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ABSTRACT

Reliable verifiable data has become a key driver of capability gains in modern
language models, enabling stable reinforcement learning with verifiable rewards
and effective distillation that transfers competence across math, coding, and agentic
tasks. Yet constructing generalizable synthetic verifiable data remains difficult
due to hallucination-prone generation, and weak or trivial verification artifacts
that fail to separate strong from weak solutions. Existing approaches often rely
on task-specific heuristics or post-hoc filters that do not transfer across domains
and lack a principled, universal evaluator of verifiability. In this work, we intro-
duce an evolutionary, task-agnostic, strategy-guided, executably-checkable data
synthesis framework that, from minimal seed supervision, jointly synthesizes
problems, diverse candidate solutions, and verification artifacts, and iteratively dis-
covers strategies via a consistency-based evaluator that enforces agreement between
human-annotated and strategy-induced checks. This pipeline upgrades filtering into
principled synthesis: it reliably assembles coherent, verifiable training instances
and generalizes without domain-specific rules. Our experiments demonstrate the
effectiveness of the proposed approach under both RLVR and model distillation
training paradigms. The results show that training with our synthesized data yields
significant improvements on both the LiveCodeBench and AgentBench-OS tasks,
highlighting the robust generalization of our framework1.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable potential across a wide range of
domains, particularly in complex reasoning tasks such as mathematics, programming, and real-world
agent applications. Recently, models like OpenAI-o1 and DeepSeek-R1 (Guo et al., 2025; OpenAI,
2024; Yang et al., 2025), after undergoing large-scale reinforcement learning, have shown significant
improvements on reasoning benchmarks (Yue et al., 2025; Su et al., 2025). However, as model
capabilities rapidly advance, their size continues to grow, and their demand for data is expanding at
an astonishing pace. In particular, recent training paradigms increasingly rely on a special class of
data—verifiable data.

Verifiable data provides reliable feedback signals during training, making it indispensable for many
approaches. For example, RLVR-style training methods and model distillation heavily rely on such
data (Schulman et al., 2017; Shao et al., 2024b; Zhao et al., 2025); DPO (Hosseini et al., 2024; Lai
et al., 2024) leverages feedback to construct positive and negative samples; and various self-training
methods such as STaR (Zelikman et al., 2022), V-STaR (Hosseini et al., 2024), and ReST (Singh et al.,
2023) all depend on correctness signals to filter useful examples. However, the stringent reliability
requirements of verifiable data make it extremely costly to annotate. Large-scale manual labeling is
simply infeasible, highlighting the growing importance of verifiable data in modern LLM training
pipelines.

Synthetic data offers a promising solution, but it remains imperfect (Liu et al., 2024; Long et al.,
2024; Nadăs, et al., 2025). Two persistent challenges limit its utility. First, reliability: hallucinations
remain a fundamental weakness of LLMs. While models can generate large volumes of data, ensuring
their reliability is nontrivial (Ding et al., 2024; He et al., 2025). How to make model-generated data

1We will release the code and data.
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more reliable or how to effectively filter trustworthy subsets from large synthetic corpora remains a
central challenge. Second, generalizability: Many existing solutions rely on task-specific, handcrafted
heuristics to guarantee data usability. For example, some studies validate correctness through syntax
checking (Wang et al., 2025). These approaches, however, often fail to generalize beyond the narrow
task domains they were designed for.

In this work, we focus on these two questions: how to obtain reliable, verifiable data, and how to
design a unified pipeline that generalizes across diverse tasks. We target the executably-checkable
data class, which is the major part of verifiable data. We propose a general-purpose framework
for synthesizing reliable data, called Evolutionary Data Synthesis (EvoSyn). Executably-checkable
tasks are a broad class of problems defined as those for which verification can be performed via
tests without requiring a complete solution. This class encompasses challenging real-world tasks,
such as coding and software engineering problems. In our experiments, we select representative
and high-difficulty tasks: the algorithmic LiveCodeBench (Jain et al., 2024) and the complex agent
task AgentBench-OS (Liu et al., 2023). The core idea of EvoSyn is to formulate the difficulty as a
data filtering strategy optimization task. Inspired by AlphaEvolve (Novikov et al., 2025), we employ
evolutionary algorithms to iteratively search for the optimal filtering strategy tailored to the current
task (Sharma, 2025; Romera-Paredes et al., 2024; Tanese, 1989). This strategy is then applied to
synthetic data, yielding a reliable, verifiable dataset. Unlike prior approaches that require handcrafted,
task-specific heuristics, EvoSyn automates this process: the model itself explores and evolves filtering
strategies, reducing manual effort while producing superior solutions. Crucially, EvoSyn introduces
a unified evaluation criterion for filtering strategies, which is task-agnostic. Instead of relying on
domain-specific signals, EvoSyn measures consistency score with a small set of manually verified
seed data, making it applicable to any verification task as long as minimal seed supervision is
available.

