
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EVOSYN: GENERALIZABLE EVOLUTIONARY DATA
SYNTHESIS FOR VERIFIABLE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Reliable verifiable data has become a key driver of capability gains in modern
language models, enabling stable reinforcement learning with verifiable rewards
and effective distillation that transfers competence across math, coding, and agentic
tasks. Yet constructing generalizable synthetic verifiable data remains difficult
due to hallucination-prone generation, and weak or trivial verification artifacts
that fail to separate strong from weak solutions. Existing approaches often rely
on task-specific heuristics or post-hoc filters that do not transfer across domains
and lack a principled, universal evaluator of verifiability. In this work, we intro-
duce an evolutionary, task-agnostic, strategy-guided, executably-checkable data
synthesis framework that, from minimal seed supervision, jointly synthesizes
problems, diverse candidate solutions, and verification artifacts, and iteratively dis-
covers strategies via a consistency-based evaluator that enforces agreement between
human-annotated and strategy-induced checks. This pipeline upgrades filtering into
principled synthesis: it reliably assembles coherent, verifiable training instances
and generalizes without domain-specific rules. Our experiments demonstrate the
effectiveness of the proposed approach under both RLVR and model distillation
training paradigms. The results show that training with our synthesized data yields
significant improvements on both the LiveCodeBench and AgentBench-OS tasks,
highlighting the robust generalization of our framework1.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable potential across a wide range of
domains, particularly in complex reasoning tasks such as mathematics, programming, and real-world
agent applications. Recently, models like OpenAI-o1 and DeepSeek-R1 (Guo et al., 2025; OpenAI,
2024; Yang et al., 2025), after undergoing large-scale reinforcement learning, have shown significant
improvements on reasoning benchmarks (Yue et al., 2025; Su et al., 2025). However, as model
capabilities rapidly advance, their size continues to grow, and their demand for data is expanding at
an astonishing pace. In particular, recent training paradigms increasingly rely on a special class of
data—verifiable data.

Verifiable data provides reliable feedback signals during training, making it indispensable for many
approaches. For example, RLVR-style training methods and model distillation heavily rely on such
data (Schulman et al., 2017; Shao et al., 2024b; Zhao et al., 2025); DPO (Hosseini et al., 2024; Lai
et al., 2024) leverages feedback to construct positive and negative samples; and various self-training
methods such as STaR (Zelikman et al., 2022), V-STaR (Hosseini et al., 2024), and ReST (Singh et al.,
2023) all depend on correctness signals to filter useful examples. However, the stringent reliability
requirements of verifiable data make it extremely costly to annotate. Large-scale manual labeling is
simply infeasible, highlighting the growing importance of verifiable data in modern LLM training
pipelines.

Synthetic data offers a promising solution, but it remains imperfect (Liu et al., 2024; Long et al.,
2024; Nadăs, et al., 2025). Two persistent challenges limit its utility. First, reliability: hallucinations
remain a fundamental weakness of LLMs. While models can generate large volumes of data, ensuring
their reliability is nontrivial (Ding et al., 2024; He et al., 2025). How to make model-generated data

1We will release the code and data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

more reliable or how to effectively filter trustworthy subsets from large synthetic corpora remains a
central challenge. Second, generalizability: Many existing solutions rely on task-specific, handcrafted
heuristics to guarantee data usability. For example, some studies validate correctness through syntax
checking (Wang et al., 2025). These approaches, however, often fail to generalize beyond the narrow
task domains they were designed for.

In this work, we focus on these two questions: how to obtain reliable, verifiable data, and how to
design a unified pipeline that generalizes across diverse tasks. We target the executably-checkable
data class, which is the major part of verifiable data. We propose a general-purpose framework
for synthesizing reliable data, called Evolutionary Data Synthesis (EvoSyn). Executably-checkable
tasks are a broad class of problems defined as those for which verification can be performed via
tests without requiring a complete solution. This class encompasses challenging real-world tasks,
such as coding and software engineering problems. In our experiments, we select representative
and high-difficulty tasks: the algorithmic LiveCodeBench (Jain et al., 2024) and the complex agent
task AgentBench-OS (Liu et al., 2023). The core idea of EvoSyn is to formulate the difficulty as a
data filtering strategy optimization task. Inspired by AlphaEvolve (Novikov et al., 2025), we employ
evolutionary algorithms to iteratively search for the optimal filtering strategy tailored to the current
task (Sharma, 2025; Romera-Paredes et al., 2024; Tanese, 1989). This strategy is then applied to
synthetic data, yielding a reliable, verifiable dataset. Unlike prior approaches that require handcrafted,
task-specific heuristics, EvoSyn automates this process: the model itself explores and evolves filtering
strategies, reducing manual effort while producing superior solutions. Crucially, EvoSyn introduces
a unified evaluation criterion for filtering strategies, which is task-agnostic. Instead of relying on
domain-specific signals, EvoSyn measures consistency score with a small set of manually verified
seed data, making it applicable to any verification task as long as minimal seed supervision is
available.

Figure 1: Overview of EvoSyn, a task-agnostic pipeline for synthesizing verifiable data. From a
small human-verified seed data, an evolutionary process discovers a data-filtering strategy via a
consistency-based evaluator; this strategy then guides synthesis by generating candidate solutions and
tests for new problems, cross-executing them to rank and retain reliable instances while discarding
trivial or inconsistent ones. The resulting verifiable dataset (problems, tests, and strong solutions)
supports training in diverse tasks.

We demonstrate that EvoSyn is both effective and generalizable. Through its evolutionary process,
EvoSyn continuously discovers novel and increasingly powerful strategies over iterations. We
showcase representative examples and provide a detailed analysis of how strategy quality improves
as the number of evolutionary rounds increases. Next, we validate EvoSyn on model training.
On LiveCodeBench (Jain et al., 2024), we conduct RLVR training, and EvoSyn-generated data
significantly improve the performance of LLaMA-3.1 (Grattafiori et al., 2024) and Qwen3 (Yang
et al., 2025) models, outperforming raw synthetic baselines and providing more effective training
dynamics. On the challenging AgentBench-OS benchmark, we choose the representative model
distillation method, EvoSyn also yields substantial gains, enabling distilled models to surpass not
only random baselines but also their teacher model (DeepSeek-R1 (Guo et al., 2025)).

