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Abstract

In this paper, we propose a self-supervised representation learning framework1

for the adversarial attack detection task to address this drawback. Firstly, we2

map the pixels of augmented input images into an embedding space. Then, we3

employ the prototype-wise contrastive estimation loss to cluster prototypes as latent4

variables. Additionally, drawing inspiration from the concept of memory banks,5

we introduce a discrimination bank to distinguish and learn representations for6

each individual instance that shares the same or a similar prototype, establishing7

a connection between instances and their associated prototypes. We propose a8

parallel axial-attention (PAA)-based encoder to facilitate the training process by9

parallel training over height- and width-axis of attention maps. Experimental10

results show that, compared to various benchmark self-supervised vision learning11

models and supervised adversarial attack detection methods, the proposed model12

achieves state-of-the-art performance on the adversarial attack detection task across13

a wide range of images.14

1 Introduction15

Given an image potentially perturbed by an attack algorithm, the goal of adversarial attack detection16

is to distinguish between adversarial and normal samples using the differences between them. Ad-17

versarial attack detection is an important security topic applicable in real-world applications such as18

autonomous driving systems, object detection, medical image processing, and robotics (1; 2; 3; 4)19

among many others. Recent deep learning-based adversarial attack detection techniques (5; 6; 7)20

are predominantly trained in a supervised manner, where a large number of labeled adversarial and21

normal samples are provided as input to neural networks. The model is then trained to reconstruct22

the corresponding clean sample and compare it with the input sample to provide the detection result.23

Consequently, supervised learning-based adversarial attack detection approaches suffer from three24

main drawbacks.25

Firstly, human-imperceptible adversarial attacks on images are challenging to label manually. This26

process can be time-consuming and may introduce errors, particularly when the annotator lacks27

familiarity with the task. Secondly, the trained adversarial attack detection models may need28

to be deployed in previously unseen conditions, including novel attack algorithms and datasets.29

Consequently, there is a strong likelihood of a mismatch between the training and testing conditions.30

In such cases, we lack the ability to leverage recorded test data to improve the model’s performance in31

the unseen test setting. Thirdly, prototype-based adversarial attack detection methods (8; 5) estimate32

an object’s category (e.g., cats or dogs) as the prototype. These methods calculate the degree of33

similarity between new data samples and autonomously chosen prototypes to classify images as34

adversarial or normal samples. However, each prototype may potentially consists of multiple instance35

samples, which often leads to a neglect of the rich intrinsic semantic relationships between prototypes36

of individual objects in images. For example, while the model may be trained on some tank images,37
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it may struggle to classify new tanks or entirely new classes of objects when faced with previously38

unseen types of tanks.39

To overcome these drawbacks, we propose a self-supervised representation learning framework40

aimed at extracting feature representations for the downstream task, i.e., adversarial attack detection.41

Building upon pixel mapping and contrastive estimation, we propose a discrimination bank to42

distinguish individual instances for each prototype from the embedding space. We demonstrate that43

the instance-wise feature maps capture richer information compared to the prototype-based approach,44

resulting in performance improvements.45

2 Proposed Method46

Our proposed framework is presented in Figure 1.47

Figure 1: Self-supervised representation learning framework.

2.1 Pixel Mapping48

As the first major component of the encoder, a PAA-based network with parameter θ is ex-49

ploited to transform training set X = {x1, x2, ..., xn} of n image samples to feature vectors50

V = {v1, v2, ..., vI}, such that V best describes X . Different from previous work, we propose51

a pixel mapping loss with data augmentation, LPM, to learn an invariant representation of xi by52

minimizing the risk
∑

i L (xi, vi; θ). To achieve that, we use a pair of transformations, denoted as53

t and s, in some set of transformations T (e.g. geometric transformations) to xi, to produce the54

augmentation as xti
i and xsi

i . We define this process as V = fPM (X) with the loss as:55

LPM = − log
exp

(
fPM

(
xti
i

)T · fPM (xsi
i ) /τ

)
∑B

b=1 exp
(
fPM

(
xtb
b

)T · fPM (xsi
i ) /τ

) (1)

where T and B are the transpose symbol and batch size, respectively. It is highlighted that all56

the embeddings in the loss function are L2-normalized (9). While previous data augmentation57

studies (10) have shown that the choice of transformation techniques plays an important part in58

self-supervised representation learning, most previous works do not give much consideration to59

the individual choice of ti and si on pairs of images, which are simply uniformly sampled over T .60