Figure 1: Overview of EvoSyn, a task-agnostic pipeline for synthesizing verifiable data. From a
small human-verified seed data, an evolutionary process discovers a data-filtering strategy via a
consistency-based evaluator; this strategy then guides synthesis by generating candidate solutions and
tests for new problems, cross-executing them to rank and retain reliable instances while discarding
trivial or inconsistent ones. The resulting verifiable dataset (problems, tests, and strong solutions)
supports training in diverse tasks.

We demonstrate that EvoSyn is both effective and generalizable. Through its evolutionary process,
EvoSyn continuously discovers novel and increasingly powerful strategies over iterations. We
showcase representative examples and provide a detailed analysis of how strategy quality improves
as the number of evolutionary rounds increases. Next, we validate EvoSyn on model training.
On LiveCodeBench (Jain et al., 2024), we conduct RLVR training, and EvoSyn-generated data
significantly improve the performance of LLaMA-3.1 (Grattafiori et al., 2024) and Qwen3 (Yang
et al., 2025) models, outperforming raw synthetic baselines and providing more effective training
dynamics. On the challenging AgentBench-OS benchmark, we choose the representative model
distillation method, EvoSyn also yields substantial gains, enabling distilled models to surpass not
only random baselines but also their teacher model (DeepSeek-R1 (Guo et al., 2025)).

Our main contributions are:
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• We introduce Evolutionary Data Synthesis (EvoSyn), a general framework for synthesizing
verifiable data. EvoSyn automatically evolves a superior data filterering strategies for the given task,
enabling the construction of reliable synthetic datasets.

• We provide a detailed study of EvoSyn’s evolutionary process, demonstrating its effectiveness,
generalizability, and cost trade-offs.

• We validate EvoSyn on two important training paradigms, RLVR and model distillation, showing
that EvoSyn-generated data yields substantial improvements over baselines.

2 RELATED WORK

Verifiable learning Verifiable learning leverages executable or checkable feedback to supervise
model training and spans both RL with verifiable rewards (RLVR) (Lambert et al., 2025) and
supervised fine-tuning/distillation. In RLVR (Schulman et al., 2017; Shao et al., 2024b; Guo et al.,
2025; OpenAI, 2024; Yang et al., 2025), correctness signals from program execution, unit tests,
or other deterministic checkers stabilize training and markedly enhance reasoning ability. Beyond
RLVR, teacher outputs can be filtered by execution in model distillation (Kim et al., 2025); and
self-training pipelines such as RFT, STaR, and ReST (Singh et al., 2023; Zhang et al., 2024; Zelikman
et al., 2022) rely on correctness signals to retain useful data. Verification feedback also constructs
preference data for DPO (Hosseini et al., 2024; Lai et al., 2024; Rafailov et al., 2024) and improves
reward models (Wang et al., 2023).

Data synthesis Synthesizing verifiable data is critical yet challenging (Liu et al., 2024; Long et al.,
2024; Nadăs, et al., 2025). In practice, high-quality data for executably-checkable data often require
broad-coverage unit tests (Chen et al., 2022a; Wang et al., 2025), program-analysis tooling (Liang
et al., 2025), or carefully curated exemplars (Shao et al., 2024a). Such task-specific heuristics incur
high manual costs and transfer poorly to complex real-world reasoning tasks (Fandina et al., 2025;
Jimenez et al., 2023; Zhang et al., 2025a; Li et al., 2024). Hallucination further undermines reliability,
making robust verification artifacts themselves a central bottleneck (Long et al., 2024).

3 METHODOLOGY

To address the inherent unreliability of synthetic data, we propose a new approach, Evolutionary
Data Synthesis (EvoSyn). EvoSyn targets executably-checkable tasks that satisfy two conditions: (1)
correctness can be decided by executable “testing” artifacts (e.g., unit tests, checkers, environment
assertions) that deterministically accept or reject candidate solutions; and (2) such testing artifacts can
be authored without first producing a correct solution (e.g., via specifications, invariants, metamorphic
relations, equivalence classes, boundary/edge cases). As illustrated in Figure 1, EvoSyn consists of
three core stages: (1) Deriving data filtering strategy: deriving a reliable strategy using evolutionary
algorithms. (2) Data synthesis and filtering: synthesizing data and filtering them with the derived
strategy. (3) Model training: training models on the filtered synthetic data. The objective of EvoSyn
is to establish a effective and automated mechanism that systematically enhances the reliability of
synthetic data.

3.1 DERIVING DATA FILTERING STRATEGY

In the context of synthetic data, the central challenge is creating effective testing mechanisms that can
reliably verify candidate solutions. A high-quality data instance typically consists of two components:
a problem description and its corresponding testing set. Producing reliable testings is highly difficult
because testings must not only reflect an understanding of the problem but also need to steadily
distinguish correct from incorrect solutions. If a testing cannot differentiate solution quality, the
instance becomes unreliable even if the problem itself appears well-formed. Therefore, improving
the reliability of testings is the central focus of our method.

