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ABSTRACT

Forecasting conservation-governed dynamics is often constrained by sparse sens-
ing: in practice, we may have only a single boundary sensor and noisy exogenous
variables. In this work we design an Adaptive Physics-Informed Latent Network
(APILANET) that learns a latent field and enforces 1-D conservation of physics
law in the weak form using a learned, normalized space—time measure. Normal-
ization makes physics enforcement insensitive to quadrature resolution and con-
centrates it on transient violations. A monotone, Lipschitz measurement layer
maps latent variables to observed targets, improving identifiability from a single
sensor. An adaptive, bounded scheduler scales the physics and smoothness loss
terms with meaningful representations, emphasizing conservation of physics laws
during events while preserving training stability. Learning a space-time measure
for weak-form enforcement, combined with a monotone mapping and adaptive
scheduling, enables accurate, data-efficient single-sensor forecasting in physics-
governed systems. We evaluate APILANET through a synthetic and hydrological
case study, APILANET outperforms strong sequence baselines and reduces MSE
during extreme events, while improving Nash—Sutcliffe efficiency. Code will be
released upon acceptance.

1 INTRODUCTION

Learning the evolution of physical systems from sparse, noisy observations is a central challenge in
scientific machine learning. Many natural and engineered processes are governed by partial differ-
ential equations (PDEs), yet in practice we often observe only a single location or a few boundary
points over time. Examples span climate dynamics [Zanella et al.| (2023, biomedical flows |Ling
et al. (2024), battery state-of-health [Wang et al.| (2025), and river hydraulics. Classical physics-
based models typically require dense boundary/interior supervision and careful calibration, while
purely data-driven forecasters struggle to extrapolate reliably and to maintain physical consistency
over long horizons Nathaniel et al.| (2024); Azad et al.| (2025).

Physics-Informed Neural Networks (PINNs) Raissi et al.| (2019) embed governing laws into learn-
able models by penalizing PDE residuals. For 1D conservation laws such as

O¢h(t,z) + 0.Q(t, x) = Rpwoj(t, z), (D

strong-form PINNs minimize a pointwise residual alongside a data term. This is ill-matched to
sparse-observation regimes: (i) it relies on dense interior collocation or full boundary data, (ii) it
uses static trade-offs between data and physics losses that can destabilize optimization, and (iii) it
offers limited interpretability of learned dynamics and failure modes |Kim et al.| (2021)); Rohrhofer,
et al.[(2023). Recent adaptive weighting schemes (e.g., SA-PINN (McClenny & Braga-Neto, [2023)
and ReLoBRal.o (Ling et al.l 2024)) rebalance residuals but remain agnostic to real-time signal
structure and do not address the lack of spatial supervision.

We propose APILANET, an Adaptive Physics-Informed Latent Neural Network for forecasting
PDE-constrained systems from single-point time series. APILANET reconstructs a latent spatiotem-
poral domain anchored at the observation site and enforces equation[T]in the weak form by integrat-
ing residuals against learned test functions rather than penalizing pointwise errors. This lowers
regularity requirements, removes the need for interior collocation, and better reflects sensing setups
where temporal signals are dense but spatial coverage is sparse.
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Figure 1: APILaNet overview. Single-sensor input window: observed state h(t) and exoge-
nous drivers. A latent 1-D domain z € [0,1] is instantiated for weak physics. (A) Dual
streams infer flux components: BASE-LSTM and QUICK-LSTM. A gate « € [0, 1] mixes them,
Q = aQquick + (1—a)Qpase. (B) Monotone rating curve frono maps mixture of latent compo-
nents to target h = Smono (@) With O fimeno/0Q > 0 (enforced by a small monotonicity penalty).
(C) Weak—form physics on the latent mesh: heads predict hg and 9,Qy; a learned weight Ay (¢, z)
emphasizes where residuals matter. The driver projection R, (t,x) = 7(t) e~ "* injects forcing.

Residual R = ng + 0,Q¢ — R, is penalized in the weak form. (D) Adaptive scheduling: bounded
signals modulate Apge and Asmooth. Total loss L = Lgata + Apde Lipge + Asmooth Leons + AmonoLimono-

At a high level, a dual-stream sequence encoder (capturing slow and fast modes) infers a latent
conserved flux field Qg (t, x); a monotone neural observation map transforms this latent field into
the measured signal at the sensor; and automatic differentiation evaluates the measure-weighted
weak-form residual in Eq. equation 2] Training is adaptive: physics penalties are modulated online
by bounded signals derived from prediction error, external forcings, and event indicators, increasing
conservation pressure during transients and relaxing it in near-stationary regimes. Although our
experiments focus on hydrological time series, the architecture is defined at the level of generic 1-D
conservation laws under sparse spatial supervision.

1 2
['PDE - / (8th9(t7 Z‘) + aﬁLQ@(t’ Jf) - Rﬂ(t7 x)) ¢’L/J(t7 1’) dz ) (2)
0

2

The contributions of this paper are threefold: (1) APILa framework — a measure-weighted weak
formulation for single-sensor learning of 1-D conservation laws on a latent spatial coordinate, in-
stantiated via learned test functions and an equivalent normalized space—time density view, to-
gether with a variational dual-stream prior in H'/BV that decomposes slow and fast components
of the latent flux; (2) Theory — we provide conditions for single-sensor identifiability under a
monotone, Lipschitz observation map and mild excitation of exogenous drivers, prove reparam-
eterization invariance of the weak objective on the latent coordinate, and show the equivalence
between the learned-density and learned test-function formulations; (3) Adaptive physics schedul-
ing — a bounded, signal-aware scheme that modulates auxiliary physics terms in time based on
task-relevant statistics, tightening conservation during transients and relaxing it in near-stationary
regimes. \;(t) = clip(AY(1 4+ 3, cir s, (t)), [A™®, A*2X]), prioritizing conservation during tran-
sients while preserving stability.
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We organize the paper as follows: Section 2] reviews related work; Section 3] formalizes the latent
weak-form framework and the adaptive training scheme; Section [] details datasets and protocol;
Section [l concludes.

2 RELATED WORK

Physics-informed learning from sparse observations. PINNs embed governing laws via residual
penalties and have shown wide appeal across scientific domains Raissi et al.[(2019). Yet strong-form
residuals typically presume dense interior collocation and can be brittle under scarce spatial super-
vision. Variants that relax regularity or integrate residuals against test functions (weak/variational
forms) aim to improve robustness to noise and discretization while reducing collocation burden,
but they still require careful loss balancing and often lack guarantees under single-sensor settings
(see empirical discussions in [Nathaniel et al.| (2024)); |Azad et al.| (2025)); Rohrhofer et al.| (2023)).
Training stability in PINNs frequently hinges on the choice of trade-off weights between data and
physics losses. Recent adaptive schemes rebalance terms during optimization, e.g., self-adaptive
PINNs (SA-PINN) McClenny & Braga-Neto| (2023) and ReLoBRal.o [Ling et al.| (2024), which
adjust coefficients based on gradient magnitudes or residual statistics. These methods are largely
signal-agnostic and momentum-driven, and they do not exploit domain cues available at run time,
such as event likelihood or regime changes, to modulate physics pressure.

For 1-D conservation systems observed at a single site (e.g., stage/discharge), sequence encoders are
often used to form latent dynamics, while observation models (rating curves) impose a monotone
relationship between discharge and stage. Prior work typically treats the observation link as fixed
or unconstrained; monotone neural parameterizations provide a learnable but physically consistent
mapping. However, most approaches neither enforce conservation in a weak form over a latent reach
nor couple it with adaptive, signal-aware scheduling.

APILANET differs by (i) enforcing a measure-weighted weak form on a latent 1-D domain an-
chored at the observation site, avoiding dense interior collocation; (ii) using a monotone learnable
rating curve to tie latent discharge to measured stage; and (iii) introducing a signal-driven adaptive
schedule that modulates auxiliary physics terms online. Together these address sparse spatial su-
pervision, stability, and physical consistency beyond prior PINNs and adaptive-weighting strategies
Raissi et al.[(2019); McClenny & Braga-Neto, (2023); [Ling et al.[(2024).

2.1 PROBLEM SETUP & NOTATION

Let @ C R? be a bounded Lipschitz domain with horizon [0,7]. We model a latent state u :
Q x [0,T] — RP approximately governed by following equation

du(z,t) + V- Flu(z,t)) = S(, 1), (z,t) € 2 x (0,7), 3)

with flux F' : R? — RP*< and source S. Initial/boundary data are u(-,0) = uy € L%(Q;R?) and
B(u, F(u)) = gaq on 02 x (0,T). Exogenous drivers £ : [0,7] — R™ act through a bounded
projection

S('at) = ,Pn[g]('vtL P : LQ(OaT§ Rm) — LZ(Q X (OaT)§Rp)a 4)

parameterized by « € K. When €Q is implicit we work on a latent 1-D chart (ﬁ, ¢) with C! diffeo-
morphism ¢ : 2 — ); Jacobian factors are absorbed into the sampling/importance measure.

We observe a single downstream time series via a bounded linear functional C € (H'(;RP))* and
a shape-constrained measurement map

o(t) = go(Clu (-, 1)]) € R, (5)

for which we use a monotone, Lipschitz parameterization enforced by architecture. Given obser-
vations y(t,,) at Tobs = {t, })_,, the task is: from a history of length L;, and drivers &, predict
{y(tn+1), - s Y(tntro,,) - We write t,, = nAt and ap.nir = (a(tn), .. ., a(tn+x)); mini-batches
are contiguous windows (y n—Lin:n» gnfLin:n+LD“t).

For analysis we assume
ue L0, T; H' (Q;RP)) and yu € L*0,T; H ' (Q;RP)),
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so the terms in the weak form are well-defined when F is C'! on the range of ug. With test functions
¢ € H(2;RP), multiplying equationby  and integrating by parts in space yields

(Ot P s pir — /

(F(u),Vy)dx — /S~<pdx =0 forae.t€(0,7). (6)
Q Q

A weak solution of equation B is u with u(-, 0) = ug satisfying equation@for all ¢ € Hg (or for
all o € H'! when nonzero boundary traces are retained), with S = P, [£]. A neural parameterization
ug induces 7y via equation [3} training penalizes weak-form residuals using a learned, normalized
space—time importance density Ay : Q x [0,7] — (0,1] with [ Ay dzdt = 1, together with a
supervised discrepancy between y and 7y. The objective (adaptive weights and shape constraints)
and training details are given in §[@ Assumptions (compact): (A1) F is C'* and locally Lipschitz
on the range of ug; (A2) & € L*(0,T) and P, is bounded L? — L?; (A3) C is bounded and gy
satisfies its structural constraint; (A4) Ay, € L and normalized. Remark. On graphs, replace V- by
BT f with incidence matrix B; the development is unchanged.

3 METHOD

3.1 PANEL A: DUAL-STREAM LATENT DYNAMICS PRIOR WITH INPUT-DRIVEN GATING

From a single—sensor input window X .;, € RE*? we form two latent flux sequences over the
forecast horizon 7 = 1:T: a slow component Qpase(7) and a fast component Qquick(7). The
encoders that produce these sequences are standard sequence models. We introduce an input—driven
gate « € [0, 1] and define the latent component passed to sensor location by the convex combination

Q@(T) =« Qquick(T) + (]- - a) Qbase(T)7 o = U(Q(XlzL))7 (7)

where ¢ is an arbitrary scalar readout of the history and o is the logistic sigmoid. We enforce
Qbase, Qquick > 0, hence Qg > 0 by construction. This single nonnegative () is the only la-
tent signal consumed by the observation link and weak physics. To bias the decomposition toward
interpretable dynamics, we regularize each component with complementary seminorms:

T T
2
Rbase = Z(AQbase (T)) > Rquick = Z‘AQquick (7-)’ (3
T=2 T=2
Here AQ.(T) = Q(7) — Q(T — 1). Rpase promotes H'~type smoothness; R quick is a BV/TV prior.
These terms are novel in our context as a paired Sobolev/BV prior that encourages low—frequency
“component” and high—variation “component” within a single latent mixture.

Assumption 1. The history readouts that generate Qpase,Qquick and the gate g are
Ly, Ly, Ly—Lipschitz maps w.r.t. Xi.r.

