
Under review as a conference paper at ICLR 2024

DOMAIN CONSTRAINTS IMPROVE RISK PREDICTION
WHEN OUTCOME DATA IS MISSING

Sidhika Balachandar ∗

Cornell Tech
Nikhil Garg
Cornell Tech

Emma Pierson
Cornell Tech

ABSTRACT

Machine learning models are often trained to predict the outcome resulting from a
human decision. For example, if a doctor decides to test a patient for disease, will
the patient test positive? A challenge is that historical decision-making determines
whether the outcome is observed: we only observe test outcomes for patients
doctors historically tested. Untested patients, for whom outcomes are unobserved,
may differ from tested patients along observed and unobserved dimensions. We
propose a Bayesian model class which captures this setting. The purpose of
the model is to accurately estimate risk for both tested and untested patients.
Estimating this model is challenging due to the wide range of possibilities for
untested patients. To address this, we propose two domain constraints which are
plausible in health settings: a prevalence constraint, where the overall disease
prevalence is known, and an expertise constraint, where the human decision-maker
deviates from purely risk-based decision-making only along a constrained feature
set. We show theoretically and on synthetic data that domain constraints improve
parameter inference. We apply our model to a case study of cancer risk prediction,
showing that the model’s inferred risk predicts cancer diagnoses, its inferred testing
policy captures known public health policies, and it can identify suboptimalities
in test allocation. Though our case study is in healthcare, our analysis reveals a
general class of domain constraints which can improve model estimation in many
settings.

1 INTRODUCTION

Machine learning models are often trained to predict outcomes in settings where a human makes
a high-stakes decision. In criminal justice, a judge decides whether to release a defendant prior to
trial, and models are trained to predict whether the defendant will fail to appear or commit a crime if
released (Lakkaraju et al., 2017; Jung et al., 2020a; Kleinberg et al., 2018). In lending, a creditor
decides whether to grant an applicant a loan, and models are trained to predict whether the applicant
will repay (Björkegren & Grissen, 2020; Crook & Banasik, 2004). In healthcare—the setting we
focus on in this paper—a doctor decides whether to test a patient for disease, and models are trained
to predict whether the patient will test positive (Jehi et al., 2020; McDonald et al., 2021; Mullainathan
& Obermeyer, 2022). Machine learning predictions help guide decision-making in all these settings.
A model which predicts a patient’s risk of disease can help allocate tests to the highest-risk patients,
and also identify suboptimalities in human decision-making: for example, testing patients at low risk
of disease, or failing to test high risk patients (Mullainathan & Obermeyer, 2022).

A fundamental challenge in all these settings is that historical decision-making determines whether
the outcome is observed. In criminal justice, release outcomes are only observed for defendants
judges have historically released. In lending, loan repayments are only observed for applicants
historically granted loans. In healthcare, test outcomes are only observed for patients doctors have
historically tested. This is problematic because the model must make accurate predictions for the
entire population, not just the historically tested population. Learning only from the tested population
also risks introducing bias against underserved populations who are less likely to get medical tests
partly due to worse healthcare access (Chen et al., 2021; Pierson, 2020; Servik, 2020; Jain et al.,
2023). Thus, there is a challenging distribution shift between the tested and untested populations. The
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two populations may differ both along observables recorded in the data and unobservables known to
the human decision-maker but unrecorded in the data. For example, tested patients may have more
symptoms recorded than untested patients—but they may also differ on unobservables, like how
much pain they are in or how sick they look, which are known to the doctor but are not available for
the model. This setting, referred to as the selective labels setting (Lakkaraju et al., 2017), occurs in
high-stakes domains including healthcare, hiring, insurance, lending, education, welfare services,
government inspections, tax auditing, recommender systems, wildlife protection, and criminal justice
and has been the subject of substantial academic interest (see §6 for related work).

Without further constraints on the data generating process, there is a wide range of possibilities for the
untested patients. They could all have the disease or never have the disease. However, selective labels
settings often have domain-specific constraints which would allow us to limit the range of possibilities.
For example, in medical settings, we might know the prevalence of a disease in the population. Recent
distribution shift literature has shown that generic methods generally do not perform well across
all distribution shifts and that domain-specific constraints can improve generalization (Gulrajani &
Lopez-Paz, 2021; Koh et al., 2021; Sagawa et al., 2022; Gao et al.; Kaur et al., 2022; Tellez et al.,
2019; Wiles et al., 2022). This suggests the utility of domain constraints in improving generalization
from the tested to untested population.

Motivated by this reasoning, we make the following contributions:

1. We propose a Bayesian model class which captures the selective labels setting and nests
classic econometric models. We model a patient’s risk of disease as a function of observables
and unobservables. The probability of testing a patient increases with disease risk and other
factors (e.g., bias). The purpose of the model is to accurately estimate risk for both the tested
and untested patients and to quantify deviations from purely risk-based test allocation.

2. We propose two constraints informed by the medical domain to improve model estimation: a
prevalence constraint, where disease prevalence is known, and an expertise constraint, where
the decision-maker deviates from risk-based decision-making along a constrained feature
set. We show theoretically and on synthetic data that the constraints improve inference.

3. We apply our model to a breast cancer risk prediction case study. We conduct a suite of
validations, showing that the model’s (i) inferred risks predict cancer diagnoses, (ii) inferred
unobservables correlate with known unobservables, (iii) inferred predictors of cancer risk
correlate with known predictors, and (iv) inferred testing policy correlates with public health
policies. We also show that our model identifies deviations from risk-based test allocation
and that the prevalence constraint increases the plausibility of inferences.

Though our case study is in healthcare, our analysis reveals a general class of domain constraints
which can improve model estimation in many selective labels settings.

2 MODEL

We now describe our Bayesian model class. Following previous work (Mullainathan & Obermeyer,
2022), our underlying assumption is that whether a patient is tested for a disease should be determined
primarily by their risk of disease. Thus, the purpose of the model is to accurately estimate risk for both
the tested and untested patients and to quantify deviations from purely risk-based test allocation. The
latter task relates to literature on diagnosing factors affecting human decision-making (Mullainathan
& Obermeyer, 2022; Zamfirescu-Pereira et al., 2022; Jung et al., 2018).

Consider a set of people indexed by i. For each person, we see observed features Xi ∈ RD

(e.g., demographics and symptoms in an electronic health record). We observe a testing decision
Ti ∈ {0, 1}, where Ti = 1 indicates that the ith person was tested. If the person was tested (Ti = 1),
we observe an outcome Yi. Yi might be a binary indicator (e.g. Yi = 1 means that the person tests
positive), or Yi might be a numeric outcome of a medical test (e.g. T cell count or oxygen saturation
levels). Throughout, we generally refer to Yi as a binary indicator, but our framework extends to
non-binary Yi, and we derive our theoretical results in this setting. If Ti = 0 we do not observe Yi.

There are unobservables (Angrist & Pischke, 2009; Rambachan et al., 2022), denoted by Zi ∈ R, that
affect both Ti and Yi but are not recorded in the dataset – e.g., whether the doctor observes that the
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person is in pain. Consequently, the risk of the tested population differs from the untested population
even conditional on observables Xi: i.e. p(Yi|Ti = 1, Xi) ̸= p(Yi|Ti = 0, Xi).

A person’s risk of disease is captured by their risk score ri ∈ R, which is a function of Xi and Zi.
Whether the person is tested (Ti = 1) depends on their risk score ri, but also factors like screening
policies or socioeconomic disparities. More formally, our data generating process is

Unobservables: Zi ∼ f(·|σ2)

Risk score: ri = XT
i βY + Zi

Test outcome: Yi ∼ hY (·|ri)
Testing decision: Ti ∼ hT (·|αri +XT

i β∆) .

(1)
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Figure 1: Effect of α and Xβ∆: α
controls how steeply testing probabil-
ity p(Ti) increases in disease risk p(Yi),
while Xβ∆ captures factors which af-
fect p(Ti) when controlling for p(Yi).

In words, Zi is drawn from a distribution f with parameter
σ2, which captures the relative importance of the unob-
served versus observed features. The disease risk score
ri ∈ R is modeled as a linear function of observed features
(with unknown coefficients βY ∈ RD) and the unobserved
Zi. Yi is drawn from a distribution hY parameterized by
ri – e.g., Yi ∼ Bernoulli(sigmoid(ri)). Analogously, the
testing decision Ti is drawn from a distribution hT param-
eterized by a linear function of the true disease risk score
and other factors, with unknown coefficients α ∈ R and
β∆ ∈ RD. Because Ti depends on ri, and ri is a function
of Zi, Ti depends on Zi. Figure 1 illustrates the effect of
α and β∆. A larger α indicates that testing probability in-
creases more steeply in risk. β∆ captures human or policy
factors which affect a patient’s probability of being tested
beyond disease risk. In other words, β∆ captures devia-
tions from purely risk-based test allocation. Putting things
together, the model parameters are θ ≜ (α, σ2,β∆,βY ).