Our main contributions are:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

• We introduce Evolutionary Data Synthesis (EvoSyn), a general framework for synthesizing
verifiable data. EvoSyn automatically evolves a superior data filterering strategies for the given task,
enabling the construction of reliable synthetic datasets.

• We provide a detailed study of EvoSyn’s evolutionary process, demonstrating its effectiveness,
generalizability, and cost trade-offs.

• We validate EvoSyn on two important training paradigms, RLVR and model distillation, showing
that EvoSyn-generated data yields substantial improvements over baselines.

2 RELATED WORK

Verifiable learning Verifiable learning leverages executable or checkable feedback to supervise
model training and spans both RL with verifiable rewards (RLVR) (Lambert et al., 2025) and
supervised fine-tuning/distillation. In RLVR (Schulman et al., 2017; Shao et al., 2024b; Guo et al.,
2025; OpenAI, 2024; Yang et al., 2025), correctness signals from program execution, unit tests,
or other deterministic checkers stabilize training and markedly enhance reasoning ability. Beyond
RLVR, teacher outputs can be filtered by execution in model distillation (Kim et al., 2025); and
self-training pipelines such as RFT, STaR, and ReST (Singh et al., 2023; Zhang et al., 2024; Zelikman
et al., 2022) rely on correctness signals to retain useful data. Verification feedback also constructs
preference data for DPO (Hosseini et al., 2024; Lai et al., 2024; Rafailov et al., 2024) and improves
reward models (Wang et al., 2023).

Data synthesis Synthesizing verifiable data is critical yet challenging (Liu et al., 2024; Long et al.,
2024; Nadăs, et al., 2025). In practice, high-quality data for executably-checkable data often require
broad-coverage unit tests (Chen et al., 2022a; Wang et al., 2025), program-analysis tooling (Liang
et al., 2025), or carefully curated exemplars (Shao et al., 2024a). Such task-specific heuristics incur
high manual costs and transfer poorly to complex real-world reasoning tasks (Fandina et al., 2025;
Jimenez et al., 2023; Zhang et al., 2025a; Li et al., 2024). Hallucination further undermines reliability,
making robust verification artifacts themselves a central bottleneck (Long et al., 2024).

3 METHODOLOGY

To address the inherent unreliability of synthetic data, we propose a new approach, Evolutionary
Data Synthesis (EvoSyn). EvoSyn targets executably-checkable tasks that satisfy two conditions: (1)
correctness can be decided by executable “testing” artifacts (e.g., unit tests, checkers, environment
assertions) that deterministically accept or reject candidate solutions; and (2) such testing artifacts can
be authored without first producing a correct solution (e.g., via specifications, invariants, metamorphic
relations, equivalence classes, boundary/edge cases). As illustrated in Figure 1, EvoSyn consists of
three core stages: (1) Deriving data filtering strategy: deriving a reliable strategy using evolutionary
algorithms. (2) Data synthesis and filtering: synthesizing data and filtering them with the derived
strategy. (3) Model training: training models on the filtered synthetic data. The objective of EvoSyn
is to establish a effective and automated mechanism that systematically enhances the reliability of
synthetic data.

3.1 DERIVING DATA FILTERING STRATEGY

In the context of synthetic data, the central challenge is creating effective testing mechanisms that can
reliably verify candidate solutions. A high-quality data instance typically consists of two components:
a problem description and its corresponding testing set. Producing reliable testings is highly difficult
because testings must not only reflect an understanding of the problem but also need to steadily
distinguish correct from incorrect solutions. If a testing cannot differentiate solution quality, the
instance becomes unreliable even if the problem itself appears well-formed. Therefore, improving
the reliability of testings is the central focus of our method.

We require filtered data to satisfy two conditions: (1) the problem must be solvable, and (2) the
testing must reliably distinguish correct from incorrect solutions. In practice, the second condition is
more challenging. Reliable testings must consistently and correctly distinguish between correct and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Different methods for
calculating Testing scores

Evaluates the quality and Ranks
Solutions & Testing

Optimized Strategy (Function)

Initial Strategy (Heuristic)

1. Solutions pass more testing
2. Testing validates more solutions

…

Different ways for calculating
Solution scores

Increase the standardization of
Solution & Testing scores

Metric 1

Best solution must correctly
pass the human-annotated
testing

Metric 2

Both the best and the worst
solutions must exhibit consistent
behavior.

Save the historical programs and
their corresponding scores

Programs Database

Evaluator scoresLLM improves programs

Figure 2: Given an initial strategy, the evolutionary algorithm iteratively optimizes it across multiple
iterations. Each newly generated strategy is evaluated against our two criteria to determine its
effectiveness. The model autonomously explores diverse optimization approaches, ensuring a balance
between exploration and exploitation throughout the process.

wrong solutions, whereas proving that a problem is solvable only requires the existence of at least
one solution that passes. Hence, reliability is the cornerstone of strategy design and optimization. We
note that the core issue is how to select the best possible testing case from a theoretically unbounded
set of generated candidates. To address this, we model the filtering strategy as a ranking function.
The inputs to this function are a set of solutions and a set of testings, and the output is a ranked list of
solutions (optional) and testings. The top-ranked testing in this list is then selected as the final filtered
testing. By replacing the traditional filtering paradigm, which evaluates a single test and reduces it to
a boolean decision, with a ranking based formulation, we are able to more effectively leverage the
model’s theoretically unlimited generative capacity. The ranking mechanism allows testings to be
compared against one another, enabling the selection of the most optimal testing among a large pool
of candidates. To derive such a strategy, we leverage seed data with human-annotated problems and
testings. A relatively strong model is tasked with generating multiple candidate solutions for each
problem, as well as additional testings based only on the problem description. These solutions and
testings serve as inputs to the filtering strategy, which outputs a ranked list of solutions (optional) and
testings.

