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ABSTRACT

Forecasting conservation-governed dynamics is often constrained by sparse sens-
ing: in practice, we may have only a single boundary sensor and noisy exogenous
variables. In this work we design an Adaptive Physics-Informed Latent Network
(APILANET) that learns a latent field and enforces 1-D conservation of physics
law in the weak form using a learned, normalized space–time measure. Normal-
ization makes physics enforcement insensitive to quadrature resolution and con-
centrates it on transient violations. A monotone, Lipschitz measurement layer
maps latent variables to observed targets, improving identifiability from a single
sensor. An adaptive, bounded scheduler scales the physics and smoothness loss
terms with meaningful representations, emphasizing conservation of physics laws
during events while preserving training stability. Learning a space-time measure
for weak-form enforcement, combined with a monotone mapping and adaptive
scheduling, enables accurate, data-efficient single-sensor forecasting in physics-
governed systems. We evaluate APILANET through a synthetic and hydrological
case study, APILANET outperforms strong sequence baselines and reduces MSE
during extreme events, while improving Nash–Sutcliffe efficiency. Code will be
released upon acceptance.

1 INTRODUCTION

Learning the evolution of physical systems from sparse, noisy observations is a central challenge in
scientific machine learning. Many natural and engineered processes are governed by partial differ-
ential equations (PDEs), yet in practice we often observe only a single location or a few boundary
points over time. Examples span climate dynamics Zanella et al. (2023), biomedical flows Ling
et al. (2024), battery state-of-health Wang et al. (2025), and river hydraulics. Classical physics-
based models typically require dense boundary/interior supervision and careful calibration, while
purely data-driven forecasters struggle to extrapolate reliably and to maintain physical consistency
over long horizons Nathaniel et al. (2024); Azad et al. (2025).

Physics-Informed Neural Networks (PINNs) Raissi et al. (2019) embed governing laws into learn-
able models by penalizing PDE residuals. For 1D conservation laws such as

∂th(t, x) + ∂xQ(t, x) = Rproj(t, x), (1)

strong-form PINNs minimize a pointwise residual alongside a data term. This is ill-matched to
sparse-observation regimes: (i) it relies on dense interior collocation or full boundary data, (ii) it
uses static trade-offs between data and physics losses that can destabilize optimization, and (iii) it
offers limited interpretability of learned dynamics and failure modes Kim et al. (2021); Rohrhofer
et al. (2023). Recent adaptive weighting schemes (e.g., SA-PINN (McClenny & Braga-Neto, 2023)
and ReLoBRaLo (Ling et al., 2024)) rebalance residuals but remain agnostic to real-time signal
structure and do not address the lack of spatial supervision.

We propose APILANET, an Adaptive Physics-Informed Latent Neural Network for forecasting
PDE-constrained systems from single-point time series. APILANET reconstructs a latent spatiotem-
poral domain anchored at the observation site and enforces equation 1 in the weak form by integrat-
ing residuals against learned test functions rather than penalizing pointwise errors. This lowers
regularity requirements, removes the need for interior collocation, and better reflects sensing setups
where temporal signals are dense but spatial coverage is sparse.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Data Pre-
processing

QUICK_LSTM BASE_LSTM

BASE_FCQUICK_FC

CONCATONATE

M
oE

 L
ay

er

Input

Output

L
at

en
t S

pa
ce

L
am

bd
aN

et

Monotonic
MLPPh

ys
ic

s L
os

s

Data Loss

Total
Loss

Adaptive
Block

Physics
Signals

(A) BATCH

BASE QUICK

R
eL

UR
eL

U

FCB FCQ

GATING

Neural Rating Curve

BATCH

Moving Window

1D
 D

om
ai

n

B
A

SE
L

ST
M

Q
U

IC
K

L
ST

M

dh
_d

t_
FC

dQ
_d

x_
FC

D
AT

A

E
X

O
G

E
N

O
U

S
PR

O
JE

C
T

IO
N

L
A

M
B

D
A

R
E

SI
D

U
A

L
S

PD
E

 L
O

SS

(C)

BATCH

Adaptive Scheduler

G
lobal-w

eights

Physics-Signals

(D)

EXOGENOUS
PROJECTION

NEURAL
DERIVATIVES

Neural Rating Curve

QLatent
Component

So
ft

pl
us LINEAR

LINEAR

Softplus
Ensure Increasing      Smooth Mapping

O
U

T
PU

T
M

O
N

O
TO

N
O

C
IT

Y

LOSS

H

(B)

Figure 1: APILaNet overview. Single-sensor input window: observed state h(t) and exoge-
nous drivers. A latent 1-D domain x ∈ [0, 1] is instantiated for weak physics. (A) Dual
streams infer flux components: BASE–LSTM and QUICK–LSTM. A gate α ∈ [0, 1] mixes them,
Q = αQquick + (1−α)Qbase. (B) Monotone rating curve fmono maps mixture of latent compo-
nents to target ĥ = fmono(Q) with ∂fmono/∂Q ≥ 0 (enforced by a small monotonicity penalty).
(C) Weak–form physics on the latent mesh: heads predict ḣθ and ∂xQθ; a learned weight Λψ(t, x)
emphasizes where residuals matter. The driver projection Rκ(t, x) = r̄(t) e−κx injects forcing.
Residual R = ḣθ + ∂xQθ − Rκ is penalized in the weak form. (D) Adaptive scheduling: bounded
signals modulate λpde and λsmooth. Total loss L = Ldata + λpdeLpde + λsmoothLcons + λmonoLmono.

At a high level, a dual-stream sequence encoder (capturing slow and fast modes) infers a latent
conserved flux field Qθ(t, x); a monotone neural observation map transforms this latent field into
the measured signal at the sensor; and automatic differentiation evaluates the measure-weighted
weak-form residual in Eq. equation 2. Training is adaptive: physics penalties are modulated online
by bounded signals derived from prediction error, external forcings, and event indicators, increasing
conservation pressure during transients and relaxing it in near-stationary regimes. Although our
experiments focus on hydrological time series, the architecture is defined at the level of generic 1-D
conservation laws under sparse spatial supervision.

LPDE =

∥∥∥∥∥
∫ 1

0

(
∂thθ(t, x) + ∂xQθ(t, x)−Rκ(t, x)

)
ϕψ(t, x) dx

∥∥∥∥∥
2

2

, (2)

The contributions of this paper are threefold: (1) APILa framework — a measure-weighted weak
formulation for single-sensor learning of 1-D conservation laws on a latent spatial coordinate, in-
stantiated via learned test functions and an equivalent normalized space–time density view, to-
gether with a variational dual-stream prior in H1/BV that decomposes slow and fast components
of the latent flux; (2) Theory — we provide conditions for single-sensor identifiability under a
monotone, Lipschitz observation map and mild excitation of exogenous drivers, prove reparam-
eterization invariance of the weak objective on the latent coordinate, and show the equivalence
between the learned-density and learned test-function formulations; (3) Adaptive physics schedul-
ing — a bounded, signal-aware scheme that modulates auxiliary physics terms in time based on
task-relevant statistics, tightening conservation during transients and relaxing it in near-stationary
regimes. λi(t) = clip

(
λ0
i (1 +

∑
k αik sk(t)), [λ

min
i , λmax

i ]
)
, prioritizing conservation during tran-

sients while preserving stability.

2
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We organize the paper as follows: Section 2 reviews related work; Section 3 formalizes the latent
weak-form framework and the adaptive training scheme; Section 4 details datasets and protocol;
Section 5 concludes.

2 RELATED WORK

Physics-informed learning from sparse observations. PINNs embed governing laws via residual
penalties and have shown wide appeal across scientific domains Raissi et al. (2019). Yet strong-form
residuals typically presume dense interior collocation and can be brittle under scarce spatial super-
vision. Variants that relax regularity or integrate residuals against test functions (weak/variational
forms) aim to improve robustness to noise and discretization while reducing collocation burden,
but they still require careful loss balancing and often lack guarantees under single-sensor settings
(see empirical discussions in Nathaniel et al. (2024); Azad et al. (2025); Rohrhofer et al. (2023)).
Training stability in PINNs frequently hinges on the choice of trade-off weights between data and
physics losses. Recent adaptive schemes rebalance terms during optimization, e.g., self-adaptive
PINNs (SA-PINN) McClenny & Braga-Neto (2023) and ReLoBRaLo Ling et al. (2024), which
adjust coefficients based on gradient magnitudes or residual statistics. These methods are largely
signal-agnostic and momentum-driven, and they do not exploit domain cues available at run time,
such as event likelihood or regime changes, to modulate physics pressure.

For 1-D conservation systems observed at a single site (e.g., stage/discharge), sequence encoders are
often used to form latent dynamics, while observation models (rating curves) impose a monotone
relationship between discharge and stage. Prior work typically treats the observation link as fixed
or unconstrained; monotone neural parameterizations provide a learnable but physically consistent
mapping. However, most approaches neither enforce conservation in a weak form over a latent reach
nor couple it with adaptive, signal-aware scheduling.

APILANET differs by (i) enforcing a measure-weighted weak form on a latent 1-D domain an-
chored at the observation site, avoiding dense interior collocation; (ii) using a monotone learnable
rating curve to tie latent discharge to measured stage; and (iii) introducing a signal-driven adaptive
schedule that modulates auxiliary physics terms online. Together these address sparse spatial su-
pervision, stability, and physical consistency beyond prior PINNs and adaptive-weighting strategies
Raissi et al. (2019); McClenny & Braga-Neto (2023); Ling et al. (2024).

2.1 PROBLEM SETUP & NOTATION

Let Ω ⊂ Rd be a bounded Lipschitz domain with horizon [0, T ]. We model a latent state u :
Ω× [0, T ] → Rp approximately governed by following equation

∂tu(x, t) +∇· F
(
u(x, t)

)
= S(x, t), (x, t) ∈ Ω× (0, T ), (3)

with flux F : Rp →Rp×d and source S. Initial/boundary data are u(·, 0) = u0 ∈ L2(Ω;Rp) and
B(u, F (u)) = g∂Ω on ∂Ω × (0, T ). Exogenous drivers ξ : [0, T ] → Rm act through a bounded
projection

S(·, t) = Pκ[ξ](·, t), Pκ : L2(0, T ;Rm) → L2(Ω× (0, T );Rp), (4)

parameterized by κ ∈ K. When Ω is implicit we work on a latent 1-D chart (Ω̂, ϕ) with C1 diffeo-
morphism ϕ : Ω̂→Ω; Jacobian factors are absorbed into the sampling/importance measure.