Theorem 1. Under Al, for any windows X, X',
1905 X) = Qo5 X))l < (Zalléall + Lollull + $2g Ao(X)) 11X = X,

where Ag(X') = sup, ‘Qquick(T;X/) — Qbase(T; X’)‘. If a uniform bound Ag(X') < Apax
holds, replace Aq(X') by Amax. Proof in Appendix B}

Under mild encoder regularity, the gated mixture Qg in equation[7]is Lipschitz in the input window,
so small changes in X7.;, yield bounded changes in the latent component. Moreover, the paired
Sobolev/BV priors in equation [§] induce a Tikhonov—TV splitting that assigns low-frequency con-
tent to Quase and high-variation content to (Qquick- Formal statements and proofs are provided in

(Appendix [B).
3.2 PANEL B: MONOTONE LATENT MAPPING

Panel B maps the aggregated driver from Panel A to the observed farget using a shallow neural
link without assuming any fixed parametric law. Concretely, a bias-enabled two-layer MLP with
SOFTPLUS activations is applied element-wise in time to the clamped (nonnegative) driver. The
biases absorb sensor offsets and the flexible link avoids imposing a fixed power-law shape. We



Under review as a conference paper at ICLR 2026

introduce (i) an empirical, order-preserving monotonicity surrogate that enforces a nondecreasing
driver-to-target map on the observed driver range without constraining weights, and (ii) a consistency
statement showing that, as design points densify, vanishing surrogate loss yields almost-everywhere
monotonicity over the training range.

Given a finite set q = {¢;}?_, from the (clamped) driver range with qu) < -+ < q(n), define
n—1
1

ﬁmono(e; q) = n—1 Z [fG(Q(H-l))*fG(q(z))] > with [fﬂ]_ = max{(), 71} We add "Ymono‘cmono
i=1

to the 108S (Ymono=0.01).

Proposition 1. Lyono(0;9) = 0 if fo(qu+1) > folqu) for all adjacent pairs. Moreover,
max;[fo(qeiy) — fo(qaiv1))]l+ < (= 1) Linono(0; Q).

If design sets @™ C [0, Qmax] densify, sup,, || fs,, ||co < 00, and a standard regularizer yields a
uniform total-variation bound, then a subsequence converges pointwise a.e. to a monotone limit
on [0, Qmax] when £m0no(9m;q(m)) — 0. Together, this surrogate-and-proof package gives a
lightweight way to impose a domain-plausible monotone observation link only where the data live,
improving identifiability and training stability without hard weight constraints.

3.3 PANEL C: WEAK-FORM PHYSICS ON THE LATENT MESH

We enforce a conservation law in a latent spatiotemporal domain using only single-point time series.
Concretely, the model predicts two time-indexed sequences, an objective-time derivative d;hg[7]
and an exogenous-space derivative d,(Qp[7] and broadcasts them across a fixed X -cell latent spatial
grid. The exogenous variable is projected over this grid via a learnable, monotone spatial kernel.
The weak-form loss is the average of squared residuals weighted by a learned, non-negative field.
We introduce (i) a broadcast weak-form residual on a latent mesh that turns single-point supervision
into spatiotemporal physics via broadcasting and exogenous-variable projection; (ii) an exponential
exogenous projection with learnable decay ~ > 0 enabling spatial structure from a point variable;
(iii) a learned spatial weighting field that emphasizes informative cells while remaining non-negative
by construction.

From classical weak form to APILaNet’s latent

weak form. We compare (i) the classical weak 30 ‘ i B ) o Eh | Y 0.08
residual with constant test functions on a 1D strip, B (I ‘ | fl f 0.06
and (ii) our broadcast residual on a latent mesh - 0.04
with a learned, normalized weight. 2201 URIL RCAE L TR T | | P
Assumption 2 (Proxy derivatives and latent forc- ~ £151 1” b | ] 000 2
ing). For each forecast step T € {1:T}, the O B ‘ ' : ‘, -0.02
model outputs proxies dihg[T] ~ O;h(T,-) and AR LN ) ~0.04
d.QolT] =~ 0,Q(7,-) that are (piecewise) con- *] & Il ‘ [ | -0.06
stant in x when broadcast across a latent grid o Al ] | i -0.08

{;};5, C [0,1]. A single exogenous series is
projected to a latent forcing Rg(x) = Re " Eﬁég MWAML_LWM
with k > 0 learnable.

forecast index

Assumption 3 (Learned, normalized measure). A

nonnegative field Ay(x) > 0 induces a measure Figure 2: Weak—form residual heat map ((¢, s)
dpg(z) = Ag(x) dz on [0, 1] that is (i) bounded —with per-step mean Eg|(|.

and bounded away from 0 on compact subsets,

and (ii) normalized so that fol Agp(z)de = 1.

Figurevisualizes the weak—form residual {(¢, s) = 9;h + 9,Q — R over the latent mesh. Hot/cold
bands in the heat map mark where conservation is violated in time (¢) and across latent cells (s);
sharp vertical streaks coincide with rapid changes in the driving signal, showing that APILANET lo-
calizes transient imbalance rather than spreading it uniformly. The bottom trace aggregates E[|(] ]
and highlights when violations spike, which typically precedes or aligns with observed extremes.
This diagnostic is useful both for model debugging, to identify how residuals concentrate during
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rare, high-amplitude regimes, and for interpretability (how the model “spends” its physics budget
over the prediction horizon).

Theorem 2 (Reduction to classical weak form). Under Assumptions2H3) the APILaNet broadcast
loss

T X
1 2
Lpae(0.9) = 2 D D No(2y) (deholr] + duQolr] = Ro(x7))
T=1j5=1
is a Riemann (cell-wise) quadrature of the classical weak L? (1g) residual of the continuity law with
constant test functions on each cell. In particular, as the latent grid refines (max; |xj41 —x;| — 0),

1 T 1 2
Lpae(0,¢) — T;/o (Otho(T,2) + 0:Qo (7, ) — Ro(x))” dpg ().

Proof sketch. Broadcasting makes the trial/test functions piecewise constant in x, averaging over j
with weights \y(z;) is a normalized quadrature for the weighted L* norm.

Adaptive weighting map. Figure [3] visualizes
the learned space-time weight A(¢, s) used in the
weak-form loss. The heat map shows that A
is not uniform: it concentrates near informative
regions of the forecast (earlier prediction steps
and selected latent spatial cells) and decays else-
where, indicating that the model allocates more
penalty to transient, high-signal zones. The bot-
tom marginal E;[\](¢) summarizes this tempo-
ral emphasis, typically highest near the start of
the horizon and tapering with ¢, while the right
marginal E;[\](s) captures how weighting varies 00 0z oa 06 08
across the latent spatial index. Together with

Fig. P this confirms that APILaNet both lo-

Adaptive weight A(t, s)

time t (normalized)
(53 0]C T

10 00 25
ElAs)1e8

cates residual spikes and adaptively “spends” its
physics budget where it matters most.

Interpretation. Theorem 2] says our broadcast
loss is not an ad-hoc penalty: it is exactly a cell-
wise quadrature of the classical weak residual
under a learned, normalized measure. In plain

Figure 3: Adaptive weight field \(¢, s) learned
for the weak form. Left: heat map over time
t and latent cell s. Bottom: temporal marginal
E4[A](t). Right: spatial marginal E;[A](s). The
field assigns larger weight where the dynamics
change rapidly and smaller weight in nearly sta-
tionary periods.

terms, APILaNet turns a single-sensor sequence

into a principled weak-form discretization on a latent mesh, while A, acts as an importance map
that concentrates physics where the signal is informative. Refinement/consistency assumptions
and results—namely Assumption 4 (approximation and mesh refinement), Theorem 3 (consistency
under refinement), and Corollary 1 (single-sensor realizability through the monotone observation
link)—are stated and proved in Appendix

3.4 PANEL D: ADAPTIVE PHYSICS SCHEDULING

Panel D modulates physics strength. Two global multipliers act on the physics terms: a PDE weight
Apde and a derivative-consistency weight Acons. Each is computed instantaneously per minibatch
from available signals. In addition, a local nonnegative field A\ (¢, ) weights the PDE residual over
the latent mesh (Panel C). The effective PDE weight is Apqe(f, ) = Apde Aloc(t; ). Objective:
allocate physics pressure when and where it matters without destabilizing training. We therefore
factorize the PDE weight into a global batch scalar and a local nonnegative field over the latent
mesh:

T X
1
Apde(ta $) = )‘pde /\loc(t7 1‘), /\loc(t7 .TII) Z 07 ﬁ Z Z >\10c(7-7 JUj) =1

T=1j=1

9
The effective PDE term in the loss is

1 T X
= >\pde . ﬁ Zz/\loc(ﬂ mj)""e[ij]Qv T@[T,j] = athG[T] + axQG[T] - RG(”U)' (10)

T=1j=1

eff
Lpde
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Algorithm 1: Adaptive Multi-Loss Scheduling with Factorized Local Weights

Inputs: mini-batch D, model F, optimizer; bases {\?}; sensitivities {ax }; clips [AT™, 2]
Outputs: updated parameters ¢

for epoch e = 1 to Nypocr do

foreach mini-batch D do

compute per-losses {£;(6, D) }i~,; optional local map Wis. >0

compute batch signals {sx(D)}~_, and activity II

for i = 1tomdo

K
i — clip()\? (1+ Z ok 8k + o, mIL), A, /\Z“ax)

k=1

if Wige used then
A ﬁ Z(t,g)eﬂ VVloc(t7 .’13),
VVIOC <~ VV]OC/Z

Lioi Z Ai Li(0, D; Wiec)
i=1
optimizer.zero_grad();
backprop(Liot);
optimizer.step()

Instantaneous global scheduler. Let £ > 0 be the batch prediction loss, s € Rgo a vector of
auxiliary regime signals, and I € [0, 1] an activity score. For i € {pde, cons} we set

A = clip(A? (14 E+als+a;nIl), Am, A;.naX), (11)

where )\? >0 is a base level, (a;, a; 1) > 0 are sensitivities, and clip enforces user-specified bounds.
In the implementation we use this update rule: for each mini-batch we compute (E, s, IT) from the
current data, plug them into equation |11} and recompute \; from scratch.

Assumption 4 (Bounded signals & normalized local field). During training, E, each compo-
nent of s, and 11 are bounded; the local field satisfies equation [9 and equation [I1] produces
Aj € [ARIR ] \max],

Theorem 3 (Monotone responsiveness with bounded pressure). Under Assumption [6] each X; in
equation |7_7| is nondecreasing in E, every component of s, and 11 (away from clips) and always
satisfies X' < Ny < AP Consequently equation is both responsive to harder-regime batches
and bounded fo avoid instability.

Implementation and hyperparameters. For clarity, we make the full set of scheduler scalars
explicit. Foreachloss i € {pde, cons} we specify base levels \?, clipping bounds (A", \ax) ‘and
nonnegative sensitivities (o, a; ). All values used in our experiments are listed in Appendix W2.

The only scalars selected by validation are a global physics scale Aale that multiplies ()\g dos Aons)

and an activity sensitivity cyy applied to IT; we choose (Agcale, 1) once by a small grid search on
the validation NSE and then reuse the same pair for all datasets in the corresponding benchmark.
All other modulation is purely data—driven through (E, s, II).

Sensitivity and robustness. To assess robustness, we perform a scheduler ablation on a synthetic
single-sensor benchmark (Appendix D2), varying Asae € {0.5,1.0,2.0} and ayp € {0,0.3,0.6}
and comparing adaptive (a; > 0) versus static (a;=0) weights. Across this grid, test MSE and
NSE vary smoothly, with no training collapse, and the performance differences between adaptive
and static global weights are modest. This indicates that the scheduler does not rely on finely tuned
coefficients; its main effect is to redistribute physics pressure towards difficult regimes rather than
to optimise aggregate error. Full numerical results are reported in Table D2.

We scale physics by two knobs: a global, batch-wise multiplier that grows when the batch looks
hard (big errors, event cues) but remains clipped, and a local, nonnegative map over the latent mesh
that redistributes this budget to where residuals matter. The global rule makes physics responsive yet
bounded, the local normalization preserves the average strength while focusing effort in time—space.
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Theorem [7| formalizes this: the scheduler is monotone in difficulty signals away from clips, and the
weights stay within [A"™, \#¥], so training remains stable even during sharp transients.

4 EXPERIMENTS

4.1 PROTOCOLS

Datasets We conduct a hydrology case study and experiments on six real-world, single—sensor
benchmarks from UK catchments. We construct the same L x d input tensor for all sites using
a unified pipeline. The train/val/test configuration splits for each dataset are same. Addtionaly, we
include a general 1D PDE benchmarks (viscous Burgers, wave, Allen—Cahn), where high-resolution
reference solutions are generated with a finite—difference solver.