Medical domain knowledge: Besides the observed data, in medical settings we often have con-
straints to aid model estimation. We consider two constraints.

• Prevalence constraint: The average value of Y across the entire population is known (E[Y ]).
When Y is a binary indicator of whether a patient has a disease, this corresponds to assuming that
the disease prevalence is known. This assumption is plausible because estimating prevalence
has been the focus of substantial public health research, and estimates thus exist in many
medical settings; for more details see appendix A. For example, this information is available
for cancer (Cancer Research UK), COVID-19 (NIH National Cancer Institute, 2023), and heart
disease (CDC, 2007). In some cases, the prevalence is only approximately known (Manski &
Molinari, 2021; Manski, 2020; Mullahy et al., 2021); our Bayesian formulation can incorporate
such soft constraints as well.

• Expertise constraint: Because doctors and patients are informed decision-makers, we can
assume that tests are allocated mostly based on disease risk. Specifically, we assume that there
are some features which do not affect a patient’s probability of receiving a test when controlling
for their risk: i.e., that β∆d = 0, for at least one dimension d. For example, we may assume
that when controlling for disease risk, a patient’s height does not affect their probability of being
tested for cancer, and thus β∆height = 0.

3 THEORETICAL ANALYSIS

In this section, we prove why our proposed constraints improve parameter inference by analyzing a
special case of our general model in equation 1. In Proposition 3.1, we show that this special case
is equivalent to the Heckman model (Heckman, 1976; 1979), which is used to correct bias from
non-randomly selected samples. In Proposition 3.2, we analyze this model to show that constraints
can improve the precision of parameter inference. The full proofs are in Appendix B. In Sections 4
and 5 we empirically generalize our theoretical results beyond the special Heckman case.
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3.1 DOMAIN CONSTRAINTS CAN IMPROVE THE PRECISION OF PARAMETER INFERENCE

We start by defining the Heckman model and showing it is a special case of our general model.

Definition 1 (Heckman correction model). The Heckman model can be written in the following
form (Hicks, 2021):

Ti = 1[XT
i β̃T + ui > 0]

Yi = XT
i β̃Y + Zi[

ui

Zi

]
∼ Normal

([
0
0

]
,

[
1 ρ̃
ρ̃ σ̃2

])
.

(2)

Proposition 3.1. The Heckman model (Definition 1) is equivalent to the following special case of the
general model in equation 1:

Zi ∼ N (0, σ2)

ri = XT
i βY + Zi

Yi = ri

Ti ∼ Bernoulli(Φ(αri +XT
i β∆)) .

(3)

It is known that the Heckman model is identifiable (Lewbel, 2019), and thus the special case of
our model is identifiable (i.e., distinct parameter sets correspond to distinct observed expectations)
without further constraints. However, past work has often placed constraints on the Heckman model
(though different constraints from those we propose) to improve parameter inference. Without
constraints, the model is only weakly identified by functional form assumptions (Lewbel, 2019). This
suggests that our proposed constraints could also improve model estimation. In Proposition 3.2, we
make this intuition precise by showing that our proposed constraints improve the precision of the
parameter estimates as measured by the variance of the parameter posteriors.

In our Bayesian formulation, we estimate a posterior distribution for parameter θ given the observed
data: g(θ) ≜ p(θ|X,T, Y ). Let Var(θ) denote the variance of g(θ). We show that constraining the
value of any one parameter will not worsen the precision with which other parameters are inferred. In
particular, constraining a parameter θcon to a value drawn from its posterior distribution will not in
expectation increase the posterior variance of any other unconstrained parameters θunc. To formalize
this, we define the expected conditional variance:

Definition 2 (Expected conditional variance). Let the distribution over model parameters g(θ) ≜
p(θ|X,T, Y ) be the posterior distribution of the parameters θ given the observed data {X,T, Y }.
We define the expected conditional variance of an unconstrained parameter θunc, conditioned on the
value of a constrained parameter θcon, to be E[Var(θunc|θcon)] ≜ Eθ∗

con∼g[Var(θunc|θcon = θ∗con)].

Proposition 3.2. In expectation, constraining the parameter θcon does not increase the variance of
any other parameter θunc. In other words, E[Var(θunc|θcon)] ≤ Var(θunc). Moreover, the inequality is
strict as long as E[θunc|θcon] is non-constant in θcon (i.e., Var(E[θunc|θcon]) > 0).

In other words, we reason about the effects of fixing a parameter θcon to its true value θ∗con. That value
θ∗con is distributed according to the posterior distribution g, and so we reason about expectations over
g. In expectation, fixing the value of θcon does not increase the variance of any other parameter θunc,
and strictly reduces it as long as the expectation of θunc is non-constant in θcon.

Both the expertise and prevalence constraints fix the value of at least one parameter. The expertise
constraint fixes the value of β∆d for some d. For the Heckman model, the prevalence constraint fixes
the value of the intercept βY 0 (assuming the standard condition that columns of X are zero-mean
except for an intercept column of ones). Thus, Proposition 3.2 implies that both constraints will not
increase the variance of other model parameters, and will strictly reduce it as long as the posterior
expectations of the unconstrained parameters are non-constant in the constrained parameters. In
Appendix B we prove Proposition 3.2 and provide conditions under which the constraints strictly
reduce the variance of other model parameters. We also verify and extend these theoretical results on
synthetic data (Appendix D.1 Figure S1).
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Figure 2: The prevalence and expertise constraints each produce more precise and accurate inferences
on synthetic data drawn from the Bernoulli-sigmoid model with uniform noise (equation 4). To
quantify precision (left), we report the percent reduction in 95% confidence interval width as compared
to the unconstrained model. To quantify accuracy (right), we report the percent reduction in posterior
mean error — i.e., the absolute difference between the posterior mean and the true parameter value —
as compared to the unconstrained model. We plot the median across 200 synthetic datasets. Error
bars denote the bootstrapped 95% confidence interval on the median.

3.2 EMPIRICAL EXTENSION BEYOND THE HECKMAN SPECIAL CASE

While we derive our theoretical results for a special case of our general model class, in our experiments
(§4 and §5) we validate they hold beyond this special case by using a Bernoulli-sigmoid model:

Zi ∼ Uniform(0, σ2)

ri = XT
i βY + Zi

Yi ∼ Bernoulli(sigmoid(ri))

Ti ∼ Bernoulli(sigmoid(αri +XT
i β∆)) .

(4)

We note two ways in which this model differs from the Heckman model. First, it uses a binary
disease outcome Y because this is an appropriate choice for our breast cancer case study (§5). With a
binary outcome, models are known to be more challenging to fit: one cannot simultaneously estimate
α and σ, and models fit without constraints may fail to recover the correct parameters (StataCorp,
2023; Van de Ven & Van Praag, 1981; Toomet & Henningsen, 2008). Even in this more challenging
case, we show that our proposed constraints improve model estimation. Second, this model uses a
uniform distribution of unobservables instead of a normal distribution of unobservables. As we show
in Appendix C, this choice allows us to marginalize out Zi, greatly accelerating model-fitting.

4 SYNTHETIC EXPERIMENTS

We now validate our proposed approach on synthetic data. Our theoretical results imply that our
proposed constraints should reduce the variance of parameter posteriors (improving precision). We
verify that this is the case. We also show empirically that the proposed constraints produce posterior
mean estimates which lie closer to the true parameter values (improving accuracy).

In Appendix D.1, we show experimentally that these results hold for the Heckman special case of
our general model. Here we show that our theoretical results apply beyond the Heckman special
case by conducting experiments on models with binary outcomes and multiple noise distributions.
For all experiments, we use the Bayesian inference package Stan (Carpenter et al., 2017), which
uses the Hamiltonian Monte Carlo algorithm (Betancourt, 2017). We report results across 200 trials.
For each trial, we generate a new dataset from the data generating process the model assumes; fit
the model to that dataset; and evaluate model fit using two metrics: precision (width of the 95%
confidence interval) and accuracy (difference between the posterior mean and the true parameter
value). We wish to assess the effect of the constraints on model inferences. Thus, we compare
inferences from models with: (i) no constraints (unconstrained); (ii) a prevalence constraint; and
(iii) an expertise constraint on a subset of the features. Details are in Appendix D and the code is at
https://github.com/sidhikabalachandar/domain_constraints.

Figure 2 shows results for the Bernoulli-sigmoid model with uniform unobservables (equation 4).
Both constraints generally produce more precise and accurate inferences for all parameters relative to
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the unconstrained model. The one exception is that the expertise constraint does not improve accuracy
for σ2. Overall, the synthetic experiments corroborate and extend the theoretical analysis, showing
that the proposed constraints improve precision and accuracy of parameter estimates for several
variants of our general model. (In Appendix D, we also provide results for other variants of our general
model, including alternate distributions of unobservables (Figures S2 and S3); higher-dimensional
features (Figure S4); and non-linear interactions between features (Figure S5).)