We require filtered data to satisfy two conditions: (1) the problem must be solvable, and (2) the
testing must reliably distinguish correct from incorrect solutions. In practice, the second condition is
more challenging. Reliable testings must consistently and correctly distinguish between correct and
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Evaluator scoresLLM improves programs

Figure 2: Given an initial strategy, the evolutionary algorithm iteratively optimizes it across multiple
iterations. Each newly generated strategy is evaluated against our two criteria to determine its
effectiveness. The model autonomously explores diverse optimization approaches, ensuring a balance
between exploration and exploitation throughout the process.

wrong solutions, whereas proving that a problem is solvable only requires the existence of at least
one solution that passes. Hence, reliability is the cornerstone of strategy design and optimization. We
note that the core issue is how to select the best possible testing case from a theoretically unbounded
set of generated candidates. To address this, we model the filtering strategy as a ranking function.
The inputs to this function are a set of solutions and a set of testings, and the output is a ranked list of
solutions (optional) and testings. The top-ranked testing in this list is then selected as the final filtered
testing. By replacing the traditional filtering paradigm, which evaluates a single test and reduces it to
a boolean decision, with a ranking based formulation, we are able to more effectively leverage the
model’s theoretically unlimited generative capacity. The ranking mechanism allows testings to be
compared against one another, enabling the selection of the most optimal testing among a large pool
of candidates. To derive such a strategy, we leverage seed data with human-annotated problems and
testings. A relatively strong model is tasked with generating multiple candidate solutions for each
problem, as well as additional testings based only on the problem description. These solutions and
testings serve as inputs to the filtering strategy, which outputs a ranked list of solutions (optional) and
testings.

Algorithm 1: LLM-driven Evolutionary Process
Define :Database D, LLMM, Evaluator E ,

PromptBuilder S, Max Iterations N
Output :The best program pbest
for n← 1 to N do

// Sample parent and inspirations
(pparent, n)← D.sample();
// Construct the prompt
prompt← S.build(pparent, n);
// Generate modification (diff)
δ ←M.generate(prompt);
// Apply diff to get child program
pchild ← ApplyDiff(pparent, δ);
// Evaluate the child program
R← E .execute(pchild);
// Store result back to database
D.add(pchild, R);

return D.best()

The next question is how to obtain an op-
timally effective strategy function or pro-
gram. Inspired by the success of Novikov
et al. (2025), we adopt an evolutionary al-
gorithm to iteratively improve the strategy.
Evolutionary algorithms can balance explo-
ration and exploitation. Following Novikov
et al. (2025) and Sharma (2025), our imple-
mentation combines the MAP-Elites algo-
rithm (Mouret & Clune, 2015) with island-
based population models (Romera-Paredes
et al., 2024; Tanese, 1989), enabling opti-
mization over user-defined feature dimen-
sions while maintaining population diver-
sity. The overall workflow of the evolu-
tionary algorithm is shown in Algorithm
1. After initializing the program to be opti-
mized, the algorithm constructs a Database
that maintains multiple islands, each containing a population of candidate programs. In addition, the
Database tracks a set of elite programs across islands. Importantly, the selection of elite programs con-
siders not only evaluation scores but also factors such as code complexity, ensuring diversity within
the population. During each evolutionary iteration, the algorithm simulates human-like evolution:
it selects a parent program and provides it to the LLM for modification, together with several elite
programs used as inspirations. Concretely, a PromptBuilder composes these historical programs into
a structured prompt, which is then fed to the model to produce a new child program. The resulting
child program is evaluated by an evaluator, which computes the consistency score described earlier.
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This score serves as the performance indicator for the new program. The Database is then updated
accordingly, and, after all evolutionary steps are complete, the algorithm returns the highest-scoring
program as the final result. We design a initial strategy which need not be optimal according to
two intuitive principles: (1) solutions that pass more testings are considered better; (2) testings that
validate more solutions are considered better. Although this initialization is imperfect, for example,
a testing that passes all solutions is likely uninformative, it suffices to bootstrap the evolutionary
process, which will refine and correct such limitations. The evolutionary process also requires an
evaluator, whose role is to assess strategy quality with respect to user-defined criteria. We define
a good strategy as one that ranks testings in close agreement with human-annotated testings on
seed data across diverse candidate solutions. Specifically, the method for evaluating the quality of a
strategy includes two strict criteria:

• Criterion-1: the top-ranked solution produced by the strategy must correctly pass the
human-annotated testing in the seed data.

• Criterion-2: for the ranked solutions, both the best and the worst solutions must exhibit
consistent behavior on the annotated testing and on the best testing selected by the strategy. vs Figure
2 illustrates the actual workflow of our core method. Starting from an initial strategy, in each iteration
the model explores various ways to obtain a better filtering strategy. From analyzing several relatively
high-scoring strategies, we observe that the model explores multiple directions, such as refining the
computation of solution quality and experimenting with different weighting schemes for testing. After
each attempt, the evaluator assesses whether the new strategy satisfies our two predefined criteria on
every instance in the seed data, and the proportion of satisfied cases is then used as the final score of
the strategy, guiding the next round of evolution and refinement.

