OOD OccludedP3D+ (Wang et al., 2020). This means that our LRP reformulation allows us to gen-
 1880 erate not only highly localised but also semantically comprehensive visualisation of concepts, cover-
 1881 ing the object well rather than focusing on a few discriminative fragments (cf. Fig. 12). Furthermore,
 1882 NOV-aware LRP maintains strong consistency across 3D views, outperforming all baselines on Pas-
 1883 cal3D+ (0.40 vs. 0.35 from Integrated Gradients) and OccludedP3D+ (0.23 vs. 0.19 from Guided
 1884 Backpropagation and Integrated Gradients). The gains are particularly pronounced under occlusion,
 1885 where reliable attribution is more challenging.

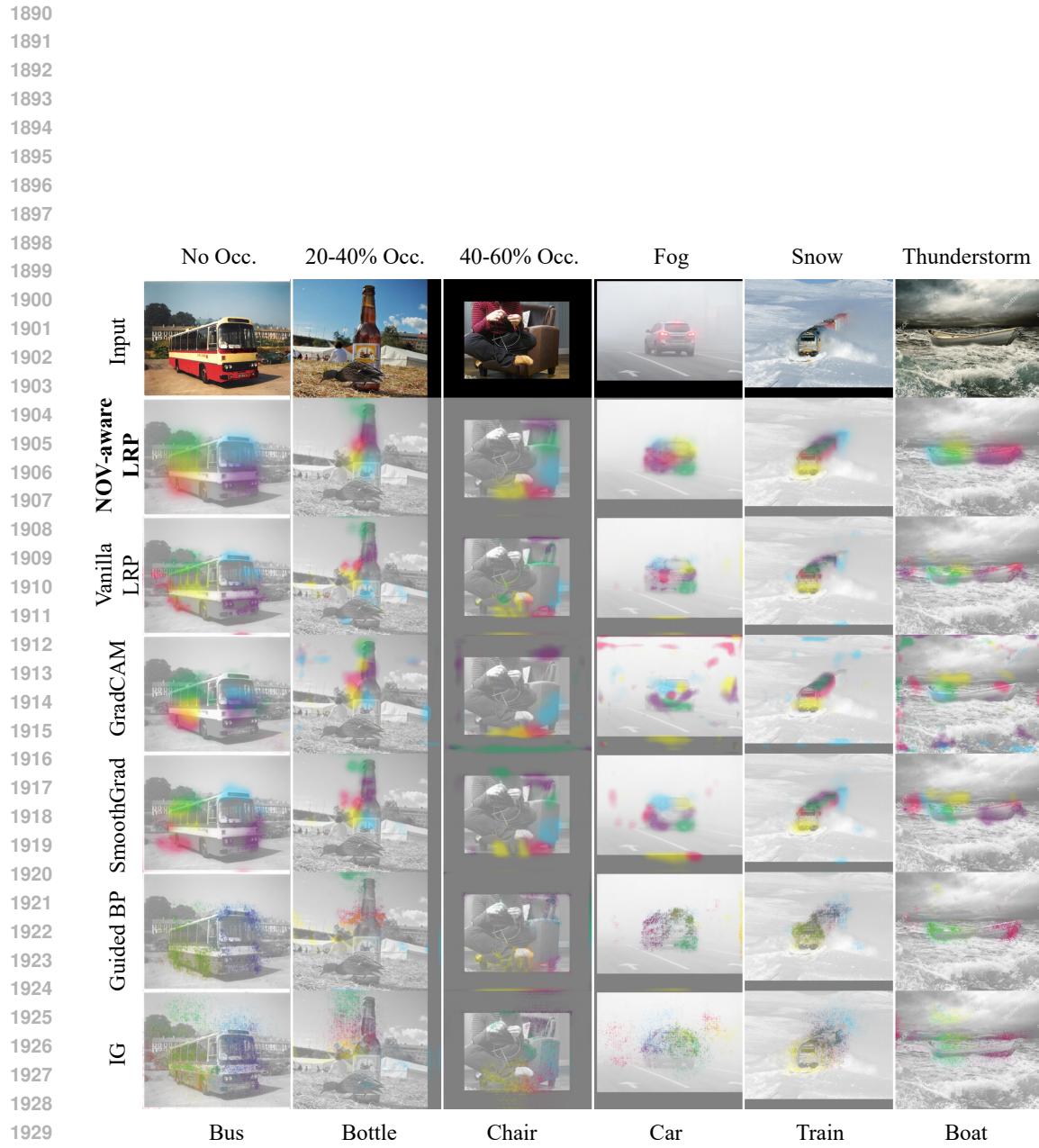
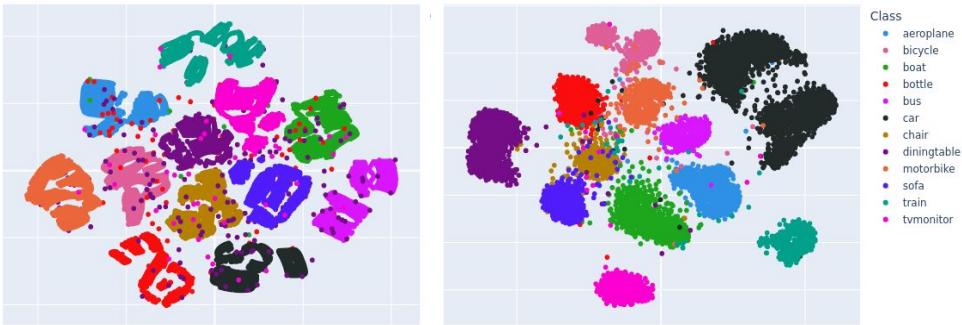


Figure I2: **Our NOV-aware LRP (second row) yields better-localised, more stable visualisation of top-5 concepts across both in-distribution and OOD settings**, while vanilla LRP and other common attribution methods show scattered explanations on the image background or occlusion masks. From left → right, the first input image comes from in-distribution Pascal3D+ (Xiang et al., 2014), the next two from OccludedP3D+ (Wang et al., 2020) with different levels of occlusion, and the last three from OOD-CV (Zhao et al., 2022).