5 REAL-WORLD CASE STUDY: BREAST CANCER TESTING

To demonstrate our model’s applicability to healthcare settings, we apply it to a breast cancer testing
dataset. In this setting, Xi consists of features capturing the person’s demographics, genetics, and
medical history; Ti ∈ {0, 1} denotes whether a person has been tested for breast cancer; and
Yi ∈ {0, 1} denotes whether the person is diagnosed with breast cancer. Our goal is to learn each
person’s risk of cancer—i.e., p(Yi = 1|Xi). We focus on a younger population (age ≤ 45) because it
creates a challenging distribution shift between the tested and untested populations. Younger people
are generally not tested for cancer (Cancer Research UK, 2023), so the tested population (Ti = 1)
may differ from the untested population, including on unobservables.

In the following sections, we describe our experimental set up and the model we fit (§5.1), we conduct
four validations on the fitted model (§5.2), we use the model to assess historical testing decisions
(§5.3), and we compare to a model fit without a prevalence constraint (§5.4).

5.1 EXPERIMENTAL SETUP

Our data comes from the UK Biobank (Sudlow et al., 2015), which contains information on health,
demographics, and genetics for the UK (see Appendix E for details). We analyze 54,746 people by
filtering for women under the age of 45 (there is no data on breast cancer tests for men). For each
person, Xi consists of 7 health, demographic, and genetic features found to be predictive of breast
cancer (NIH National Cancer Institute, 2017; Komen, 2023; Yanes et al., 2020). Ti ∈ {0, 1} denotes
whether the person receives a mammogram (the most common breast cancer test) in the 10 years
following measurement of features. Yi ∈ {0, 1} denotes whether the person is diagnosed with breast
cancer in the 10 year period. p(T = 1) = 0.51 and p(Y = 1|T = 1) = 0.03.1

As in the synthetic experiments, we fit the Bernoulli-sigmoid model with uniform unobservables
(equation 4). We include a prevalence constraint E[Y ] = 0.02, based on previously reported breast
cancer incidence statistics (Cancer Research UK). We also include an expertise constraint by allowing
β∆ to deviate from 0 only for features which plausibly influence a person’s probability of being tested
beyond disease risk. We do not place the expertise constraint on (i) racial/socioeconomic features,
due to disparities in healthcare access (Chen et al., 2021; Pierson, 2020; Shanmugam & Pierson,
2021); (ii) genetic features, since genetic information may be unknown or underused (Samphao et al.,
2009); and (iii) age, due to age-based breast cancer testing policies (Cancer Research UK, 2023). In
Appendix F.2 Figures S7, S8, and S9, we run robustness experiments.

In Figure 3, we plot the inferred coefficients for the fitted model. The model infers a large σ2 = 5.1
(95% CI, 3.7-6.8), highlighting the importance of unobservables. In Appendix F.1 Figure S6, we also
compare our model’s performance to a suite of additional baselines, including (i) baselines trained
solely on the tested population, (ii) baselines which treat the untested population as negative, and (iii)
additional baselines commonly used in selective labels settings (Rastogi et al., 2023). Collectively,
these baselines all suffer from various issues our model does not, including learning implausible age
trends inconsistent with prior literature or worse predictive performance.

5.2 VALIDATING THE MODEL

Validating models in real-world selective labels settings is difficult because outcomes are not observed
for the untested. Still, we leverage the rich data in the UK Biobank to validate our model in four
ways.

1We verify that very few people in the dataset have T = 0 and Y = 1 (i.e., are diagnosed with no record of a
test): p(Y = 1|T = 0) = 0.0005. We group these people with the untested T = 0 population, since they did
not receive a breast cancer test.
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Figure 3: Estimated βY (top) capture known cancer risk factors: genetic risk, previous biopsy, age at
first period (menarche), and age (NIH National Cancer Institute, 2017; Yanes et al., 2020). Estimated
β∆ (bottom) capture the underuse of genetic information (left) and known age-based testing policies
(right). Points indicate posterior means and vertical lines indicate 95% confidence intervals. Gray
asterisks indicate coefficients set to 0 by the expertise constraint.

Inferred risk predicts breast cancer diagnoses: Verifying that inferred risk predicts diagnoses
among the tested population is straightforward. Since Y is observed for the tested population, we
check (on a test set) whether people with higher inferred risk (p(Yi = 1|Xi)) are more likely to be
diagnosed with cancer (Yi = 1). People in the highest inferred risk quintile2 have 3.3× higher true
risk of cancer than people in the lowest quintile (6.0% vs 1.8%). Verifying that inferred risk predicts
diagnoses among the untested population is less straightforward because Yi is not observed. We
leverage that a subset have a follow-up visit (i.e., an observation after the initial 10-year study period)
to show that inferred risk predicts cancer diagnosis at the follow-up. For the subset of the untested
population who attend a follow-up visit, people in the highest inferred risk quintile have 2.5× higher
true risk of cancer during the follow-up period than people in the lowest quintile (4.1% vs 1.6%).3

Inferred unobservables correlate with known unobservables: For each person, our model infers
a posterior over unobservables p(Zi|Xi, Ti, Yi). We confirm that the inferred posterior mean of
unobservables correlates with a true unobservable—whether the person has a family history of breast
cancer. This is an unobservable because it influences both Ti and Yi but is not included in the data
given to the model.4 People in the highest inferred unobservables quintile are 2.1× likelier to have a
family history of cancer than people in the lowest quintile (15.6% vs 7.5%).

βY captures known cancer risk factors: βY measures each feature’s contribution to risk. The
top left plot in Figure 3 shows that the inferred βY captures known cancer risk factors. Cancer risk
is strongly correlated with genetic risk, and is also correlated with previous breast biopsy, age, and
younger age at first period (menarche) (NIH National Cancer Institute, 2017; Yanes et al., 2020).

2Reporting outcome rates by inferred risk quintile or decile is a common metric in health risk prediction
settings (Mullainathan & Obermeyer, 2022; Einav et al., 2018; Obermeyer et al., 2019).

3AUC amongst the tested population is 0.63 and amongst the untested population that attended a followup is
0.63. These AUCs are similar to past predictions which use similar feature sets (Yala et al., 2021). For instance,
the Tyrer-Cuzick (Tyrer et al., 2004) and Gail (Gail et al., 1989) models achieved AUCs of 0.62 and 0.59.

4Although UKBB has family history data, we do not include it as a feature both so we can use it as validation
and because we do not have information on when family members are diagnosed. So we cannot be sure that the
measurement of family history precedes the measurement of Ti and Yi, as is desirable for features in Xi.
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β∆ captures known public health policies: In the UK, all women aged 50-70 are in-
vited for breast cancer testing every 3 years (Cancer Research UK, 2023). Our study pe-
riod spans 10 years, so we expect women who are 40 or older at the start of the study
period (50 or older at the end) to have an increased probability of testing when control-
ling for true cancer risk. The bottom right plot in Figure 3 shows this is the case, since
the β∆ indicator for ages 40-45 is greater than the indicators for ages <35 and 35-39.
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Figure 4: Without the prevalence constraint, the
model learns that cancer risk first increases and
then decreases with age (left orange), contradict-
ing prior literature (Komen, 2023; Cancer Re-
search UK; US Cancer Statistics Working Group
et al., 2013; Campisi, 2013). This incorrect infer-
ence occurs because the tested population has the
same misleading age trend (right). In contrast, the
prevalence constraint encodes that the (younger)
untested population has lower risk, allowing the
model to learn a more accurate age trend (left blue).

5.3 ASSESSING HISTORICAL
TESTING DECISIONS

Non-zero components of β∆ indicate features
that affect a person’s probability of being tested
even when controlling for their disease risk. The
bottom left plot in Figure 3 plots the inferred
β∆, revealing that genetic information is under-
used. While genetic risk is strongly predictive of
Yi, its negative β∆ indicates that people at high
genetic risk are tested less than expected given
their risk. This is plausible, given that their ge-
netic information may not have been available
to guide decision-making. The model also infers
negative point estimates for β∆ for Black and
Asian women, consistent with known racial dis-
parities in breast cancer testing (Makurumidze
et al., 2022) as well as broader racial inequality
in healthcare and other domains (Nazroo et al.,
2007; Zink et al., 2023; Movva et al., 2023;
Obermeyer et al., 2019; Franchi et al., 2023;
Otu et al., 2020; Devonport et al., 2023). How-
ever, both confidence intervals overlap zero (due
to the small size of these groups in our dataset).