Remarkably, the evolutionary process yields multiple elegant and effective strategies. Figure 10
presents the best strategy evolved by model. The strategy scores each solution by the number of tests
it passes, while testing scores are based on discriminative power (i.e., the gap between solutions’ score
that pass and fail), with both solution and testing scores normalized before computing discriminative
power. Apart from this best one, model could explore various ways of computing testing scores.
For example, TF-IDF-like approach: solutions that pass difficult testings receive higher scores,
where difficulty is defined as testings passed by only few solutions; Coverage-based approach:
solutions are rewarded simply for passing more testings, while testing quality is measured by its
discriminative power (i.e., the score gap between solutions that pass and those that fail); Inverse
filtering approach: contrary to the initial strategy, testings that fewer solutions can pass are considered
better; Exclusion-based approach: the contribution of a testing is measured without its own influence,
by weighting solutions that pass all other testings and Hardness-Aware approach: solutions are
ranked by test strictness and pass count, penalizing all-or-none tests to select the strongest solution
and most discriminative tests. The details of these strategies are illustrated in the Appendix A.3.

These evolved strategies demonstrate strong internal logic and significantly improve upon manually
designed baselines, showing that evolutionary search can efficiently discover high-quality filtering
strategies.

3.2 DATA SYNTHESIS AND FILTERING

With a robust filtering strategy in place, we proceed to data synthesis and filtering. Specifically, we
first synthesize new problems to replace the human-annotated seed data. To ensure the generated
problems are compatible with the filtering strategy, we provide seed instances as in-context examples
to guide problem generation. After deduplication, the synthesized problems form a new set D. For
each problem in D, we generate M candidate solutions and N candidate testings, which serve as
inputs to the filtering strategy. The strategy ranks both solutions and testings. We then perform a
final filtering step called Zero-Variance Pruning: we discard instances in which the testings yield no
ranking variation. Such cases typically indicate either unreliable testings or trivial problems where all
testings perform equally well. In both scenarios, discarding the instance is justified.

3.3 MODEL TRAINING

Following the above steps, we obtain a reliable synthetic dataset containing problem descriptions
and their associated testings. As a byproduct, we also retain the strongest solutions generated by
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the model. This dataset can be leveraged in various training paradigms, such as RLVR and model
distillation, thereby boosting downstream model performance.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

This section presents a comprehensive set of experiments designed to validate the effectiveness of
our proposed method. To address the specific challenge of verifiable problem synthesis, which is
the core focus of our work, we conduct evaluations on two distinct and representative benchmarks:
LiveCodeBench (Jain et al., 2024) and AgentBench-OS (Liu et al., 2023). LiveCodeBench is a
highly challenging coding task benchmark, featuring a continuously updated collection of difficult
programming problems. It has recently garnered significant attention within the large language model
community due to its focus on real-time problem-solving capabilities. AgentBench-OS is a subset of
the AgentBench benchmark, specifically designed to evaluate a model’s performance in a realistic
operating system environment. This benchmark assesses a model’s ability to act as an intelligent
agent and execute code to complete given tasks. The final performance is rigorously verified through
a series of predefined tests.

To validate the effectiveness of our method, we conduct experiments on two representative training
paradigms: reinforcement learning with verifiable rewards (RLVR) (Guo et al., 2025) and model
distillation. Considering both cost and task complexity, we employ DeepSeek-V32 and DeepSeek-R1
as teacher models for the two tasks, respectively. The teacher model is responsible for the entire
data synthesis pipeline, including the filtering strategy and data generation. During the evolutionary
process for each task, we synthesize M = 16 solutions and their corresponding testing for every
problem instance. The maximum number of evolutionary iterations is set to 20.

(a) Evolutionary process over 20 iterations. (b) Effect of different (M,N).

Figure 3: Evolutionary process and data-retention trade-off. (a) The evolutionary process consistently
discovers stronger strategies, with the best strategy surpassing the initialization by over 10 percentage
points within 20 iterations. Score denotes the ratio of seed data instances for which consistency
verification is satisfied. (b) Increasing the number of M and N yields more usable, verifiable instances
but incurs O(MN) testing execution cost.

4.2 EVOLUTIONARY PROCESS

In this set of experiments, we use the LivecodeBench task as an example to illustrate the effectiveness
of our core evolutionary method in the data synthesis process. As shown in Figure 3a, within the limit
of 20 evolutionary iterations, and after excluding a few strategies that contained bugs, we frequently
observe strategies outperforming the initial baseline. In particular, the best strategy exceeds the initial
one by more than 10 percentage points, demonstrating both the model’s ability to explore diverse
strategies and the effectiveness of applying evolutionary algorithms to this problem. Moreover, the

2Due to the excessively long chains-of-thought (CoT) produced by DeepSeek-R1 on algorithmic problems,
which lead to slow inference, we use DeepSeek-V3 as the teacher model for the LiveCodeBench task. We also
observe poor performance in instruction following during question generation.
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overall trend of the evolutionary process shows a steady upward trajectory. This suggests that, with
more iterations, there is a strong potential to discover even better filtering strategies to guide data
synthesis, highlighting the feasibility of our approach.