Baselines We benchmark APILANET against eight competitive sequence-to-sequence forecast-
ers that span the main families of modern time-series modeling: Transformer Utilizing Cross-
Dimension Dependency for Multivariate Time Series Forecasting CrossFormer Zhang & Yan
(2023)); patchwise Transformer PatchTST Nie et al.| (2023); MLP token—mixer TS-Mixer |Chen
et al. (2023)); convolutional token—mixer PatchMixer|Gong et al.[(2023)); selective state—space model
Mamba-S4|Dao & Gu|(2024); iTransformer Liu et al|(2023); and the neural decomposition methods
N-HiTS |Challu et al.|(2022) and N-BEATS |Oreshkin et al.| (2020).

Setup. All models ingest the same L x d input tensor and predict the same T-step horizon. In-
puts are feature-wise min—max scaled using statistics computed on the training split and applied
to val/test. We generate input—output pairs with a sliding window. We evaluate a fixed forecast
horizon T'=32 and look-back length L=32 based on Table 2| Primary metrics are Mean Squared
Error (MSE) and Nash-Sutcliffe Efficiency (NSE); for event-focused analyses we additionally re-
port peak-timing and peak-magnitude errors (Atpea, Afpeak). Baselines use the same inputs as
APILANET and follow the original authors’ recommended model sizes, optimizers, and regular-
ization. All methods are trained for the same epochs, batch size, and learning-rate schedule. Each
configuration is run with three fixed random seeds; and the mean of the metrics is reported. Full
dataset details, implementation, and hyperparameters appear in Appendix [A]

4.2 ABLATION STUDY

Ablation Design We report seven variants corresponding to Table |1} (1) APILaNet (full model);
(2) w/o X Adapt. (global); (3) w/o Ay Adapt. (local)—remove the local weighting (set A;=1) while
keeping the global scheduler \; and the PDE loss; (4) w/o As; Adapt. (both)—freeze both weights
(fix \g=AJ and A\,=1) with the PDE loss retained; (5) w/o Monotone MLP—replace the monotone
rating-curve link by an unconstrained scalar MLP; (6) w/o PDE loss—drop the weak-form continuity
residual from the objective; (7) L4, only—pure data fit.

Table 1: Ablation at 8 h before extreme event on Stocksfield. Entries are mean4SD [95% CI] across
seeds. MSE is reported in X 10~ 1. Best results are red; second-best are blue.

Model XAy A: PDE Atpea (D)) Ahpea (M), MSE (x1071) | NSEt

(1) APILANET v v v 0.00-0.00[0.00,0.00] 0.4640.19[0.18,0.75] 0.4540.14[0.25,0.65] 0.51--0.15[0.29, 0.72]
() wlo XA Adapt. (@) x x v 0.00-20.00[0.00,0.00] 0.464-0.08[0.33,0.59] 0.532:0.06[0.45, 0.62] 0.42--0.06[0.33, 0.51]
(G)wlo A Adapt. b)) x v v 0.00-20.00[0.00,0.00] 0.3940.17[0.13, 0.64] 0.572£0.03[0.52, 0.61] 0.38-£0.03[0.33, 0.43]
@ wlo AAdapt. ©) v X v 0.00£0.00[0.00,0.00] 0.5240.07[0.41,0.63] 0.5540.07[0.45,0.65] 0.39-£0.07[0.29, 0.50]
(S)wloMonoMLP v v« 0.00-20.00[0.00,0.00] 0.5140.16[0.27, 0.75] 0.532:0.04[0.47, 0.59] 0.41--0.04[0.35, 0.48]
(6) wlo PDE Loss vV v x 0253042[-0.19,0.69] 0.4020.14[0.25,0.54] 0.6420.27[0.36, 0.93] 0.294-0.29[-0.01, 0.61]
(7) APILANET Laua X X X 1.92+3.32[-3.01,6.84] 0.68£0.24[0.32, 1.04] 0.7420.35[0.22, 1.26] 0.1940.38[-0.37, 0.76]

Based on the results from Table E] , the full APILANET achieves the best MSE/NSE. Removing
adaptive weighting degrades accuracy—both schedulers matter: using only the A4 or only the A
field is inferior to using them together. Eliminating the PDE weak—form loss yields the largest drop
in peak timing and overall fit, while removing the monotone link also hurts MSE/NSE and stability.
Overall, gains are additive: monotone link + PDE loss + (A4 ® A,) scheduling produce the strongest
performance.
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Sensitivity to latent mesh size and learned measure. We additionally vary the number of latent
cells X € {8,16,32,64} and compare (i) a uniform measure Ay, (¢, ) and (ii) the learned measure
Ag(t, ) (Table |§|; full results in App. E[) The uniform baseline aggregates performance across all X
with a fixed, non—-adaptive measure, while the learned ), is trained separately for each resolution
X. Across all tested resolutions, the learned measure never underperforms the uniform baseline:
the largest gains occur at moderate resolutions (X = 16, 32), with test MSE reduced by roughly
15-18% and NSE improved by about 0.015-0.017. For coarser or finer grids (X = 8 or 64), the
gains are smaller but remain non—negative.

4.3 INFLUENCE OF INPUT SEQUENCE LENGTH

Table[2] shows that a medium context is consis-
tently best. Across all five catchments, the opti-
mal lookback is 32 steps (8 h at 15 min resolu-
tion): it yields the lowest MSE and the highest
NSE in every case (ACOMB MFS 0.021x10~2
/ 0.936, STOCKSFIELD 0.053x1072 / 0.886). Site }Me"‘c
Short histories (<16 steps) underfit transients
and hurt NSE, while very long histories (>128)  AcoMs Gry
plateau or slightly degrade, likely due to mem-
ory dilution, heavier optimization, and fewer
distinct windows per epoch. The result is ro-  srocksmeLp
bust—64—-128 steps are typically within a few MSE (x10-2)
percent of the best—but 32 steps offers the best ~ NUNNYKIRK [ysg

Table 2: Lookback sensitivity by catchment.
Mean MSE (], x1072) and NSE (1) across seven
input horizons (2—128 h).

\ Lookback window (time steps)

| 8 16 32 64 128 256 512

0.066 0.059 0.041 0.043 0.045 0.057 0.042

MSE (x1072)
NSE 0.857 0.873 0.911 0.906 0.909 0.895 0.910

0.049 0.037 0.021 0.023 0.027 0.022 0.028

MSE (x10~2)
NSE 0.853 0.888 0.936 0.931 0.919 0.933 0.916

ACOMB MFs

0.079 0.071 0.053 0.069 0.068 0.068 0.061

MSE (x1072)
NSE 0.837 0.849 0.886 0.852 0.856 0.855 0.872

0.091 0.073 0.067 0.073 0.086 0.090 0.091
0.913 0.941 0.959 0.940 0.921 0.914 0.913

accuracy—efficiency trade-off. We therefore fix Knrrsipy | MSE (x1072)[0.063 0.038 0.030 0.038 0.033 0.064 0072
. .. NSE 0.915 0.936 0.946 0.935 0.943 0.912 0.902
the lookback to 32 steps (8 h) in all remaining ==
. . -2
experiments unless stated otherwise. KIELDER ‘;"SSEE(“O o e A o oer oo

4.4 SYNTHETIC 1D PDE BENCHMARKS

To test whether APILaNet is tied to a single application domain, we also evaluate it on three well-
known 1D PDEs: viscous Burgers, the wave equation, and Allen—Cahn. For each, we generate a
finite-difference reference solution with standard IC/BC and train vanilla PINN, PINN-w, gPINN,
and vPINN in the usual setting with full geometry and interior collocation points, while APILaNet
only observes a single probe time series and known forcing, enforcing the conservation law on a
latent spatial coordinate (Sec. [3.3). Table 3] reports test MSE at the probe; across all three PDEs,
APILaNet matches or outperforms these strong-form and adaptive PINNs despite the weaker infor-
mation regime, supporting its role as a general single-sensor conservation-law framework.

Table 3: Synthetic 1D PDE benchmarks. Entries are test MSE (lower is better). Best results are red;
second-best are blue.

PDE (MSE) Vanilla PINN PINN-w Ryck et al. (2022) gPINN|Yu et al.|(2022) vPINN Kharazmi et al.[(2019) APILaNet

Burgers 5.80 x 107 2.91 x 1073 1.29 x 10~% 1.45 x 1073 4.50 x 107°
Wave 2.62 x 1074 2.89 x 1073 1.62 x 1074 8.91 x 1074 1.52 x 1074
Allen-Cahn  1.18 x 10° 1.04 x 10° 1.32 x 1071 1.04 x 10° 1.18 x 1071

4.5 ADDITIONAL EXPERIMENTS

Beyond standard test-set accuracy, we benchmark early-warning performance by evaluating every
model’s ability to predict before the extreme event. This stress test probes how well a forecaster
anticipates extremes as lead time shortens—crucial for actionable response. Across all lead times,
APILANET delivers the lowest MSE and highest NSE in most catchments, while also minimizing
peak timing and magnitude errors (Atpeak, Ahpeak). Notably, performance degrades gracefully as the
warning window widens (8 h — 2 h), indicating stable physics-aware generalization rather than last-
minute correction. These results suggest APILANET provides earlier and more reliable alerts than
state-of-the-arts baselines, making it better aligned with real-world decision timelines for real-world
preparedness and incident management. (Appendix [F).
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Table 4: Catchment-level forecasting. Test-set MSE (]) and NSE (1) across six UK catchments and
three events per catchment, with fixed prediction length and horizon.Best results are red; second-
best are blue.

Model
Metrics

APILANET CROSSFORMER  PATCHTST TSMIXER PATCHMIXER ~ MAMBA S4  ITRANSFORMER N-HITS N-BEATS
MSE| NSEt MSE| NSEt MSE| NSET MSE| NSEf MSE] NSET MSE| NSEt MSE| NSEf MSE| NSEt MSE| NSEf

Event 1| 0.090 0.810 0.117 0.754 0471 0.009 0.127 0.733 0.117 0.753 0317 0333 0.122 0.744 0362 0238 0.337 0.290
Event2 | 0.058 0.919 0.093 0869 0.385 0460 0.073 0.897 0.082 0.884 0222 0.689 0.106 0851 0.341 0522 0311 0.564
Event3| 0935 0.329 0951 0318 2485 -0.783 0.926 0.335 1.514 -0.087 1357 0.026 0968 0305 1.682 -0.207 1.712 -0.229

‘ Test ‘0.0]0 0.907 0.011 0901 0.026 0.762 0.010 0.904 0.013 0876 0.016 0.852 0011 0.897 0.020 0815 0.019 0.821

Data

Event 1| 0.054 0.885 0.077 0.836 0443 0.061 0.052 0.890 0.064 0.863 0.324 0314 0.103 0781 0.382 0.191 0428 0.092
Event2| 0.018 0.970 0.058 0.902 0326 0450 0.025 0.957 0.109 0817 0208 0.649 0.076 0871 0.328 0.446 0339 0427
Event3 | 0.370 0.638 0.706 0309 1.131 -0.107 0.533 0.478 0.553 0458 0872 0.146 0.752 0264 1.192 -0.167 1.323 -0.295

| Test | 0.005 0937 0.008 0904 0015 0811 0.006 0.927 0006 0925 0011 0.855 0008 0898 0015 0811 0016 0.795

Event 1| 0.019 0.747 0.047 0.389 0879 -0.130 0.279 0.642 0.250 0.678 0.568 0.270 0.443 0430 -1.01 -0299 1.097 -0.410
Event 2 X X X X X X X X X X X X X X X X X X
Event3| 0396 0315 0.361 0.370 0.607 -0.051 0.358 0.381 0.698 -0.209 0.442 0.234 0486 0.158 0.673 -0.167 0.757 -0.311

‘ Test ‘0.013 0.879 0.016 0.851 4.059 -2.665 0.014 0.873 0.016 0.859 0.019 0.830 0.020 0817 0.025 0773 0.026 0.762

Event 1| 0.116 0.862 0257 0.695 0325 0.614 0.212 0.748 0.158 0.813 0.273 0.675 0.184 0.781 0.343 0.593 0.382 0.546
Event2| 0.043 0.926 0.056 0.902 0249 0.566 0.054 0.907 0282 0.509 0.133 0.768 0.093 0.839 0.180 0.686 0216 0.624
Event 3 X X X X X X X X X X X X X X X X X X