5.4 COMPARISON TO MODEL WITHOUT PREVALENCE CONSTRAINT

The prevalence constraint also guides the model to more plausible inferences. We compare the
model fit with and without a prevalence constraint. As shown in the left plot in Figure 4, without
the prevalence constraint, the model learns that cancer risk first increases with age and then falls,
contradicting prior epidemiological and physiological evidence (Komen, 2023; Cancer Research
UK; US Cancer Statistics Working Group et al., 2013; Campisi, 2013). This is because, due to the
age-based testing policy in the UK (Cancer Research UK, 2023), being tested for breast cancer before
age 50 is unusual. Thus, the tested population under age 50 is non-representative because their risk
is much higher than the corresponding untested population. The prevalence constraint guides the
model to more plausible inferences by preventing the model from predicting that a large fraction of
the untested (younger) population has the disease.

6 RELATED WORK

Selective labels problems occur in many domains, including hiring, insurance, government inspec-
tions, tax auditing, recommender systems, lending, healthcare, education, welfare services, wildlife
protection, and criminal justice (Lakkaraju et al., 2017; Jung et al., 2020a; Kleinberg et al., 2018;
Björkegren & Grissen, 2020; Jung et al., 2018; Jehi et al., 2020; McDonald et al., 2021; Laufer et al.;
McWilliams et al., 2019; Crook & Banasik, 2004; Hong et al., 2018; Parker et al., 2019; Sun et al.,
2011; Kansagara et al., 2011; Waters & Miikkulainen, 2014; Bogen, 2019; Jawaheer et al., 2010; Wu
et al., 2017; Coston et al., 2020; De-Arteaga et al., 2021; Pierson, 2020; Pierson et al., 2020; Simoiu
et al., 2017; Mullainathan & Obermeyer, 2022; Henderson et al., 2022; Gholami et al., 2019; Farahani
et al., 2020; Liu & Garg, 2022; Cai et al., 2020; Daysal et al., 2022; Guerdan et al., 2023; Chan et al.,
2022; Jiang et al., 2021; Chien et al., 2023; Jia et al., 2019). As such, there are related literatures
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in machine learning and causal inference (Coston et al., 2020; Schulam & Saria, 2017; Lakkaraju
et al., 2017; Kleinberg et al., 2018; Shimodaira, 2000; De-Arteaga et al., 2021; Levine et al., 2020;
Koh et al., 2021; Sagawa et al., 2022; Kaur et al., 2022; Sahoo et al., 2022; Cortes-Gomez et al.,
2023), econometrics (Mullainathan & Obermeyer, 2022; Rambachan et al., 2022; Heckman, 1976;
Hull, 2021; Künzel et al., 2019; Shalit et al., 2017; Wager & Athey, 2018; Alaa & Schaar, 2018),
statistics and Bayesian models (Ilyas et al., 2020; Daskalakis et al., 2021; Mishler & Kennedy, 2022;
Jung et al., 2020b), and epidemiology (Groenwold et al., 2012; Perkins et al., 2018). We extend
this literature by providing constraints which both theoretically and empirically improve parameter
inference. We now describe the three lines of work most closely related to our modeling approach.

Generalized linear mixed models (GLMMs): Our model is closely related to GLMMs (Gelman
et al., 2013; Stroup, 2012; Lum et al., 2022), which model observations as a function of both
observed features Xi and unobserved “random effects” Zi. We extend this literature by (i) proposing
and analyzing a novel model to capture our selective labels setting; (ii) incorporating the uniform
distribution of unobservables, as opposed to the normal distribution typically used in GLMMs, to
yield more tractable inference; and most importantly (iii) incorporating healthcare domain constraints
into GLMMs to improve model estimation.

Improving robustness to distribution shift using domain information: The selective labels
setting represents a specific type of distribution shift from the tested to untested population. Previous
work shows that generic methods often fail to perform well across all types of distribution shifts (Gul-
rajani & Lopez-Paz, 2021; Koh et al., 2021; Sagawa et al., 2022; Wiles et al., 2022; Kaur et al.,
2022) and that incorporating domain information can improve performance. Gao et al. proposes
targeted augmentations, which augment the data by randomizing known spurious features while
preserving robust ones. Tellez et al. (2019) presents an example of this strategy for histopathology
slide analysis. Kaur et al. (2022) shows that modeling the data generating process is necessary for
generalizing across distribution shifts. Motivated by this, we propose a data generating process
suitable for selective labels settings and show that using domain information improves performance.

Breast cancer risk estimation: There are many related works on estimating breast cancer
risk (Daysal et al., 2022; Yala et al., 2019; 2021; 2022; Shen et al., 2021). Our work comple-
ments this literature by proposing a Bayesian model which captures the selective labels setting
and incorporating domain constraints to improve model estimation. While a linear model suffices
for the low-dimensional features used in our case study, our approach naturally extends to more
complex inputs (e.g., medical images) and deep learning models sometimes used in breast cancer risk
prediction (Yala et al., 2019; 2021; 2022).

7 DISCUSSION

We propose a Bayesian model class to infer risk and assess historical human decision-making in
selective labels settings, which commonly occur in healthcare and other domains. We propose the
prevalence and expertise constraints which we show both theoretically and empirically improve
parameter inference. We apply our model to cancer risk prediction, validate its inferences, show it
can identify suboptimalities in test allocation, and show the prevalence constraint prevents misleading
inferences.

A natural future direction is applying our model to other healthcare settings, where a frequent practice
is to train risk-prediction models only on the tested population (Jehi et al., 2020; McDonald et al., 2021;
Farahani et al., 2020). This is far from optimal both because only a small fraction of the population is
tested, increasing variance, and because the tested population is highly non-representative, increasing
bias. The paradigm we propose offers a solution to both problems. Using data from the entire
population reduces variance, and modeling the distribution shift and constraining inferences on the
untested population reduces bias. Beyond healthcare, other selective labels domains may have other
natural domain constraints: for example, randomly assigned human decision-makers (Kleinberg et al.,
2018) or repeated measurements of the same individual (Lum et al., 2022). Beyond selective labels,
our model represents a concrete example of how domain constraints can improve inference in the
presence of distribution shift.
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A CALCULATING DISEASE PREVALENCE

To implement the prevalence constraint, we assume that the disease prevalence, or average value of
Y across the population, is at least approximately known. This assumption is plausible in medical
settings because estimating prevalence is the focus of substantial public health research. Methods to
calculate prevalence include serology, where blood samples are used to detect specific antibodies or
antigens of a disease (Joseph et al., 1995); stool or wastewater testing for disease markers (Joseph
et al., 1995; McMahan et al., 2021); genetic methods, where genomic registries can be analyzed to
calculate allele frequency and estimate disease prevalence (Schrodi et al., 2015); autopsy reports for
a particular disease (Bell et al., 2015); and administrative data collected by primary, outpatient, and
inpatient care centers (Wiréhn et al., 2007). Additionally, our Bayesian formulation can incorporate
approximate prevalence estimates (e.g. bounded estimates), and these bounds can be estimated using
the sensitivity and specificity of the prevalence estimation method (Manski & Molinari, 2021; Manski,
2020; Mullahy et al., 2021).

B PROOFS

Proof outline: In this section, we provide three proofs to show why domain constraints improve
parameter inference. We start by showing that the well-studied Heckman correction model (Heckman,
1976; 1979) is a special case of the general model in equation 1 (Proposition 3.1). It is known that
placing constraints on the Heckman model can improve parameter inference (Lewbel, 2019). We
show that our proposed prevalence and expertise constraints have a similar effect by proving that our
proposed constraints never worsen the precision of parameter inference (Proposition 3.2). We then
provide conditions under which our constraints strictly improve precision (Proposition B.2).

Notation and assumptions: Below, we use Φ to denote the normal CDF, ϕ the normal PDF, and
βT = αβY + β∆. Let X be the matrix of observable features. We assume that the first column of
X corresponds to the intercept; X is zero mean for all columns except the intercept; and the standard
identifiability condition that our data matrix is full rank, i.e., XTX is invertible. We also assume that
α > 0.

We start by defining the Heckman correction model.

Definition 1 (Heckman correction model). The Heckman model can be written in the following
form (Hicks, 2021):

Ti = 1[XT
i β̃T + ui > 0]

Yi = XT
i β̃Y + Zi[

ui

Zi

]
∼ Normal

([
0
0

]
,

[
1 ρ̃
ρ̃ σ̃2

])
.

(2)

In other words, Ti = 1 if a linear function of Xi plus some unit normal noise ui exceeds zero. Yi is
a linear function of Xi plus normal noise Zi with variance σ̃2. Importantly, the noise terms Zi and
ui are correlated, with covariance ρ̃. The model parameters are θ̃ ≜ (ρ̃, σ̃2, β̃T , β̃Y ). We use tildes
over the Heckman model parameters to distinguish them from the parameters in our original model
in equation 1. We now prove Proposition 3.1.