1944
 1945 **J ABLATION: CONCEPT EXTRACTION ON NEURAL OBJECT VOLUMES**
 1946 **(NOVs)**
 1947



1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
Figure J1: Representation spaces derived from neural object volumes \mathcal{G} (left) and activations of
 1960 features (right) of all classes in Pascal3D+.
 1961

1962 An advantage of an image classifier with NOVs is that it enhances the separation of the representation
 1963 space, ensuring that Gaussian features from different classes remain well-distinguished (Jesslen
 1964 et al., 2024). Naturally, this is also the case for activations of features within the same classifier (cf.
 1965 Fig. J1), which then leads us to examine where concept extraction is most effective. Our CAVE
 1966 framework extracts class-wise concepts directly from neural object volumes \mathcal{G} , whereas traditional
 1967 methods rely on activations from training features. We explore whether \mathcal{G} provides a more mean-
 1968 ingful concept space by following three key steps:
 1969

1970 1. extracting concepts using low-rank approximations (e.g., NMF). For a fair comparison, we
 1971 use NMF as our extraction method because it is known to effectively extract meaningful and
 1972 interpretable concepts from activations (Fel et al., 2024). Note that NMF is not guaranteed
 1973 to be the optimal choice for neural volumes \mathcal{G} ,
 1974 2. projecting activations into the concept space, and
 1975 3. train a K-means clustering model on training image activations and evaluate it on test acti-
 1976 vations across different occlusion levels for concept separation.

1977 A well-structured concept space should produce well-separated and compact clusters, which can be
 1978 evaluated using the Silhouette Score and Davies-Bouldin Index (DBI). The Silhouette Score ranges
 1979 from $[-1, 1]$, where 1 indicates optimal separation and values near 0 suggest overlapping clusters.
 1980 In contrast, the Davies-Bouldin Index measures the ratio of intra-cluster dispersion to inter-cluster
 1981 separation, with lower values indicating better-separated, more compact clusters. We also show
 1982 2D low-dimensional representations comparing the concept spaces of neural volumes and training
 1983 activations across different classes in Fig. J2.

Occlusion	0	[20, 40]	[40, 60]	[60, 80]
<i>NOVs</i> \mathcal{G}	0.343	0.333	0.335	0.338
<i>Activations</i>	0.034	0.040	0.037	0.033

1984
 1985
 1986
 1987
 1988
 1989
 1990 Table J1: Silhouette scores (\uparrow) averaged across all classes in Pascal3D+, comparing concept spaces
 1991 derived from neural object volumes \mathcal{G} and traditional activations. Higher scores indicate more
 1992 compact clusters, with values close to 1 representing well-structured concept spaces. Results are reported
 1993 across different occlusion levels in %.
 1994

1995 As we extract concepts from NOVs, there are different established approaches to obtain the de-
 1996 composition $\mathcal{G}_y \approx \mathcal{W}_y \mathcal{H}_y^T$, specifically K-Means, Principal Component Analysis (PCA) and Non-
 1997 negative Matrix Factorisation (NMF). We aim to strategically select the concept extraction method
 1998 that encourages disentangled, part-based concepts while maintaining competitive performance and
 1999 faithfulness. To do so, we conduct a small ablation and compare in terms of three key metrics:

	Occlusion	0	[20, 40]	[40, 60]	[60, 80]
1998	<i>NOVs \mathcal{G}</i>	1.154	1.155	1.162	1.137
1999	<i>Activations</i>	2.365	2.348	2.306	2.318

Table J2: Davies-Bouldin Index (\downarrow) averaged across all classes in Pascal3D+, comparing concept spaces derived from neural object volumes \mathcal{G} and traditional activations. Lower score means better cluster separation.

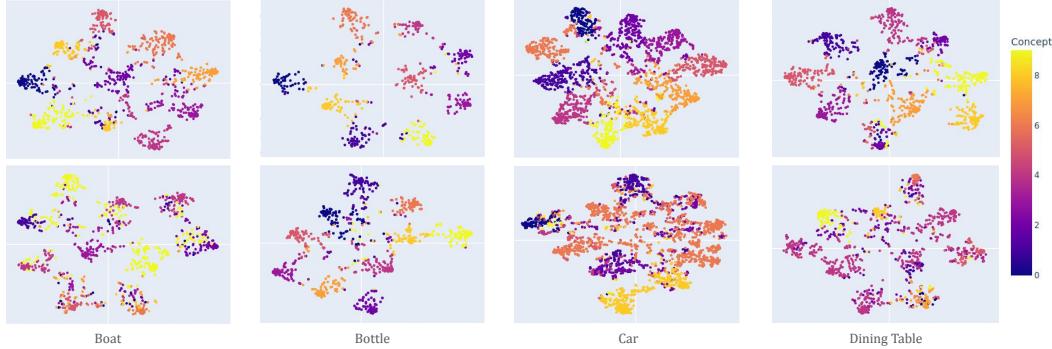


Figure J2: **t-SNE projection of concept embeddings in neural volume space (top) vs. activation space (bottom) for four classes in Pascal3D+.** Concepts in neural volume space are more well-separated and compact compared to those extracted from activation space.