We observe a single downstream time series via a bounded linear functional C ∈ (H1(Ω;Rp))∗ and
a shape-constrained measurement map

ŷθ(t) = gθ
(
C[uθ(·, t)]

)
∈ R, (5)

for which we use a monotone, Lipschitz parameterization enforced by architecture. Given obser-
vations y(tn) at Tobs = {tn}Nn=1, the task is: from a history of length Lin and drivers ξ, predict
{y(tn+1), . . . , y(tn+Lout

)}. We write tn = n∆t and an:n+k = (a(tn), . . . , a(tn+k)); mini-batches
are contiguous windows

(
yn−Lin:n, ξn−Lin:n+Lout

)
.

For analysis we assume

u ∈ L2
(
0, T ;H1(Ω;Rp)

)
and ∂tu ∈ L2

(
0, T ;H−1(Ω;Rp)

)
,

3
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so the terms in the weak form are well-defined when F is C1 on the range of uθ. With test functions
φ ∈ H1

0 (Ω;Rp), multiplying equation 3 by φ and integrating by parts in space yields

⟨∂tu, φ⟩H−1,H1 −
∫
Ω

⟨F (u),∇φ⟩ dx −
∫
Ω

S ·φdx = 0 for a.e. t ∈ (0, T ). (6)

A weak solution of equation 3–B is u with u(·, 0) = u0 satisfying equation 6 for all φ ∈ H1
0 (or for

all φ ∈ H1 when nonzero boundary traces are retained), with S = Pκ[ξ]. A neural parameterization
uθ induces ŷθ via equation 5; training penalizes weak-form residuals using a learned, normalized
space–time importance density λψ : Ω × [0, T ] → (0, 1] with

∫∫
λψ dx dt = 1, together with a

supervised discrepancy between y and ŷθ. The objective (adaptive weights and shape constraints)
and training details are given in §A–§D. Assumptions (compact): (A1) F is C1 and locally Lipschitz
on the range of uθ; (A2) ξ ∈ L∞(0, T ) and Pκ is bounded L2 → L2; (A3) C is bounded and gθ
satisfies its structural constraint; (A4) λψ ∈ L∞ and normalized. Remark. On graphs, replace ∇· by
B⊤f with incidence matrix B; the development is unchanged.

3 METHOD

3.1 PANEL A: DUAL–STREAM LATENT DYNAMICS PRIOR WITH INPUT–DRIVEN GATING

From a single–sensor input window X1:L ∈ RL×d we form two latent flux sequences over the
forecast horizon τ = 1:T : a slow component Qbase(τ) and a fast component Qquick(τ). The
encoders that produce these sequences are standard sequence models. We introduce an input–driven
gate α ∈ [0, 1] and define the latent component passed to sensor location by the convex combination

Qθ(τ) = αQquick(τ) +
(
1− α

)
Qbase(τ), α = σ

(
g(X1:L)

)
, (7)

where g is an arbitrary scalar readout of the history and σ is the logistic sigmoid. We enforce
Qbase, Qquick ≥ 0, hence Qθ ≥ 0 by construction. This single nonnegative Qθ is the only la-
tent signal consumed by the observation link and weak physics. To bias the decomposition toward
interpretable dynamics, we regularize each component with complementary seminorms:

Rbase =

T∑
τ=2

(
∆Qbase(τ)

)2
, Rquick =

T∑
τ=2

∣∣∆Qquick(τ)
∣∣. (8)

Here ∆Q·(τ) = Q(τ)−Q(τ − 1). Rbase promotes H1–type smoothness; Rquick is a BV/TV prior.
These terms are novel in our context as a paired Sobolev/BV prior that encourages low–frequency
“component” and high–variation “component” within a single latent mixture.
Assumption 1. The history readouts that generate Qbase, Qquick and the gate g are
Lb, Lq, Lg–Lipschitz maps w.r.t. X1:L.
Theorem 1. Under A1, for any windows X,X ′,∥∥Qθ(·;X)−Qθ(·;X ′)

∥∥
∞ ≤

(
Lq∥ϕq∥+ Lb∥ϕb∥+ 1

4Lg∆Q(X
′)
)
∥X −X ′∥,

where ∆Q(X
′) = supτ

∣∣Qquick(τ ;X
′) − Qbase(τ ;X

′)
∣∣. If a uniform bound ∆Q(X

′) ≤ ∆max

holds, replace ∆Q(X
′) by ∆max. Proof in Appendix B.

Under mild encoder regularity, the gated mixture Qθ in equation 7 is Lipschitz in the input window,
so small changes in X1:L yield bounded changes in the latent component. Moreover, the paired
Sobolev/BV priors in equation 8 induce a Tikhonov–TV splitting that assigns low-frequency con-
tent to Qbase and high-variation content to Qquick. Formal statements and proofs are provided in
(Appendix B).

3.2 PANEL B: MONOTONE LATENT MAPPING

Panel B maps the aggregated driver from Panel A to the observed target using a shallow neural
link without assuming any fixed parametric law. Concretely, a bias-enabled two-layer MLP with
SOFTPLUS activations is applied element-wise in time to the clamped (nonnegative) driver. The
biases absorb sensor offsets and the flexible link avoids imposing a fixed power-law shape. We

4
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introduce (i) an empirical, order-preserving monotonicity surrogate that enforces a nondecreasing
driver-to-target map on the observed driver range without constraining weights, and (ii) a consistency
statement showing that, as design points densify, vanishing surrogate loss yields almost-everywhere
monotonicity over the training range.

Given a finite set q = {qi}ni=1 from the (clamped) driver range with q(1) ≤ · · · ≤ q(n), define

Lmono(θ;q) =
1

n− 1

n−1∑
i=1

[
fθ(q(i+1))−fθ(q(i))

]
−, with [x]− = max{0,−x}. We add γmonoLmono

to the loss (γmono=0.01).

Proposition 1. Lmono(θ;q) = 0 if fθ(q(i+1)) ≥ fθ(q(i)) for all adjacent pairs. Moreover,
maxi[fθ(q(i))− fθ(q(i+1))]+ ≤ (n− 1)Lmono(θ;q).

If design sets q(m) ⊂ [0, Qmax] densify, supm ∥fθm∥∞ < ∞, and a standard regularizer yields a
uniform total-variation bound, then a subsequence converges pointwise a.e. to a monotone limit
on [0, Qmax] when Lmono(θm;q(m)) → 0. Together, this surrogate-and-proof package gives a
lightweight way to impose a domain-plausible monotone observation link only where the data live,
improving identifiability and training stability without hard weight constraints.

3.3 PANEL C: WEAK-FORM PHYSICS ON THE LATENT MESH

We enforce a conservation law in a latent spatiotemporal domain using only single-point time series.
Concretely, the model predicts two time-indexed sequences, an objective-time derivative dthθ[τ ]
and an exogenous-space derivative dxQθ[τ ] and broadcasts them across a fixed X-cell latent spatial
grid. The exogenous variable is projected over this grid via a learnable, monotone spatial kernel.
The weak-form loss is the average of squared residuals weighted by a learned, non-negative field.
We introduce (i) a broadcast weak-form residual on a latent mesh that turns single-point supervision
into spatiotemporal physics via broadcasting and exogenous-variable projection; (ii) an exponential
exogenous projection with learnable decay κ > 0 enabling spatial structure from a point variable;
(iii) a learned spatial weighting field that emphasizes informative cells while remaining non-negative
by construction.
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Figure 2: Weak–form residual heat map ζ(t, s)
with per-step mean Es|ζ|.

From classical weak form to APILaNet’s latent
weak form. We compare (i) the classical weak
residual with constant test functions on a 1D strip,
and (ii) our broadcast residual on a latent mesh
with a learned, normalized weight.

Assumption 2 (Proxy derivatives and latent forc-
ing). For each forecast step τ ∈ {1:T}, the
model outputs proxies dthθ[τ ] ≈ ∂th(τ, ·) and
dxQθ[τ ] ≈ ∂xQ(τ, ·) that are (piecewise) con-
stant in x when broadcast across a latent grid
{xj}Xj=1 ⊂ [0, 1]. A single exogenous series is
projected to a latent forcing Rθ(x) = R̄ e−κx

with κ > 0 learnable.

Assumption 3 (Learned, normalized measure). A
nonnegative field λϕ(x) ≥ 0 induces a measure
dµϕ(x) = λϕ(x) dx on [0, 1] that is (i) bounded
and bounded away from 0 on compact subsets,
and (ii) normalized so that

∫ 1

0
λϕ(x) dx = 1.

Figure 2 visualizes the weak–form residual ζ(t, s) = ∂th+∂xQ−R over the latent mesh. Hot/cold
bands in the heat map mark where conservation is violated in time (t) and across latent cells (s);
sharp vertical streaks coincide with rapid changes in the driving signal, showing that APILANET lo-
calizes transient imbalance rather than spreading it uniformly. The bottom trace aggregates Es[ |ζ| ]
and highlights when violations spike, which typically precedes or aligns with observed extremes.
This diagnostic is useful both for model debugging, to identify how residuals concentrate during
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rare, high-amplitude regimes, and for interpretability (how the model “spends” its physics budget
over the prediction horizon).
Theorem 2 (Reduction to classical weak form). Under Assumptions 2–3, the APILaNet broadcast
loss

Lpde(θ, ϕ) =
1

TX

T∑
τ=1

X∑
j=1

λϕ(xj)
(
dthθ[τ ] + dxQθ[τ ]−Rθ(xj)

)2
is a Riemann (cell-wise) quadrature of the classical weak L2(µϕ) residual of the continuity law with
constant test functions on each cell. In particular, as the latent grid refines (maxj |xj+1−xj | → 0),

Lpde(θ, ϕ) → 1

T

T∑
τ=1

∫ 1

0

(
∂thθ(τ, x) + ∂xQθ(τ, x)−Rθ(x)

)2
dµϕ(x).

Proof sketch. Broadcasting makes the trial/test functions piecewise constant in x; averaging over j
with weights λϕ(xj) is a normalized quadrature for the weighted L2 norm.
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Figure 3: Adaptive weight field λ(t, s) learned
for the weak form. Left: heat map over time
t and latent cell s. Bottom: temporal marginal
Es[λ](t). Right: spatial marginal Et[λ](s). The
field assigns larger weight where the dynamics
change rapidly and smaller weight in nearly sta-
tionary periods.