Proposition 3.1. The Heckman model (Definition 1) is equivalent to the following special case of the
general model in equation 1:

Zi ∼ N (0, σ2)

ri = XT
i βY + Zi

Yi = ri

Ti ∼ Bernoulli(Φ(αri +XT
i β∆)) .

(3)

Proof. If we substitute in the value of ri, the equation for Yi is equivalent to that in the Heckman
model. So it remains only to show that Ti in equation 3 can be rewritten in the form in equation 2.
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We first rewrite equation 3 in slightly more convenient form:

Ti ∼ Bernoulli(Φ(αri +XT
i β∆)) →

Ti ∼ Bernoulli(Φ(α(XT
i βY + Zi) +XT

i β∆)) →
Ti ∼ Bernoulli(Φ(XT

i (αβY + β∆) + αZi)) →
Ti ∼ Bernoulli(Φ(XT

i βT + αZi)) .

We then apply the latent variable formulation of the probit link:

Ti ∼ Bernoulli(Φ(XT
i βT + αZi)) →

Ti = 1[XT
i βT + αZi + ϵi > 0], ϵi ∼ N (0, 1) ,

where αZi + ϵi is a normal random variable with standard deviation
√
α2σ2 + 1. We divide through

by this factor to rewrite the equation for Ti:

Ti = 1[XT
i β̃T + ui > 0] ,

which is equivalent to equation 2. Here, β̃T = βT√
α2σ2+1

and ui =
αZi+ϵi√
α2σ2+1

is a unit-scale normal
random variable whose covariance with Zi is

cov
(

αZi + ϵi√
α2σ2 + 1

, Zi

)
= E

(
αZi + ϵi√
α2σ2 + 1

· Zi

)
− E

(
αZi + ϵi√
α2σ2 + 1

)
E (Zi)

=
αE

(
Z2
i

)
√
α2σ2 + 1

=
ασ2

√
α2σ2 + 1

.

Thus, the special case of our model in equation 3 is equivalent to the Heckman model, where the
mapping between the parameters is:

β̃Y = βY

σ̃2 = σ2

β̃T =
βT√

α2σ2 + 1

ρ̃ =
ασ2

√
α2σ2 + 1

.

(5)

As described in Lewbel (2019), the Heckman correction model is identified without any further
assumptions. It then follows that the special case of our model in equation 3 is identified without
further constraints. One can simply estimate the Heckman model, which by the mapping in equation 5
immediately yields estimates of βY and σ2. Then, the equation for ρ̃ can be solved for α, yielding a
unique value since α > 0. Similarly the equation for β̃T yields the estimate for βT (and thus β∆).

While the Heckman model is identified without further constraints, this identification is known to be
very weak, relying on functional form assumptions (Lewbel, 2019). To mitigate this problem, when
the Heckman model is used in the econometrics literature it is typically estimated with constraints on
the parameters. In particular, a frequently used constraint is an exclusion restriction: there must be at
least one feature with a non-zero coefficient in the equation for T but not Y . While this constraint
differs from the ones we propose, one might expect our proposed prevalence and expertise constraints
to have a similar effect and improve the precision of parameter inference. We make this precise
through Proposition 3.2.

Throughout the results below, we analyze the posterior distribution of model parameters given the
observed data: g(θ) ≜ p(θ|X,T, Y ). We show that constraining the value of any one parameter
(through the prevalence or expertise constraint) will not worsen the posterior variance of the other
parameters. In particular, constraining a parameter θcon to a value drawn from its posterior distribution
will not in expectation increase the posterior variance of any other unconstrained parameters θunc. To
formalize this, we define the expected conditional variance:
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Definition 2 (Expected conditional variance). Let the distribution over model parameters g(θ) ≜
p(θ|X,T, Y ) be the posterior distribution of the parameters θ given the observed data {X,T, Y }.
We define the expected conditional variance of an unconstrained parameter θunc, conditioned on the
value of a constrained parameter θcon, to be E[Var(θunc|θcon)] ≜ Eθ∗

con∼g[Var(θunc|θcon = θ∗con)].
Proposition 3.2. In expectation, constraining the parameter θcon does not increase the variance of
any other parameter θunc. In other words, E[Var(θunc|θcon)] ≤ Var(θunc). Moreover, the inequality is
strict as long as E[θunc|θcon] is non-constant in θcon (i.e., Var(E[θunc|θcon]) > 0).

Proof. The proof follows from applying the law of total variance to the posterior distribution g. The
law of total variance states that:

Var(θunc) = E[Var(θunc|θcon)] + Var(E[θunc|θcon]) .

Since Var(E[θunc|θcon]) is non-negative,
E[Var(θunc|θcon)] ≤ Var(θunc) .

Additionally, if E[θunc|θcon] is non-constant in θcon then Var(E[θunc|θcon]) is strictly positive. Thus the
strict inequality follows.

We now discuss how Proposition 3.2 applies to our proposed constraints and the Heckman model.
Both the prevalence and expertise constraints fix the value of at least one parameter. The prevalence
constraint fixes the value of βY 0 and the expertise constraint fixes the value of β∆d for some d.
Thus by Proposition 3.2, we know that the prevalence and expertise constraints will not increase the
variance of any model parameters, and will strictly reduce them as long as the posterior expectations
of the unconstrained parameters are non-constant in the constrained parameters.

We now show that when β̃T is known, the prevalence constraint strictly reduces variance. The setting
where β̃T is known is a natural one because β̃T can be immediately estimated from the observed
data X and T , and previous work in both econometrics and statistics thus have also considered this
setting (Heckman, 1976; Ilyas et al., 2020). With additional assumptions, we also show that the
expertise constraint strictly reduces variance. We derive these results in the setting with flat priors for
algebraic simplicity. However, analogous results also hold under other natural choices of prior (e.g.,
standard conjugate priors for Bayesian linear regression (Jackman, 2009)). In the results below, we
analyze the conditional mean of Y conditioned on T = 1. Thus, we start by defining this value.
Lemma B.1 (Conditional mean of Y conditioned on T = 1). Past work has shown that the expected
value of Yi when Ti = 1 is (Hicks, 2021):

E[Yi|Ti = 1] = E[Yi|XT
i β̃T + u > 0]

= Xiβ̃Y + ρ̃σ̃
ϕ(Xiβ̃T )

Φ(Xiβ̃T )
,

where Φ denotes the normal CDF, ϕ the normal PDF, and ϕ(Xβ̃T )

Φ(Xβ̃T )
the inverse Mills ratio. This can

be more succinctly represented in matrix notation as
E[Yi|Ti = 1] = Mθ ,

where M = [XT=1;
ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] ∈ RNT=1×(d+1), θ = [β̃Y , ρ̃σ̃] ∈ Rd+1, XT=1 denotes the rows

of X corresponding to T = 1, and NT=1 is the number of rows of X for which T = 1.

Proposition B.2. Assume β̃T is fixed and flat priors on all parameters. Additionally, assume the
standard identifiability condition that the matrix M = [XT=1;

ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] is full rank. Then, in

expectation, constraining a component of β̃Y in the Heckman correction model strictly reduces the
posterior variance of the other model parameters. The prevalence constraint does this without any
further assumptions, and the expertise constraint does this if ρ̃ and σ̃2 are fixed.

Proof. We will start by showing that when β̃T is fixed, constraining a component of β̃Y strictly
reduces the variance of the other model parameters. From the definition of the conditional mean of Y
conditioned on T = 1 (Lemma B.1), we get

E[Yi|Ti = 1] = Mθ .
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Figure S1: Results using synthetic data from the Heckman model. The prevalence and expertise
constraints each produce more precise and accurate inferences on this synthetic data. We plot the
median across 200 synthetic datasets. Errorbars denote the bootstrapped 95% confidence interval on
the median.

Under flat priors on all parameters, the posterior expectation of the model parameters given the
observed data {X,T, Y } is simply the standard ordinary least squares solution given by the normal
equation (Jackman, 2009):

E[θ|X,T, Y ] = (MTM)−1MTY .

By assumption, M is full rank, so MTM is invertible.

When β̃Yd
is constrained to equal to β̃∗

Yd
for some component d, the equation instead becomes:

E[θ−d|β̃Yd
= β̃∗

Yd
, X, T, Y ] = (MT

−dM−d)
−1MT

−d(Y −XT=1d β̃
∗
Yd

) .

We use the subscript −d notation to indicate that we no longer estimate the component d. Here,
M−d = [XT=1−d

; ϕ(XT=1β̃T )

Φ(XT=1β̃T )
] ∈ RNT=1×d and θ−d = [β̃Y−d

, ρ̃σ̃] ∈ Rd. Since XT=1d is nonzero

and M is full rank, it follows that E[θ−d|β̃Yd
= β̃∗

Yd
, X, T, Y ] is not constant in β̃∗

Yd
. Thus by

Proposition 3.2, constraining β̃Yd
reduces the variance of the parameters in θ−d (β̃Y ′

d
for d′ ̸= d and

ρ̃σ̃).