(i) *accuracy*, (ii) *sparsity*, and (iii) *feature distribution distance (FDD)*. Here, *sparsity* is measured following the approach in [Fel et al. \(2024\)](#), which quantifies how sparse the weight matrix \mathcal{W}_y^* is. *FDD* measures the divergence between the original distribution of \mathcal{G}_y and its new representation \mathcal{H}_y , thereby quantifying how *faithful* the latter preserves the former. After evaluating these three metrics, we select K-Means clustering as concept identification in CAVE.

	Accuracy (%), \uparrow	Sparsity (\uparrow)	FDD (\downarrow)
K-Means	99.36	0.95	0.32
PCA	99.39	0.00	0.39
NMF	99.25	0.63	0.83
NOVUM	99.5	—	—

Table J3: **Ablation on concept extraction methods.** The concept extraction methods are applied on the neural volumes $\mathcal{G}_y \in \mathcal{G}$ in image classifier NOVUM with $D = 20$ concepts. Each result is averaged across all classes from Pascal3D+.

2052 K DISCUSSION OF FAILURE CASES

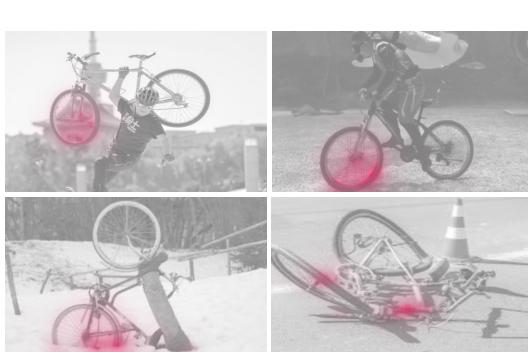
2053 While CAVE achieves significant improvement in both robustness and interpretability, some inherent
 2054 limitations of 3D-aware classification remain.

2055 First, CAVE is trained on object-centric images
 2056 and orients its ellipsoid NOVs to the *primary*
 2057 *object* to learn Gaussian features for concept
 2058 dictionary extraction. This in turn allows for
 2059 spatially consistent and localised explanations.
 2060 In multi-object classification tasks where mul-
 2061 tiple instances of the same objects are present,
 2062 CAVE surprisingly can still identify concepts
 2063 across objects, even though its training is not
 2064 optimised for multi-object scenes. In some
 2065 cases, however, CAVE identifies concepts on
 2066 the central object and abstains from others (cf.
 2067 Fig. K1). While this behavior is consistent with
 2068 object-centric learning of 3D-aware classifiers,
 2069 improving CAVE further in multi-object scenes
 2070 would be an interesting future direction.

2071 Figure K1: CAVE identifies concept across multiple objects (left) but occasionally misses (right).

2072 Second, we study cases where CAVE fails to find spatially consistent concepts in most test images.
 2073 For example, in class *Boat* of ImageNet3D (Ma et al., 2024), the same concept only localises on
 2074 the stern in some images, while to both bow and stern in others. This can be attributed to the fact that
 2075 boats do not have a consistent set of parts across subcategories, as also observed in the Pascal-Part
 2076 dataset (Chen et al., 2014), as well as because of object symmetries. In fact, when the two ends are
 2077 visually similar, the concept generalises to *hull ends*, rather than only on *stern* (cf. Fig. K2).

2078 Figure K2: For the same concept in the *Boat* class of ImageNet3D, CAVE detects only *stern* in
 2079 some cases (first two columns), while both hull ends in others (last two columns).



2080 Figure K3: Under OOD factors, CAVE correctly
 2081 detects *front wheel* (above) but can occasionally
 2082 activate back wheel or other parts (below) under
 2083 strong perspective shift or object deformation.

2084 We further investigated how OOD nuisances af-
 2085 fect concept consistency. In in-distribution set-
 2086 tings such as Pascal3D+ (Xiang et al., 2014)
 2087 and ImageNet3D (Ma et al., 2024), CAVE’s
 2088 3D-C scores of Bicycle are roughly 0.24. Un-
 2089 der distribution shift in OOD-CV (Zhao et al.,
 2090 2022), the score drops to about 0.16, albeit still
 2091 substantially higher than all baselines, which
 2092 fail to detect any consistent concepts. We in-
 2093 vestigate examples where CAVE shows in-
 2094 consistency, and find that for example concept such
 2095 as *front wheel* activates also on back wheel un-
 2096 der strong perspective shift, or when the bicycle
 2097 is severely deformed (cf. Fig. K3).