Algorithm 1: LLM-driven Evolutionary Process
Define :Database D, LLMM, Evaluator E ,

PromptBuilder S, Max Iterations N
Output :The best program pbest
for n← 1 to N do

// Sample parent and inspirations
(pparent, n)← D.sample();
// Construct the prompt
prompt← S.build(pparent, n);
// Generate modification (diff)
δ ←M.generate(prompt);
// Apply diff to get child program
pchild ← ApplyDiff(pparent, δ);
// Evaluate the child program
R← E .execute(pchild);
// Store result back to database
D.add(pchild, R);

return D.best()

The next question is how to obtain an op-
timally effective strategy function or pro-
gram. Inspired by the success of Novikov
et al. (2025), we adopt an evolutionary al-
gorithm to iteratively improve the strategy.
Evolutionary algorithms can balance explo-
ration and exploitation. Following Novikov
et al. (2025) and Sharma (2025), our imple-
mentation combines the MAP-Elites algo-
rithm (Mouret & Clune, 2015) with island-
based population models (Romera-Paredes
et al., 2024; Tanese, 1989), enabling opti-
mization over user-defined feature dimen-
sions while maintaining population diver-
sity. The overall workflow of the evolu-
tionary algorithm is shown in Algorithm
1. After initializing the program to be opti-
mized, the algorithm constructs a Database
that maintains multiple islands, each containing a population of candidate programs. In addition, the
Database tracks a set of elite programs across islands. Importantly, the selection of elite programs con-
siders not only evaluation scores but also factors such as code complexity, ensuring diversity within
the population. During each evolutionary iteration, the algorithm simulates human-like evolution:
it selects a parent program and provides it to the LLM for modification, together with several elite
programs used as inspirations. Concretely, a PromptBuilder composes these historical programs into
a structured prompt, which is then fed to the model to produce a new child program. The resulting
child program is evaluated by an evaluator, which computes the consistency score described earlier.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

This score serves as the performance indicator for the new program. The Database is then updated
accordingly, and, after all evolutionary steps are complete, the algorithm returns the highest-scoring
program as the final result. We design a initial strategy which need not be optimal according to
two intuitive principles: (1) solutions that pass more testings are considered better; (2) testings that
validate more solutions are considered better. Although this initialization is imperfect, for example,
a testing that passes all solutions is likely uninformative, it suffices to bootstrap the evolutionary
process, which will refine and correct such limitations. The evolutionary process also requires an
evaluator, whose role is to assess strategy quality with respect to user-defined criteria. We define
a good strategy as one that ranks testings in close agreement with human-annotated testings on
seed data across diverse candidate solutions. Specifically, the method for evaluating the quality of a
strategy includes two strict criteria:

• Criterion-1: the top-ranked solution produced by the strategy must correctly pass the
human-annotated testing in the seed data.

• Criterion-2: for the ranked solutions, both the best and the worst solutions must exhibit
consistent behavior on the annotated testing and on the best testing selected by the strategy. vs Figure
2 illustrates the actual workflow of our core method. Starting from an initial strategy, in each iteration
the model explores various ways to obtain a better filtering strategy. From analyzing several relatively
high-scoring strategies, we observe that the model explores multiple directions, such as refining the
computation of solution quality and experimenting with different weighting schemes for testing. After
each attempt, the evaluator assesses whether the new strategy satisfies our two predefined criteria on
every instance in the seed data, and the proportion of satisfied cases is then used as the final score of
the strategy, guiding the next round of evolution and refinement.

Remarkably, the evolutionary process yields multiple elegant and effective strategies. Figure 10
presents the best strategy evolved by model. The strategy scores each solution by the number of tests
it passes, while testing scores are based on discriminative power (i.e., the gap between solutions’ score
that pass and fail), with both solution and testing scores normalized before computing discriminative
power. Apart from this best one, model could explore various ways of computing testing scores.
For example, TF-IDF-like approach: solutions that pass difficult testings receive higher scores,
where difficulty is defined as testings passed by only few solutions; Coverage-based approach:
solutions are rewarded simply for passing more testings, while testing quality is measured by its
discriminative power (i.e., the score gap between solutions that pass and those that fail); Inverse
filtering approach: contrary to the initial strategy, testings that fewer solutions can pass are considered
better; Exclusion-based approach: the contribution of a testing is measured without its own influence,
by weighting solutions that pass all other testings and Hardness-Aware approach: solutions are
ranked by test strictness and pass count, penalizing all-or-none tests to select the strongest solution
and most discriminative tests. The details of these strategies are illustrated in the Appendix A.3.

These evolved strategies demonstrate strong internal logic and significantly improve upon manually
designed baselines, showing that evolutionary search can efficiently discover high-quality filtering
strategies.

3.2 DATA SYNTHESIS AND FILTERING

With a robust filtering strategy in place, we proceed to data synthesis and filtering. Specifically, we
first synthesize new problems to replace the human-annotated seed data. To ensure the generated
problems are compatible with the filtering strategy, we provide seed instances as in-context examples
to guide problem generation. After deduplication, the synthesized problems form a new set D. For
each problem in D, we generate M candidate solutions and N candidate testings, which serve as
inputs to the filtering strategy. The strategy ranks both solutions and testings. We then perform a
final filtering step called Zero-Variance Pruning: we discard instances in which the testings yield no
ranking variation. Such cases typically indicate either unreliable testings or trivial problems where all
testings perform equally well. In both scenarios, discarding the instance is justified.