We will now show that both the prevalence and expertise constraints constrain a component of β̃Y .
Assuming the standard condition that columns of X are zero-mean except for an intercept column of
ones, the prevalance constraint fixes

EY [Y ] = EY [EX [EZ [Y |X,Z]]]

= EX [EZ [X
TβY + Z]]

= βY 0 ,

where βY 0 is the 0th index (intercept term) of βY . The expertise constraint also fixes a component
of β̃Y if ρ̃ and σ̃2 are fixed. This can be shown by algebraically rearranging equation 5 to yield

β̃Y = β̃T
σ̃2

ρ̃
− β∆

σ̃
√

σ̃2 − ρ̃2

ρ̃
.

While we derive our theoretical results for the Heckman correction model, in both our synthetic
experiments (§4) and our real-world case study (§5) we validate that our constraints improve parameter
inference beyond the special Heckman case.

C DERIVATION OF THE CLOSED-FORM UNIFORM UNOBSERVABLES MODEL

Conducting sampling for our general model described by equation 1 is faster if the distribution of
unobservables f and link functions hY and hT allow one to marginalize out Zi through closed-form
integrals, since otherwise Zi must be sampled for each datapoint i, producing a high-dimensional
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Figure S2: Results using synthetic data from the Bernoulli-sigmoid model with normal unobservables
and fixed σ2. The prevalence and expertise constraints each produce more precise and accurate
inferences on this synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote
the bootstrapped 95% confidence interval on the median.

latent variable which slows computation and convergence. Many distributions do not produce closed-
form integrals when combined with a sigmoid or probit link function, which are two of the most
commonly used links with binary variables.5 However, we can derive closed forms for the special
uniform unobservables case described by equation 4.

Below, we leave the i subscript implicit to keep the notation concise. When computing the log
likelihood of the data, to marginalize out Z, we must be able to derive closed forms for the following
three integrals:

p(Y = 1, T = 1|X) =

∫
Z

p(Y = 1, T = 1|X,Z)f(Z)dZ

p(Y = 0, T = 1|X) =

∫
Z

p(Y = 0, T = 1|X,Z)f(Z)dZ

p(T = 0|X) =

∫
Z

p(T = 0|X,Z)f(Z)dZ ,

since the three possibilities for an individual datapoint are {Y = 1, T = 1}, {Y = 0, T = 1},
{T = 0}. To implement the prevalence constraint (which fixes the E[Y ]), we also need a closed form
for the following integral:

p(Y = 1|X) =

∫
Z

p(Y = 1|X,Z)f(Z)dZ .

For the uniform unobservables model with α = 1, the four integrals have the following closed forms,
where below we define A = eX

TβT and B = eX
TβY :

p(Y = 1, T = 1|X) =
1

σ (A−B)

(
σ (A−B)−A log

(
(B + 1)A−1

)
+A log

(
(Beσ + 1)A−1e−σ

)
+B log

(
(A+ 1)A−1

)
−B log

(
(Aeσ + 1)A−1e−σ

))
p(Y = 0, T = 1|X) =

1

σ (A−B)

((
− log

(
(A+ 1)A−1

)
+ log

(
(B + 1)A−1

)
+ log

(
(Aeσ + 1)A−1e−σ

)
− log

(
(Beσ + 1)A−1e−σ

))
A

)
p(T = 0|X) =

log
(
1 +A−1

)
− log

(
A−1e−σ + 1

)
σ

p(Y = 1|X) =
σ − log

(
1 +B−1

)
+ log

(
B−1e−σ + 1

)
σ

.

The integrals also have closed forms for other integer values of α (e.g., α = 2) allowing one to
perform robustness checks with alternate model specifications (see Appendix F.2 Figure S8).

5Specifically, we search over the distributions in McLaughlin (2001), combined with logit or probit links,
and find that most combinations do not yield closed forms.
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Figure S3: Results using synthetic data from the Bernoulli-sigmoid model with normal unobservables
and fixed α. The prevalence and expertise constraints each produce more precise and accurate
inferences on this synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote
the bootstrapped 95% confidence interval on the median.

D SYNTHETIC EXPERIMENTS

We first validate that the prevalence and expertise constraints improve the precision and accuracy
of parameter inference for the Heckman model described in equation 2. We then extend beyond
this special case and examine various Bernoulli-sigmoid instantiations of our general model in
equation 1, which assume a binary outcome variable Y . With a binary outcome, models are known
to be more challenging to fit: for example, one cannot simultaneously estimate both α and σ2

(so we must fix either α or σ2), and models fit without constraints may fail to recover the correct
parameters (StataCorp, 2023; Van de Ven & Van Praag, 1981; Toomet & Henningsen, 2008). We
assess whether our proposed constraints improve model estimation even in this more challenging
case. Specifically, we extend beyond the Heckman model to the following data generating settings: (i)
uniform unobservables and fixed α, (ii) normal unobservables and fixed σ2; (iii) normal unobservables
and fixed α; and (iv) other more complex models. For the uniform model, we conduct experiments
only with fixed α (not fixed σ2) because, as discussed above, this allows us to marginalize out Z.

In all models, to incorporate the prevalence constraint into the model, we add a quadratic penalty to
the model penalizing it for inferences that produce an inferred E[Y ] that deviates from the true E[Y ].
To incorporate the expertise constraint into the model, we set the model parameters β∆d

to be equal
to 0 for all dimensions d to which the expertise constraint applies.

D.1 HECKMAN MODEL

We first conduct synthetic experiments using the Heckman model defined in equation 2. This model
is identifiable without any further constraints, thus we estimate parameters θ ≜ (ρ̃, σ̃2, β̃T , β̃Y ).

In the simulation, we use 5000 datapoints; 5 features (including the intercept column of 1s); X ,
βY , and βT drawn from unit normal distributions; and σ ∼ N (2, 0.1). We draw the intercept
terms βY0 ∼ N (−2, 0.1) and βT0 ∼ N (2, 0.1). We assume the expertise constraint applies to
β∆2 = β∆3 = β∆4 = 0. Thus, by rearranging equation 5, we fix β̃Y = β̃T

σ̃2

ρ̃ . When calculating

the results for β̃T and β̃Y , we do not include the dimensions along which we assume expertise since
these dimensions are assumed to be fixed for the model with the expertise constraint.

We show results in Figure S1. Both constraints generally produce more precise and accurate inferences
for all parameters relative to the unconstrained model. The only exception is β̃T , for which both
models produce equivalently accurate and precise inferences. This is consistent with our theoretical
results, which do not imply that the precision of inference for β̃T should improve.

D.2 UNIFORM UNOBSERVABLES MODEL

We now discuss our synthetic experiments using the Bernoulli-sigmoid model with uniform unob-
servables and α = 1 in equation 4. Our simulation parameters are similar to the Heckman model
experiments. We use 5000 datapoints; 5 features (including the intercept column of 1s); X , βY ,
and β∆ drawn from unit normal distributions; and σ ∼ N (2, 0.1). We draw the intercept terms
βY0 ∼ N (−2, 0.1) and β∆0 ∼ N (2, 0.1) to approximately match p(Y ) and p(T ) in realistic medical
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Figure S4: The prevalence and expertise constraints still improve parameter inference when qua-
drupling the number of features relative to Figure 2. Results are shown using synthetic data from
the Bernoulli-sigmoid model with uniform unobservables. Both constraints produce more precise
and accurate inferences on this synthetic data. We plot the median across 200 synthetic datasets.
Errorbars denote the bootstrapped 95% confidence interval on the median.

settings, where disease prevalence is relatively low, but a large fraction of the population is tested
because false negatives are more costly than false positives. We assume the expertise constraint
applies to β∆2

= β∆3
= β∆4

= 0. We show results in Figure 2. When calculating the results for
β∆, we do not include the dimensions along which we assume expertise since these dimensions are
assumed to be fixed for the model with the expertise constraint.

D.3 NORMAL UNOBSERVABLES MODEL

We also conduct synthetic experiments using the following Bernoulli-sigmoid model with normal
unobservables:

Zi ∼ N (0, σ2)

ri = XT
i βY + Zi

Yi ∼ Bernoulli(sigmoid(ri))

Ti ∼ Bernoulli(sigmoid(αri +XT
i β∆)) .

(6)

We show results for two cases: when σ2 is fixed and when α is fixed. Because this distribution of
unobservables does not allow us to marginalize out Z, it converges more slowly than the uniform
unobservables model and we must use a smaller sample size for computational tractability.

Fixed σ2: We use the same simulation parameters as the uniform model. We fix σ2 = 2 and we
draw α ∼ N(1, 0.1). We show results in Figure S2. Both the prevalence and expertise constraints
produce more precise and accurate inferences for all parameters relative to the unconstrained model.