L ADDITIONAL QUALITATIVE EXAMPLES

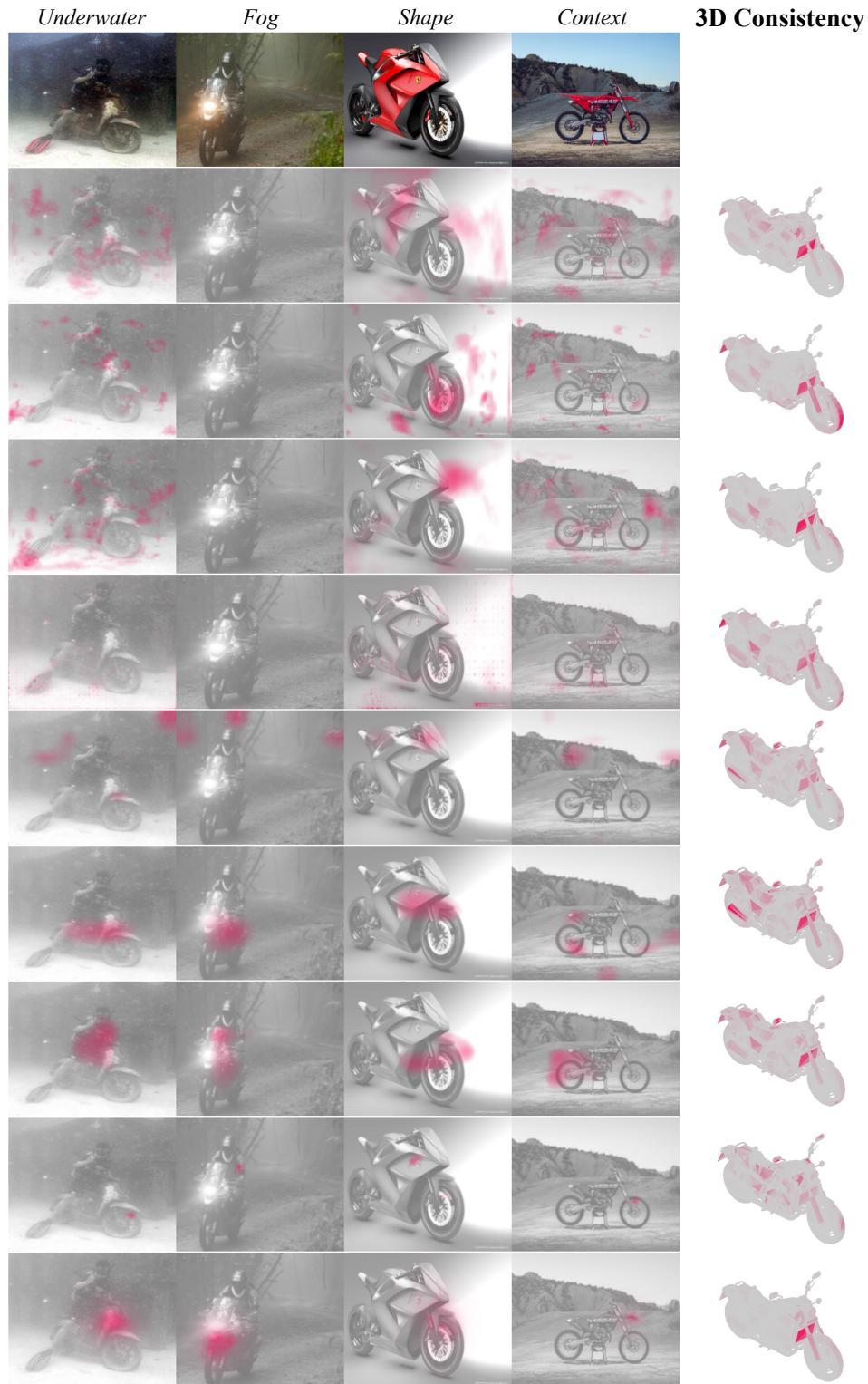


Figure L1: CAVE (Ours) produces more spatially consistent and localised explanations for OOD images of class Motorbike compared to all baselines.

Figure L2: **CAVE (Ours)** produces more spatially consistent and localised explanations for OOD images of class **Bus** compared to all baselines.