Ablation study 1: Impact of M and N However, better strategies also imply stricter filtering
standards. To investigate this, we apply the best evolved strategy to data synthesis while varying
the value of M and N . The choice of M and N has a significant impact on synthesis cost, since
our method requires generating M solutions and N testings, followed by M ∗N executions. This
quadratic growth in cost makes it crucial to understand the relationship between (M,N) and the
amount of usable data ultimately obtained. As shown in Figure 3b, when applying to the same
set of 1,250 problems, using M = N = 4, M = N = 8, and M = N = 16 produces markedly
different amounts of usable data. The reason is straightforward: with fewer samples, the likelihood of
obtaining diverse solutions and testings decreases, making it harder to generate varied feedback and,
consequently, to verify reliability.

Table 1: Consistency validation on M = 16 so-
lutions. We vary K and validate the same strat-
egy using the top-K and bottom-K solution sub-
sets. Adding Criterion-1 at K=1 yields the
strictest check while requiring 8× fewer execu-
tions (#Exec=4 vs. 32) than omitting it at K=8.
Increasing K alone shows diminishing returns.

K Criterion-1 Score #Exec

1 No 0.589 4
2 No 0.554 8
4 No 0.536 16
8 No 0.536 32

Ours
1 Yes 0.482 4
8 Yes 0.482 32

Ablation Study 2: Is Consistency Validation
Sufficient with Only the Best and Worst So-
lutions? Recalling our two evaluation criteria
for strategy assessment: Criterion-1, the
best solution must be correct; Criterion-2
the performance of the best and worst solutions
must agree on both the human-annotated test
set and the strategy-selected best test. A natural
question arises: are these criteria sufficient? To
investigate, we vary the number of solutions
used for evaluating a same strategy (we use
the initial strategy as an example) and choos-
ing M = 16, considering the best and worst
K solutions with K = 1, 2, 4 and K = 8 (i.e.,
M/2). As shown in Table 1, increasing K in-
deed strengthens the evaluation criteria, reflects
in lower overall scores. However, two observa-
tions emerge. First, the stricter constraint does
not scale linearly with K: validating more solutions does not necessarily yield proportionally more
accurate evaluations, largely due to randomness in solution sampling. Second, our setting combining
the two criteria with K = 1, is in fact stricter than the K = 8 case, achieving both higher accuracy
and significantly greater efficiency.

In our experiments, although the proposed method is in principle capable of generating unlimited
data and producing highly reliable testings, from Figure 3b, we observe a log-linear relationship
between the number of usable data instances and the number of testing executions. The underlying
reason lies in the difficulty of controlling the diversity of model outputs. Low diversity inevitably
requires larger values of M and N , which substantially increases the cost. In future work, we aim to
further investigate methods to enhance output diversity while reducing synthesis costs. In addition,
practical bottlenecks such as slow model inference, time-intensive unit test verification, and costly
environment setup further constrain the scalability of our data synthesis. We therefore adopt N = 16,
yielding over 200 instances for LiveCodeBench and over 600 instances for AgentBench-OS. Despite
this relatively small scale, training on these data still leads to substantial performance improvements.

4.3 PROBLEM-LEVEL ANALYSIS OF OUR DATASETS

Before verifying that our method can effectively filter out reliable and discriminative testings, we
first examine the problem-level characteristics of the filtered datasets, including diversity/coverage
and difficulty. For diversity and coverage, we compute the distribution of cosine similarities within
both the filtered datasets and the original test sets for each task. We obtain embeddings using
Qwen3-Reranker-0.6B (Zhang et al., 2025b), which allows us to assess how concentrated or diverse
each dataset is. For difficulty, we evaluate Qwen3-8B, Qwen3-4B and Llama3.1-8B on both the
original test sets and the filtered training sets. The resulting model scores serve as an indicator of the
relative difficulty of each dataset. As shown in Figure 4, the filtered datasets exhibit a high degree of
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Figure 4: A comparison of the filtered datasets and the original datasets, at the problem level, in terms
of diversity and difficulty for both tasks.

consistency with the original datasets in terms of problem diversity and coverage, displaying similarly
broad distributions. Regarding problem difficulty, although the filtered datasets are somewhat easier
than the original ones across different models, they remain highly challenging and leave substantial
room for improvement. This ensures that, during training, the model does not encounter problems
that are overly simple or insufficient to drive meaningful performance gains.

4.4 EVOSYN FOR RLVR

This set of experiments demonstrates that synthetic data generated with our method can effectively
improve model performance in the RLVR task. We construct three data settings based on 51 seed
instances:

• DEvoSyn: Data filtered using our proposed data filtering strategy.

• Drandom: Data with exactly the same problems as DEvoSyn, but instead of using the filtering
strategy, we randomly select one testing from the N candidates as the final testing.