3.3 MODEL TRAINING

Following the above steps, we obtain a reliable synthetic dataset containing problem descriptions
and their associated testings. As a byproduct, we also retain the strongest solutions generated by

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

the model. This dataset can be leveraged in various training paradigms, such as RLVR and model
distillation, thereby boosting downstream model performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

This section presents a comprehensive set of experiments designed to validate the effectiveness of
our proposed method. To address the specific challenge of verifiable problem synthesis, which is
the core focus of our work, we conduct evaluations on two distinct and representative benchmarks:
LiveCodeBench (Jain et al., 2024) and AgentBench-OS (Liu et al., 2023). LiveCodeBench is a
highly challenging coding task benchmark, featuring a continuously updated collection of difficult
programming problems. It has recently garnered significant attention within the large language model
community due to its focus on real-time problem-solving capabilities. AgentBench-OS is a subset of
the AgentBench benchmark, specifically designed to evaluate a model’s performance in a realistic
operating system environment. This benchmark assesses a model’s ability to act as an intelligent
agent and execute code to complete given tasks. The final performance is rigorously verified through
a series of predefined tests.

To validate the effectiveness of our method, we conduct experiments on two representative training
paradigms: reinforcement learning with verifiable rewards (RLVR) (Guo et al., 2025) and model
distillation. Considering both cost and task complexity, we employ DeepSeek-V32 and DeepSeek-R1
as teacher models for the two tasks, respectively. The teacher model is responsible for the entire
data synthesis pipeline, including the filtering strategy and data generation. During the evolutionary
process for each task, we synthesize M = 16 solutions and their corresponding testing for every
problem instance. The maximum number of evolutionary iterations is set to 20.

(a) Evolutionary process over 20 iterations. (b) Effect of different (M,N).

Figure 3: Evolutionary process and data-retention trade-off. (a) The evolutionary process consistently
discovers stronger strategies, with the best strategy surpassing the initialization by over 10 percentage
points within 20 iterations. Score denotes the ratio of seed data instances for which consistency
verification is satisfied. (b) Increasing the number of M and N yields more usable, verifiable instances
but incurs O(MN) testing execution cost.

4.2 EVOLUTIONARY PROCESS

In this set of experiments, we use the LivecodeBench task as an example to illustrate the effectiveness
of our core evolutionary method in the data synthesis process. As shown in Figure 3a, within the limit
of 20 evolutionary iterations, and after excluding a few strategies that contained bugs, we frequently
observe strategies outperforming the initial baseline. In particular, the best strategy exceeds the initial
one by more than 10 percentage points, demonstrating both the model’s ability to explore diverse
strategies and the effectiveness of applying evolutionary algorithms to this problem. Moreover, the

2Due to the excessively long chains-of-thought (CoT) produced by DeepSeek-R1 on algorithmic problems,
which lead to slow inference, we use DeepSeek-V3 as the teacher model for the LiveCodeBench task. We also
observe poor performance in instruction following during question generation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

overall trend of the evolutionary process shows a steady upward trajectory. This suggests that, with
more iterations, there is a strong potential to discover even better filtering strategies to guide data
synthesis, highlighting the feasibility of our approach.

Ablation study 1: Impact of M and N However, better strategies also imply stricter filtering
standards. To investigate this, we apply the best evolved strategy to data synthesis while varying
the value of M and N . The choice of M and N has a significant impact on synthesis cost, since
our method requires generating M solutions and N testings, followed by M ∗N executions. This
quadratic growth in cost makes it crucial to understand the relationship between (M,N) and the
amount of usable data ultimately obtained. As shown in Figure 3b, when applying to the same
set of 1,250 problems, using M = N = 4, M = N = 8, and M = N = 16 produces markedly
different amounts of usable data. The reason is straightforward: with fewer samples, the likelihood of
obtaining diverse solutions and testings decreases, making it harder to generate varied feedback and,
consequently, to verify reliability.

Table 1: Consistency validation on M = 16 so-
lutions. We vary K and validate the same strat-
egy using the top-K and bottom-K solution sub-
sets. Adding Criterion-1 at K=1 yields the
strictest check while requiring 8× fewer execu-
tions (#Exec=4 vs. 32) than omitting it at K=8.
Increasing K alone shows diminishing returns.

K Criterion-1 Score #Exec

1 No 0.589 4
2 No 0.554 8
4 No 0.536 16
8 No 0.536 32

Ours
1 Yes 0.482 4
8 Yes 0.482 32

Ablation Study 2: Is Consistency Validation
Sufficient with Only the Best and Worst So-
lutions? Recalling our two evaluation criteria
for strategy assessment: Criterion-1, the
best solution must be correct; Criterion-2
the performance of the best and worst solutions
must agree on both the human-annotated test
set and the strategy-selected best test. A natural
question arises: are these criteria sufficient? To
investigate, we vary the number of solutions
used for evaluating a same strategy (we use
the initial strategy as an example) and choos-
ing M = 16, considering the best and worst
K solutions with K = 1, 2, 4 and K = 8 (i.e.,
M/2). As shown in Table 1, increasing K in-
deed strengthens the evaluation criteria, reflects
in lower overall scores. However, two observa-
tions emerge. First, the stricter constraint does
not scale linearly with K: validating more solutions does not necessarily yield proportionally more
accurate evaluations, largely due to randomness in solution sampling. Second, our setting combining
the two criteria with K = 1, is in fact stricter than the K = 8 case, achieving both higher accuracy
and significantly greater efficiency.

In our experiments, although the proposed method is in principle capable of generating unlimited
data and producing highly reliable testings, from Figure 3b, we observe a log-linear relationship
between the number of usable data instances and the number of testing executions. The underlying
reason lies in the difficulty of controlling the diversity of model outputs. Low diversity inevitably
requires larger values of M and N , which substantially increases the cost. In future work, we aim to
further investigate methods to enhance output diversity while reducing synthesis costs. In addition,
practical bottlenecks such as slow model inference, time-intensive unit test verification, and costly
environment setup further constrain the scalability of our data synthesis. We therefore adopt N = 16,
yielding over 200 instances for LiveCodeBench and over 600 instances for AgentBench-OS. Despite
this relatively small scale, training on these data still leads to substantial performance improvements.