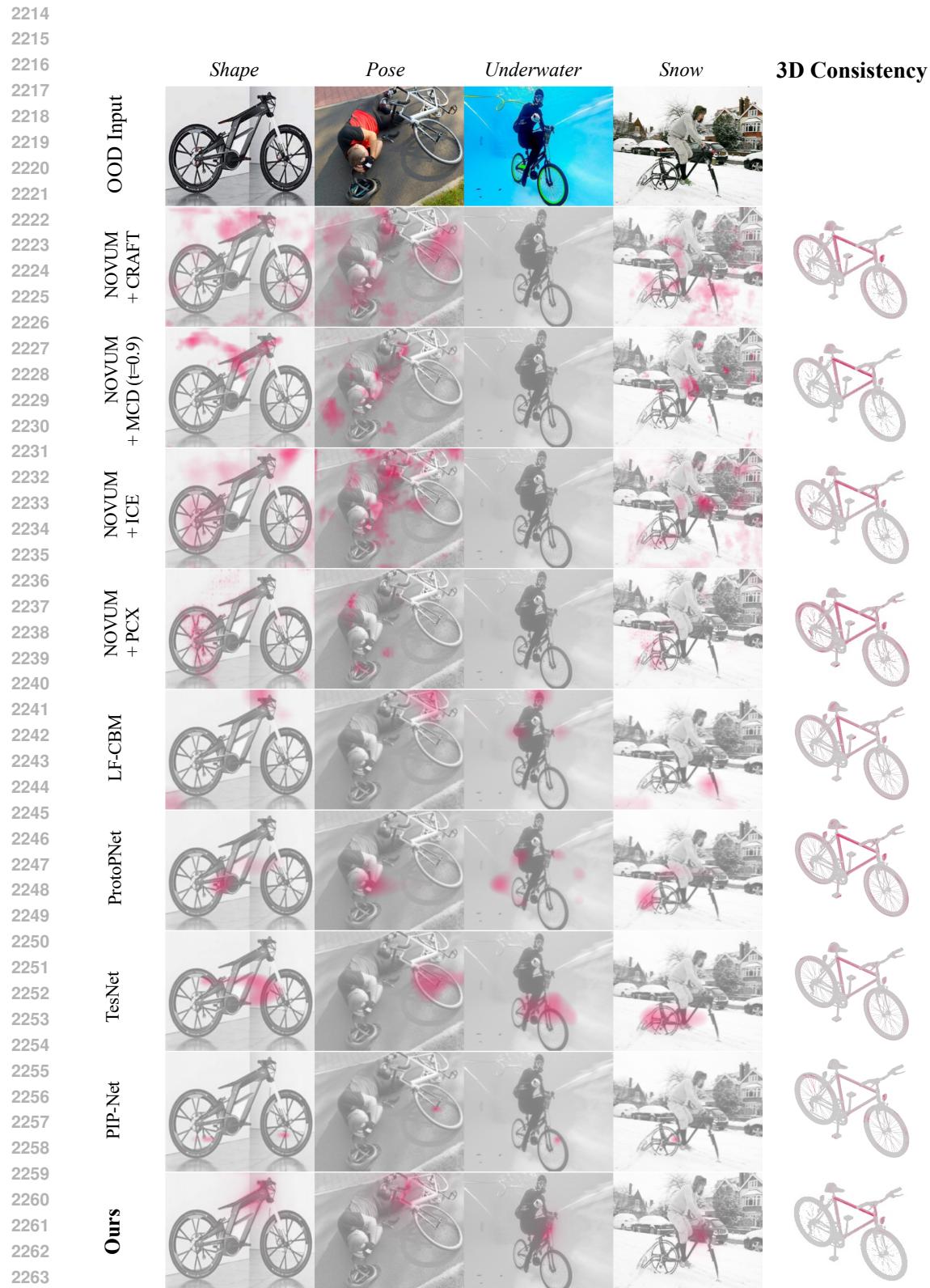


Figure L3: CAVE (Ours) produces more spatially consistent and localised explanations for OOD images of class Bicycle compared to all baselines.

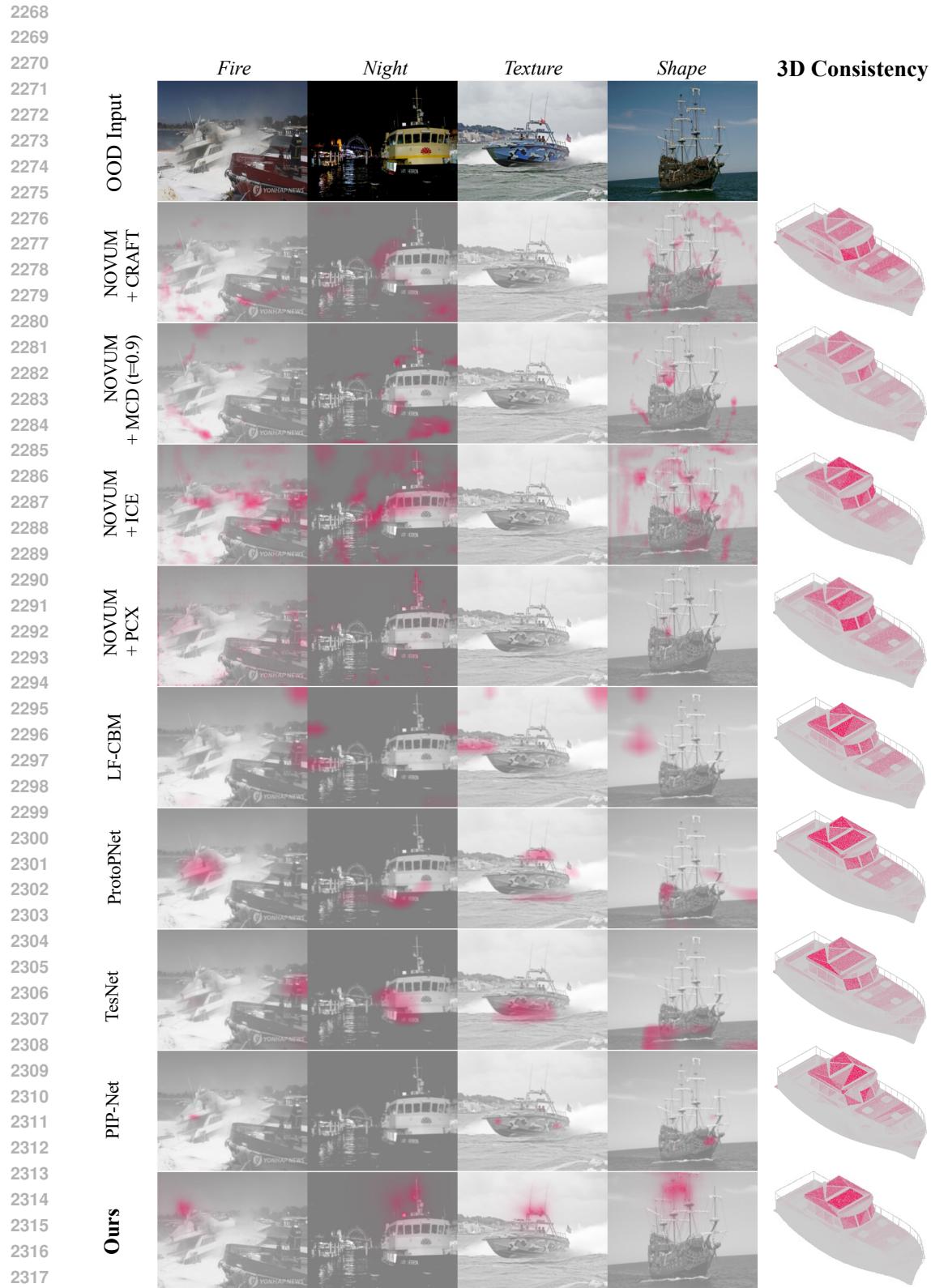


Figure L4: **CAVE (Ours)** produces more spatially consistent and localised explanations for OOD images of class **Boat** compared to all baselines.