Adaptive weighting map. Figure 3 visualizes
the learned space–time weight λ(t, s) used in the
weak-form loss. The heat map shows that λ
is not uniform: it concentrates near informative
regions of the forecast (earlier prediction steps
and selected latent spatial cells) and decays else-
where, indicating that the model allocates more
penalty to transient, high-signal zones. The bot-
tom marginal Es[λ](t) summarizes this tempo-
ral emphasis, typically highest near the start of
the horizon and tapering with t, while the right
marginal Et[λ](s) captures how weighting varies
across the latent spatial index. Together with
Fig. 2, this confirms that APILaNet both lo-
cates residual spikes and adaptively “spends” its
physics budget where it matters most.

Interpretation. Theorem 2 says our broadcast
loss is not an ad-hoc penalty: it is exactly a cell-
wise quadrature of the classical weak residual
under a learned, normalized measure. In plain
terms, APILaNet turns a single-sensor sequence
into a principled weak-form discretization on a latent mesh, while λϕ acts as an importance map
that concentrates physics where the signal is informative. Refinement/consistency assumptions
and results—namely Assumption 4 (approximation and mesh refinement), Theorem 3 (consistency
under refinement), and Corollary 1 (single-sensor realizability through the monotone observation
link)—are stated and proved in Appendix D.

3.4 PANEL D: ADAPTIVE PHYSICS SCHEDULING

Panel D modulates physics strength. Two global multipliers act on the physics terms: a PDE weight
λpde and a derivative-consistency weight λcons. Each is computed instantaneously per minibatch
from available signals. In addition, a local nonnegative field λloc(t, x) weights the PDE residual over
the latent mesh (Panel C). The effective PDE weight is Λpde(t, x) = λpde λloc(t, x). Objective:
allocate physics pressure when and where it matters without destabilizing training. We therefore
factorize the PDE weight into a global batch scalar and a local nonnegative field over the latent
mesh:

Λpde(t, x) = λpde λloc(t, x), λloc(t, x) ≥ 0,
1

TX

T∑
τ=1

X∑
j=1

λloc(τ, xj) = 1. (9)

The effective PDE term in the loss is

Leff
pde = λpde ·

1

TX

T∑
τ=1

X∑
j=1

λloc(τ, xj) rθ[τ, j]
2, rθ[τ, j] = ∂thθ[τ ] + ∂xQθ[τ ]−Rθ(xj). (10)
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Algorithm 1: Adaptive Multi-Loss Scheduling with Factorized Local Weights
Inputs: mini-batch D, model Fθ , optimizer; bases {λ0

i }; sensitivities {αik}; clips [λmin
i , λmax

i ]
Outputs: updated parameters θ
for epoch e = 1 to Nepoch do

foreach mini-batch D do
compute per-losses {Li(θ,D)}mi=1; optional local map Wloc≥0

compute batch signals {sk(D)}Kk=1 and activity Π
for i = 1 to m do

λi ← clip
(
λ0
i

(
1 +

K∑
k=1

αik sk + αi,ΠΠ
)
, λmin

i , λmax
i

)
if Wloc used then

Z ← 1
|Ω|

∑
(t,x)∈Ω Wloc(t, x);

Wloc ←Wloc/Z

Ltot ←
m∑
i=1

λi Li(θ,D;Wloc)

optimizer.zero grad();
backprop(Ltot);
optimizer.step()

Instantaneous global scheduler. Let E ≥ 0 be the batch prediction loss, s ∈ RK≥0 a vector of
auxiliary regime signals, and Π∈ [0, 1] an activity score. For i ∈ {pde, cons} we set

λi = clip
(
λ0
i

(
1 + E +α⊤

i s+ αi,Π Π
)
, λmin

i , λmax
i

)
, (11)

where λ0
i >0 is a base level, (αi, αi,Π)≥0 are sensitivities, and clip enforces user-specified bounds.

In the implementation we use this update rule: for each mini-batch we compute (E, s,Π) from the
current data, plug them into equation 11, and recompute λi from scratch.

Assumption 4 (Bounded signals & normalized local field). During training, E, each compo-
nent of s, and Π are bounded; the local field satisfies equation 9; and equation 11 produces
λi∈ [λmin

i , λmax
i ].

Theorem 3 (Monotone responsiveness with bounded pressure). Under Assumption 6, each λi in
equation 11 is nondecreasing in E, every component of s, and Π (away from clips) and always
satisfies λmin

i ≤ λi ≤ λmax
i . Consequently equation 10 is both responsive to harder-regime batches

and bounded to avoid instability.

Implementation and hyperparameters. For clarity, we make the full set of scheduler scalars
explicit. For each loss i ∈ {pde, cons} we specify base levels λ0

i , clipping bounds (λmin
i , λmax

i ), and
nonnegative sensitivities (αi, αi,Π). All values used in our experiments are listed in Appendix W2.
The only scalars selected by validation are a global physics scale λscale that multiplies (λ0

pde, λ
0
cons)

and an activity sensitivity αΠ applied to Π; we choose (λscale, αΠ) once by a small grid search on
the validation NSE and then reuse the same pair for all datasets in the corresponding benchmark.
All other modulation is purely data–driven through (E, s,Π).

Sensitivity and robustness. To assess robustness, we perform a scheduler ablation on a synthetic
single-sensor benchmark (Appendix D2), varying λscale ∈ {0.5, 1.0, 2.0} and αΠ ∈ {0, 0.3, 0.6}
and comparing adaptive (αi > 0) versus static (αi=0) weights. Across this grid, test MSE and
NSE vary smoothly, with no training collapse, and the performance differences between adaptive
and static global weights are modest. This indicates that the scheduler does not rely on finely tuned
coefficients; its main effect is to redistribute physics pressure towards difficult regimes rather than
to optimise aggregate error. Full numerical results are reported in Table D2.

We scale physics by two knobs: a global, batch-wise multiplier that grows when the batch looks
hard (big errors, event cues) but remains clipped, and a local, nonnegative map over the latent mesh
that redistributes this budget to where residuals matter. The global rule makes physics responsive yet
bounded; the local normalization preserves the average strength while focusing effort in time–space.
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Theorem 7 formalizes this: the scheduler is monotone in difficulty signals away from clips, and the
weights stay within [λmin

i , λmax
i ], so training remains stable even during sharp transients.

4 EXPERIMENTS

4.1 PROTOCOLS

Datasets We conduct a hydrology case study and experiments on six real–world, single–sensor
benchmarks from UK catchments. We construct the same L × d input tensor for all sites using
a unified pipeline. The train/val/test configuration splits for each dataset are same. Addtionaly, we
include a general 1D PDE benchmarks (viscous Burgers, wave, Allen–Cahn), where high–resolution
reference solutions are generated with a finite–difference solver.

Baselines We benchmark APILANET against eight competitive sequence-to-sequence forecast-
ers that span the main families of modern time–series modeling: Transformer Utilizing Cross-
Dimension Dependency for Multivariate Time Series Forecasting CrossFormer Zhang & Yan
(2023); patchwise Transformer PatchTST Nie et al. (2023); MLP token–mixer TS-Mixer Chen
et al. (2023); convolutional token–mixer PatchMixer Gong et al. (2023); selective state–space model
Mamba-S4 Dao & Gu (2024); iTransformer Liu et al. (2023); and the neural decomposition methods
N-HiTS Challu et al. (2022) and N-BEATS Oreshkin et al. (2020).

Setup. All models ingest the same L × d input tensor and predict the same T -step horizon. In-
puts are feature-wise min–max scaled using statistics computed on the training split and applied
to val/test. We generate input–output pairs with a sliding window. We evaluate a fixed forecast
horizon T=32 and look-back length L=32 based on Table 2. Primary metrics are Mean Squared
Error (MSE) and Nash–Sutcliffe Efficiency (NSE); for event-focused analyses we additionally re-
port peak-timing and peak-magnitude errors (∆tpeak,∆hpeak). Baselines use the same inputs as
APILANET and follow the original authors’ recommended model sizes, optimizers, and regular-
ization. All methods are trained for the same epochs, batch size, and learning-rate schedule. Each
configuration is run with three fixed random seeds; and the mean of the metrics is reported. Full
dataset details, implementation, and hyperparameters appear in Appendix A.

4.2 ABLATION STUDY

Ablation Design We report seven variants corresponding to Table 1: (1) APILaNet (full model);
(2) w/o λ Adapt. (global); (3) w/o λg Adapt. (local)—remove the local weighting (set λg≡1) while
keeping the global scheduler λs and the PDE loss; (4) w/o λs Adapt. (both)—freeze both weights
(fix λg=λ0

g and λg≡1) with the PDE loss retained; (5) w/o Monotone MLP—replace the monotone
rating-curve link by an unconstrained scalar MLP; (6) w/o PDE loss—drop the weak-form continuity
residual from the objective; (7) Ldata only—pure data fit.

Table 1: Ablation at 8 h before extreme event on Stocksfield. Entries are mean±SD [95% CI] across
seeds. MSE is reported in ×10−1. Best results are red; second-best are blue.

Model λg λs PDE ∆tpeak (h)↓ ∆hpeak (m)↓ MSE (×10−1) ↓ NSE↑

(1) APILANET ✓ ✓ ✓ 0.00±0.00 [0.00, 0.00] 0.46±0.19 [0.18, 0.75] 0.45±0.14 [0.25, 0.65] 0.51±0.15 [0.29, 0.72]
(2) w/o λ Adapt. (a) × × ✓ 0.00±0.00 [0.00, 0.00] 0.46±0.08 [0.33, 0.59] 0.53±0.06 [0.45, 0.62] 0.42±0.06 [0.33, 0.51]
(3) w/o λ Adapt. (b) × ✓ ✓ 0.00±0.00 [0.00, 0.00] 0.39±0.17 [0.13, 0.64] 0.57±0.03 [0.52, 0.61] 0.38±0.03 [0.33, 0.43]
(4) w/o λ Adapt. (c) ✓ × ✓ 0.00±0.00 [0.00, 0.00] 0.52±0.07 [0.41, 0.63] 0.55±0.07 [0.45, 0.65] 0.39±0.07 [0.29, 0.50]
(5) w/o Mono MLP ✓ ✓ ✓ 0.00±0.00 [0.00, 0.00] 0.51±0.16 [0.27, 0.75] 0.53±0.04 [0.47, 0.59] 0.41±0.04 [0.35, 0.48]
(6) w/o PDE Loss ✓ ✓ × 0.25±0.42 [-0.19, 0.69] 0.40±0.14 [0.25, 0.54] 0.64±0.27 [0.36, 0.93] 0.29±0.29 [-0.01, 0.61]
(7) APILANET Ldata × × × 1.92±3.32 [-3.01, 6.84] 0.68±0.24 [0.32, 1.04] 0.74±0.35 [0.22, 1.26] 0.19±0.38 [-0.37, 0.76]

Based on the results from Table 1 , the full APILANET achieves the best MSE/NSE. Removing
adaptive weighting degrades accuracy—both schedulers matter: using only the λg or only the λs
field is inferior to using them together. Eliminating the PDE weak–form loss yields the largest drop
in peak timing and overall fit, while removing the monotone link also hurts MSE/NSE and stability.
Overall, gains are additive: monotone link + PDE loss + (λg ⊕ λs) scheduling produce the strongest
performance.
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Sensitivity to latent mesh size and learned measure. We additionally vary the number of latent
cells X ∈ {8, 16, 32, 64} and compare (i) a uniform measure λuni(t, x) and (ii) the learned measure
λϕ(t, x) (Table 6; full results in App. F). The uniform baseline aggregates performance across all X
with a fixed, non–adaptive measure, while the learned λϕ is trained separately for each resolution
X . Across all tested resolutions, the learned measure never underperforms the uniform baseline:
the largest gains occur at moderate resolutions (X = 16, 32), with test MSE reduced by roughly
15–18% and NSE improved by about 0.015–0.017. For coarser or finer grids (X = 8 or 64), the
gains are smaller but remain non–negative.