4.3 PROBLEM-LEVEL ANALYSIS OF OUR DATASETS

Before verifying that our method can effectively filter out reliable and discriminative testings, we
first examine the problem-level characteristics of the filtered datasets, including diversity/coverage
and difficulty. For diversity and coverage, we compute the distribution of cosine similarities within
both the filtered datasets and the original test sets for each task. We obtain embeddings using
Qwen3-Reranker-0.6B (Zhang et al., 2025b), which allows us to assess how concentrated or diverse
each dataset is. For difficulty, we evaluate Qwen3-8B, Qwen3-4B and Llama3.1-8B on both the
original test sets and the filtered training sets. The resulting model scores serve as an indicator of the
relative difficulty of each dataset. As shown in Figure 4, the filtered datasets exhibit a high degree of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Qwen3-4B Qwen3-8BLlama3.1-8B
Models

0

5

10

15

20

25

Ac
cu

ra
cy 17.9 16.5

1.6

24.0 25.0

3.9

(a) LiveCodeBench - Difficulty

0.0 0.1 0.2 0.3
Cosine Distance

0

5

10

15

D
en

si
ty

(b) LiveCodeBench - Diversity

Qwen3-4B Qwen3-8BLlama3.1-8B
Models

0.0

0.5

1.0

1.5

2.0

Ac
cu

ra
cy

1.0 1.0 1.0

1.7

2.0

1.6

(c) AgentBench-OS - Difficulty

0.0 0.1 0.2 0.3
Cosine Distance

0

2

4

6

8

10

12

D
en

si
ty

(d) AgentBench-OS - Diversity

LiveCodeBench Original LiveCodeBench Filtered AgentBench-OS Original AgentBench-OS Filtered

Figure 4: A comparison of the filtered datasets and the original datasets, at the problem level, in terms
of diversity and difficulty for both tasks.

consistency with the original datasets in terms of problem diversity and coverage, displaying similarly
broad distributions. Regarding problem difficulty, although the filtered datasets are somewhat easier
than the original ones across different models, they remain highly challenging and leave substantial
room for improvement. This ensures that, during training, the model does not encounter problems
that are overly simple or insufficient to drive meaningful performance gains.

4.4 EVOSYN FOR RLVR

This set of experiments demonstrates that synthetic data generated with our method can effectively
improve model performance in the RLVR task. We construct three data settings based on 51 seed
instances:

• DEvoSyn: Data filtered using our proposed data filtering strategy.

• Drandom: Data with exactly the same problems as DEvoSyn, but instead of using the filtering
strategy, we randomly select one testing from the N candidates as the final testing.

• DEvoSynrelaxed

: Data obtained by relaxing the Zero-Variance Pruning, to investigate the necessity
of our method’s final filtering condition, which excludes instances that have not undergone ranking.

In particular, we analyze the number of unit tests per synthesized data in DEvoSyn. As shown in
Figure 9, the synthesized data contain an average of 11.5 unit tests, including various edge cases
such as extremely long inputs. To mitigate the strong dependency on long-context capability imposed
by such edge cases, we further adjust the testing generation process: instead of asking the model to
directly produce unit tests, we require it to output code from which unit tests can be constructed. This
not only preserves the diversity of unit tests but also ensures that the number of tests per problem
remains sufficiently large.

Table 2: RLVR results on LiveCodeBench: Training on EvoSyn-filtered data (DEvoSyn) consistently
improves accuracy across models, outperforming random selection (Drandom) and the relaxed variant
(DEvoSynrelaxed

). ∆ denotes absolute gain over the baselines.

Model Data Setting Dataset Size Accuracy ∆

Baseline
DeepSeek-V3 - - 36.3 -
Qwen3-4B - - 17.0 -
Llama-3.1-8B - - 1.6 -
Qwen3-8B - - 16.5 -

RLVR Models
Qwen3-4B DEvoSyn 231 22.0 +5.0
Qwen3-4B Drandom 231 19.9 +2.9
Llama-3.1-8B DEvoSyn 231 15.7 +14.1
Llama-3.1-8B Drandom 231 11.1 +9.5
Qwen3-8B DEvoSyn 231 24.8 +8.3
Qwen3-8B Drandom 231 21.1 +4.6

Qwen3-8B DEvoSynrelaxed

256 24.4 +7.9

Results We conduct reinforcement learning experiments on Qwen3-8B, Qwen3-4B, and Llama-
3.1-8B using GRPO. As shown in Table 2, training on our synthesized dataset DEvoSyn consistently

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

yields significant performance gains across all models. Notably, on Llama-3.1-8B, we observe a
substantial improvement of 14.1%. This demonstrates the effectiveness of our method in synthesizing
reliable data.

(a) Llama-3.1-8B (b) Qwen3-8B (c) Qwen3-4B

Figure 5: RLVR reward curves comparison across models. EvoSyn-filtered data (DEvoSyn) yields
faster, steadier reward growth than random selection (Drandom).

Ablation Study 3: What drives this advantage? To further demonstrate the effectiveness of our
method, we compare it against randomly synthesized data without filtering. As shown in Table 2,
although training with randomly synthesized data on Qwen3-8B also yields some improvement,
indicating that a portion of the data is indeed learnable, the performance still lags significantly
behind that achieved with our filtered dataset. This result can be further analyzed through the reward
dynamics during training. As illustrated in Figure 5, training on DEvoSyn exhibits a steady and
meaningful increase in reward, whereas training on Drandom struggles to achieve consistent reward
growth. This comparison highlights that the data constructed by our method is substantially more
learnable for the model.

Ablation Study 4: Is the Zero-Variance Pruning necessary? In addition, we analyze the differ-
ences between DEvoSyn and DEvoSynrelaxed

. By design, DEvoSyn is a strict subset of DEvoSynrelaxed

.
We manually examine the 25 additional instances present to DEvoSynrelaxed

but not in DEvoSyn, and
find that nearly all of them were overly simple problems. On average, their solution code lengths are
only a dozen lines, and in some cases, the M solutions sampled at temperature 1.0 are completely
identical.