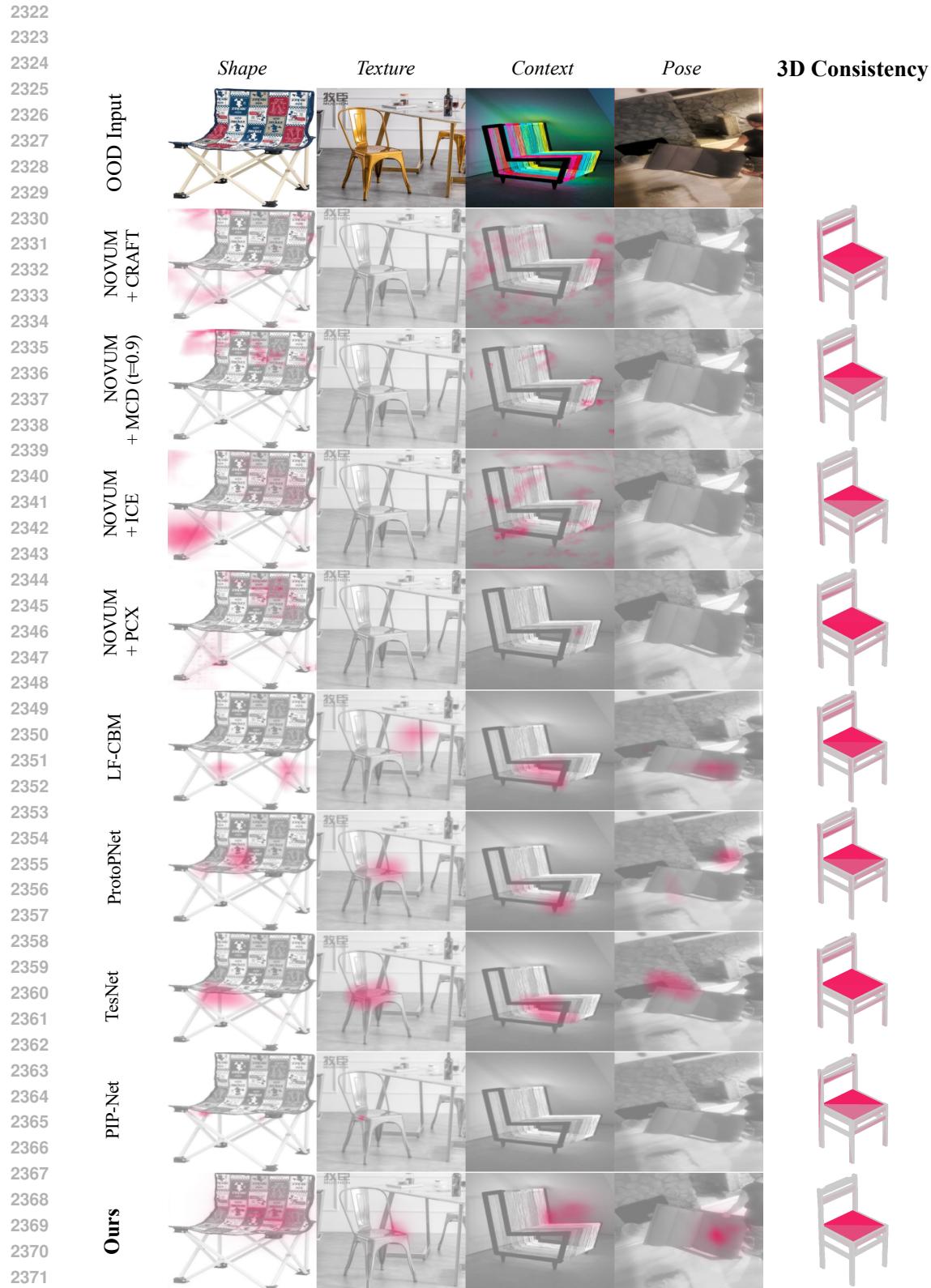


Figure L5: **CAVE (Ours)** produces more spatially consistent and localised explanations for OOD images of class Chair compared to all baselines.