Therefore, in the proposed pixel mapping technique, we aim to overcome this limitation and select61

the optimal transformation algorithm for each sample xi. To achieve this, we select transformation62

algorithms that maximize the risk defined by the loss LPM:63

{ti, si} = argmax
{ti,si}∈T

n∑
i=1

LPM
(
xti
i , x

si
i ; θ, T

)
(2)

In the proposed pixel mapping technique, we prioritize the difference between ti and si for each64

image over their absolute values.65

2.2 Prototype-wise Contrastive Estimation66

We assume that the observed data xi are related to latent variable P = {pi} which denotes the67

prototypes of the data. We aim to find a network parameter that maximizes the log-likelihood function68

of the observed n samples by a prototype-wise contrastive estimation (PCE). To achieve that, we69

use the local peaks of the density (11) as the prototype, in other words, the most representative data70
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samples of X . The loss, namely LPCE , is defined as:71

LPCE =
1

|M|
∑

p+
i ∈M

− log
exp

(
vi · p+i /γ

)∑
p−
i ∈N exp

(
vi · p−i /γ

) (3)

where Mi and Ni are prototype collections of the positive and negative samples, respectively. As72

aforementioned, inspired from previous supervised learning work (12)(13), we find different levels73

of concentration distributes around each prototype embeddings. Therefore, we exploit γ as the74

concentration level around the prototype pm within the m-th cluster as:75

γ =

∑n
i=1 ∥pm − vmi ∥2
n log(n+ β)

(4)

where the momentum features are {vmi }ni=1 within the same cluster as a prototype p. We set a smooth76

parameter β to ensure that small clusters do not have an overly-large γ. Then, γ acts as a scaling77

factor on the similarity between an embedding v and its prototype p.78

2.3 Instance-Wise Contrastive Learning79

The core of our method lies in establishing a connection between prototype and instance features80

to facilitate instance clustering. Initially, we create K independent discrimination banks to enhance81

instance discrimination across clusters. Similar to a memory bank, the discrimination bank aids82

in contrastive learning, leveraging extensive data to acquire robust representations. We assume a83

contrastive set Ji for the t-th bank At as:84

Ji = {z′i | z′i ∈ At∀t ∈ [1, C]} (5)

where z′i is the estimated representation of xi. Specifically, for each training batch with B samples and85

M prototypes, our discrimination memory is built with size M×B×D, where D is the dimension of86

pixel embeddings. The (pm, b)-th element in the discrimination memory is a D-dimensional feature87

vector obtained by average pooling all the embeddings of pixels labeled as pm prototype in the b-th88

batch. To update the discrimination bank, we enqueue each instance to the nearest prototype and add89

the new one in each back propogation cycle:90

LICL =
exp(cos(vi, zi) · cos (vi, pmi /ϕ))∑

z′∈At

∑r
j=0 exp(cos(vi, z

′
j) · cos

(
vi, pmj /ϕ

)
) · Ji

(6)

where cos(·, ·) is the cosine similarity between a pair of representations. The concentration level of91

LICL is presented as ϕ and estimated similar as γ in (4) but we replace v′c to z′c. With the loss, we dis-92

criminate representations belongs to the same bank. To discover the underlying concepts with unique93

visual characteristics, we infer their decision boundaries by reducing the visual redundancy among94

clusters, namely maximising the visual similarity of samples within the same clusters and minimising95

that between clusters. The overall cost-function used to train the MAE is now a combination of the96

above loss terms with hyper-parameters λ1 and λ2 as L = LPM + λ1 · LPCE + λ2 · LICL.97

3 Experiments98

3.1 Datasets and Attacks99

We randomly select 50,000 images from ImageNet (14) and 10,000 images from ImageNet Large100

Scale Visual Recognition Challenge (ILSVRC) (15) for the training and validation, respectively. As101

aforementioned, we evaluate the competitor and proposed models with unseen datasets. In the test102

stage, we extensively perform experiments on 10,000 random images from each CIFAR-10 (16) and103