Table 3: Model distillation results on AgentBench-
OS: EvoSyn-filtered data (DEvoSyn) yields large
gains across students, outperforming random selec-
tion (Drandom). Remarkably, all students exceed
the teacher (DeepSeek-R1, 30.1).

Model Data Setting Accuracy ∆

Baseline
DeepSeek-R1 - 30.1 -
Qwen3-4B - 1.0 -
Llama-3.1-8B - 1.0 -
Qwen3-8B - 1.0 -

Distilled Models
Qwen3-4B DEvoSyn 40.0 +39.0
Qwen3-4B Drandom 36.0 +35.0
Llama-3.1-8B DEvoSyn 37.6 +36.6
Llama-3.1-8B Drandom 22.0 +21.0
Qwen3-8B DEvoSyn 44.9 +43.9
Qwen3-8B Drandom 32.8 +31.8

This observation validates the rationale behind
the Zero-Variance Pruning in our method, which
removes overly simple problems that provide
little value for model learning. Such trivial prob-
lems are particularly problematic for the RLVR
paradigm, as they prevent proper computation
of the advantage. Selected example is provided
in the Appendix A.4.

4.5 EVOSYN FOR MODEL DISTILLATION

Model distillation has been widely adopted in
the field due to its effectiveness and high effi-
ciency, making it a powerful alternative to re-
inforcement learning, especially when the lat-
ter’s training costs become prohibitive. Similar
to RLVR, this method critically depends on a
high-quality set of problems and reliable test-
ings. This robust evaluation mechanism is essen-
tial for accurately filtering the correct responses
from a teacher model. In this experiment, we select the AgentBench-OS task, which is a highly
realistic agent task requiring multi-turn, complex reasoning. These abilities are often a significant
weakness for many models, particularly smaller ones. Due to the task’s complex environment setup
(the need for isolated Docker environments), the associated costs are prohibitively high, making
RLVR-based training difficult. Therefore, we experimentally validate the effectiveness of our pro-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

posed method within a model distillation pipeline. We use OpenHands (Wang et al., 2024) as the
agent framework for our models. We filter the original AgentBench-OS dataset due to the presence of
samples with stringent time requirements or permission issues. From the initial 144 data points, we
retain 129, which are subsequently used as both the evaluation set and the seed data for our proposed
method. This curation process ensures the reliability and reproducibility of our experimental results
by focusing on a stable and accessible subset of the benchmark.

Results Based on our method, we synthesize 673 data instances and obtain the corresponding
outputs from DeepSeek-R1. Using this synthetic dataset, we train Qwen3-4B, Llama-3.1-8B, and
Qwen3-8B. As shown in Table 3, all models exhibit substantial performance improvements after
training. This not only highlights the weaker baseline performance of smaller models on complex,
multi-turn, long-chain reasoning tasks but also clearly demonstrates the effectiveness of our synthetic
data generation method. Furthermore, training on data synthesized by our method significantly
outperforms training on randomly synthesized data, indicating that our approach is more effective at
filtering usable data in complex, real-world agent tasks.

4.6 COMPARISON WITH BASELINES

We selected two representative baselines for comparison: LLM-as-a-Judge (Jiang et al., 2025)
and CodeT (Chen et al., 2022b). Using an LLM as the source of evaluation signals has recently
demonstrated strong performance across a wide range of tasks. In our setting, we provide the LLM
with fine-grained testing evaluation criteria and require it to assign a score on a 100-point scale.
CodeT is a representative method that identifies the best candidate through cross-execution, with
its core grounded in a dual execution consistency algorithm. It relies on two key assumptions: 1.
generated code solutions and test cases are independent and randomly sampled; and 2. the probability
that two incorrect solutions coincidentally exhibit functional consistency is extremely low. CodeT
evaluates solutions by identifying clusters of solutions that pass the same subset of testings, and uses
the size of these clusters as the primary scoring metric.
Table 4: Comparison with baselines on LiveCodeBench and AgentBench-OS, including LLM-as-a-
Judge and CodeT. Our method significantly outperforms the baselines on both tasks.

Model LiveCodeBench AgentBench-OS Avg. ∆
Qwen3-8B Qwen3-4B Llama-3.1-8B Qwen3-8B Qwen3-4B Llama-3.1-8B

Baseline 16.5 17.0 1.0 1.0 1.0 1.0
Random 21.1 19.9 11.1 32.8 36.0 22.0 17.6
LLM-as-a-Judge 21.6 17.7 12.7 40.6 36.4 28.4 20.0
CodeT 22.4 16.8 15.1 43.3 39.1 27.2 21.1
EvoSyn 24.8 22.0 15.7 44.9 40.0 37.6 24.6

For each baseline, we applied its filtering procedure to the exact same synthetic dataset with our
method, producing filtered datasets of identical size. We then trained models on these datasets using
the same training configuration as in our method, and finally evaluated all models under identical
testing conditions. We also include the results under the random setting here for comparison. As
shown in Table 4, our method significantly outperforms the baselines on both tasks, indicating that
our method is more effective at filtering usable data from large amount of synthetic data.

5 CONCLUSION

We introduce EvoSyn, a task-agnostic evolutionary data synthesis framework that focuses on syn-
thesizing verifiable data for executably-checkable tasks by evolving robust filtering strategies from
minimal seed supervision via a consistency-based evaluator. By turning ad hoc filtering into principled
strategy optimization, EvoSyn assembles coherent, verifiable training instances that transfer across
domains. On LiveCodeBench (RLVR) and AgentBench-OS (distillation), training on EvoSyn-filtered
data yields substantial gains and superior learning dynamics across Llama-3.1-8B and Qwen3-4B/8B,
with distilled students surpassing the teacher on complex multi-turn agentic tasks. Ablations confirm
the value of strategy evolution and Zero-Variance Pruning, and characterize cost–quality trade-offs
in M ∗ N execution. Limitations include verification/execution cost and output-diversity bottle-
necks. Future work will scale population search, improve diversity-aware generation, and broaden
verification tooling and domains.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests. arXiv preprint arXiv:2207.10397, 2022a.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan, Zeqi Lin, Jian-Guang Lou, and Weizhu Chen.
Codet: Code generation with generated tests, 2022b. URL https://arxiv.org/abs/2207.
10397.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze Luo, Xinze Li, Guizhen Chen, Wenhan Xia,
Junjie Hu, Anh Tuan Luu, and Shafiq Joty. Data augmentation using large language models: Data
perspectives, learning paradigms and challenges, 2024. URL https://arxiv.org/abs/
2403.02990.