‘ Test ‘0.003 0972 0.004 0.958 0.009 0.925 0.004 0.962 0.005 0951 0.006 0.944 0.005 0.954 0.009 0923 0.009 0.922

NUNNYKIRK | STOCKSFIELD | ACOMB MFS | ACOMB GRN

% |Event1]0.008 0960 0017 0910 0160 0.164 0029 0845 0037 0808 0.122 0362 0027 0856 0.148 0224 0.143 0251

7 |Event2] 0.056 0907 0089 0854 0473 0219 0.059 0901 0.35 0777 0323 0466 0.178 0707 0421 0306 0405 0332

S [Event3| 0028 0738 0.017 0839 0091 0168 0021 0803 0.012 0.9 0072 0299 0033 0697 0092 0.52 0.093 0.147

) Test | 0.004 0939 0004 0928 0012 0810 0.003 0942 0004 0930 0008 0862 0.005 0911 0011 0821 0011 0824

= [Event1]0.008 0957 0015 0920 0140 0269 0016 0918 0013 0933 0091 0527 0031 0837 0137 028 0.123 0361

S |Event2| 0027 0877 0029 0869 0087 0610 0017 0700 0.015 0934 0081 0637 0047 0788 0068 0.692 0.059 0735

Z |Event3| 0.013 0.691 0015 0634 0040 0280 0.019 0.668 0.021 0629 0021 0621 0023 0618 0040 0284 0042 0.260
M

| Test | 0.003 0962 0004 0942 0014 0826 0.004 0951 0.004 0946 0009 0894 0005 0940 0013 0844 0013 0845

Best (1) | Count | 16 16 0 0 0 0 4 4 2 2 0 0 0 0 0 0 0 0

4.6 MAIN RESULTS

Across six UK catchments and three events per site, APILANET achieves the strongest overall per-
formance (Table @) On the Test split it achieves the lowest MSE| and highest NSE? on five out
of six catchments, with a very close second place on KNITSLEY (0.004/0.939 vs. 0.003/0.942 for
TSMIXER). Aggregating over all event—level and test rows, APILANET secures 16 best scores,
compared with 4 for TSMIXER and 2 for PATCHMIXER, while the remaining baselines never
dominate. The largest gains are observed at ACOMB MFS, NUNNYKIRK and KIELDER, where
APILANET consistently improves both error (MSE) and efficiency (NSE) over the strongest deep-
learning baselines, indicating that the latent-physics prior is beneficial across a range of single-sensor
catchment regimes.

5 CONCLUSION AND FUTURE WORK

We introduced APILANET, an Adaptive Physics-Informed Latent Network for single-sensor fore-
casting that couples sequence learning with weak-form conservation. A dual-stream latent prior
with input-driven gating, a monotone observation link, and a learned, normalized space—time mea-
sure deliver stable training and targeted physics enforcement. On five UK catchments, APILANET
improves NSE and lowers MSE during extreme events over strong state-of-the-arts, suggesting a
practical application for conservation-governed forecasting under sparse sensing.

We analyzed the limitations of our work and briefly discuss some directions for future research:
(1) Beyond 1-D. Generalize the latent PDE from a reach-averaged 1-D mesh to multi-reach/graph
geometries and lightweight momentum terms. (ii) Safer observation mapping. Add physics-aware
shape priors and uncertainty quantification to the monotone link for robust extrapolation outside
the observed latent range. (iii) Richer general states and interpretability. Learn time—space wet-
ness/state variables (beyond a single decay ) and integrate XAl diagnostics to attribute predictions
to latent physics and drivers.
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A APPENDIX A

Ethics Statement |Kharazmi et al.|(2019) [Yu et al.| (2022)) Ryck et al.| (2022) We used large lan-
guage models (LLMs) solely to polish writing e.g., improving clarity, grammar, and flow. All ideas,
methods, experiments, analyses, figures, and conclusions are the authors’ own. No data, code, or
results were generated by LLMs, and all citations and factual statements were verified by the authors.

Reproducibility Statement We provide the theoretical background throughout the paper and in
the Technical Appendix, including assumptions, definitions, and proofs supporting our claims. Upon
acceptance, we will release the full codebase, configuration files, and scripts to reproduce all exper-
iments in a public GitHub repository; the URL will be announced to preserve double-blind review.

A.1 DATASETS

Data source. All datasets used in this study were extracted from the UK Environment Agency
Hydrology service (https://environment .data.gov.uk/hydrology/explore). We
used publicly available gauge series and constructed train/test splits per catchment as summarized
in Table
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Table 5: Dataset overview by site (Train+Test merged). All series are 15 min cadence and include
10 features per site. Source: UK Environment Agency Hydrology.

Site |Rows (total) Features Time range Med. interval
Acomb GH 320590 10 2016-01-01 — 2025-02-28 15 min
Acomb MSFD 321260 10 2016-01-01 — 2025-02-28 15 min
Knitlsey 315535 10 2016-01-01 — 2024-12-30 15 min
Kielder 315525 10 2016-01-01 — 2024-12-30 15 min
Nunnykirk 315505 10 2016-01-01 — 2024-12-30 15 min
Stocksfield 110857 10 2022-01-01 — 2025-02-28 15 min

Preprocessing. Timestamps were parsed and sorted; all series operate at a 15 min cadence. We
retain provider units and engineer a 10D feature vector per timestamp. Here Ah and A2h are
first/second differences of level; daily min/daily max are previous-day extrema (computed
per calendar day and shifted by 96 steps = 24 h to avoid leakage), then forward/backward filled;
future_rain is a 32—step (8 h) lead of rain (placeholder when not observed); AWT is an exponen-
tially weighted antecedent wetness index with 5-day decay; and rain_3h/rain_24h are rolling
rainfall sums over 12 and 96 steps. After feature construction we drop any residual NaNs. Features
are scaled with a Min—-Max transform fitted on the training split and applied to validation/test. For
sequence modeling we form input/output windows of 32/32 steps (8 h/8 h); training uses an 80/20
chronological split with shuffling only on the training loader (validation/test are not shuffled).

Notation. Let {t,}1_, be the forecast timestamps (uniform step At), and let , and 7, denote the
observed and predicted water level at ...

Mean Squared Error (MSE).

=l

T
1 N 2
MSE = Z(yT — yT) .
T=1
Nash—Sutcliffe Efficiency (NSE).

ZT:1 (:’JT - y7)2 _ 1 d
NSE = 1 — ==27 T g = Yr.
23:1(3/7 - g)Q 72:31

Peak timing error (Atpear). Let 7.
(absolute) timing difference in hours:

Atpeak = |trr  —1t

*
pred Tobs

(With 15 min cadence, At = 0.25h.)

=l

€ argmax; Y, and 74 € argmax, y.. We report the

= | T;)(red - 7-(;(bs | At.

Peak height error (Aheai). We compare the peak magnitudes over the forecast window:

Ahpeax = | max g, — maxy, | (meters).
T T

Optimization & training. All experiments are conducted on a single workstation with an
NVIDIA RTX 4090 (24 GB), an Intel Core i9-14900KS, and 128 GB of RAM All models are
trained in PyTorch with Adam (learning rate 1 x 10~2), mini—batches of 64, and shuffled training
streams; validation/test loaders are not shuffled. We use a deep ensemble of M =3 independently
trained instances for each seed we reinstantiate the data loaders with the same seed to obtain re-
producible shuffles. At inference, we average ensemble outputs for the point forecast and report
the ensemble standard deviation as an estimate of epistemic uncertainty. Unless otherwise stated,
input and forecast horizons are 32 steps (15 min cadence = 8 h lookback/8 h horizon), and the same
preprocessing and scaling are applied across all runs.

"No multi-GPU or distributed training is used.
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Reproducibility. We will release scripts that (i) download the raw CSVs from the Hydrology
service, (ii) apply the exact parsing and split logic used in this paper, and (iii) regenerate all summary
tables.

B APPENDIX B : PANEL A: DUAL-STREAM DISCHARGE PRIOR WITH
INPUT-DRIVEN GATING

Notation. For a sequence z € R” define the forward difference Az(1) = z(1) — 2(7 — 1)
for 7 > 2. We write the Sobolev—seminorm |z||%, = ZZZQ(AZ(T))2 and the total variation
|zl|Tv = 2322 |Az(7)|. A history window is X;.;, € RY*?; the most recent vector is 21, € R,

B.1 MODEL AND TRAINING OBJECTIVE

Two sequence encoders (e.g., LSTMs) produce nonnegative discharge sequences

Qb(X)7 Qq(X) S Rgm Qb = ¢b(X)7 Qq = ¢q(X)7

and a scalar gate is computed from the history (in code: from zp)
a(X) =o(g(X)) €[0,1],  o(u) =

The latent discharge propagated downstream is the convex mixture

1
1+e—uw "

Qo(75 X) = a(X) Qq(7: X) + (1 — a(X)) Qu(m; X),  Qp €RZ,. (12)
To bias the decomposition toward interpretable dynamics we add a paired prior
Ru(@b) = 1Qblf,  Ra(Qq) = [QqllTv- (13)

Let Lga, denote the supervised loss (on the task outputs). The Panel-A contribution to the training
objective is

La(X;0) = pu [|Qu(X)|Fn + pq [Qq(X) Ty, ppspg >0, (14)
and the full loss is Lioal = Ldata + L4 + Lphysics-

Remark (penalized joint learning). Unlike a constrained “recover (Qy, Q) given Qp” solve, our
implementation jointly learns Qy,, Q4 with the encoders by penalizing equation T3] during training.
This is exactly what the code does.

B.2  STABILITY OF THE GATED MIXTURE

Assumption B1 (encoder and gate regularity). There exist Lipschitz constants Ly, Ly, Ly > 0
such that

1@b(X) = @u(X oo < Ly [ X = X'[I, [1Qq(X) = Qq(X )]l < Lq [|IX — X[,

and [g(X) — g(X")| < L, || X — X'||, for a fixed norm || - || on RE*4, We use the standard bound
lo(u) = o(v)] < Flu—vl.

Theorem 4 (Lipschitz dependence of Qg on the history). Under Assumption Bl, for any windows
X, X/,

HQG('QX) - Q9<'§X/)HOO < (Lq + Ly + iLg AQ(X/)) ||X - X’H,
where Ag(X') = sup,|Qq(7; X) — Qu(7; X")|. If a uniform bound Ag(X') < Amax holds on
the training domain, we may replace Ag(X') by Apax.

Sketch. Using equation[12]
Qo(X) = Qo(: X') = a(X)(Qq(X) — Qq(X")) + (1 — a(X))(@n(X) — Qu(X"))
+ ((X) — a(X"))(Qq(X) — @n(X)).

Take || - ||oo, apply the encoder Lipschitz bounds to the first two terms, and the sigmoid bound
la(X) — a(X")| < 1g(X) — g(X')] < $L,4[|X — X'|| to the gate term; then collect constants.

14
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Interpretation. Small perturbations of the input history yield bounded changes in (9. The bound
decomposes additively into (i) variability of the fast stream, (ii) variability of the slow stream, and
(iil) gate sensitivity scaled by the instantaneous separation Ay between streams.

B.3 BIAS AND IDENTIFIABILITY OF THE PENALIZED SPLIT

Define the per-batch objective

T (X50) = Laaa(X50) + po | Qu(X)Fn + pq |Qa(X)llv-
At any stationary point of 7 (with respect to encoder parameters), the Euler—Lagrange/KKT condi-
tions yield the following qualitative structure.

Proposition 2 (Directional bias of the streams). Let 6* be a stationary point of J. Then the slow
stream Qy,(X;0*) minimizes a data-augmented functional that contains || DQ||3, while the fast
stream Qq(X; 0*) minimizes a data-augmented functional that contains || DQ||1. Consequently, Qy,
concentrates low-frequency energy and Q) concentrates high-variation energy (sparse differences).
The nonnegativity constraints preserve the physical sign.

Idea. Differentiate 7 with respect to the encoder outputs. The gradient contributions of || Qs ||
and || Qq||Tv are, respectively, DT (2 DQy,) (a smoothing operator) and D T (sign(D@Q,)) (an edge-
sparsifying operator). Balancing these with the data gradient yields the stated bias. Formal details
follow by standard subdifferential calculus for TV.