4.3 INFLUENCE OF INPUT SEQUENCE LENGTH

Table 2: Lookback sensitivity by catchment.
Mean MSE (↓, ×10−2) and NSE (↑) across seven
input horizons (2–128 h).

Site Metric Lookback window (time steps)

8 16 32 64 128 256 512

ACOMB GRN
MSE (×10−2) 0.066 0.059 0.041 0.043 0.045 0.057 0.042
NSE 0.857 0.873 0.911 0.906 0.909 0.895 0.910

ACOMB MFS
MSE (×10−2) 0.049 0.037 0.021 0.023 0.027 0.022 0.028
NSE 0.853 0.888 0.936 0.931 0.919 0.933 0.916

STOCKSFIELD
MSE (×10−2) 0.079 0.071 0.053 0.069 0.068 0.068 0.061
NSE 0.837 0.849 0.886 0.852 0.856 0.855 0.872

NUNNYKIRK
MSE (×10−2) 0.091 0.073 0.067 0.073 0.086 0.090 0.091
NSE 0.913 0.941 0.959 0.940 0.921 0.914 0.913

KNITSLEY
MSE (×10−2) 0.063 0.038 0.030 0.038 0.033 0.064 0.072
NSE 0.915 0.936 0.946 0.935 0.943 0.912 0.902

KIELDER
MSE (×10−2) 0.076 0.066 0.030 0.041 0.042 0.067 0.073
NSE 0.898 0.912 0.962 0.944 0.943 0.908 0.902

Table 2 shows that a medium context is consis-
tently best. Across all five catchments, the opti-
mal lookback is 32 steps (8 h at 15 min resolu-
tion): it yields the lowest MSE and the highest
NSE in every case (ACOMB MFS 0.021×10−2

/ 0.936, STOCKSFIELD 0.053×10−2 / 0.886).
Short histories (≤16 steps) underfit transients
and hurt NSE, while very long histories (≥128)
plateau or slightly degrade, likely due to mem-
ory dilution, heavier optimization, and fewer
distinct windows per epoch. The result is ro-
bust—64–128 steps are typically within a few
percent of the best—but 32 steps offers the best
accuracy–efficiency trade-off. We therefore fix
the lookback to 32 steps (8 h) in all remaining
experiments unless stated otherwise.

4.4 SYNTHETIC 1D PDE BENCHMARKS

To test whether APILaNet is tied to a single application domain, we also evaluate it on three well-
known 1D PDEs: viscous Burgers, the wave equation, and Allen–Cahn. For each, we generate a
finite-difference reference solution with standard IC/BC and train vanilla PINN, PINN-w, gPINN,
and vPINN in the usual setting with full geometry and interior collocation points, while APILaNet
only observes a single probe time series and known forcing, enforcing the conservation law on a
latent spatial coordinate (Sec. 3.3). Table 3 reports test MSE at the probe; across all three PDEs,
APILaNet matches or outperforms these strong-form and adaptive PINNs despite the weaker infor-
mation regime, supporting its role as a general single-sensor conservation-law framework.

Table 3: Synthetic 1D PDE benchmarks. Entries are test MSE (lower is better). Best results are red;
second-best are blue.

PDE (MSE) Vanilla PINN PINN-w Ryck et al. (2022) gPINN Yu et al. (2022) vPINN Kharazmi et al. (2019) APILaNet

Burgers 5.80 × 10−4 2.91 × 10−3 1.29 × 10−4 1.45 × 10−3 4.50 × 10−5

Wave 2.62 × 10−4 2.89 × 10−3 1.62 × 10−4 8.91 × 10−4 1.52 × 10−4

Allen–Cahn 1.18 × 100 1.04 × 100 1.32 × 10−1 1.04 × 100 1.18 × 10−1

4.5 ADDITIONAL EXPERIMENTS

Beyond standard test-set accuracy, we benchmark early-warning performance by evaluating every
model’s ability to predict before the extreme event. This stress test probes how well a forecaster
anticipates extremes as lead time shortens—crucial for actionable response. Across all lead times,
APILANET delivers the lowest MSE and highest NSE in most catchments, while also minimizing
peak timing and magnitude errors (∆tpeak, ∆hpeak). Notably, performance degrades gracefully as the
warning window widens (8 h → 2 h), indicating stable physics-aware generalization rather than last-
minute correction. These results suggest APILANET provides earlier and more reliable alerts than
state-of-the-arts baselines, making it better aligned with real-world decision timelines for real-world
preparedness and incident management. (Appendix F).
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Table 4: Catchment-level forecasting. Test-set MSE (↓) and NSE (↑) across six UK catchments and
three events per catchment, with fixed prediction length and horizon.Best results are red; second-
best are blue.

Data Model APILANET CROSSFORMER PATCHTST TSMIXER PATCHMIXER MAMBA S4 ITRANSFORMER N-HITS N-BEATS
Metrics MSE↓ NSE↑ MSE↓ NSE↑ MSE↓ NSE↑ MSE↓ NSE↑ MSE↓ NSE↑ MSE↓ NSE↑ MSE↓ NSE↑ MSE↓ NSE↑ MSE↓ NSE↑

A
C

O
M

B
G

R
N Event 1 0.090 0.810 0.117 0.754 0.471 0.009 0.127 0.733 0.117 0.753 0.317 0.333 0.122 0.744 0.362 0.238 0.337 0.290

Event 2 0.058 0.919 0.093 0.869 0.385 0.460 0.073 0.897 0.082 0.884 0.222 0.689 0.106 0.851 0.341 0.522 0.311 0.564
Event 3 0.935 0.329 0.951 0.318 2.485 -0.783 0.926 0.335 1.514 -0.087 1.357 0.026 0.968 0.305 1.682 -0.207 1.712 -0.229

Test 0.010 0.907 0.011 0.901 0.026 0.762 0.010 0.904 0.013 0.876 0.016 0.852 0.011 0.897 0.020 0.815 0.019 0.821

A
C

O
M

B
M

F
S Event 1 0.054 0.885 0.077 0.836 0.443 0.061 0.052 0.890 0.064 0.863 0.324 0.314 0.103 0.781 0.382 0.191 0.428 0.092

Event 2 0.018 0.970 0.058 0.902 0.326 0.450 0.025 0.957 0.109 0.817 0.208 0.649 0.076 0.871 0.328 0.446 0.339 0.427
Event 3 0.370 0.638 0.706 0.309 1.131 -0.107 0.533 0.478 0.553 0.458 0.872 0.146 0.752 0.264 1.192 -0.167 1.323 -0.295

Test 0.005 0.937 0.008 0.904 0.015 0.811 0.006 0.927 0.006 0.925 0.011 0.855 0.008 0.898 0.015 0.811 0.016 0.795

S
T

O
C

K
S

FI
E

L
D Event 1 0.019 0.747 0.047 0.389 0.879 -0.130 0.279 0.642 0.250 0.678 0.568 0.270 0.443 0.430 -1.01 -0.299 1.097 -0.410

Event 2 × × × × × × × × × × × × × × × × × ×
Event 3 0.396 0.315 0.361 0.370 0.607 -0.051 0.358 0.381 0.698 -0.209 0.442 0.234 0.486 0.158 0.673 -0.167 0.757 -0.311

Test 0.013 0.879 0.016 0.851 4.059 -2.665 0.014 0.873 0.016 0.859 0.019 0.830 0.020 0.817 0.025 0.773 0.026 0.762

N
U

N
N

Y
K

IR
K Event 1 0.116 0.862 0.257 0.695 0.325 0.614 0.212 0.748 0.158 0.813 0.273 0.675 0.184 0.781 0.343 0.593 0.382 0.546

Event 2 0.043 0.926 0.056 0.902 0.249 0.566 0.054 0.907 0.282 0.509 0.133 0.768 0.093 0.839 0.180 0.686 0.216 0.624
Event 3 × × × × × × × × × × × × × × × × × ×

Test 0.003 0.972 0.004 0.958 0.009 0.925 0.004 0.962 0.005 0.951 0.006 0.944 0.005 0.954 0.009 0.923 0.009 0.922

K
N

IT
S

L
E

Y Event 1 0.008 0.960 0.017 0.910 0.160 0.164 0.029 0.845 0.037 0.808 0.122 0.362 0.027 0.856 0.148 0.224 0.143 0.251
Event 2 0.056 0.907 0.089 0.854 0.473 0.219 0.059 0.901 0.135 0.777 0.323 0.466 0.178 0.707 0.421 0.306 0.405 0.332
Event 3 0.028 0.738 0.017 0.839 0.091 0.168 0.021 0.803 0.012 0.890 0.072 0.299 0.033 0.697 0.092 0.152 0.093 0.147

Test 0.004 0.939 0.004 0.928 0.012 0.810 0.003 0.942 0.004 0.930 0.008 0.862 0.005 0.911 0.011 0.821 0.011 0.824

K
IE

L
D

E
R Event 1 0.008 0.957 0.015 0.920 0.140 0.269 0.016 0.918 0.013 0.933 0.091 0.527 0.031 0.837 0.137 0.286 0.123 0.361

Event 2 0.027 0.877 0.029 0.869 0.087 0.610 0.017 0.700 0.015 0.934 0.081 0.637 0.047 0.788 0.068 0.692 0.059 0.735
Event 3 0.013 0.691 0.015 0.634 0.040 0.280 0.019 0.668 0.021 0.629 0.021 0.621 0.023 0.618 0.040 0.284 0.042 0.260

Test 0.003 0.962 0.004 0.942 0.014 0.826 0.004 0.951 0.004 0.946 0.009 0.894 0.005 0.940 0.013 0.844 0.013 0.845

Best (↑) Count 16 16 0 0 0 0 4 4 2 2 0 0 0 0 0 0 0 0

4.6 MAIN RESULTS

Across six UK catchments and three events per site, APILANET achieves the strongest overall per-
formance (Table 4). On the Test split it achieves the lowest MSE↓ and highest NSE↑ on five out
of six catchments, with a very close second place on KNITSLEY (0.004/0.939 vs. 0.003/0.942 for
TSMIXER). Aggregating over all event–level and test rows, APILANET secures 16 best scores,
compared with 4 for TSMIXER and 2 for PATCHMIXER, while the remaining baselines never
dominate. The largest gains are observed at ACOMB MFS, NUNNYKIRK and KIELDER, where
APILANET consistently improves both error (MSE) and efficiency (NSE) over the strongest deep-
learning baselines, indicating that the latent-physics prior is beneficial across a range of single-sensor
catchment regimes.