Ora Nova Fandina, Eitan Farchi, Shmulik Froimovich, Rami Katan, Alice Podolsky, Orna Raz, and
Avi Ziv. Automated validation of llm-based evaluators for software engineering artifacts. arXiv
preprint arXiv:2508.02827, 2025.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Junliang He, Ziyue Fan, Shaohui Kuang, Li Xiaoqing, Kai Song, Yaqian Zhou, and Xipeng Qiu.
FiNE: Filtering and improving noisy data elaborately with large language models. In Luis
Chiruzzo, Alan Ritter, and Lu Wang (eds.), Proceedings of the 2025 Conference of the Nations
of the Americas Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pp. 8686–8707, Albuquerque, New Mexico, April 2025.
Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.
naacl-long.437. URL https://aclanthology.org/2025.naacl-long.437/.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Hongchao Jiang, Yiming Chen, Yushi Cao, Hung yi Lee, and Robby T. Tan. Codejudgebench:
Benchmarking llm-as-a-judge for coding tasks, 2025. URL https://arxiv.org/abs/
2507.10535.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Minwu Kim, Anubhav Shrestha, Safal Shrestha, Aadim Nepal, and Keith Ross. Reinforcement
learning vs. distillation: Understanding accuracy and capability in llm reasoning. arXiv preprint
arXiv:2505.14216, 2025.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xiangru Peng, and Jiaya Jia. Step-dpo: Step-
wise preference optimization for long-chain reasoning of llms. arXiv preprint arXiv:2406.18629,
2024.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training, 2025. URL https://arxiv.org/
abs/2411.15124.

11

https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2207.10397
https://arxiv.org/abs/2403.02990
https://arxiv.org/abs/2403.02990
https://aclanthology.org/2025.naacl-long.437/
https://arxiv.org/abs/2507.10535
https://arxiv.org/abs/2507.10535
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software
development. CoRR, 2024.

Qingyuan Liang, Zhao Zhang, Zeyu Sun, Zheng Lin, Qi Luo, Yueyi Xiao, Yizhou Chen, Yuqun
Zhang, Haotian Zhang, Lu Zhang, et al. Grammar-based code representation: Is it a worthy pursuit
for llms? arXiv preprint arXiv:2503.05507, 2025.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
Peng, Diyi Yang, Denny Zhou, et al. Best practices and lessons learned on synthetic data. arXiv
preprint arXiv:2404.07503, 2024.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Lin Long, Rui Wang, Ruixuan Xiao, Junbo Zhao, Xiao Ding, Gang Chen, and Haobo Wang.
On llms-driven synthetic data generation, curation, and evaluation: A survey. arXiv preprint
arXiv:2406.15126, 2024.

Jean-Baptiste Mouret and Jeff Clune. Illuminating search spaces by mapping elites. arXiv preprint
arXiv:1504.04909, 2015.

Mihai Nadăs, , Laura Dios, an, and Andreea Tomescu. Synthetic data generation using large language
models: Advances in text and code. IEEE Access, 2025.

Alexander Novikov, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wag-
ner, Sergey Shirobokov, Borislav Kozlovskii, Francisco JR Ruiz, Abbas Mehrabian, et al. Alphae-
volve: A coding agent for scientific and algorithmic discovery. arXiv preprint arXiv:2506.13131,
2025.

OpenAI. Learning to reason with llms, 2024. URL https://openai.com/index/
learning-to-reason-with-llms/.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yunfan Shao, Linyang Li, Yichuan Ma, Peiji Li, Demin Song, Qinyuan Cheng, Shimin Li, Xiaonan
Li, Pengyu Wang, Qipeng Guo, et al. Case2code: Scalable synthetic data for code generation.
arXiv preprint arXiv:2407.12504, 2024a.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024b.

Asankhaya Sharma. Openevolve: an open-source evolutionary coding agent, 2025. URL https:
//github.com/codelion/openevolve.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains, 2025.
URL https://arxiv.org/abs/2503.23829.

12

https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://github.com/codelion/openevolve
https://github.com/codelion/openevolve
https://arxiv.org/abs/2503.23829

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Reiko Tanese. Distributed genetic algorithms for function optimization. University of Michigan,
1989.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Y Wu, and Zhifang
Sui. Math-shepherd: A label-free step-by-step verifier for llms in mathematical reasoning. arXiv
preprint arXiv:2312.08935, 2023.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, et al. Openhands: An open platform for ai software
developers as generalist agents. arXiv preprint arXiv:2407.16741, 2024.

Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality test
case generation for competitive programming. arXiv preprint arXiv:2506.05817, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao Huang.
Does reinforcement learning really incentivize reasoning capacity in llms beyond the base model?,
2025. URL https://arxiv.org/abs/2504.13837.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-mcts*: Llm
self-training via process reward guided tree search. arXiv preprint arXiv:2406.03816, 2024.

Linghao Zhang, Shilin He, Chaoyun Zhang, Yu Kang, Bowen Li, Chengxing Xie, Junhao Wang,
Maoquan Wang, Yufan Huang, Shengyu Fu, et al. Swe-bench goes live! arXiv preprint
arXiv:2505.23419, 2025a.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren Zhou. Qwen3 embedding: Advanc-
ing text embedding and reranking through foundation models. arXiv preprint arXiv:2506.05176,
2025b.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data.
arXiv preprint arXiv:2505.03335, 2025.