Identifiability discussion. When o € (0, 1) and the two priors are active (py, pq > 0), the opti-
mization favors a unique role allocation—smooth content in @)y, jump-sparse content in Q4. If «
saturates at {0, 1}, the inactive stream is under-determined by the mixture; in practice we discourage
saturation by ordinary early-training regularization on the gate (e.g., mild logit penalty) and by the
data loss coupling both streams through Q.

C APPENDIX C : PANEL B: PROPERTIES OF THE MONOTONE LATENT
MAPPING

Panel B maps the nonnegative driver ¢(7) € R>¢ (output of Panel A) to the target h(7) through
a shallow MLP fy : R>o — R applied elementwise in time: h(7) = fy(q(7)). We do not im-
pose weight sign constraints; instead we add a lightweight batchwise monotonicity surrogate that
encourages fy to be nondecreasing over the observed driver range.

Given a finite design set q = {¢;}?_; sampled from the current batch (or a fixed grid) and sorted
Q(l) S S Q(n), define

n—1
Lmono(0;q) = ! Z [foqus1)) — folaw)] _, []- = max{0, —x}. (15)
=1

n—14

We add YmonoLmono to the training objective (With Yy0no=0.01 in our experiments).

Proposition 3 (Immediate properties). If fo(qiiv1)) > fo(qu)) for all 4, then Liyono(05q) = 0.
Moreover,

| Jnax [fo(aw)) — folaurn)]l+ < (n—1) Liono(05a),

so the loss controls the largest adjacent monotonicity violation on the sampled range.

Let design sets q™) C [0, Qumayx] densify (mesh size — 0), and suppose sup,,, || fa,, ||cc < 00 and a
standard regularizer yields a uniform total-variation bound on fy . If Liono(0m; q(m)) — 0, then
a subsequence of {fp, } converges pointwise a.e. on [0, Qmax] to a nondecreasing limit. (Sketch:
Helly selection on uniformly BV functions + vanishing adjacent violations on a dense mesh implies
monotonicity a.e. of the limit.)

Practice. (i) We form q by sorting the per-batch driver values and compute equation[I3] (ii) The
surrogate only constrains the map where data lie (observed driver range), which is sufficient to sta-
bilize training and improve identifiability in practice. (iii) No architectural monotonicity constraints
are required; the approach is optimizer- and MLP-agnostic.

15
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D APPENDIX D : PANEL C: WEAK-FORM PHYSICS ON A LATENT MESH

Latent mesh and broadcasted residual. Let the forecast steps be 7 = 1:7" and the latent spatial
grid {x;};%, C [0,1]. The model outputs two time-indexed proxies (constant in z upon broadcast)

dthé)[T] ~ 8th(7-7')7 dTQO[T] ~ amQ(Tv ')a
and forms a latent forcing by projecting a single exogenous series via an exponential kernel
Ri.(z) = Re ™", % > 0 learnable, R = batch summary of rainfall.

A nonnegative space—time weighting field A4 (7,2) > 0 (produced by a small network on (7, z))
emphasizes informative regions. The broadcast weak residual is

T@[ij] = dthG[T] + deG[T] - Rn(xj)v

and the weak-form physics loss used in training is the normalized weighted average

T X
1
Lode(0,0) = X ZZ (1,2) rolT, 517, Ag(T,2) > 0. (16)

(Implementation: )\ is Softplus-positive; optionally we renormalize it per batch so its average over
(7, 7) is 1, but this is not required.)

C.1 FROM CLASSICAL WEAK RESIDUALS TO THE BROADCAST LOSS

Consider the 1-D continuity law on a strip,

Oh(t,x) + 0.Q(7,2) = R(x),  (m,2) € {1:T} x [0,1].
Let 14 be a learned nonnegative measure on [0, 1] with density A, (7, -) for each 7 (no sign changes;
boundedness holds in practice due to Softplus outputs).

Theorem 5 (Broadcast loss is a weighted weak residual). Assume (i) diho[7] and d,Qg|T] are
broadcast as piecewise-constant in x, (ii) R, is continuous in x, and (iii) \y(T,-) is bounded and
nonnegative. Then equation[I6]is a Riemann (cell-wise) quadrature of the weighted weak residual
with constant test functions on each cell:

Lpde(8, ¢) Z/ athg (1y2) + 0:Qp(7,z) — Ry (x ))2d/1,¢(7',$) + o(1),

where 0(1) — 0 as max; |z, 41 — ;| — 0. Sketch. Broadcasting makes trial/test functions piecewise
constant in x; the double sum is a normalized quadrature of the weighted L? residual over the latent
cells.

C.2 CONSISTENCY UNDER REFINEMENT AND APPROXIMATION

We formalize when vanishing broadcast loss enforces the PDE almost everywhere.

Assumption 5 (Approximation + bounded weights). There exist h*, Q*, R* with 0;h*+0,Q* = R*
a.e. such that: (i) dihg — 0;h* and d, Qg — 0,Q* in L*([0,1]) (over 7); (ii) R, — R* in L?([0,1])
as k — K*; (iii) the latent grid fill distance — 0; (iv) for each T, \y(T, -) is bounded on [0, 1] (and
optionally renormalized to unit mean).

Theorem 6 (Consistency of latent weak enforcement). Under Assumption@ if Lpae(8,¢) — 0 then
Oh* (1, x) + 0.Q*(1,x2) = R*(z)  forae. (1,2) € {1:T} x [0,1].

Sketch. By Theorem |5|the discrete loss converges to a weighted L? residual; bounded )\, and the
L? approximations imply the residual tends to 0 in L*(j1,), hence vanishes a.e.

16
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C.3 ROLE OF THE LEARNED WEIGHT FIELD AND EXPONENTIAL FORCING

Learned importance map. The nonnegative field A, (7, z) in equation [16|lets the model allocate
physics pressure to informative regions (e.g., transients or specific latent cells). Gradients take the
form

aﬁpde _ 2 . 8['pde _ 2 )
ddihelr]  TX Xj:/\¢(7',xj)r9[r,]], dd.Qo[r] ~ TX Zj:)‘¢(77$3)r«9[77]],
O0Lpde

d¢

so cells with large residuals attract more weight until balanced by normalization/other losses.

1 .
= % ZT@[T,]]Q Dphg(T,5).  (17)
7,]

Exponential projection. With R, () = Re™"* and £ > 0 learned, single-point exogenous input
induces a spatial latent loading that decays with x, enabling spatiotemporal structure from a single
time series while keeping the projection differentiable and stable.

C.4 RELATION TO CLASSICAL PINNS AND WEAK—FORM PINNS (MATHEMATICAL)

Classical (strong-form) PINNs. For a PDE AM[u] = f on [1:7] x , strong PINNs penalize
pointwise residuals at collocation points:

N
Lgrong(0) = %Z |Nug) (ri, 2:) = f (i, zi)|2 + (data/befic).
i=1

They require spatial collocation (7;, ;) and (via A') generally involve higher-order derivatives of
ug.

Weak-form (Galerkin) PINNs. Fix test functions {¢y }kK: 15 the weak residual is

Rweak(e; Spk) = /

1 K
Q(N[ue}— ) or da, cweak(e):?kzﬂmweak(g;@k),? + (data/befic).

With cellwise-constant o5, = Wq, this becomes a per-cell averaged L? residual, trading pointwise
sensitivity for integral robustness.

APILaNet’s broadcast weak form (Panel C). On a latent 1-D grid {z;} le, we broadcast time-

only proxies d;hg[7] and d,Qg[7] and use an exponentially projected forcing R, (z) = Re

—RIT.

T X
ro[7, ] = diho[T] + doQo[7] — Ri(x5),  Lpae(0,¢) = % DD dslrg)ralr ),

T=1j=1
with a learned nonnegative measure A4(7,-) (Sec. ??). By Thm. |5| L. is a Riemann quadrature
of a weighted weak L? residual with constant test functions.

E APPENDIX E : PANEL D: PROPERTIES AND PSEUDO-CODE

Recall (from Method, Eqns. equation [9}-equation[11). The effective PDE weight factorizes as

T X
1
Apde(tv'r) = )‘pde Aloc(t7x)7 )\loc(tvx) Z 07 ﬁ Z Z )\100(7—7 Ij) = 17

T7=1j=1
and the PDE contribution to the loss is

T X
1 . .
Lihe = Apde 7 2 2 Nac(ms @) ro[r,J1%, - rolr. ) = iholr] + 8:Qolr] — Ro(a;)-

T7=1j=1
Global weights are scheduled per mini-batch ¢ € {pde, cons} by

>\i = Cllp()\lo (1 + B+ a—irs + Qn H) , )\;‘nin’ )\?13,)()7

with base Y > 0, nonnegative sensitivities (e;, «; 1), and clipping bounds.

17
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D.1  ASSUMPTIONS AND IMMEDIATE CONSEQUENCES

Assumption 6 (Bounded signals & normalized local field). During training the batch prediction
loss E > 0, each component of the regime vector s > 0, and the activity score I1 € [0,1] are
bounded. The local field obeys \joe(T,2) > 0 and ﬁ PO j Moc(T,25) = 1. The clip enforces

A; € [Amin \max],
Theorem 7 (Monotone responsiveness with bounded pressure). Under Assumption [6] each \; is
(piecewise) nondecreasing in FE, in every component of s, and in Il (whenever unclipped), and
always satisfies X" < Xy < A", Moreover, when unclipped,

OAi _ = A7, — i\ ' — A\,
oF sk v oIl e

Proposition 4 (Lipschitz variation across batches). For consecutive batches k, k+1, when unclipped

IAFFD AW <\ (Ek“ — Ep| + > iml$mkt1 — Smok| + @i Tis — Hk|> ,

and with clipping, the same bound holds after projection to [N, XX Thus the scheduler is
Lipschitz in signal deltas and has no EMA-type lag.

Lemma 1 (Scale invariance under local normalization). With ﬁ 277 j Aoc(T,25) =1,

— 1
‘C;{Zie = Apde - r2, rii= TX Z)\loc(Ta xj) r

Hence the rescaling Ajoc = € Aipe, Apde = Apde/C leaves £y
this ambiguity and improves identifiability.

pde unchanged; normalization removes

D.2 GRADIENTS AND INTUITION

Using 7,; = diho[7] + d;Qp[7] — Re (), the partials of £ are

pde

o Eef‘f

2)
adtff:e =7 ZAloc T 25) Ty

&Ceff 9
ad 5de _ )\pde Z)\loc T, I, rT]? (18)
9

8£eff A
pde pde 2 ..
= r7; (before renormalization).
OMoe (T, x5) TX ™

Thus the learned field A, (Softplus-positive) allocates more weight to large residuals until balanced
by normalization and other losses; Apqc scales the overall physics pressure per batch.

D.3 PSEUDO-CODE (DOMAIN-AGNOSTIC)

We use the factorized schedule in Algorithm [2] It matches the Method section but is formatted for
one column.

D.4 PRACTICAL KNOBS
Clips. Choose [\, \"@X] g0 physics never dominates early but can rise during events. Sensi-

tivities. Start with small as (e.g., 1071-10°), increase if residuals persist. Spread regularizers
(optional). Entropy or ¢, penalties on )\, discourage collapse:

Remropy = B Z Aloc (7-7 xj) log Aloc (7-7 xj): Rlz = B Z ()\]00(7—7 xj) - %) 2'

TJ T.J

18
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Algorithm 2: Adaptive Multi-Loss Scheduling with Factorized Local Weights

Inputs: mini-batch D, model F, optimizer; bases {\?}; sensitivities {ax }; clips [AT™, 2]
Outputs: updated parameters ¢

for epoch e = 1 to Nypocr do

foreach mini-batch D do

compute per-losses {£;(6, D) }i~,; optional local map Wis. >0

compute batch signals {sx(D)}~_, and activity II

for i = 1tomdo

K
i — clip()\g-J (1+ Z ok 8k + o, mIL), A, /\?'ax)

k=1

if Wige used then
A ﬁ Z(t,x)eﬂ VVloc(t7 .’13),
VVIOC <~ VV]OC/Z

Lioi Z Ai Li(0, D; Wiec)
i=1
optimizer.zero_grad();
backprop(Liot);
optimizer.step()

F APPENDIX F : ADDITIONAL EXPERIMENTS

Table 6: Sensitivity of APILaNet to the number of latent cells X and the learned measure \4(t, )
on the synthetic benchmark.