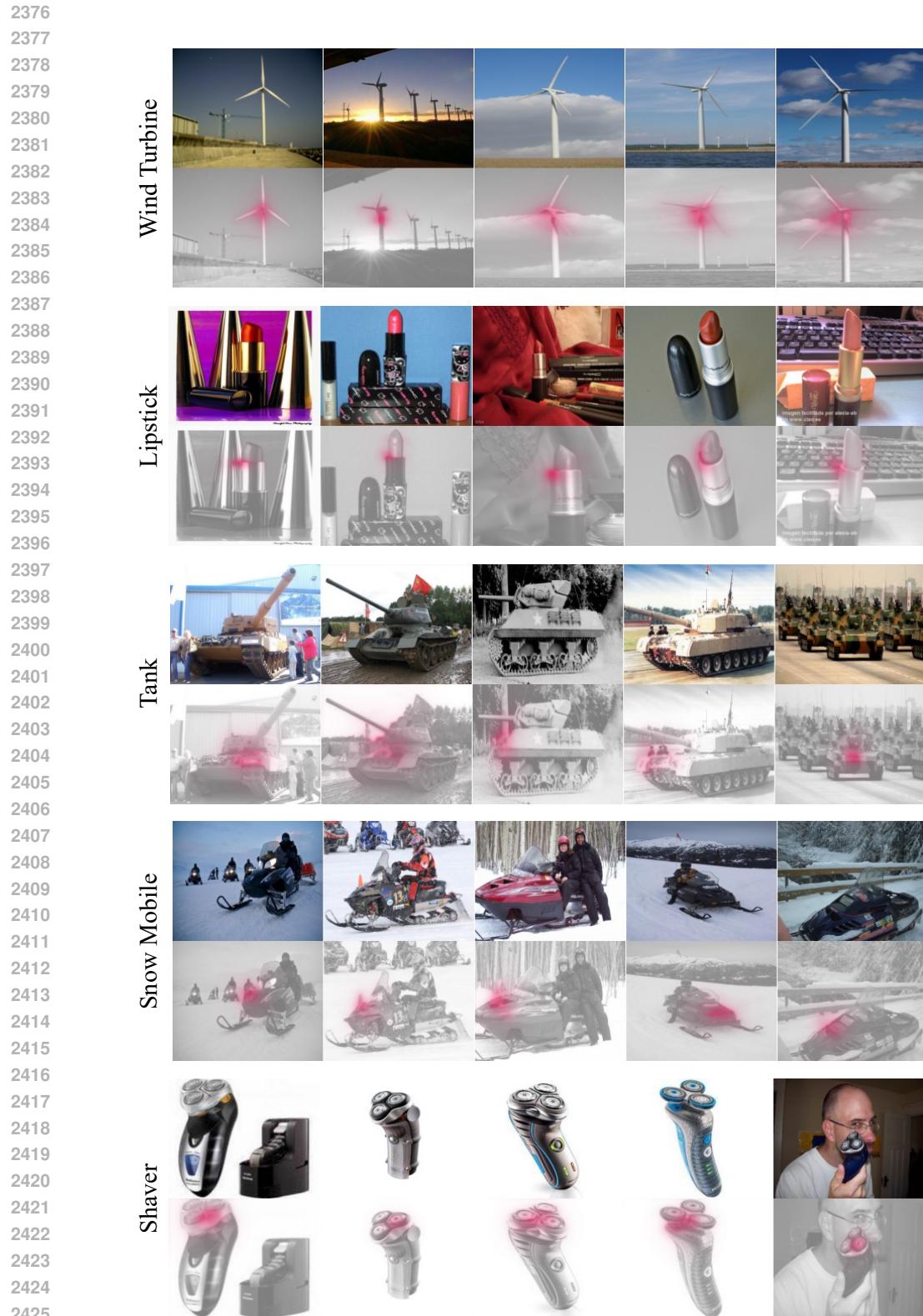


Figure L6: **CAVE (Ours)** detects consistent concepts across different ImageNet3D classes. For each class, the concept is *sampled randomly*, and the images associated with that concept are also *sampled randomly*, both with seed 42.