5 CONCLUSION AND FUTURE WORK

We introduced APILANET, an Adaptive Physics-Informed Latent Network for single-sensor fore-
casting that couples sequence learning with weak-form conservation. A dual-stream latent prior
with input-driven gating, a monotone observation link, and a learned, normalized space–time mea-
sure deliver stable training and targeted physics enforcement. On five UK catchments, APILANET
improves NSE and lowers MSE during extreme events over strong state-of-the-arts, suggesting a
practical application for conservation-governed forecasting under sparse sensing.

We analyzed the limitations of our work and briefly discuss some directions for future research:
(i) Beyond 1-D. Generalize the latent PDE from a reach-averaged 1-D mesh to multi-reach/graph
geometries and lightweight momentum terms. (ii) Safer observation mapping. Add physics-aware
shape priors and uncertainty quantification to the monotone link for robust extrapolation outside
the observed latent range. (iii) Richer general states and interpretability. Learn time–space wet-
ness/state variables (beyond a single decay κ) and integrate XAI diagnostics to attribute predictions
to latent physics and drivers.
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A APPENDIX A

Ethics Statement Kharazmi et al. (2019) Yu et al. (2022) Ryck et al. (2022) We used large lan-
guage models (LLMs) solely to polish writing e.g., improving clarity, grammar, and flow. All ideas,
methods, experiments, analyses, figures, and conclusions are the authors’ own. No data, code, or
results were generated by LLMs, and all citations and factual statements were verified by the authors.

Reproducibility Statement We provide the theoretical background throughout the paper and in
the Technical Appendix, including assumptions, definitions, and proofs supporting our claims. Upon
acceptance, we will release the full codebase, configuration files, and scripts to reproduce all exper-
iments in a public GitHub repository; the URL will be announced to preserve double-blind review.

A.1 DATASETS

Data source. All datasets used in this study were extracted from the UK Environment Agency
Hydrology service (https://environment.data.gov.uk/hydrology/explore). We
used publicly available gauge series and constructed train/test splits per catchment as summarized
in Table 5.
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Table 5: Dataset overview by site (Train+Test merged). All series are 15 min cadence and include
10 features per site. Source: UK Environment Agency Hydrology.

Site Rows (total) Features Time range Med. interval
Acomb GH 320590 10 2016-01-01 — 2025-02-28 15 min
Acomb MSFD 321260 10 2016-01-01 — 2025-02-28 15 min
Knitlsey 315535 10 2016-01-01 — 2024-12-30 15 min
Kielder 315525 10 2016-01-01 — 2024-12-30 15 min
Nunnykirk 315505 10 2016-01-01 — 2024-12-30 15 min
Stocksfield 110857 10 2022-01-01 — 2025-02-28 15 min

Preprocessing. Timestamps were parsed and sorted; all series operate at a 15 min cadence. We
retain provider units and engineer a 10D feature vector per timestamp. Here ∆h and ∆2h are
first/second differences of level; daily min/daily max are previous-day extrema (computed
per calendar day and shifted by 96 steps = 24 h to avoid leakage), then forward/backward filled;
future rain is a 32–step (8 h) lead of rain (placeholder when not observed); AWI is an exponen-
tially weighted antecedent wetness index with 5-day decay; and rain 3h/rain 24h are rolling
rainfall sums over 12 and 96 steps. After feature construction we drop any residual NaNs. Features
are scaled with a Min–Max transform fitted on the training split and applied to validation/test. For
sequence modeling we form input/output windows of 32/32 steps (8 h/8 h); training uses an 80/20
chronological split with shuffling only on the training loader (validation/test are not shuffled).

Notation. Let {tτ}Tτ=1 be the forecast timestamps (uniform step ∆t), and let yτ and ŷτ denote the
observed and predicted water level at tτ .

Mean Squared Error (MSE).

MSE =
1

T

T∑
τ=1

(
ŷτ − yτ

)2
.

Nash–Sutcliffe Efficiency (NSE).

NSE = 1 −
∑T
τ=1

(
ŷτ − yτ

)2∑T
τ=1

(
yτ − ȳ

)2 , ȳ =
1

T

T∑
τ=1

yτ .

Peak timing error (∆tpeak). Let τ⋆obs ∈ argmaxτ yτ and τ⋆pred ∈ argmaxτ ŷτ . We report the
(absolute) timing difference in hours:

∆tpeak =
∣∣ tτ⋆

pred
− tτ⋆

obs

∣∣ =
∣∣ τ⋆pred − τ⋆obs

∣∣ ∆t.

(With 15 min cadence, ∆t = 0.25 h.)

Peak height error (∆hpeak). We compare the peak magnitudes over the forecast window:

∆hpeak =
∣∣ max

τ
ŷτ − max

τ
yτ
∣∣ (meters).

Optimization & training. All experiments are conducted on a single workstation with an
NVIDIA RTX 4090 (24 GB), an Intel Core i9-14900KS, and 128 GB of RAM.1 All models are
trained in PyTorch with Adam (learning rate 1×10−3), mini–batches of 64, and shuffled training
streams; validation/test loaders are not shuffled. We use a deep ensemble of M=3 independently
trained instances for each seed we reinstantiate the data loaders with the same seed to obtain re-
producible shuffles. At inference, we average ensemble outputs for the point forecast and report
the ensemble standard deviation as an estimate of epistemic uncertainty. Unless otherwise stated,
input and forecast horizons are 32 steps (15 min cadence ⇒ 8 h lookback/8 h horizon), and the same
preprocessing and scaling are applied across all runs.

1No multi-GPU or distributed training is used.
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Reproducibility. We will release scripts that (i) download the raw CSVs from the Hydrology
service, (ii) apply the exact parsing and split logic used in this paper, and (iii) regenerate all summary
tables.

B APPENDIX B : PANEL A: DUAL–STREAM DISCHARGE PRIOR WITH
INPUT–DRIVEN GATING

Notation. For a sequence z ∈ RT define the forward difference ∆z(τ) = z(τ) − z(τ − 1)

for τ ≥ 2. We write the Sobolev–seminorm ∥z∥2H1 =
∑T
τ=2(∆z(τ))2 and the total variation

∥z∥TV =
∑T
τ=2 |∆z(τ)|. A history window is X1:L ∈ RL×d; the most recent vector is xL ∈ Rd.

B.1 MODEL AND TRAINING OBJECTIVE

Two sequence encoders (e.g., LSTMs) produce nonnegative discharge sequences

Qb(X), Qq(X) ∈ RT≥0, Qb = ϕb(X), Qq = ϕq(X),

and a scalar gate is computed from the history (in code: from xL)

α(X) = σ
(
g(X)

)
∈ [0, 1], σ(u) = 1

1+e−u .

The latent discharge propagated downstream is the convex mixture

Qθ(τ ;X) = α(X)Qq(τ ;X) +
(
1− α(X)

)
Qb(τ ;X), Qθ ∈ RT≥0. (12)

To bias the decomposition toward interpretable dynamics we add a paired prior

Rb(Qb) = ∥Qb∥2H1 , Rq(Qq) = ∥Qq∥TV. (13)

Let Ldata denote the supervised loss (on the task outputs). The Panel-A contribution to the training
objective is

LA(X; θ) = ρb ∥Qb(X)∥2H1 + ρq ∥Qq(X)∥TV, ρb, ρq > 0, (14)
and the full loss is Ltotal = Ldata + LA + Lphysics.

Remark (penalized joint learning). Unlike a constrained “recover (Qb, Qq) given Qθ” solve, our
implementation jointly learns Qb, Qq with the encoders by penalizing equation 13 during training.
This is exactly what the code does.

B.2 STABILITY OF THE GATED MIXTURE

Assumption B1 (encoder and gate regularity). There exist Lipschitz constants Lb, Lq, Lg ≥ 0
such that

∥Qb(X)−Qb(X
′)∥∞ ≤ Lb ∥X −X ′∥, ∥Qq(X)−Qq(X

′)∥∞ ≤ Lq ∥X −X ′∥,

and |g(X) − g(X ′)| ≤ Lg ∥X −X ′∥, for a fixed norm ∥ · ∥ on RL×d. We use the standard bound
|σ(u)− σ(v)| ≤ 1

4 |u− v|.
Theorem 4 (Lipschitz dependence of Qθ on the history). Under Assumption B1, for any windows
X,X ′, ∥∥Qθ(·;X)−Qθ(·;X ′)

∥∥
∞ ≤

(
Lq + Lb + 1

4 Lg∆Q(X
′)
)
∥X −X ′∥,

where ∆Q(X
′) = supτ

∣∣Qq(τ ;X
′) − Qb(τ ;X

′)
∣∣. If a uniform bound ∆Q(X

′) ≤ ∆max holds on
the training domain, we may replace ∆Q(X

′) by ∆max.

Sketch. Using equation 12,

Qθ(·;X)−Qθ(·;X ′) = α(X)
(
Qq(X)−Qq(X

′)
)
+
(
1− α(X)

)(
Qb(X)−Qb(X

′)
)

+
(
α(X)− α(X ′)

)(
Qq(X

′)−Qb(X
′)
)
.