• DEvoSynrelaxed

: Data obtained by relaxing the Zero-Variance Pruning, to investigate the necessity
of our method’s final filtering condition, which excludes instances that have not undergone ranking.

In particular, we analyze the number of unit tests per synthesized data in DEvoSyn. As shown in
Figure 9, the synthesized data contain an average of 11.5 unit tests, including various edge cases
such as extremely long inputs. To mitigate the strong dependency on long-context capability imposed
by such edge cases, we further adjust the testing generation process: instead of asking the model to
directly produce unit tests, we require it to output code from which unit tests can be constructed. This
not only preserves the diversity of unit tests but also ensures that the number of tests per problem
remains sufficiently large.

Table 2: RLVR results on LiveCodeBench: Training on EvoSyn-filtered data (DEvoSyn) consistently
improves accuracy across models, outperforming random selection (Drandom) and the relaxed variant
(DEvoSynrelaxed

). ∆ denotes absolute gain over the baselines.

Model Data Setting Dataset Size Accuracy ∆

Baseline
DeepSeek-V3 - - 36.3 -
Qwen3-4B - - 17.0 -
Llama-3.1-8B - - 1.6 -
Qwen3-8B - - 16.5 -

RLVR Models
Qwen3-4B DEvoSyn 231 22.0 +5.0
Qwen3-4B Drandom 231 19.9 +2.9
Llama-3.1-8B DEvoSyn 231 15.7 +14.1
Llama-3.1-8B Drandom 231 11.1 +9.5
Qwen3-8B DEvoSyn 231 24.8 +8.3
Qwen3-8B Drandom 231 21.1 +4.6

Qwen3-8B DEvoSynrelaxed

256 24.4 +7.9

Results We conduct reinforcement learning experiments on Qwen3-8B, Qwen3-4B, and Llama-
3.1-8B using GRPO. As shown in Table 2, training on our synthesized dataset DEvoSyn consistently
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yields significant performance gains across all models. Notably, on Llama-3.1-8B, we observe a
substantial improvement of 14.1%. This demonstrates the effectiveness of our method in synthesizing
reliable data.

(a) Llama-3.1-8B (b) Qwen3-8B (c) Qwen3-4B

Figure 5: RLVR reward curves comparison across models. EvoSyn-filtered data (DEvoSyn) yields
faster, steadier reward growth than random selection (Drandom).

Ablation Study 3: What drives this advantage? To further demonstrate the effectiveness of our
method, we compare it against randomly synthesized data without filtering. As shown in Table 2,
although training with randomly synthesized data on Qwen3-8B also yields some improvement,
indicating that a portion of the data is indeed learnable, the performance still lags significantly
behind that achieved with our filtered dataset. This result can be further analyzed through the reward
dynamics during training. As illustrated in Figure 5, training on DEvoSyn exhibits a steady and
meaningful increase in reward, whereas training on Drandom struggles to achieve consistent reward
growth. This comparison highlights that the data constructed by our method is substantially more
learnable for the model.

Ablation Study 4: Is the Zero-Variance Pruning necessary? In addition, we analyze the differ-
ences between DEvoSyn and DEvoSynrelaxed

. By design, DEvoSyn is a strict subset of DEvoSynrelaxed

.
We manually examine the 25 additional instances present to DEvoSynrelaxed

but not in DEvoSyn, and
find that nearly all of them were overly simple problems. On average, their solution code lengths are
only a dozen lines, and in some cases, the M solutions sampled at temperature 1.0 are completely
identical.

Table 3: Model distillation results on AgentBench-
OS: EvoSyn-filtered data (DEvoSyn) yields large
gains across students, outperforming random selec-
tion (Drandom). Remarkably, all students exceed
the teacher (DeepSeek-R1, 30.1).

Model Data Setting Accuracy ∆

Baseline
DeepSeek-R1 - 30.1 -
Qwen3-4B - 1.0 -
Llama-3.1-8B - 1.0 -
Qwen3-8B - 1.0 -

Distilled Models
Qwen3-4B DEvoSyn 40.0 +39.0
Qwen3-4B Drandom 36.0 +35.0
Llama-3.1-8B DEvoSyn 37.6 +36.6
Llama-3.1-8B Drandom 22.0 +21.0
Qwen3-8B DEvoSyn 44.9 +43.9
Qwen3-8B Drandom 32.8 +31.8

This observation validates the rationale behind
the Zero-Variance Pruning in our method, which
removes overly simple problems that provide
little value for model learning. Such trivial prob-
lems are particularly problematic for the RLVR
paradigm, as they prevent proper computation
of the advantage. Selected example is provided
in the Appendix A.4.