X  Measure Test MSE Test NSE  AMSE vs. uniform  ANSE vs. uniform
—  Uniform (all X) 8.55 x 10™%  0.9038 - -

8 Learned \y 8.49 x 10~*  0.9044 ~ —0.7% ~ +0.0006
16 Learned Ay 7.01 x 104 0.9210 ~ —18.0% ~ 40.0172
32  Learned Ay 7.26 x 107 0.9183 ~ —15.1% ~ +0.0145
64 Learned Ay 8.30 x 10~ 0.9066 ~ —2.9% ~ 40.0028

Table [] summarizes the sensitivity of APILaNet to the number of latent cells X and the learned
weighting measure A, (¢, ). The uniform baseline aggregates performance across all X with a
fixed, non—adaptive measure, while the learned Ay is trained separately for each resolution X &
{8,16,32,64}. Across all tested resolutions, the learned measure never underperforms the uniform
baseline: the largest gains occur at moderate resolutions (X = 16, 32), with test MSE reduced by
roughly 15-18% and NSE improved by about 0.015-0.017. For coarser or finer grids (X = 8 or 64),
the gains are smaller but remain non-negative. This pattern indicates that APILaNet is not brittle
with respect to the choice of latent discretization: performance varies smoothly around a favorable
range of X, rather than collapsing for suboptimal resolutions.

We report additional benchmarks that stress early—warning skill at four lead times before the ob-
served peak: 8 h, 6 h, 4h, and 2h. At each lead time we (i) re-slice the dataset around the peak time;
(ii) run every model with the same hyperparameters as Section 4} and (iii) report the mean across
three seeds. Primary metrics are MSE (|) and NSE (1); we additionally report peak timing error
Atpeak () and peak magnitude error Ahpeak (1). Across all sites, accuracy improves monotonically
as lead time shortens (§ h—2h). APILaNet retains the best or second-best MSE/NSE at every lead
time and consistently reduces Atpeac and Al relative to strong sequence baselines.

F.1 ADAPTIVE PHYSICS SCHEDULER: IMPLEMENTATION AND SENSITIVITY

For completeness, we restate the adaptive scheduler used in Panel D. The total loss is
[/tot = ‘Cdata + )\pde Epde + )\COHS £c0ns + )\mono £m0n07 (19)

where A\pqe and Aqons are adaptive global weights and Ap,ono is a small fixed coefficient.

19



Under review as a conference paper at ICLR 2026

Table 7: Sensitivity of the adaptive scheduler to the global physics scale Agcale, the peak—sensitivity
coefficient oy, and the use of adaptive vs. static weights on the synthetic benchmark. Metrics are
reported on the held—out test set.

Experiment Ascale arg Adaptive? Test MSE | Test NSE 1
lambda-scale.0.5 0.5 0.30 Yes 0.025706 —0.271654
lambda.scale_1.0 1.0 0.30 Yes 0.013461 0.334087
lambda-scale_2.0 2.0 0.30 Yes 0.008709 0.569180
peak-coeff_0.00 1.0 0.00 Yes 0.015020 0.256971
peak-coeff_0.30 1.0 0.30 Yes 0.014446 0.285373
peak_coeff_0.60 1.0 0.60 Yes 0.013416 0.336320
no._adapt.-static_lambda 1.0 0.30 No 0.012356 0.388777

Given the batch prediction loss £/ > 0, a vector of non—negative auxiliary signals s € RI><0’ and an

activity score IT € [0, 1], the global weights for i € {pde, cons} are updated instantaneously per
mini-batch as

A= cnp(AgJ (1+ E+al's+a;qII), AR, A;naX), (20)

where )\? > 0 is a base level, (o, ;1) > 0 are sensitivities, and clip enforces user—specified
bounds [AMi" Amax] " The local field Ajoc (¢, x) is produced by a small network A, on normalized
coordinates (%, %) € [0, 1]2,

Ay (-, Z))
ﬁ ZT/,j' Ay (trr, Z50)

which guarantees the normalization property in equation ??.

Noc (s 25) = @1

In all experiments we specify, for each i € {pde,cons}, a base level MY, clipping bounds
(Ao Amax) - and non—negative sensitivities (ov;, o; 11). The only scalars selected by validation
are a global physics scale Agca1e (multiplying ()\gde, A2 <)) and an activity sensitivity o applied
to IT; we choose (Ascale, 1) Once by a small grid search on the validation NSE and reuse the same

pair for all datasets within each benchmark.

F.2 SCHEDULER SENSITIVITY STUDY

To quantify robustness and provide the requested sensitivity analysis, we run a scheduler ablation
on a synthetic single—sensor benchmark. We vary the global physics scale Ascale € {0.5,1.0,2.0}
and the peak—sensitivity coefficient oy € {0,0.3,0.6}, and compare adaptive (c; > 0) versus static
(o; = 0) global weights. Test MSE and NSE on the held—out test set are reported in Table[7]

Across this grid, the scheduler behaves in a stable and smooth regime. Increasing Agcale from 0.5
to 2.0 strengthens the relative emphasis on physics and monotonically improves NSE (from —0.27
to 0.57) without any training instabilities. Varying ag from 0 to 0.6 at fixed Agca1e = 1.0 yields
only modest, smooth changes in the test performance, indicating that the scheduler does not rely
on finely tuned coefficients. Finally, adaptive and static global weights achieve comparable overall
NSE (roughly 0.33 vs. 0.39); the role of the adaptive scheduler is primarily to redistribute physics
pressure towards difficult regimes (sharp transients and peaks), rather than to maximise aggregate
error metrics.
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Figure 4: Model forecasts at four start times: (a) APILANET, (b) CROSSFORMER, (c) TSMIXER.

Figure 5: Test performance across five UK catchments. Bars show NSE (1) and MSE (|; x1073
axis units) for APILANET and baselines; error bars denote mean+SD over 3 seeds.
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Table 8: Catchment-level forecasting 8 hours before peak. Metrics are mean+SD across seeds.
Errors: peak timing Atpeax ()], peak height Ahpeax (m)), MSE], NSET.

Data

Split

‘ Atpeard

APILANET

Ahpeakd

MSE|

NSET ‘ Atpoard

CROSSFORMER

Ahpeakd

MSE|

NSET ‘ Atpeaicl

TSMIXER

Ahpeard

MSE|

NSET

AcomB GRN

Event 1
Event 2
Event 3

0.420 £ 0.380
0.170 + 0.290
0.170 £ 0.290

0.299 + 0.031
0.314 + 0.
1.339 + 0.088

0.133 + 0.096
0.198 + 0.072
1.205 + 0.185

0.623 + 0.271
0.766 + 0.085
0.132 £ 0.133

0.000 = 0.000
0.250 £ 0.250
0.000 =+ 0.000

0.377 £ 0.148

0.242 + 0.09

0.314 -+ 0.255

0.527 £ 0.007
1.348 + 0.050

0.479 £ 0.034
1111 + 0.837

0.434 £ 0.041
0.200 =+ 0.060

2.580 + 4.470
0.500 £ 0.000
0.000 =+ 0.000

0.552 = 0.024
0.411 £ 0.043

0.369 + 0.032
4 + 0.051

-0.044 £ 0.090
0.583 + 0.060

1.297 + 0.051

1.012 + 0.089

0.271 =+ 0.064

Average

[0253 + 0.144

0.651 + 0.596

0.512 + 0.601

0.507 + 0.333

0.083 + 0.144

0.751 -+ 0.523

0.611 =+ 0.449

0.316 -+ 0.117

1.027 + 1.368

0.753 + 0.476

0.578 -+ 0.376

0.270 + 0.314

ACOMB MFs

Event 1
Event 2

Event 3

0.000 £ 0.000
0.000 £ 0.000
0.000 £ 0.000

0.122 + 0.065

0.107 + 0.075

0.827 4 0.045

0.064 + 0.023
0.033 + 0.010
0.665 + 0.046

0.877 + 0.044
0.877 £ 0.040
0.572 + 0.029

0.000 £ 0.000
0.000 =+ 0.000
0.000 £ 0.000

0.334 £ 0.098
0.192 + 0.054
1.166 + 0.062

0.201 £ 0.136
0.109 =+ 0.054
1.267 £ 0.129

0.612 £ 0.262
0.586 =+ 0.206
0.184 £ 0.083

0.000 £ 0.000
0.000 =+ 0.000
0.000 £ 0.000

0.237 £ 0.030

0.112 £ 0.040

0.783 + 0.078

0.101 £ 0.018
0.929 + 0.079

0.034 + 0.015
0.805 + 0.148

0.870 -+ 0.058
0.481 + 0.096

Average

[ 0.000 % 0.000

0.352 + 0411

0.254 + 0.356

0.775 + 0.176

0.000 £ 0.000

0.564 £ 0.526

0.526 £ 0.644

0.461 £ 0.240

0.000 £ 0.000

0.422 + 0444

0.317 £ 0424

0.711 £ 0.204

STOCKSFIELD

Event |
Event 2
Event 3

0.000 £ 0.000
X £ x
0.000 £ 0.000

0.463 + 0.192
X £ x
0.949 + 0.033

0.452 + 0.135
X £ x
0.900 + 0.068

0.506 + 0.147
X £ x
-0.077 + 0.082

2.080 + 3.610
x £ x
0.000 £ 0.000

1.022 + 0.052
X £ x
0.995 £ 0.014

1.072 + 0.167
X £ x
1.006 + 0.039

-0.172 4 0.182
X+ x
-0.203 £ 0.047

0.080 =+ 0.140
x £ x
0.000 =+ 0.000

0.850 + 0.065
X £ x
0.971 £ 0.017

0.689 -+ 0.109
X + x
0.947 + 0.036

0.246 + 119
X + x
-0.133 + 0.043

Average

[ 0.000 = 0.000

0.471 + 0.475

0.451 + 0.450

0.143 + 0.317

0.693 £ 1.201

0.672 + 0.582

0.693 £ 0.601

-0.125 £ 0.109

0.027 £ 0.046

0.607 + 0.529

0.545 + 0.490

0.038 + 0.192

NUNNYKIRK

Event 1
Event 2
Event 3

4.750 £ 4.160
0.000 % 0.000
x + x

0.241 + 0.050

0.266 + 0.059
X £ X

0.171 £ 0.089
0.295 + 0.133
x £ x

-0.762 + 0.922

0.326 + 0.305
x £ x

6.830 4 0.880
0.000 £ 0.000
x £ x

0.189 + 0.081
0.330 £ 0.088
x £ x

0.111 £ 0.019
0.278 + 0.158
x £ x

-0.145 4 0.204
0.364 + 0.361
x £ x

5.170 & 4.470
0.000 £ 0.000
x £ x

0.246 =+ 0.046
0.312 £ 0.090
x £ x

0.266 + 0.157
0.302 £ 0.119
x £ x

-1.744 + 1.623
0.309 £ 0.274
x £ x

Average

[ 1583 &+ 2741

0.169 + 0.147

0.155 -+ 0.148

-0.145 4 0.558

2277 + 3.946

0.130 + 0.140

0.073 + 0.262

1.723 + 2.986

0.186 =+ 0.164

0.189 + 0.165

-0.478 £ 1.107

KNITSLEY

Event 1
Event 2
Event 3

0.170 % 0.140
0.080 £ 0.140
0.000 £ 0.000

0.106 + 0.033
0.155 + 0.153

0.170 + 0.008

0.028 + 0.023
0.064 + 0.024
0.124 £ 0.047

0.935 + 0.053
0.916 + 0.032
0.271 £ 0.274

0.000 £ 0.000
0.420 + 0.720
0.000 £ 0.000

0.159 £ 0.090
0.317 £ 0.034
0.084 + 0.013

0.079 £ 0.048
0.441 £ 0.168
0.047 £ 0.008

0.821 £ 0.109
0.429 + 0.218
0.725 £ 0.050

0.000 £ 0.000
0.000 = 0.000
0.000 £ 0.000

0.137 £ 0.036

0.073 + 0.028

0.834 + 0.064

0.287 -+ 0.207

0.195 -+ 0.172

0.748 -+ 0.223

0.197 £ 0.019

0.099 + 0.015

0.414 £ 0.090

Average

[0.083 = 0.085

0.144 + 0.033

0.072 4 0.048

0.707 + 0.378

0.140 £ 0.242

0.187 + 0.119

0.189 £ 0.219

0.658 £ 0.204

0.000 + 0.000

0.207 £ 0.075

0.122 + 0.064

0.665 + 0.222

KIELDER

Event |
Event 2
Event 3

0.000 £ 0.000
0.000 £ 0.000
1.420 £ 0.520

0.054 + 0.041

0.081 + 0.069
0.042 + 0.048

0.011 + 0.014
0.052 £ 0.063
0.016 + 0.017

0.764 + 0.292
0.071 + 1.141
0.645 + 0.386

0.000 =+ 0.000
0.000 £ 0.000
1.820 + 0.320

0.050 + 0.027
0.082 + 0.050
0.045 + 0.050

0.027 + 0.028
0.159 + 0.109
0.018 + 0.023

-0.902 4 1.990
-3.057 £+ 2.798
0.565 + 0.055

0.000 = 0.000
0.000 £ 0.000
1.420 + 0.800

0.056 =+ 0.004
0.101 £ 0.018
0.054 + 0.017

0.016 -+ 0.007
0.034 + 0.015
0.046 =+ 0.041

0.676 -+ 0.163
0.870 + 0.058
-0.040 £ 0.922

| Average | 0.473 + 0.173

0.060 + 0.053

0.026 + 0.031

0.493 + 0.606

0.606 + 0.106

0.059 + 0.042

0.068 + 0.053

-L131 £ 1.614

0.473 + 0.267

0.070 + 0.013

0.032 £ 0.021

0.502 + 0.381

Table 9: Catchment-level forecasting 6 hours before peak. Metrics are meandSD across seeds.
Errors: peak timing Atpeak (h)], peak height Ahpeax (m)), MSE], NSET.