13

https://arxiv.org/abs/2504.13837

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROMPTS

This subsection provides the exact prompts used in our synthesis pipeline. We include the Live-
CodeBench testing prompt and the AgentBench-OS prompts (There are two different types of
responses, and we provide separate prompts for each type). They can be used to reproduce our data
generation and to inspect task-specific constraints and formatting requirements.

I will give you a natural language description of a programming problem and you need to generate unit tests that
cover all edge cases of the problem.
Good unit tests should cover all inputs that are mentioned in the problem description, as well as any unique edge
cases that might not be obvious to the user.
The description of the problem might contains some simple unit test examples, but they are not enough to verify
the correctness of the solution. So you should refer to them to generate more comprehensive unit tests.
The format of the unit tests should be a strict json dict which can be loaded by json.loads() in python. And the
structure of the json dict should be a list of dicts, like following:

```json
[
{
"input": "input1",
"output": "output1"
},
{
"input": "input2",
"output": "output2"
}
...
]
```
The type of the input or output value should follow the type of the input or output value in the problem
description strictly.
The unit tests you generated should contain all the edge cases that are mentioned in the problem description, and
they also should follow the json format of the example unit tests.
The unit tests you generated should follow the constraints of the problem description strictly.
Sometimes the input of unit test may be very long, you can use a simple python code to generate the input like
Problem 3, the python code must can be process by the eval() function in python.
You should try to maximize the quality and coverage of the unit tests, here are some examples of good unit tests:
Note: Problem might contain a start code block, if so, you should provide the input parameters strictly in
accordance with the signature of the function, like Problem 1. But if there is no start code block, unit tests
must not contains any input parameters, your input and output should be a string, like Problem 2.

{examples}

Now please generate the unit tests for the problem.

Problem
{problem}

Figure 6: Prompt for testing generation on LiveCodeBench.

Please give me the testing script for this task to get
the ground truth of the task.
The content you generate should be able to serve as the
content of an executable script. The execution result
of the testing script should be just the clean ground
truth of the task.
Please encapsulate your final testing script (script
content ONLY) within <testing> and </testing>.
For example: The testing script is <testing>
{qa_example} </testing>.

Problem
{description}

Environment Building Script
{init}

Figure 7: Prompt for testing generation on AgentBench-OS QA task.

A.2 UNIT-TEST COUNT DISTRIBUTION

We analyze the number of unit tests attached to each synthesized problem to characterize the strength
and granularity of our automated evaluation. Counts include both standard checks and long-input

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Please give me the testing script for this task to judge
the correctness of the agent\'s execution solution.
The content you generate should be able to serve as the
content of an executable script. The execution result of
the testing script should be just the boolean value of
the correctness of the agent\'s execution solution.
Testing should get the result or effect of the agent\'s
execution solution first and then get the ground truth
of the task.
Finally, testing should compare the result with the
ground truth and output the boolean value of the
correctness of the agent\'s execution solution.
Please encapsulate your final testing script (script
content ONLY) within <testing> and </testing>.

Problem
{description}

Environment Building Script
{init}

Figure 8: Prompt for testing generation on AgentBench-OS Execution task.

edge-case tests. The distribution is broad (mean 11.5 per problem), indicating heterogeneous coverage
and difficulty, which helps produce more stable and discriminative reward signals for ranking solutions
and selecting tests.

Figure 9: Unit-test count distribution per synthesized problem (mean 11.5); includes long-input edge
cases.

A.3 OPTIMIZED STRATEGIES

We outline several evolved scoring strategies that complement the best program in Figure 10:
TF-IDF-like weighting, coverage-based scoring, inverse filtering, exclusion-based attribution, and
hardness-aware ranking. Each aims to improve discriminative power and solution-ranking consistency
on seed data.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 10: The best strategy explored by model on LiveCodeBench.

Figure 11: TF-IDF-like approach. Solutions that pass difficult testings receive higher scores, where
difficulty is defined as testings passed by only a few solutions.

A.4 TRIVIAL PROBLEM

We manually examine the 25 additional instances present to DEvoSynrelaxed

but not in DEvoSyn, and
find that nearly all of them were overly simple problems. Here we provide one of the examples, the
quesiton is just a simple determination of whether some numbers are all even or not.

A.5 AI USAGE STATEMENT

AI tools were used solely to assist with writing and polishing the main manuscript text. All core
research content—including the ideas, problem formulation, methodology and algorithm design,
data synthesis framework, experimental design and execution, implementation, evaluation, and
analysis—was conceived, conducted, and validated exclusively by the authors. No AI systems were

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 12: Coverage-based approach. Solutions are rewarded simply for passing more testings, while
testing quality is measured by its discriminative power (i.e., the score gap between solutions that pass
and those that fail).

Figure 13: Inverse filtering approach. Contrary to the initial strategy, testings that fewer solutions can
pass are considered better.

involved in generating ideas, designing or running experiments, or producing any core research
results.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 14: Exclusion-based approach. The contribution of a testing is measured without its own
influence, by weighting solutions that pass all other testings.

Figure 15: Hardness-Aware approach. Solutions are ranked by test strictness and pass count,
penalizing all-or-none tests to select the strongest solution and most discriminative tests.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 16: An example of a trivial problem present in DEvoSynrelaxed

but not in DEvoSyn, containing
quesiton description and solution code.

19

	Introduction
	Related Work
	Methodology
	Deriving data filtering strategy
	Data synthesis and filtering
	Model training

	Experiments
	Experimental Setup
	Evolutionary Process
	Problem-level Analysis of our datasets
	EvoSyn for RLVR
	EvoSyn for Model Distillation
	Comparison with Baselines

	Conclusion
	Appendix
	Prompts
	Unit-test count distribution
	Optimized strategies
	Trivial problem
	AI Usage Statement