Fixed α: We use the same simulation parameters as the uniform model, except we reduce the
number of datapoints to 200. We fix α = 1 and we draw σ2 ∼ N(2, 0.1). We show results in Figure
S3. Both the prevalence and expertise constraints produce more precise and accurate inferences for
all parameters relative to the unconstrained model.

D.4 MORE COMPLEX MODELS

To show our constraints are useful with more complex models, we ran two additional synthetic
experiments on the Bernoulli-sigmoid model with uniform unobservables. First, we demonstrated
applicability to higher-dimensional features. We show results in Figure S4. Even after quadrupling the
number of features (which increases the runtime by a factor of three), both constraints still improve
precision and accuracy. Secondly, we evaluate a more complex model with pairwise nonlinear
interactions between features. We show results in Figure S5. Again both constraints generally
improve precision and accuracy. We note our implementation relies on MCMC which is known to
be less scalable than approaches like variational inference (Wainwright & Jordan, 2008) and would
likely not scale to very high-dimensional features. However, our approach does not intrinsically rely
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Figure S5: The prevalence and expertise constraints still improve parameter inference even when
using pairwise nonlinear interactions between features (rather than only linear terms, as shown in
Figure 2). Results are shown using synthetic data from the Bernoulli-sigmoid model with uniform
unobservables. Both constraints generally produce more precise and accurate inferences on this
synthetic data. We plot the median across 200 synthetic datasets. Errorbars denote the bootstrapped
95% confidence interval on the median.

on MCMC, and incorporating more scalable estimation methods is a natural direction for future
work.6

E UK BIOBANK DATA

Label processing: In the UK Biobank (UKBB), each person’s data is collected at their baseline
visit. The time period we study is the 10 years preceding each person’s baseline visit. Ti ∈ {0, 1}
denotes whether the person receives a mammogram in the 10 year period. Yi ∈ {0, 1} denotes
whether the person receives a breast cancer diagnosis in the 10 year period. We verify that very
few people in the dataset have T = 0 and Y = 1 (i.e., are diagnosed with no record of a test):
p(Y = 1|T = 0) = 0.0005. We group these people with the untested T = 0 population, since they
did not receive a breast cancer test.

Feature processing: We include features which satisfy two desiderata. First, we use features that
previous work has found to be predictive of breast cancer (NIH National Cancer Institute, 2017;
Komen, 2023; Yanes et al., 2020). Second, since features are designed to be used in predicting Ti and
Yi, they must be measured prior to Ti and Yi (i.e., at the beginning of the 10 year study period). Since
the start of our 10 year study period occurs before the date of data collection, we choose features that
are either largely time invariant (e.g. polygenic risk score) or that can be recalculated at different
points in time (e.g. age). The full list of features that we include is: breast cancer polygenic risk
score, previous biopsy procedure (based on OPCS4 operation codes), age at first period (menarche),
height, Townsend deprivation index7, race (White, Black/mixed Black, and Asian/mixed Asian), and
age at the beginning of the study period (<35, 35-39, and 40-45). We normalize all features to have
mean 0 and standard deviation 1.

Sample filtering: We filtered our sample based on four conditions. (i) We removed everyone
without data on whether or not they received breast cancer testing, which automatically removed all
men because UKBB does not have any recorded data on breast cancer tests for men. (ii) We removed
everyone who was missing data (e.g. responded “do not know”) for breast cancer polygenic risk
score; previous biopsy procedure; menarche; height; Townsend deprivation index; race; age; duration
of moderate physical activity; cooked, salad, and raw vegetable intake; weight; use of the following
medication: aspirin, ibuprofen, celebrex, and naproxen; family history of breast cancer; and previous
detection of carcinoma in breast. (iii) We removed everyone who did not self report being of White,
Black/mixed Black, or Asian/mixed Asian race. (iv) We remove patients who were diagnosed with
breast cancer before the start of our 10 year study period, as is standard in previous work (Zink et al.,
2023). (v) We removed everyone above the age of 45 at the beginning of the observation period, since

6We use the same simulation parameters as our standard uniform model experiments. We set the expertise
constraint to apply to a random subset of 60% of the features to match the standard uniform model experiments
where expertise is assumed for 3 out of the 5 features.

7The Townsend deprivation index is a measure of material deprivation that incorporates unemployment,
non-car ownership, non-home ownership, and household overcrowding (Townsend et al., 1988).

25



Under review as a conference paper at ICLR 2024

the purpose of our case study is to assess how the model performs in the presence of the distribution
shift induced by the fact that young women tested for breast cancer are non-representative.8

Model fitting: We divide the data into train and test sets with a 70-30 split. We use the train set to
fit our model. We use the test set to validate our risk predictions on the tested population (T = 1).
We validate our risk predictions for the T = 1 population on a test set because the model is provided
both Y and X for the train set, so using a test set replicates standard machine learning practice.
We do not run the other validations (predicting risk among the T = 0 population and inference of
unobservables) on a test set because in all these cases the target variable is unseen by the model
during training. Overfitting concerns are minimal because we use a large dataset and few features.

Inferred risk predicts breast cancer diagnoses among the untested population: When verifying
that inferred risk predicts future cancer diagnoses for the people who were untested (Ti = 0) at the
baseline, we use data from the three UKBB follow-up visits. We only consider the subset of people
who attended at least one of the follow-up visits. We mark a person as having a future breast cancer
diagnosis if they report receiving a breast cancer diagnosis at a date after their baseline visit.

Inferred unobservables correlate with known unobservables: We verify that across people, our
inferred posterior mean of unobservables correlates with a true unobservable—whether the person
has a family history of breast cancer. We define a family history of breast cancer as either the person’s
mother or sisters having breast cancer. We do not include this data as a feature because we cannot be
sure that the measurement of family history precedes the measurement of Ti and Yi. This allows us
to hold out this feature as a validation.

IRB: Our institution’s IRB determined that our research did not meet the regulatory definition of
human subjects research. Therefore, no IRB approval or exemption was required.

F ADDITIONAL EXPERIMENTS ON CANCER DATA

Here we provide additional sets of experiments. We provide a comparison to various baseline models
(Appendix F.1) and robustness experiments (Appendix F.2).

F.1 COMPARISON TO BASELINE MODELS

We provide comparisons to three different types of baseline models: (i) a model trained solely on the
tested population, (ii) a model which assumes the untested group is negative, and (iii) other selective
labels baselines.

Comparison to models trained solely on the tested population: The first baseline that we
consider is a model which estimates p(Yi = 1|Ti = 1, Xi): i.e., a model which predicts outcomes
without unobservables using only the tested population.9 This is a widely used approach in medicine
and other selective labels settings. In medicine, it has been used to predict COVID-19 test results
among people who were tested (Jehi et al., 2020; McDonald et al., 2021); to predict hypertrophic
cardiomyopathy among people who received gold-standard imaging tests (Farahani et al., 2020);
and to predict discharge outcomes among people deemed ready for ICU discharge (McWilliams
et al., 2019). It has also been used in the settings of policing (Lakkaraju et al., 2017), government
inspections (Laufer et al.), and lending (Björkegren & Grissen, 2020).

8To confirm that our predictive performance remains good when looking at patients of all ages, we conduct
an additional analysis fitting our model on a dataset without the age filter, but keeping the other filters. (For
computational tractability, we downsample this dataset to approximately match the size of the original age-
filtered dataset.) We fit this dataset using the same model as that used in our main analyses, but add features to
capture the additional age categories (the full list of age categories are: <35, 35-39, 40-44, 45-49, 50-54, ≥55).
We find that if anything, predictive performance when using the full cohort is better than when using only the
younger cohort from our main analyses in §5.2. Specifically, the model’s quintile ratio is 4.6 among the tested
population (Ti = 1) and 7.0 among the untested population (Ti = 0) that attended a follow-up visit.

9We estimate this using a logistic regression model, which is linear in the features. To confirm that non-linear
methods yield similar results, we also fit random forest and gradient boosting classifiers. These methods achieve
similar predictive performance to the linear model and they also predict an implausible age trend.
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As shown in Figure S6, we find that the model trained solely on the tested population learns that
cancer risk first increases with age and then falls sharply, contradicting prior epidemiological and
physiological evidence (Komen, 2023; Cancer Research UK; US Cancer Statistics Working Group
et al., 2013; Campisi, 2013). We see this same trend for a model fit without a prevalence constraint in
§5.4. This indicates that these models do not predict plausible inferences consistent with prior work.
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Figure S6: We run three sets of baseline mod-
els: (i) models trained solely on the tested pop-
ulation, estimating p(Yi = 1|Ti = 1, Xi); (ii)
models which treat the untested group as nega-
tive, estimating p(Ti = 1, Yi = 1|Xi); and (iii)
other selective labels baselines (IPW and hard
pseudo labels). Both IPW and the model estimat-
ing p(Yi = 1|Ti = 1, Xi) learn that cancer risk
first increases and then decreases with age, contra-
dicting prior literature. This implausible inference
occurs because the tested population has the same
misleading age trend (right plot). In contrast, our
Bayesian model learns a more plausible age trend
(left plot, blue line). Hard pseudo labels and the
model estimating p(Ti = 1, Yi = 1|Xi) also learn
plausible age trends, but they underperform our
Bayesian model in predictive performance.