Data

Split

‘ Atpearl

APILANET

Ahpeakd

MSE/

NSET ‘ Atpearl

CROSSFORMER

Ahpeakd

MSE/

NSE? ‘ Atponick

TSMIXER

Ahpead

MSE]

NSET

AcoMB GRN

Event |
Event 2
Event 3

0.750 + 0.250
0.750 £ 0.500
1.580 + 0.290

0.395 + 0.073
0.351 + 0.037

0.351 + 0.165
0.318 + 0.096

0.553 + 0.210
0.564 + 0.131

1.233 £ 0.122

4.814 £ 0.362

0.082 £ 0.069

0.250 =+ 0.000
0.500 =+ 0.430
1.580 + 0.140

0.484 + 0.151

0.447 + 0.359

0.430 + 0.459

0.462 =+ 0.032
1.339 + 0.089

0.478 £ 0.075
4.562 £ 0.497

0.345 £ 0.102
0.130 + 0.095

0.830 £ 0.520
1.000 £ 0.430
1.250 + 0.500

0.581 + 0.088
0.344 + 0.010
1.320 £ 0.074

0.665 + 0.239
0.268 -+ 0.069
4.171 £ 0.413

0.152 + 0.305
0.632 £ 0.095
0.205 £ 0.079

Average

[ 1027 + 0479

0.660 + 0.497

1.828 + 2.58¢

ES

0.400 + 0.275

0.777 + 0.707

0.762 £ 0.500

1.829 + 2.367

0.302 £ 0.155

1.027 £ 0.211

0.748 £ 0.509

1.701 + 2.148

0.330 + 0.263

ACOMB MFs

Event 1
Event 2
Event 3

0.170 £ 0.140
0.420 £ 0.140
0.830 £ 0.140

0.059 + 0.054

0.149 + 0.042

0.699 + 0.157

0.070 + 0.034
0.084 + 0.016
1.924 + 0.297

0.905 + 0.047
0.889 + 0.022
0.430 + 0.088

0.000 = 0.000
1.170 + 1.010
0.830 =+ 0.140

0.314 =+ 0.089
0.288 £ 0.600
1.084 + 0.144

0.288 = 0.136
0.276 £ 0.071
3.337 4+ 0.781

0.610 £ 0.184
0.636 £ 0.094
0.003 £ 0.231

0.500 =+ 0.250
1.250 + 0.430
0.750 £ 0.250

0.174 -+ 0.150

0.164 -+ 0.098

0.778 + 0.133

0.068 + 0.057
0.927 + 0.032

0.075 £ 0.050
2.427 + 0.283

0.901 £ 0.066
0.281 -+ 0.084

Average

[0473 + 0333

0.302 + 0.346

0.693 + 1.067

0.741 + 0.270

0.667 + 0.602

0.562 + 0.452

1.300 + 1.763

0.416 + 0.358

0.833 £ 0.382

0.390 -+ 0.468

0.889 -+ 1.333

0.653 -+ 0.328

STOCKSFIELD

Event 1
Event 2

Event 3

1.420 £ 0.580
x £ x
1.750 £ 0.000

0.585 + 0.115
x £ x
0.964 + 0.009

1.015 + 0.433
X £ X
2.597 4+ 0.062

0.471 + 0.226
X £ X
-0.512 4 0.036

1.330 £ 0.720
X £ X
1.000 £+ 0.660

0.999 £ 0.096
X £ X
1.009 + 0.015

2.862 + 0.417
X £ x
2.774 £ 0.088

-0.491 £+ 0217
X £ x
-0.615 & 0.051

1.250 + 0.660
X £ x
1.500 £+ 0.430

0.686 + 0.030
X £ x
0.916 £ 0.036

1.497 £ 0.114
X £ x
2.351 + 0.140

0.220 + 0.060
X £ x
-0.369 4 0.082

Average

| 1057 & 0930

0.516 + 0.486

1.204 + 1.309

-0.014 + 0.492

0.777 + 0.693

0.669 £ 0.580

1.879 + 1.628

-0.369 + 0.325

0917 + 0.804

0.534 + 0477

1.283 + 1.190

-0.050 4 0.298

NUNNYKIRK

Event |
Event 2
Event 3

2.750 + 3.910
1.920 + 0.140
x £ x

0.248 + 0.085
0.182 + 0.053
x £ x

0.382 + 0.192
0.330 + 0.039
x £ x

-0.646 + 0.828
0.342 + 0.079
x £ x

7.250 4 0.000
1.920 + 0.140
x £ x

0.263 + 0.028
0.248 £ 0.115
x £ x

0.559 + 0.165
0.418 £ 0.227
x £ x

-1.414 £+ 0714
0.168 + 0.451
x £ x

4.170 + 3.740
2.000 £ 0.000
x £ x

0.315 + 0.007
0.214 + 0.110
x £ x

0.515 + 0.217
0.336 + 0.149
x £ x

-1.219 + 0.935

0.330 + 0.298
x £ x

Average

1557 + 1411

0.143 + 0.128

0.237 + 0.207

-0.101 + 0.502

3.057 + 3.756

0.170 + 0.148

0.326 + 0.291

-0.415 £ 0.869

2.057 £ 2.086

0.176 £ 0.161

0.284 + 0.261

-0.296 + 0.816

KNITSLEY

Event 1
Event 2
Event 3

0.330 & 0.140
0.580 + 0.140
1.250 + 0.870

0.072 + 0.061
0.186 + 0.087

0.189 + 0.022

0.025 + 0.021
0.125 + 0.107
0.257 + 0.097

0.953 + 0.040
0.892 + 0.092
-0.071 4 0.404

0.330 £ 0.140
0.920 £ 0.760
0.330 =+ 0.290

0.128 + 0.085
0.395 £ 0.099
0.135 4 0.023

0.076 + 0.048
0.443 £ 0.173
0.092 + 0.007

0.857 + 0.089
0.619 £ 0.149
0.617 + 0.030

0.170 £ 0.140
1.000 + 0.660
0.920 + 0.520

0.237 £ 0.044
0.345 £ 0.052

0.190 + 0.067
0.409 £ 0.189

0.645 £ 0.124
0.648 + 0.162

0.223 + 0.034

0.213 -+ 0.061

0.113 -+ 0.256

Average

[0.720 & 0476

0.149 + 0.067

0.136 + 0.116

0.591 -+ 0.574

0.527 + 0.341

0.219 -+ 0.152

0.204 -+ 0.207

0.698 -+ 0.138

0.697 -+ 0.458

0.268 + 0.067

0.271 £ 0.120

0.469 + 0.308

KIELDER

Event 1
Event 2
Event 3

0.330 + 0.380
2.750 £ 0.000
2.330 + 0.950

0.086 + 0.051

0.040 + 0.041

0.765 + 0.242

0.064 + 0.043
0.043 + 0.022

0.072 + 0.008
0.025 £ 0.023

-0.364 + 0.160
0.341 £ 0.593

0.420 £ 0.290
1.500 + 1.250
7.750 £ 0.000

0.142 £ 0.021
0.089 + 0.015
0.066 £ 0.007

0.066 + 0.013
0.078 + 0.033
0.083 £ 0.022

0.613 £ 0.076
-0.481 £ 0.627
-0.239 + 0.333

0.080 £ 0.140
3.830 & 2.770
1.750 £ 1.250

0.037 £ 0.014
0.068 -+ 0.007
0.048 £ 0.030

0.012 + 0.003
0.076 -+ 0.021
0.024 £ 0.014

0.928 + 0.018

-0.411 + 0.021

0.354 £ 0.376

| Average | 1.803 = 0.443

0.064 + 0.039

0.046 + 0.024

0.247 £ 0.332

3.223 £ 0.513

0.099 £ 0.014

0.076 £ 0.023

-0.036 & 0.345

1.887 + 1.387

0.051 £ 0.017

0.037 £ 0.013

0.290 £ 0.138
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Table 10: Catchment-level forecasting 4 hours before peak. Metrics are mean+SD across seeds.
Errors: peak timing Atpeak (h)], peak height Ahpeax (m)), MSE(, NSET.