COCO (17).104

We select seven attack algorithms (18)(19)(20)(21)(22)(23)(24) in the test stage because they are105

robust to novel adversarial attack detection and defense techniques.106

3.2 Implementation Details107

In the experiment, we implement the network with a ResNet-50 (25) whose last fully-connected layer108

outputs a 128-D and L2-normalized feature with a parallel axial-attention (PAA) block (26). We109
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multiply all the channels by 1.5 and 2, resulting in PAA-ResNet-M, L, respectively. We always use 8110

heads in multi-head attention blocks (27). In order to avoid careful initialization of weights (WQ,111

WK , WV ) and location vectors (rq , rk, rv), we use batch normalizations (28) in all attention layers.112

To evaluate and compare the adversarial attack detection accuracy, we use the detection rate (DR).113

The proposed model is trained by using the SGD optimizer with a weight decay of 0.0001, a114

momentum of 0.9, and a batch size of 256. We train the networks for 200 epochs, where we warm-up115

the network in the first 20 epochs by only using the pixel-mapping loss. The initial learning rate116

is 0.03, and is multiplied by 0.1 at 120 and 160 epochs. In terms of the hyper-parameters, we set117

τ = 0.1, β = 10, r = 16000, λ1 = 1 and λ2 = 1 based on grid search.118

3.3 Results119

We assess the learned representation over CIFAR-10 and COCO. Tables 1 & 2 show the results.120

Table 1: Comparison on CIFAR-10.

Models Clean (%) Attacked (%)
TiCo (29) 81.4 78.0
MAE (30) 89.9 74.2
Mugs (31) 90.5 73.7

Unicom (32) 92.6 84.1
DINOV2 (33) 94.3 86.7
ESMAF (34) 73.8 56.4

TS (6) 89.7 59.5
sim-DNN (13) 82.0 65.7

DTBA (35) 87.0 74.1
TLC (36) 84.9 72.4

SimCat (37) 88.0 77.3
PAA-ResNet-S 92.7 84.4
PAA-ResNet-M 94.1 87.8
PAA-ResNet-L 94.8 89.0

Table 2: Comparison on COCO.

Models Clean (%) Attacked (%)
TiCo (29) 78.9 67.3
MAE (30) 88.9 73.5
Mugs (31) 89.0 73.3

Unicom (32) 90.2 82.8
DINOV2 (33) 91.7 83.9
ESMAF (34) 75.4 55.6

TS (6) 76.7 56.8
sim-DNN (13) 80.6 62.2

DTBA (35) 85.3 68.8
TLC (36) 80.8 71.5

SimCat (37) 82.6 70.1
PAA-ResNet-S 90.9 83.7
PAA-ResNet-M 91.5 84.9
PAA-ResNet-L 91.7 85.6

On both datasets, our models show strong detection performance: accuracy improves considerably121

with the proposed algorithm. Additionally, our results outperforms both the self-supervised and122

supervised results by large margins on clean images detection.123

Furthermore, we perform experiments to evaluate the robustness of our work. Table 3 shows the124

detection accuracy results (in %) with CIFAR-100 (16) and ImageNet-R (38).125

Table 3: Adversarial attack detection performance (clean / attacked images) on seen and unseen
datasets.

Training ImageNet-R ILSVRC CIFAR-100
Test ImageNet-R CIFAR-10 ILSVRC CIFAR-100 CIFAR-100 ImageNet-R

Unicom (32) 91.9 / 82.7 91.0 / 80.4 94.7 / 88.5 92.0 / 81.1 93.3 / 82.7 89.3 / 77.9
DINOV2 (33) 93.4 / 84.5 92.4 / 81.7 96.2 / 90.0 93.4 / 82.6 95.1 / 84.0 90.5 / 79.4
DTBA (35) 92.2 / 85.2 85.3 / 76.9 96.0 / 90.3 86.8 / 78.2 94.7 / 83.1 88.2 / 69.9

PAA-ResNet-L 93.5 / 87.9 92.9 / 85.7 97.1 / 90.5 94.2 / 87.0 96.0 / 87.6 92.1 / 83.4

Compared to supervised learning-based methods (34)(6)(35)(13), the proposed SSL representation126

learning method experiences relatively less performance degradation.127

4 Conclusion128

In this paper, we have proposed a self-supervised representation learning approach for adversarial129

attack detection, offering an effective alternative to traditional supervised pipelines. We establish a130

connection between prototype and instance features through the use of a discrimination bank, thereby131

enriching the information available to enhance the proposed model’s ability to detect adversarial132

attacks. Our evaluation with different datasets and attacks has demonstrated the robust performance133

of the proposed method on unseen datasets.134
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