4.5 EVOSYN FOR MODEL DISTILLATION

Model distillation has been widely adopted in
the field due to its effectiveness and high effi-
ciency, making it a powerful alternative to re-
inforcement learning, especially when the lat-
ter’s training costs become prohibitive. Similar
to RLVR, this method critically depends on a
high-quality set of problems and reliable test-
ings. This robust evaluation mechanism is essen-
tial for accurately filtering the correct responses
from a teacher model. In this experiment, we select the AgentBench-OS task, which is a highly
realistic agent task requiring multi-turn, complex reasoning. These abilities are often a significant
weakness for many models, particularly smaller ones. Due to the task’s complex environment setup
(the need for isolated Docker environments), the associated costs are prohibitively high, making
RLVR-based training difficult. Therefore, we experimentally validate the effectiveness of our pro-
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posed method within a model distillation pipeline. We use OpenHands (Wang et al., 2024) as the
agent framework for our models. We filter the original AgentBench-OS dataset due to the presence of
samples with stringent time requirements or permission issues. From the initial 144 data points, we
retain 129, which are subsequently used as both the evaluation set and the seed data for our proposed
method. This curation process ensures the reliability and reproducibility of our experimental results
by focusing on a stable and accessible subset of the benchmark.

Results Based on our method, we synthesize 673 data instances and obtain the corresponding
outputs from DeepSeek-R1. Using this synthetic dataset, we train Qwen3-4B, Llama-3.1-8B, and
Qwen3-8B. As shown in Table 3, all models exhibit substantial performance improvements after
training. This not only highlights the weaker baseline performance of smaller models on complex,
multi-turn, long-chain reasoning tasks but also clearly demonstrates the effectiveness of our synthetic
data generation method. Furthermore, training on data synthesized by our method significantly
outperforms training on randomly synthesized data, indicating that our approach is more effective at
filtering usable data in complex, real-world agent tasks.

4.6 COMPARISON WITH BASELINES

We selected two representative baselines for comparison: LLM-as-a-Judge (Jiang et al., 2025)
and CodeT (Chen et al., 2022b). Using an LLM as the source of evaluation signals has recently
demonstrated strong performance across a wide range of tasks. In our setting, we provide the LLM
with fine-grained testing evaluation criteria and require it to assign a score on a 100-point scale.
CodeT is a representative method that identifies the best candidate through cross-execution, with
its core grounded in a dual execution consistency algorithm. It relies on two key assumptions: 1.
generated code solutions and test cases are independent and randomly sampled; and 2. the probability
that two incorrect solutions coincidentally exhibit functional consistency is extremely low. CodeT
evaluates solutions by identifying clusters of solutions that pass the same subset of testings, and uses
the size of these clusters as the primary scoring metric.
Table 4: Comparison with baselines on LiveCodeBench and AgentBench-OS, including LLM-as-a-
Judge and CodeT. Our method significantly outperforms the baselines on both tasks.

Model LiveCodeBench AgentBench-OS Avg. ∆
Qwen3-8B Qwen3-4B Llama-3.1-8B Qwen3-8B Qwen3-4B Llama-3.1-8B

Baseline 16.5 17.0 1.0 1.0 1.0 1.0
Random 21.1 19.9 11.1 32.8 36.0 22.0 17.6
LLM-as-a-Judge 21.6 17.7 12.7 40.6 36.4 28.4 20.0
CodeT 22.4 16.8 15.1 43.3 39.1 27.2 21.1
EvoSyn 24.8 22.0 15.7 44.9 40.0 37.6 24.6

For each baseline, we applied its filtering procedure to the exact same synthetic dataset with our
method, producing filtered datasets of identical size. We then trained models on these datasets using
the same training configuration as in our method, and finally evaluated all models under identical
testing conditions. We also include the results under the random setting here for comparison. As
shown in Table 4, our method significantly outperforms the baselines on both tasks, indicating that
our method is more effective at filtering usable data from large amount of synthetic data.

5 CONCLUSION

We introduce EvoSyn, a task-agnostic evolutionary data synthesis framework that focuses on syn-
thesizing verifiable data for executably-checkable tasks by evolving robust filtering strategies from
minimal seed supervision via a consistency-based evaluator. By turning ad hoc filtering into principled
strategy optimization, EvoSyn assembles coherent, verifiable training instances that transfer across
domains. On LiveCodeBench (RLVR) and AgentBench-OS (distillation), training on EvoSyn-filtered
data yields substantial gains and superior learning dynamics across Llama-3.1-8B and Qwen3-4B/8B,
with distilled students surpassing the teacher on complex multi-turn agentic tasks. Ablations confirm
the value of strategy evolution and Zero-Variance Pruning, and characterize cost–quality trade-offs
in M ∗ N execution. Limitations include verification/execution cost and output-diversity bottle-
necks. Future work will scale population search, improve diversity-aware generation, and broaden
verification tooling and domains.
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A APPENDIX

A.1 PROMPTS

This subsection provides the exact prompts used in our synthesis pipeline. We include the Live-
CodeBench testing prompt and the AgentBench-OS prompts (There are two different types of
responses, and we provide separate prompts for each type). They can be used to reproduce our data
generation and to inspect task-specific constraints and formatting requirements.