Take ∥ · ∥∞, apply the encoder Lipschitz bounds to the first two terms, and the sigmoid bound
|α(X)− α(X ′)| ≤ 1

4 |g(X)− g(X ′)| ≤ 1
4Lg∥X −X ′∥ to the gate term; then collect constants.
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Interpretation. Small perturbations of the input history yield bounded changes in Qθ. The bound
decomposes additively into (i) variability of the fast stream, (ii) variability of the slow stream, and
(iii) gate sensitivity scaled by the instantaneous separation ∆Q between streams.

B.3 BIAS AND IDENTIFIABILITY OF THE PENALIZED SPLIT

Define the per-batch objective
J (X; θ) = Ldata(X; θ) + ρb ∥Qb(X)∥2H1 + ρq ∥Qq(X)∥TV.

At any stationary point of J (with respect to encoder parameters), the Euler–Lagrange/KKT condi-
tions yield the following qualitative structure.
Proposition 2 (Directional bias of the streams). Let θ⋆ be a stationary point of J . Then the slow
stream Qb(X; θ⋆) minimizes a data-augmented functional that contains ∥DQ∥22, while the fast
stream Qq(X; θ⋆) minimizes a data-augmented functional that contains ∥DQ∥1. Consequently, Qb

concentrates low-frequency energy and Qq concentrates high-variation energy (sparse differences).
The nonnegativity constraints preserve the physical sign.

Idea. Differentiate J with respect to the encoder outputs. The gradient contributions of ∥Qb∥2H1

and ∥Qq∥TV are, respectively, D⊤(2DQb) (a smoothing operator) and D⊤(sign(DQq)) (an edge-
sparsifying operator). Balancing these with the data gradient yields the stated bias. Formal details
follow by standard subdifferential calculus for TV.

Identifiability discussion. When α ∈ (0, 1) and the two priors are active (ρb, ρq > 0), the opti-
mization favors a unique role allocation—smooth content in Qb, jump-sparse content in Qq. If α
saturates at {0, 1}, the inactive stream is under-determined by the mixture; in practice we discourage
saturation by ordinary early-training regularization on the gate (e.g., mild logit penalty) and by the
data loss coupling both streams through Qθ.

C APPENDIX C : PANEL B: PROPERTIES OF THE MONOTONE LATENT
MAPPING

Panel B maps the nonnegative driver q(τ) ∈ R≥0 (output of Panel A) to the target h(τ) through
a shallow MLP fθ : R≥0 → R applied elementwise in time: h(τ) = fθ

(
q(τ)

)
. We do not im-

pose weight sign constraints; instead we add a lightweight batchwise monotonicity surrogate that
encourages fθ to be nondecreasing over the observed driver range.

Given a finite design set q = {qi}ni=1 sampled from the current batch (or a fixed grid) and sorted
q(1) ≤ · · · ≤ q(n), define

Lmono(θ;q) =
1

n− 1

n−1∑
i=1

[
fθ(q(i+1))− fθ(q(i))

]
−, [x]− = max{0,−x}. (15)

We add γmonoLmono to the training objective (with γmono=0.01 in our experiments).
Proposition 3 (Immediate properties). If fθ(q(i+1)) ≥ fθ(q(i)) for all i, then Lmono(θ;q) = 0.
Moreover,

max
1≤i≤n−1

[fθ(q(i))− fθ(q(i+1))]+ ≤ (n− 1)Lmono(θ;q),

so the loss controls the largest adjacent monotonicity violation on the sampled range.

Let design sets q(m) ⊂ [0, Qmax] densify (mesh size → 0), and suppose supm ∥fθm∥∞ < ∞ and a
standard regularizer yields a uniform total-variation bound on fθm . If Lmono(θm;q(m)) → 0, then
a subsequence of {fθm} converges pointwise a.e. on [0, Qmax] to a nondecreasing limit. (Sketch:
Helly selection on uniformly BV functions + vanishing adjacent violations on a dense mesh implies
monotonicity a.e. of the limit.)

Practice. (i) We form q by sorting the per-batch driver values and compute equation 15. (ii) The
surrogate only constrains the map where data lie (observed driver range), which is sufficient to sta-
bilize training and improve identifiability in practice. (iii) No architectural monotonicity constraints
are required; the approach is optimizer- and MLP-agnostic.

15
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D APPENDIX D : PANEL C: WEAK-FORM PHYSICS ON A LATENT MESH

Latent mesh and broadcasted residual. Let the forecast steps be τ = 1:T and the latent spatial
grid {xj}Xj=1 ⊂ [0, 1]. The model outputs two time-indexed proxies (constant in x upon broadcast)

dthθ[τ ] ≈ ∂th(τ, ·), dxQθ[τ ] ≈ ∂xQ(τ, ·),

and forms a latent forcing by projecting a single exogenous series via an exponential kernel

Rκ(x) = R̄ e−κx, κ > 0 learnable, R̄ = batch summary of rainfall.

A nonnegative space–time weighting field λϕ(τ, x) ≥ 0 (produced by a small network on (τ, x))
emphasizes informative regions. The broadcast weak residual is

rθ[τ, j] = dthθ[τ ] + dxQθ[τ ] − Rκ(xj),

and the weak-form physics loss used in training is the normalized weighted average

Lpde(θ, ϕ) =
1

TX

T∑
τ=1

X∑
j=1

λϕ(τ, xj) rθ[τ, j]
2, λϕ(τ, x) ≥ 0. (16)

(Implementation: λϕ is Softplus-positive; optionally we renormalize it per batch so its average over
(τ, j) is 1, but this is not required.)

C.1 FROM CLASSICAL WEAK RESIDUALS TO THE BROADCAST LOSS

Consider the 1-D continuity law on a strip,

∂th(τ, x) + ∂xQ(τ, x) = R(x), (τ, x) ∈ {1:T} × [0, 1].

Let µϕ be a learned nonnegative measure on [0, 1] with density λϕ(τ, ·) for each τ (no sign changes;
boundedness holds in practice due to Softplus outputs).

Theorem 5 (Broadcast loss is a weighted weak residual). Assume (i) dthθ[τ ] and dxQθ[τ ] are
broadcast as piecewise-constant in x, (ii) Rκ is continuous in x, and (iii) λϕ(τ, ·) is bounded and
nonnegative. Then equation 16 is a Riemann (cell-wise) quadrature of the weighted weak residual
with constant test functions on each cell:

Lpde(θ, ϕ) =
1

T

T∑
τ=1

∫ 1

0

(
∂thθ(τ, x) + ∂xQθ(τ, x)−Rκ(x)

)2
dµϕ(τ, x) + o(1),

where o(1)→0 as maxj |xj+1−xj |→0. Sketch. Broadcasting makes trial/test functions piecewise
constant in x; the double sum is a normalized quadrature of the weighted L2 residual over the latent
cells.

C.2 CONSISTENCY UNDER REFINEMENT AND APPROXIMATION

We formalize when vanishing broadcast loss enforces the PDE almost everywhere.

Assumption 5 (Approximation + bounded weights). There exist h⋆, Q⋆, R⋆ with ∂th
⋆+∂xQ

⋆ = R⋆

a.e. such that: (i) dthθ→∂th
⋆ and dxQθ→∂xQ

⋆ in L2([0, 1]) (over τ ); (ii) Rκ→R⋆ in L2([0, 1])
as κ → κ⋆; (iii) the latent grid fill distance → 0; (iv) for each τ , λϕ(τ, ·) is bounded on [0, 1] (and
optionally renormalized to unit mean).

Theorem 6 (Consistency of latent weak enforcement). Under Assumption 5, if Lpde(θ, ϕ) → 0 then

∂th
⋆(τ, x) + ∂xQ

⋆(τ, x) = R⋆(x) for a.e. (τ, x) ∈ {1:T} × [0, 1].

Sketch. By Theorem 5 the discrete loss converges to a weighted L2 residual; bounded λϕ and the
L2 approximations imply the residual tends to 0 in L2(µϕ), hence vanishes a.e.
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C.3 ROLE OF THE LEARNED WEIGHT FIELD AND EXPONENTIAL FORCING

Learned importance map. The nonnegative field λϕ(τ, x) in equation 16 lets the model allocate
physics pressure to informative regions (e.g., transients or specific latent cells). Gradients take the
form

∂Lpde

∂dthθ[τ ]
=

2

TX

∑
j

λϕ(τ, xj) rθ[τ, j],
∂Lpde

∂dxQθ[τ ]
=

2

TX

∑
j

λϕ(τ, xj) rθ[τ, j],

∂Lpde

∂ϕ
=

1

TX

∑
τ,j

rθ[τ, j]
2 ∂ϕλϕ(τ, xj). (17)

so cells with large residuals attract more weight until balanced by normalization/other losses.

Exponential projection. With Rκ(x) = R̄e−κx and κ > 0 learned, single-point exogenous input
induces a spatial latent loading that decays with x, enabling spatiotemporal structure from a single
time series while keeping the projection differentiable and stable.

C.4 RELATION TO CLASSICAL PINNS AND WEAK–FORM PINNS (MATHEMATICAL)

Classical (strong-form) PINNs. For a PDE N [u] = f on [1:T ] × Ω, strong PINNs penalize
pointwise residuals at collocation points:

Lstrong(θ) =
1

N

N∑
i=1

∣∣N [uθ](τi, xi)− f(τi, xi)
∣∣2 + (data/bc/ic).

They require spatial collocation (τi, xi) and (via N ) generally involve higher-order derivatives of
uθ.

Weak–form (Galerkin) PINNs. Fix test functions {φk}Kk=1; the weak residual is

Rweak(θ;φk) =

∫
Ω

(
N [uθ]− f

)
φk dx, Lweak(θ) =

1

K

K∑
k=1

∣∣Rweak(θ;φk)
∣∣2 + (data/bc/ic).

With cellwise-constant φk = ⊮Ωk
this becomes a per-cell averaged L2 residual, trading pointwise

sensitivity for integral robustness.

APILaNet’s broadcast weak form (Panel C). On a latent 1-D grid {xj}Xj=1, we broadcast time-
only proxies dthθ[τ ] and dxQθ[τ ] and use an exponentially projected forcing Rκ(x) = R̄e−κx:

rθ[τ, j] = dthθ[τ ] + dxQθ[τ ]−Rκ(xj), Lpde(θ, ϕ) =
1

TX

T∑
τ=1

X∑
j=1

λϕ(τ, xj) rθ[τ, j]
2,

with a learned nonnegative measure λϕ(τ, ·) (Sec. ??). By Thm. 5, Lpde is a Riemann quadrature
of a weighted weak L2 residual with constant test functions.