Comparison to a model which treats the
untested group as negative: We also con-
sider a baseline model which treats the untested
group as negative; this is equivalent to predict-
ing p(Ti = 1, Yi = 1|Xi), an approach used in
prior selective labels work (Shen et al., 2021;
Ko et al., 2020; Rastogi et al., 2023). We find
that, though this baseline no longer learns an im-
plausible age trend, it underperforms our model
in terms of AUC (AUC is 0.60 on the tested pop-
ulation vs. 0.63 for our model; AUC is 0.60 on
the untested population vs. 0.63 for our model)
and quintile ratio (quintile ratio on the tested
population is 2.4 vs. 3.3 for our model; quin-
tile ratio for both models is 2.5 on the untested
population). This baseline is a special case of
our model with the prevalence constraint set to
p(Y = 1|T = 0) = 0, an implausibly low
prevalence constraint. In light of this, it makes
sense that this baseline learns a more plausible
age trend, but underperforms our model overall.

Comparison to other selective labels base-
lines: We also consider two other common
selective labels baselines (Rastogi et al., 2023).
First, we predict hard pseudo labels for the
untested population (Lee, 2013): i.e., we train a
classifier on the tested population and use its out-
puts as pseudo labels for the untested population.
Due to the low prevalence of breast cancer in
our dataset, the pseudo labels are all Yi = 0, so
this model is equivalent to treating the untested
group as negative and similarly underperforms our model in predictive performance. Second, we
use inverse propensity weighting (IPW) (Shimodaira, 2000): i.e., we train a classifier on the tested
population but reweight each sample by the inverse propensity weight 1

p(Ti=1|Xi)
.10 As shown in

Figure S6, this baseline also learns the implausible age trend that cancer risk first increases and
then decreases with age: this is because merely reweighting the sample, without encoding that the
untested patients are less likely to have cancer via a prevalence constraint, is insufficient to correct
the misleading age trend.

F.2 ROBUSTNESS CHECKS FOR THE BREAST CANCER CASE STUDY

Our primary breast cancer results (§5) are computed using the Bernoulli-sigmoid model in equation 4.
In this model, unobservables are drawn from a uniform distribution, α is set to 1, and the prevalence
constraint is set to p(Y = 1) = 0.02 based on previously reported breast cancer incidence statis-
tics (Cancer Research UK). In order to assess the robustness of our results, we show that they remain
consistent when altering all three of these aspects to plausible alternative specifications.

Consistency across different distributions of unobservables: We compare the uniform unobserv-
ables model (equation 4) to the normal unobservables model (equation 6). As described in Appendix

10We clip p(Ti = 1|Xi) to be between [0.05, 0.95], consistent with previous work.
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Figure S7: We compare the results from the uniform unobservable model in equation 4 (black)
and the normal unobservable model in equation 6 (blue). Figure S7a: The estimated βY and β∆

coefficients remain similar for both models, with similar trends in the point estimates and overlapping
confidence intervals. Figure S7b: Both models predict highly correlated values for p(Yi|Xi) and
p(Ti|Xi). Perfect correlation is represented by the dashed line.
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Figure S8: We compare the results from the uniform unobservable model with α = 1 (black) and
α = 2 (blue). Figure S8a: The inferred βY and β∆ coefficients are generally very similar, with
similar trends in the point estimates and overlapping confidence intervals. The only exception is the
estimate of β∆ for genetic risk, which is explained by the fact that the prediction of β∆ depends on
the value of α. Figure S8b: Both models predict highly correlated values for p(Yi|Xi) and p(Ti|Xi).
Perfect correlation is represented by the dashed line.

28



Under review as a conference paper at ICLR 2024

Gen
eti

c r
isk

 sc
or

e
Blac

k
Asia

n

Dep
riv

ati
on

 in
de

x

Heig
ht

Had
 bi

op
sy

Age
 at

 fir
st 

pe
rio

d

0.0

0.2

0.4

0.6

β
Y

standard prevalence constraint
50% lower p(Y|T= 0)

50% greater p(Y|T= 0)

30 35 40 45

Age at beginning of study period

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

β
Y

Gen
eti

c r
isk

 sc
or

e
Blac

k
Asia

n

Dep
riv

ati
on

 in
de

x

Heig
ht

Had
 bi

op
sy

Age
 at

 fir
st 

pe
rio

d

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

β
∆

30 35 40 45

Age at beginning of study period

0.0

0.5

1.0

1.5

2.0

2.5

β
∆

(a) (b)

Figure S9: We compare the results from the uniform unobservables model with a prevalence constraint
of E[Y ] = 0.02 informed by cancer statistics (Cancer Research UK) (black), a prevalence constraint
which corresponds to 50% less of the untested population having the disease (blue), and a prevalence
constraint which corresponds to 50% more of the untested population having the disease (orange).
Figure S9a: The predictions for all three models are similar as seen by the similar trends in the point
estimates and overlapping confidence intervals. Figure S9b: All three models predict correlated
values for p(Yi|Xi) and p(Ti|Xi). Perfect correlation is represented by the dashed line.
D, the normal unobservables model does not allow us to marginalize out Zi and thus converges more
slowly. Hence, for computational tractability, we run the model on a random subset of 1

8 of the full
dataset. In Figure S7a, we see that the estimated coefficients for both models remain similar, with
similar trends in the point estimates and overlapping confidence intervals. Figure S7b shows that the
inferred values of p(Yi|Xi) and p(Ti|Xi) for each data point also remain correlated, indicating that
the models infer similar testing probabilities and disease risks for each person.

Consistency across different α: We compare the uniform unobservables model with α = 1 to a
uniform unobservables model with α = 2. In Figure S8a, we see that the inferred coefficients for
both models are generally very similar, with similar trends in the point estimates and overlapping
confidence intervals. The only exception is β∆ for the genetic risk score. While both models find a
negative β∆ for the genetic risk score, indicating genetic information is underused, the coefficient
is less negative when α = 1. This difference occurs because altering α changes the assumed
relationship between the risk score and the testing probability under purely risk-based allocation, and
thus changes the estimated deviations from this relationship (which β∆ captures). Past work also
makes assumptions about the relationship between risk and human decision-making (Pierson, 2020;
Simoiu et al., 2017; Pierson et al., 2018; 2020). We can restrict the plausible values of α, and thus
β∆, using the following approaches: (i) restricting α to a range of reasonable values based on domain
knowledge; (ii) setting α to the value predicted by a model with σ2 pinned; or (iii) fitting α and σ2 in
a model with non-binary Yi outcomes when both parameters can be simultaneously identified.

To confirm model consistency, we compare the inferred values of p(Yi|Xi) and p(Ti|Xi) for each
data point. As shown in Figure S8b, these estimates remain highly correlated across both models,
indicating that the models infer similar testing probabilities and disease risks for each person.

Consistency across different prevalence constraints: The prevalence constraint fixes the estimate
of p(Y = 1). Because the proportion of tested individuals who have the disease, p(Y = 1|T = 1),
is known from the observed data, fixing p(Y = 1) is equivalent to fixing the proportion of untested
individuals with the disease, p(Y = 1|T = 0). For the model in §5, we set the prevalence constraint
to 0.02 based on cancer incidence statistics (Cancer Research UK). However, disease prevalence may
not be exactly known (Manski & Molinari, 2021; Manski, 2020; Mullahy et al., 2021). To check the
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robustness of our results to plausible variations in the prevalence constraint, we compare to two other
prevalence constraints that correspond to 50% lower and 50% higher values of p(Y = 1|T = 0).11

This yields overall prevalence constraints of E[Y ] ≈ 0.018 and 0.022, respectively. In Figure S9a,
we compare the βY and β∆ coefficients for these three different prevalence constraints. Across all
three models, the estimated coefficients remain similar, with similar trends in the point estimates
and overlapping confidence intervals. In particular, the age trends also remain similar in all three
models, in contrast to the model fit without a prevalence constraint (§5.4). In Figure S9b, we compare
the inferred values of p(Yi|Xi) and p(Ti|Xi) for each data point and confirm that these estimates
remain highly correlated across all three models, indicating that the models infer very similar testing
probabilities and disease risks for each person.

11While our results are robust to significant alterations of the prevalence constraint, we do note that if the
model is run with a wildly misspecified prevalence constraint — for example, p(Y = 1|T = 0) = 0 — it
could produce incorrect results. To avoid this issue, our Bayesian framework also accommodates approximate
constraints, if the prevalence is only approximately known.
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