I will give you a natural language description of a programming problem and you need to generate unit tests that 
cover all edge cases of the problem.
Good unit tests should cover all inputs that are mentioned in the problem description, as well as any unique edge 
cases that might not be obvious to the user.
The description of the problem might contains some simple unit test examples, but they are not enough to verify 
the correctness of the solution. So you should refer to them to generate more comprehensive unit tests.
The format of the unit tests should be a strict json dict which can be loaded by json.loads() in python. And the 
structure of the json dict should be a list of dicts, like following:

```json
[
{
"input": "input1",
"output": "output1"
},
{
"input": "input2",
"output": "output2"
}
...
]
```
The type of the input or output value should follow the type of the input or output value in the problem 
description strictly.
The unit tests you generated should contain all the edge cases that are mentioned in the problem description, and 
they also should follow the json format of the example unit tests.
The unit tests you generated should follow the constraints of the problem description strictly.
Sometimes the input of unit test may be very long, you can use a simple python code to generate the input like 
Problem 3, the python code must can be process by the eval() function in python.
You should try to maximize the quality and coverage of the unit tests, here are some examples of good unit tests:
**Note**: Problem might contain a start code block, if so, you should provide the input parameters strictly in 
accordance with the signature of the function, like Problem 1. But if there is no start code block, unit tests 
must not contains any input parameters, your input and output should be a string, like Problem 2.

{examples}

Now please generate the unit tests for the problem.

## Problem
{problem}

Figure 6: Prompt for testing generation on LiveCodeBench.

Please give me the testing script for this task to get 
the ground truth of the task.
The content you generate should be able to serve as the 
content of an executable script. The execution result 
of the testing script should be just the clean ground 
truth of the task.
Please encapsulate your final testing script (script 
content ONLY) within <testing> and </testing>.
For example: The testing script is <testing> 
{qa_example} </testing>.

# Problem 
{description}

# Environment Building Script
{init}

Figure 7: Prompt for testing generation on AgentBench-OS QA task.

A.2 UNIT-TEST COUNT DISTRIBUTION

We analyze the number of unit tests attached to each synthesized problem to characterize the strength
and granularity of our automated evaluation. Counts include both standard checks and long-input
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Please give me the testing script for this task to judge 
the correctness of the agent\'s execution solution.
The content you generate should be able to serve as the 
content of an executable script. The execution result of 
the testing script should be just the boolean value of 
the correctness of the agent\'s execution solution.
Testing should get the result or effect of the agent\'s 
execution solution first and then get the ground truth 
of the task.
Finally, testing should compare the result with the 
ground truth and output the boolean value of the 
correctness of the agent\'s execution solution.
Please encapsulate your final testing script (script 
content ONLY) within <testing> and </testing>.

# Problem 
{description}

# Environment Building Script
{init}

Figure 8: Prompt for testing generation on AgentBench-OS Execution task.

edge-case tests. The distribution is broad (mean 11.5 per problem), indicating heterogeneous coverage
and difficulty, which helps produce more stable and discriminative reward signals for ranking solutions
and selecting tests.

Figure 9: Unit-test count distribution per synthesized problem (mean 11.5); includes long-input edge
cases.

A.3 OPTIMIZED STRATEGIES

We outline several evolved scoring strategies that complement the best program in Figure 10:
TF-IDF-like weighting, coverage-based scoring, inverse filtering, exclusion-based attribution, and
hardness-aware ranking. Each aims to improve discriminative power and solution-ranking consistency
on seed data.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 10: The best strategy explored by model on LiveCodeBench.

Figure 11: TF-IDF-like approach. Solutions that pass difficult testings receive higher scores, where
difficulty is defined as testings passed by only a few solutions.

A.4 TRIVIAL PROBLEM

We manually examine the 25 additional instances present to DEvoSynrelaxed

but not in DEvoSyn, and
find that nearly all of them were overly simple problems. Here we provide one of the examples, the
quesiton is just a simple determination of whether some numbers are all even or not.

A.5 AI USAGE STATEMENT

AI tools were used solely to assist with writing and polishing the main manuscript text. All core
research content—including the ideas, problem formulation, methodology and algorithm design,
data synthesis framework, experimental design and execution, implementation, evaluation, and
analysis—was conceived, conducted, and validated exclusively by the authors. No AI systems were
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Figure 12: Coverage-based approach. Solutions are rewarded simply for passing more testings, while
testing quality is measured by its discriminative power (i.e., the score gap between solutions that pass
and those that fail).

Figure 13: Inverse filtering approach. Contrary to the initial strategy, testings that fewer solutions can
pass are considered better.

involved in generating ideas, designing or running experiments, or producing any core research
results.
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Figure 14: Exclusion-based approach. The contribution of a testing is measured without its own
influence, by weighting solutions that pass all other testings.

Figure 15: Hardness-Aware approach. Solutions are ranked by test strictness and pass count,
penalizing all-or-none tests to select the strongest solution and most discriminative tests.
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Figure 16: An example of a trivial problem present in DEvoSynrelaxed

but not in DEvoSyn, containing
quesiton description and solution code.
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