E APPENDIX E : PANEL D: PROPERTIES AND PSEUDO-CODE

Recall (from Method, Eqns. equation 9–equation 11). The effective PDE weight factorizes as

Λpde(t, x) = λpde λloc(t, x), λloc(t, x) ≥ 0,
1

TX

T∑
τ=1

X∑
j=1

λloc(τ, xj) = 1,

and the PDE contribution to the loss is

Leff
pde = λpde

1

TX

T∑
τ=1

X∑
j=1

λloc(τ, xj) rθ[τ, j]
2, rθ[τ, j] = ∂thθ[τ ] + ∂xQθ[τ ]−Rθ(xj).

Global weights are scheduled per mini-batch i ∈ {pde, cons} by

λi = clip
(
λ0
i

(
1 + E +α⊤

i s+ αi,Π Π
)
, λmin
i , λmax

i

)
,

with base λ0
i > 0, nonnegative sensitivities (αi, αi,Π), and clipping bounds.

17
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D.1 ASSUMPTIONS AND IMMEDIATE CONSEQUENCES

Assumption 6 (Bounded signals & normalized local field). During training the batch prediction
loss E ≥ 0, each component of the regime vector s ≥ 0, and the activity score Π ∈ [0, 1] are
bounded. The local field obeys λloc(τ, x) ≥ 0 and 1

TX

∑
τ,j λloc(τ, xj) = 1. The clip enforces

λi ∈ [λmin
i , λmax

i ].

Theorem 7 (Monotone responsiveness with bounded pressure). Under Assumption 6, each λi is
(piecewise) nondecreasing in E, in every component of s, and in Π (whenever unclipped), and
always satisfies λmin

i ≤ λi ≤ λmax
i . Moreover, when unclipped,

∂λi
∂E

= λ0
i ,

∂λi
∂sk

= αikλ
0
i ,

∂λi
∂Π

= αi,Πλ
0
i .

Proposition 4 (Lipschitz variation across batches). For consecutive batches k, k+1, when unclipped

∣∣λ(k+1)
i − λ

(k)
i

∣∣ ≤ λ0
i

(
|Ek+1 − Ek|+

∑
m

αim|sm,k+1 − sm,k|+ αi,Π|Πk+1 −Πk|

)
,

and with clipping, the same bound holds after projection to [λmin
i , λmax

i ]. Thus the scheduler is
Lipschitz in signal deltas and has no EMA-type lag.

Lemma 1 (Scale invariance under local normalization). With 1
TX

∑
τ,j λloc(τ, xj) = 1,

Leff
pde = λpde · r2, r2 :=

1

TX

∑
τ,j

λloc(τ, xj) r
2
τj .

Hence the rescaling λloc 7→ c λloc, λpde 7→ λpde/c leaves Leff
pde unchanged; normalization removes

this ambiguity and improves identifiability.

D.2 GRADIENTS AND INTUITION

Using rτj = dthθ[τ ] + dxQθ[τ ]−Rθ(xj), the partials of Leff
pde are

∂Leff
pde

∂dthθ[τ ]
=

2λpde

TX

∑
j

λloc(τ, xj) rτj ,

∂Leff
pde

∂dxQθ[τ ]
=

2λpde

TX

∑
j

λloc(τ, xj) rτj ,

∂Leff
pde

∂λloc(τ, xj)
=

λpde

TX
r2τj (before renormalization).

(18)

Thus the learned field λloc (Softplus-positive) allocates more weight to large residuals until balanced
by normalization and other losses; λpde scales the overall physics pressure per batch.

D.3 PSEUDO-CODE (DOMAIN-AGNOSTIC)

We use the factorized schedule in Algorithm 2. It matches the Method section but is formatted for
one column.

D.4 PRACTICAL KNOBS

Clips. Choose [λmin
i , λmax

i ] so physics never dominates early but can rise during events. Sensi-
tivities. Start with small αs (e.g., 10−1–100), increase if residuals persist. Spread regularizers
(optional). Entropy or ℓ2 penalties on λloc discourage collapse:

Rentropy = β
∑
τ,j

λloc(τ, xj) log λloc(τ, xj), Rℓ2 = β
∑
τ,j

(
λloc(τ, xj)− 1

X

)2
.

18
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Algorithm 2: Adaptive Multi-Loss Scheduling with Factorized Local Weights
Inputs: mini-batch D, model Fθ , optimizer; bases {λ0

i }; sensitivities {αik}; clips [λmin
i , λmax

i ]
Outputs: updated parameters θ
for epoch e = 1 to Nepoch do

foreach mini-batch D do
compute per-losses {Li(θ,D)}mi=1; optional local map Wloc≥0

compute batch signals {sk(D)}Kk=1 and activity Π
for i = 1 to m do

λi ← clip
(
λ0
i

(
1 +

K∑
k=1

αik sk + αi,ΠΠ
)
, λmin

i , λmax
i

)
if Wloc used then

Z ← 1
|Ω|

∑
(t,x)∈Ω Wloc(t, x);

Wloc ←Wloc/Z

Ltot ←
m∑
i=1

λi Li(θ,D;Wloc)

optimizer.zero grad();
backprop(Ltot);
optimizer.step()

F APPENDIX F : ADDITIONAL EXPERIMENTS

Table 6: Sensitivity of APILaNet to the number of latent cells X and the learned measure λϕ(t, x)
on the synthetic benchmark.

X Measure Test MSE Test NSE ∆MSE vs. uniform ∆NSE vs. uniform

– Uniform (allX) 8.55 × 10−4 0.9038 – –
8 Learned λϕ 8.49 × 10−4 0.9044 ≈ −0.7% ≈ +0.0006

16 Learned λϕ 7.01 × 10−4 0.9210 ≈ −18.0% ≈ +0.0172

32 Learned λϕ 7.26 × 10−4 0.9183 ≈ −15.1% ≈ +0.0145

64 Learned λϕ 8.30 × 10−4 0.9066 ≈ −2.9% ≈ +0.0028

Table 6 summarizes the sensitivity of APILaNet to the number of latent cells X and the learned
weighting measure λϕ(t, x). The uniform baseline aggregates performance across all X with a
fixed, non–adaptive measure, while the learned λϕ is trained separately for each resolution X ∈
{8, 16, 32, 64}. Across all tested resolutions, the learned measure never underperforms the uniform
baseline: the largest gains occur at moderate resolutions (X = 16, 32), with test MSE reduced by
roughly 15–18% and NSE improved by about 0.015–0.017. For coarser or finer grids (X = 8 or 64),
the gains are smaller but remain non–negative. This pattern indicates that APILaNet is not brittle
with respect to the choice of latent discretization: performance varies smoothly around a favorable
range of X , rather than collapsing for suboptimal resolutions.

We report additional benchmarks that stress early–warning skill at four lead times before the ob-
served peak: 8 h, 6 h, 4 h, and 2 h. At each lead time we (i) re-slice the dataset around the peak time;
(ii) run every model with the same hyperparameters as Section 4; and (iii) report the mean across
three seeds. Primary metrics are MSE (↓) and NSE (↑); we additionally report peak timing error
∆tpeak (↓) and peak magnitude error ∆hpeak (↓). Across all sites, accuracy improves monotonically
as lead time shortens (8 h→2 h). APILaNet retains the best or second-best MSE/NSE at every lead
time and consistently reduces ∆tpeak and ∆hpeak relative to strong sequence baselines.

F.1 ADAPTIVE PHYSICS SCHEDULER: IMPLEMENTATION AND SENSITIVITY

For completeness, we restate the adaptive scheduler used in Panel D. The total loss is

Ltot = Ldata + λpde Lpde + λcons Lcons + λmono Lmono, (19)

where λpde and λcons are adaptive global weights and λmono is a small fixed coefficient.
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Table 7: Sensitivity of the adaptive scheduler to the global physics scale λscale, the peak–sensitivity
coefficient αΠ, and the use of adaptive vs. static weights on the synthetic benchmark. Metrics are
reported on the held–out test set.

Experiment λscale αΠ Adaptive? Test MSE ↓ Test NSE ↑

lambda scale 0.5 0.5 0.30 Yes 0.025706 −0.271654
lambda scale 1.0 1.0 0.30 Yes 0.013461 0.334087
lambda scale 2.0 2.0 0.30 Yes 0.008709 0.569180
peak coeff 0.00 1.0 0.00 Yes 0.015020 0.256971
peak coeff 0.30 1.0 0.30 Yes 0.014446 0.285373
peak coeff 0.60 1.0 0.60 Yes 0.013416 0.336320
no adapt static lambda 1.0 0.30 No 0.012356 0.388777

Given the batch prediction loss E≥ 0, a vector of non–negative auxiliary signals s ∈ RK≥0, and an
activity score Π ∈ [0, 1], the global weights for i ∈ {pde, cons} are updated instantaneously per
mini–batch as

λi = clip
(
λ0
i

(
1 + E +α⊤

i s+ αi,Π Π
)
, λmin

i , λmax
i

)
, (20)

where λ0
i > 0 is a base level, (αi, αi,Π) ≥ 0 are sensitivities, and clip enforces user–specified

bounds [λmin
i , λmax

i ]. The local field λloc(t, x) is produced by a small network Aψ on normalized
coordinates (t̃, x̃) ∈ [0, 1]2,

λloc(τ, xj) =
Aψ(t̃τ , x̃j)

1
TX

∑
τ ′,j′ Aψ(t̃τ ′ , x̃j′)

, (21)

which guarantees the normalization property in equation ??.

In all experiments we specify, for each i ∈ {pde, cons}, a base level λ0
i , clipping bounds

(λmin
i , λmax

i ), and non–negative sensitivities (αi, αi,Π). The only scalars selected by validation
are a global physics scale λscale (multiplying (λ0

pde, λ
0
cons)) and an activity sensitivity αΠ applied

to Π; we choose (λscale, αΠ) once by a small grid search on the validation NSE and reuse the same
pair for all datasets within each benchmark.

F.2 SCHEDULER SENSITIVITY STUDY

To quantify robustness and provide the requested sensitivity analysis, we run a scheduler ablation
on a synthetic single–sensor benchmark. We vary the global physics scale λscale ∈ {0.5, 1.0, 2.0}
and the peak–sensitivity coefficient αΠ ∈ {0, 0.3, 0.6}, and compare adaptive (αi > 0) versus static
(αi = 0) global weights. Test MSE and NSE on the held–out test set are reported in Table 7.