Data

Split

‘ Atpeard

APILANET

Ahpeaicl

MSE]|

NSET ‘ Atpearl Ahgpeard

CROSSFORMER

MSE|

TSMIXER
NSET Atpeal Ahpeail

MSE]|

NSET

AcomB GRN

Event |
Event 2
Event 3

0.580 + 0.140
0.500 + 0.250
2.830 = 1.180

0.383 + 0.039

0.382 + 0.015

1.383 + 0.070

0.291 + 0.060
0.324 + 0.057
6.145 + 0.153

0.526 + 0.098
0.074 £ 0.163
-0.416 + 0.036

0.170 £ 0.140
0.330 £ 0.380
3.750 £ 0.000

0.508 + 0.076
0.424 £ 0.090
1.340 + 0.102

0.505 + 0.186
0.457 £ 0.303
6.276 + 1.081

0.176 + 0.304
0.305 + 0.865
-0.446 £ 0.249

0.250 + 0.000
0.750 % 0.500
1.750 & 0.500

0.432 + 0.056

0.314 + 0.059

0.489 + 0.097

0.307 + 0.039
1.429 + 0.093

0.253 + 0.098
5.549 + 0.581

0.275 + 0.280
-0.279 + 0.134

Average

1.303 + 1.323

0.716 + 0.578

2.253 + 3.370

0.061 + 0.471

1.417 £+ 2,022

0.757 £+ 0.506

2.413 £ 3.346

0.012 £ 0.402

0.917 + 0.764

0.723 + 0.615

2.039 + 3.040

0.162 + 0.396

AcomB MFs

Event |
Event 2
Event 3

0.080 + 0.140
0.500 + 0.430
1.000 £ 0.250

0.123 + 0.030
0.175 + 0.082

0.069 + 0.021
0.147 + 0.062

0.863 + 0.042
0.750 + 0.105

0.732 £ 0.107

2.389 + 0.149

0.109 + 0.056

0.420 £ 0.140
0.670 £ 0.950
3.750 4 0.000

0.208 + 0.121
0.295 + 0.037
1.126 £ 0.076

0.214 + 0.145
0.279 + 0.073
4.406 £ 0.505

0.576 + 0.287
0.527 4 0.124
-0.642 £ 0.188

0.170 + 0.140
1.670 & 0.630
2.000 £ 1.520

0.195 + 0.127

0.164 + 0.152

0.676 + 0.301

0.096 + 0.082
1.072 + 0.106

0.115 + 0.072
3.662 + 0.684

0.806 + 0.0.121
-0.365 + 0.255

Average

[0.527  0.461

0.343 + 0.338

0.868 + 1.318

0.574 £ 0.407

1.613 + 1.855

0.543 + 0.507

1.633 &+ 2.402

0.154 £ 0.690

1.280 + 0.975

0.454 + 0.537

1314 + 2.034

0.372 + 0.642

STOCKSFIELD

Event |
Event 2
Event 3

1.420 £ 0.760
X £ x
2.420 £ 1.530

0.588 + 0.091
X £ x
0.893 + 0.085

1.233 £ 0.569
X £ x
2.994 + 0.136

0.191 + 0.374
X £ x
-1.349 £ 0.106

3.250 & 0.660
X £ x
2750 £ 0.250

1.032 + 0.052
x £ x
0.742 + 0.022

3.709 &+ 0.157
X £ x
2.006 + 0.278

-1.433 £+ 0.103
X £ x
-0.574 + 0.218

1.920 £ 1.040
X £ x
3.500 £ 0.430

0.724 + 0.049

1.495 + 0.260

0.019 + 0.171

X £ x
0.821 -+ 0.080

x £ x
2571 4 0227

x £ x
-1.017 + 0.178

Average

[1.280 + 1.216

0.494 + 0.454

1.409 + 1.505

-0.386 + 0.839

2.000 + 1.750

0.591 + 0.532

1.905 + 1.856

-0.669 =+ 0.722

1.807 + 1.753

0.515 + 0.449

1.355 + 1.291

-0.333 £ 0.593

NUNNYKIRK

Event |
Event 2
Event 3

0.750 £+ 1.300
2.580 %+ 0.760
x £ x

0.138 £ 0.096
0.116 + 0.026
x £ x

0.239 + 0.162
0.108 + 0.044
x £ x

-0.071 £ 0.724
0.513 + 0.200
X £ x

4.000 £ 2.170
1.250 + 0.250
x £ x

0.347 £+ 0.008
0.248 + 0.024
x £ x

1.011 4+ 0.238
0.319 £ 0.061
x £ x

-3.515 & 1.064
-0.442 £+ 0.277
x £ x

1.170 £ 0.950
2.080 % 0.800
X £ x

0.305 + 0.098

0.695 + 0.471

-2.105 + 2.103

0.132 + 0.046

0.129 + 0.078

0.419 + 0.349

x £ x

x £ x

x £ x

Average

1110 + 1.327

0.085 + 0.074

0.116 + 0.120

0.147 £ 0.3

9

1.750 + 2.046

0.198 + 0.179

0.443 £ 0.517

-1.319 £+ 1.915

1.083 + 1.043

0.146 + 0.153

0.275 + 0.370

-0.562 + 1.352

KNITSLEY

Event |
Event 2
Event 3

0.580 + 0.580
0.420 £ 0.520
1.080 + 1.460

0.054 + 0.046
0.100 £ 0.055
0.080 + 0.013

0.056 + 0.033
0.059 + 0.025
0.137 4 0.089

0.843 + 0.092
0.923 + 0.032
0.214 £ 0.510

0.330 =+ 0.140
0.330 £ 0.380
3.750 & 0.000

0.107 + 0.099

0.074 + 0.072

0.792 + 0.203

0.359 4+ 0.118
0.085 + 0.015

0.302 £ 0.179
0.129 + 0.068

0.609 + 0.232
0.262 + 0.393

0.000 £ 0.000
0.580 + 0.290
2.500 + 2.170

0.237 + 0.060
0.215 + 0.130
0.090 + 0.032

0.205 + 0.123

0.206 + 0.087

0.058 + 0.021

0.425 + 0.345
0.733 + 0.112
0.667 + 0.122

Average

[0.693 = 0344

0.078 + 0.023

0.084 + 0.046

0.660 + 0.388

1750 + 1.975

0.184 £+ 0.153

0.168 £ 0.119

0.554 + 0.269

1.027 + 1.308

0.181 + 0.079

0.156 + 0.085

0.608 + 0.162

KIELDER

Event 1
Event 2
Event 3

0.170 + 0.140
4.170 + 0.520
2.000 + 0.430

0.030 + 0.022
0.049 + 0.025
0.056 + 0.017

0.009 + 0.006
0.033 + 0.008
0.021 + 0.011

0.936 + 0.040
-1.066 £ 0.513
-2.070 + 1.639

0.330 £ 0.380
2.000 + 2.380
1.500 + 1.500

0.055 + 0.030

0.023 + 0.010

0.846 + 0.069

0.098 + 0.009
0.067 + 0.023

0.074 £ 0.011
0.027 + 0.019

-3.584 + 0.683
-2.968 + 2.826

0.420 + 0.380
1.580 + 1.700
0.750 + 0.660

0.064 £ 0.041
0.053 + 0.027
0.037 + 0.029

0.026 + 0.018

0.035 + 0.035

0.012 £ 0.007

0.824 + 0.121
-1.161 + 2.177
-0.794 + 0.946

Average

[2.113 + 0363

0.045 -+ 0.021

0.021 + 0.008

-0.733 + 0.731

1.277 + 1.420

0.073 + 0.021

0.041 £ 0.013

-1.902 £ 1.193

0.917 £ 0.913

0.051 + 0.032

0.024 + 0.020

-0.377 + 1.081

Table 1

1: Catchment-level forecasting 2 hours before peak. Metrics are mean+SD across seeds.

Errors: peak timing Atpeak (h)], peak height Ahpeax (m)), MSE], NSET.
N APILANET CROSSFORMER TSMIXER
Data | Split
Atpeard  Ahpeard MSE/ NSET Atpead  Ahpoard MSE/| NSET Atpeard  Ahpeud MSE| NSET
f‘ Event | | 0.250 £ 0.250 0.403 + 0.057 0.281 + 0.062 0.444 + 0.123 | 0.080 =+ 0.140 0.506 + 0.080 0.557 & 0.259 -0.102 £ 0.514 | 0.670 = 0.380 0.497 + 0.016 0.485 + 0.101 0.041 + 0.200
© | Event2 |0.330 + 0.140 0305 + 0.052 0.161 + 0.082 0551 + 0.230 | 0.580 + 0380 0360 £ 0.061 0211 + 0.124 0412 + 0346 |0.580 + 0380 0.364 + 0.029 0.209 & 0.025 0415 + 0.070
2 | Bvent3 | 533 4 0380 1267 £ 0113 6.142 & 0.967 -1.196 & 0346 3420 & 2040 1427 + 0049 6110 £ 0.622 -LI83 + 0222 2500 £ 2180 1298 & 0.167 5001 + 1337 -0.790 = 0478
<
| Average | 1.970 + 2910 2.195 £ 3.419 -0.067 + 0.979 | 1.360 & 1.801 0764 + 0579 2.293 + 3310 -0.291 + 0.814 | 1.250 - 1083 0720 + 0.505 1.898 + 2.691 -0.111 &+ 0.617
£ | Event1 0500 + 0250 0.178 + 0.041 0.192 & 0139 0522 + 0.347 |0.250 4+ 0.000 0.243 £ 0.101 0.306 & 0279 0.253 % 0.680 |0330 + 0.140 0.172 + 0.026 0.107 + 0.021 0.738 + 0.051
E Event 2 | 0.750 £ 0.250 0.051 + 0.030 0.031 + 0.017 0.885 + 0.063 | 1.500 + 0.250 0.206 + 0.024 0.166 + 0.009 0.391 + 0.034 | 0.750 + 0.250 0.147 + 0.083 0.109 + 0.082 0.601 + 0.299
é Event3 |4.170 + 2320 0.737 + 0.064 3.258 + 0.925 -1.162 + 0.614 | 5.750 & 0.000 1.021 + 0.034 4.988 + 0332 -2.310 + 0.220 | 4330 + 2450 0.972 + 0.031 3.349 -+ 0.202 -1.222 + 0.134
<
‘Avemge ‘ 1807 + 2.051 0.322 + 0.365 1.160 + 1.819 0.082 + 1.092 | 2.500 + 2.883 0.490 + 0.460 1.820 + 2.744 -0.555 £ 1.521 | 1.803 + 2.198 0.430 + 0.469 1.188 + 1.873 0.039 + 1.095
S | Bvent1 [ 1330 £ 0.140 0.679 £ 0.104 1593 & 0552 -0.634 & 0566 1330 £ 0.380 0997 & 0.056 3189 % 0435 -2.270 % 0.446 | 1080 £ 0.380 0120 & 0.097 1586 & 0460 0.627 + 0472
EZ | Event2 X £ x X + x X + x x £ x X+ x X + x X £ x X + x X £ x X £ X X £ % x £ x
| Event3 |5.670 + 0.140 0.753 = 0.052 1990 & 0099 2614 & 0181 | 5.330 £ 0.380 0788 = 0.069 2.004 + 0386 -2.639 £ 0.701 | .670 £ 0.140 0728 = 0.006 1843 + 0258 2347 + 0.469
e
@ | Average [2.333 £ 2965 0.477 % 0415 1194 & 1,053 -1083 & 1364|2220 & 2774 0.595 % 0526 1731 1612 -1636 & 1429 | 2.250 & 3011 0.483 & 0418 1143 + 0.998 -0.991 1215
i Event I | 0.670 £ 0.140 0.156 + 0.112 0.459 + 0.240 -4.731 + 2.999 | 1.330 £ 0.760 0.362 + 0.023 1.146 + 0.093 -13.312 & 1.164 | 0.830 + 0.720 0.334 + 0.061 0.773 + 0.361 -8.646 + 4.509
E Event 2 | 1.750 £ 0.250 0.049 + 0.040 0.052 + 0.029 0.238 + 0.427 | 1.000 £ 0.000 0.096 + 0.067 0.069 + 0.068 -0.009 + 0.994 | 1.830 + 0.800 0.084 + 0.037 0.074 + 0.032 -0.081 + 0.482
£ |Evens | msaxx X+ x X+ x X+ x x £ x x £ x X+ x X+ x X % x X % x X+ x X % x
z
‘ Average ‘ 0.807 + 0.883 0.068 + 0.080 0.170 + 0.251 -1.498 + 2.803 | 0.777 + 0.693 0.153 + 0.188 0.405 + 0.643 -4.440 + 7.683 |0.887 £ 0.916 0.139 + 0.174 0.282 + 0.427 -2.909 + 4.969
o | Bvent1 0330 + 0290 0.027 + 0.023 0.045 + 0.030 0.724 + 0.186 |0420 + 0.140 0.146 £ 0.049 0.106 & 0.009 0.355 & 0.055 |0.170 + 0.140 0210 + 0.035 0.242 % 0.009 -0.477 + 0.058
i
2 | Event2 |0.000 + 0.000 0.078 + 0.054 0.068 £ 0.036 0.885 + 0.061 |0.000 + 0.000 0.084 £ 0.008 0.108 & 0.029 0.818 & 0.050 |0330 + 0380 0.148 & 0.096 0.256 & 0.111 0567  0.187
2
E Event 3 |5.330 & 0.140 0.097 £ 0.056 0.123 + 0.032 -1.641 £ 0.689 | 1.920 + 3.320 0.023 + 10 0.036 + 0.009 0.225 + 0.212 | 4.080 & 2.890 0.004 £ 0.004 0.057 + 0.013 -0.237 + 0.272
| Average | L887 & 2987 0.067 < 0.036 0.079 + 0.040 -0.011 + 1414]0.780 = 1.009 0.084 = 0.062 0.083 + 0.041 0.466 + 0312 | L527 = 2213 0.121 & 0.106 0.185 + 0.111 -0.049 + 0.547
o Event 1 | 0.580 £ 0.250 0.045 + 0.044 0.016 + 0.012 0.829 + 0.138 | 0.420 £ 0.140 0.034 + 0.023 0.018 + 0.008 0.809 + 0.094 |0.420 + 0.290 0.114 £ 0.030 0.061 + 0.025 0.342 + 0.267
E Event 2 | 1.080 + 0.080 0.037 £ 0.007 0.011 + 0.006 -0.107 - 0.270 | 1.670 + 0.380 0.030 + 0.012 0.090 + 0.045 -0.591 + 0.792 | 1.250 & 0.500 0.030 + 0.003 0.063 + 0.015 -0.857 + 1.035
E | Bvent3 [0.170 £ 0,140 0.009 £ 0.010 0011 = 0.008 0527 4 0366 | 0.580 £ 0.380 0.025 = 0.024 0.240 & 0016 -0.053 £ 0.753 | 1830 £ 2,550 0.022 & 0.007 0420 % 0028 0911 % 1255
‘ Average ‘ 0.610 + 0.157 0.028 + 0.020 0.013 £ 0.009 0.416 + 0.258 |0.890 + 0.300 0.030 + 0.020 0.116 + 0.023 0.055 + 0.546 |1.167 £ 1.113 0.055 + 0.013 0.181 £ 0.023 -0.475 + 0.852
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