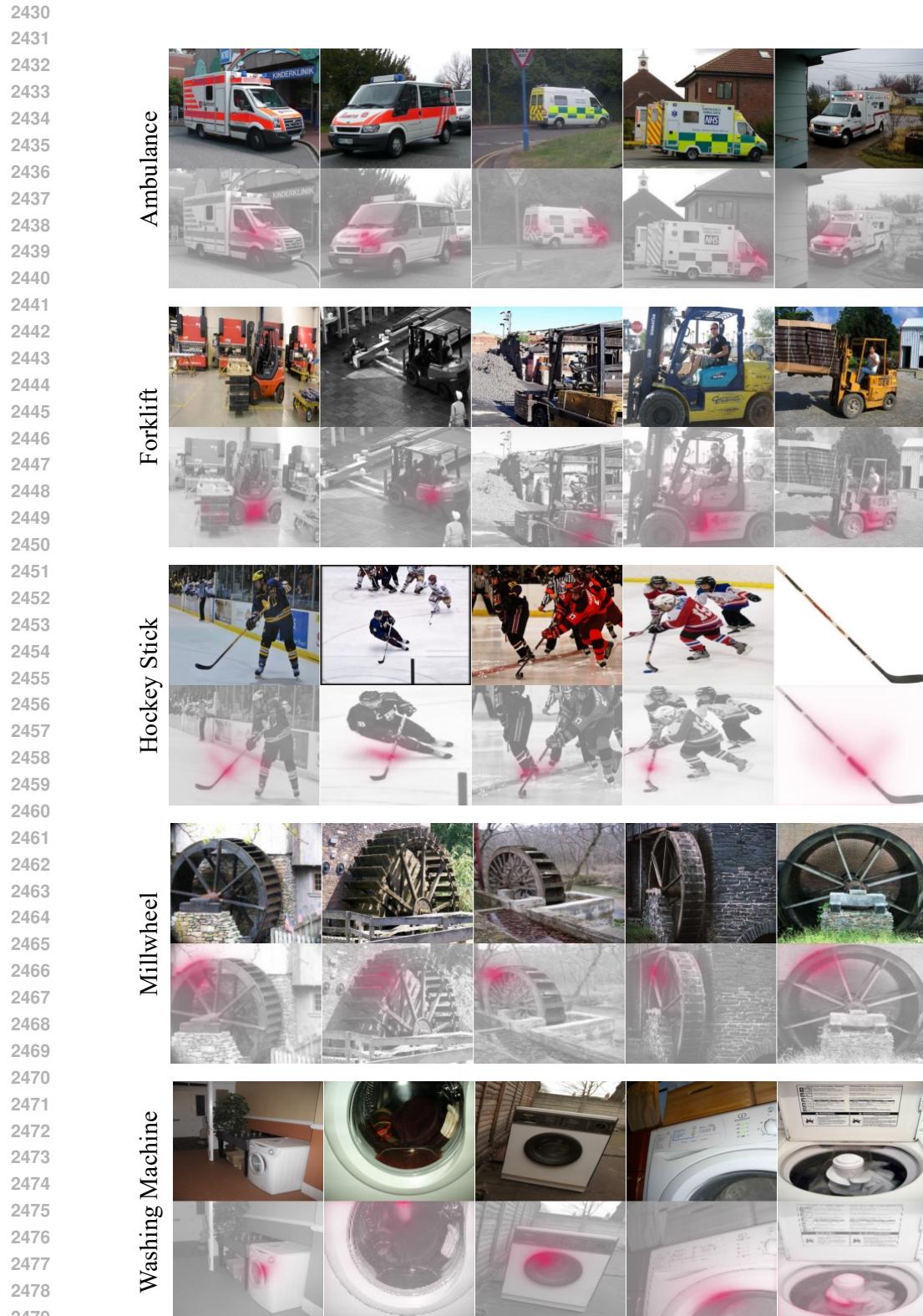


Figure L7: **CAVE (Ours) detects consistent concepts across different ImageNet3D classes.** For each class, the concept is *sampled randomly*, and the images associated with that concept are also *sampled randomly*, both with seed 42.

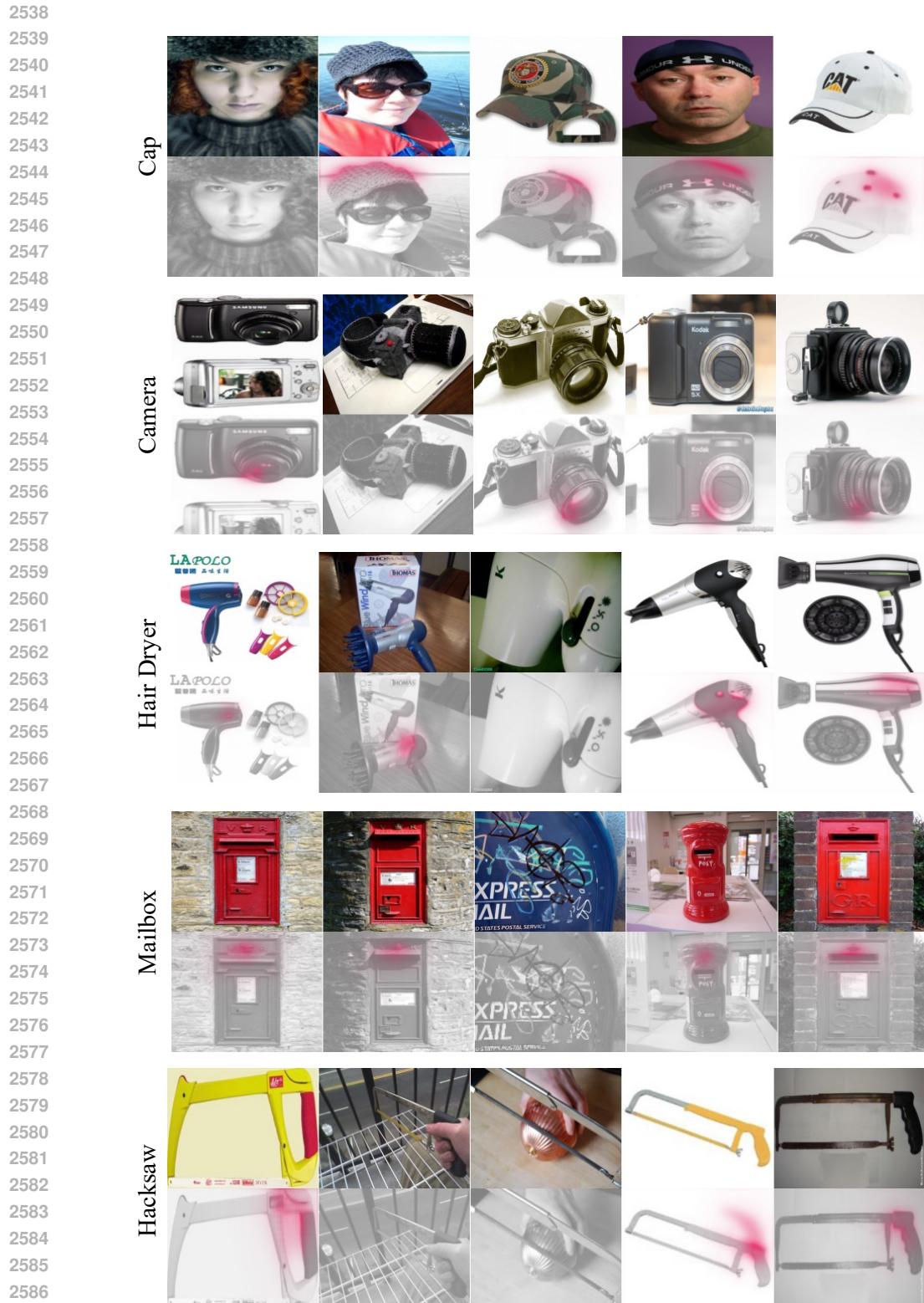


Figure L9: **CAVE (Ours)** detects consistent concepts across different ImageNet3D classes and refrains from detection when the concepts are not visible in the image. For each class, the concept is sampled randomly, and the images associated with that concept are also sampled randomly, both with seed 42.

2592 **M THE USE OF LARGE LANGUAGE MODELS**
25932594 All scientific contributions, including the proposed method, experimental design, results, and analy-
2595 ses are solely our own work. We made minimal use of large language model, specifically ChatGPT,
2596 to only assist with the polishing of this paper, including:
25972598 (i) formatting tables and figures in latex (strictly for presentation), and
2599 (ii) refining sentence structure for clarity and conciseness
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645