Across this grid, the scheduler behaves in a stable and smooth regime. Increasing λscale from 0.5
to 2.0 strengthens the relative emphasis on physics and monotonically improves NSE (from −0.27
to 0.57) without any training instabilities. Varying αΠ from 0 to 0.6 at fixed λscale = 1.0 yields
only modest, smooth changes in the test performance, indicating that the scheduler does not rely
on finely tuned coefficients. Finally, adaptive and static global weights achieve comparable overall
NSE (roughly 0.33 vs. 0.39); the role of the adaptive scheduler is primarily to redistribute physics
pressure towards difficult regimes (sharp transients and peaks), rather than to maximise aggregate
error metrics.
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(a) APILANET

(b) CROSSFORMER

(c) TSMIXER

Figure 4: Model forecasts at four start times: (a) APILANET, (b) CROSSFORMER, (c) TSMIXER.
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Figure 5: Test performance across five UK catchments. Bars show NSE (↑) and MSE (↓; ×10−3

axis units) for APILANET and baselines; error bars denote mean±SD over 3 seeds.
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Table 8: Catchment-level forecasting 8 hours before peak. Metrics are mean±SD across seeds.
Errors: peak timing ∆tpeak (h)↓, peak height ∆hpeak (m)↓, MSE↓, NSE↑.

Data Split
APILANET CROSSFORMER TSMIXER

∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑ ∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑ ∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑

A
C

O
M

B
G

R
N Event 1 0.420 ± 0.380 0.299 ± 0.031 0.133 ± 0.096 0.623 ± 0.271 0.000 ± 0.000 0.377 ± 0.148 0.242 ± 0.09 0.314 ± 0.255 2.580 ± 4.470 0.552 ± 0.024 0.369 ± 0.032 -0.044 ± 0.090

Event 2 0.170 ± 0.290 0.314 ± 0.055 0.198 ± 0.072 0.766 ± 0.085 0.250 ± 0.250 0.527 ± 0.007 0.479 ± 0.034 0.434 ± 0.041 0.500 ± 0.000 0.411 ± 0.043 0.354 ± 0.051 0.583 ± 0.060
Event 3 0.170 ± 0.290 1.339 ± 0.088 1.205 ± 0.185 0.132 ± 0.133 0.000 ± 0.000 1.348 ± 0.050 1.111 ± 0.837 0.200 ± 0.060 0.000 ± 0.000 1.297 ± 0.051 1.012 ± 0.089 0.271 ± 0.064

Average 0.253 ± 0.144 0.651 ± 0.596 0.512 ± 0.601 0.507 ± 0.333 0.083 ± 0.144 0.751 ± 0.523 0.611 ± 0.449 0.316 ± 0.117 1.027 ± 1.368 0.753 ± 0.476 0.578 ± 0.376 0.270 ± 0.314

A
C

O
M

B
M

F
S Event 1 0.000 ± 0.000 0.122 ± 0.065 0.064 ± 0.023 0.877 ± 0.044 0.000 ± 0.000 0.334 ± 0.098 0.201 ± 0.136 0.612 ± 0.262 0.000 ± 0.000 0.237 ± 0.030 0.112 ± 0.040 0.783 ± 0.078

Event 2 0.000 ± 0.000 0.107 ± 0.075 0.033 ± 0.010 0.877 ± 0.040 0.000 ± 0.000 0.192 ± 0.054 0.109 ± 0.054 0.586 ± 0.206 0.000 ± 0.000 0.101 ± 0.018 0.034 ± 0.015 0.870 ± 0.058
Event 3 0.000 ± 0.000 0.827 ± 0.045 0.665 ± 0.046 0.572 ± 0.029 0.000 ± 0.000 1.166 ± 0.062 1.267 ± 0.129 0.184 ± 0.083 0.000 ± 0.000 0.929 ± 0.079 0.805 ± 0.148 0.481 ± 0.096

Average 0.000 ± 0.000 0.352 ± 0.411 0.254 ± 0.356 0.775 ± 0.176 0.000 ± 0.000 0.564 ± 0.526 0.526 ± 0.644 0.461 ± 0.240 0.000 ± 0.000 0.422 ± 0.444 0.317 ± 0.424 0.711 ± 0.204

S
T

O
C

K
S

FI
E

L
D Event 1 0.000 ± 0.000 0.463 ± 0.192 0.452 ± 0.135 0.506 ± 0.147 2.080 ± 3.610 1.022 ± 0.052 1.072 ± 0.167 -0.172 ± 0.182 0.080 ± 0.140 0.850 ± 0.065 0.689 ± 0.109 0.246 ± 119

Event 2 × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± ×
Event 3 0.000 ± 0.000 0.949 ± 0.033 0.900 ± 0.068 -0.077 ± 0.082 0.000 ± 0.000 0.995 ± 0.014 1.006 ± 0.039 -0.203 ± 0.047 0.000 ± 0.000 0.971 ± 0.017 0.947 ± 0.036 -0.133 ± 0.043

Average 0.000 ± 0.000 0.471 ± 0.475 0.451 ± 0.450 0.143 ± 0.317 0.693 ± 1.201 0.672 ± 0.582 0.693 ± 0.601 -0.125 ± 0.109 0.027 ± 0.046 0.607 ± 0.529 0.545 ± 0.490 0.038 ± 0.192

N
U

N
N

Y
K

IR
K Event 1 4.750 ± 4.160 0.241 ± 0.050 0.171 ± 0.089 -0.762 ± 0.922 6.830 ± 0.880 0.189 ± 0.081 0.111 ± 0.019 -0.145 ± 0.204 5.170 ± 4.470 0.246 ± 0.046 0.266 ± 0.157 -1.744 ± 1.623

Event 2 0.000 ± 0.000 0.266 ± 0.059 0.295 ± 0.133 0.326 ± 0.305 0.000 ± 0.000 0.330 ± 0.088 0.278 ± 0.158 0.364 ± 0.361 0.000 ± 0.000 0.312 ± 0.090 0.302 ± 0.119 0.309 ± 0.274

Event 3 × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± ×

Average 1.583 ± 2.741 0.169 ± 0.147 0.155 ± 0.148 -0.145 ± 0.558 2.277 ± 3.946 0.173 ± 0.166 0.130 ± 0.140 0.073 ± 0.262 1.723 ± 2.986 0.186 ± 0.164 0.189 ± 0.165 -0.478 ± 1.107

K
N

IT
S

L
E

Y Event 1 0.170 ± 0.140 0.106 ± 0.033 0.028 ± 0.023 0.935 ± 0.053 0.000 ± 0.000 0.159 ± 0.090 0.079 ± 0.048 0.821 ± 0.109 0.000 ± 0.000 0.137 ± 0.036 0.073 ± 0.028 0.834 ± 0.064
Event 2 0.080 ± 0.140 0.155 ± 0.153 0.064 ± 0.024 0.916 ± 0.032 0.420 ± 0.720 0.317 ± 0.034 0.441 ± 0.168 0.429 ± 0.218 0.000 ± 0.000 0.287 ± 0.207 0.195 ± 0.172 0.748 ± 0.223
Event 3 0.000 ± 0.000 0.170 ± 0.008 0.124 ± 0.047 0.271 ± 0.274 0.000 ± 0.000 0.084 ± 0.013 0.047 ± 0.008 0.725 ± 0.050 0.000 ± 0.000 0.197 ± 0.019 0.099 ± 0.015 0.414 ± 0.090

Average 0.083 ± 0.085 0.144 ± 0.033 0.072 ± 0.048 0.707 ± 0.378 0.140 ± 0.242 0.187 ± 0.119 0.189 ± 0.219 0.658 ± 0.204 0.000 ± 0.000 0.207 ± 0.075 0.122 ± 0.064 0.665 ± 0.222

K
IE

L
D

E
R

Event 1 0.000 ± 0.000 0.054 ± 0.041 0.011 ± 0.014 0.764 ± 0.292 0.000 ± 0.000 0.050 ± 0.027 0.027 ± 0.028 -0.902 ± 1.990 0.000 ± 0.000 0.056 ± 0.004 0.016 ± 0.007 0.676 ± 0.163
Event 2 0.000 ± 0.000 0.081 ± 0.069 0.052 ± 0.063 0.071 ± 1.141 0.000 ± 0.000 0.082 ± 0.050 0.159 ± 0.109 -3.057 ± 2.798 0.000 ± 0.000 0.101 ± 0.018 0.034 ± 0.015 0.870 ± 0.058
Event 3 1.420 ± 0.520 0.042 ± 0.048 0.016 ± 0.017 0.645 ± 0.386 1.820 ± 0.320 0.045 ± 0.050 0.018 ± 0.023 0.565 ± 0.055 1.420 ± 0.800 0.054 ± 0.017 0.046 ± 0.041 -0.040 ± 0.922

Average 0.473 ± 0.173 0.060 ± 0.053 0.026 ± 0.031 0.493 ± 0.606 0.606 ± 0.106 0.059 ± 0.042 0.068 ± 0.053 -1.131 ± 1.614 0.473 ± 0.267 0.070 ± 0.013 0.032 ± 0.021 0.502 ± 0.381

Table 9: Catchment-level forecasting 6 hours before peak. Metrics are mean±SD across seeds.
Errors: peak timing ∆tpeak (h)↓, peak height ∆hpeak (m)↓, MSE↓, NSE↑.

Data Split
APILANET CROSSFORMER TSMIXER

∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑ ∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑ ∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑

A
C

O
M

B
G

R
N Event 1 0.750 ± 0.250 0.395 ± 0.073 0.351 ± 0.165 0.553 ± 0.210 0.250 ± 0.000 0.484 ± 0.151 0.447 ± 0.359 0.430 ± 0.459 0.830 ± 0.520 0.581 ± 0.088 0.665 ± 0.239 0.152 ± 0.305

Event 2 0.750 ± 0.500 0.351 ± 0.037 0.318 ± 0.096 0.564 ± 0.131 0.500 ± 0.430 0.462 ± 0.032 0.478 ± 0.075 0.345 ± 0.102 1.000 ± 0.430 0.344 ± 0.010 0.268 ± 0.069 0.632 ± 0.095
Event 3 1.580 ± 0.290 1.233 ± 0.122 4.814 ± 0.362 0.082 ± 0.069 1.580 ± 0.140 1.339 ± 0.089 4.562 ± 0.497 0.130 ± 0.095 1.250 ± 0.500 1.320 ± 0.074 4.171 ± 0.413 0.205 ± 0.079

Average 1.027 ± 0.479 0.660 ± 0.497 1.828 ± 2.586 0.400 ± 0.275 0.777 ± 0.707 0.762 ± 0.500 1.829 ± 2.367 0.302 ± 0.155 1.027 ± 0.211 0.748 ± 0.509 1.701 ± 2.148 0.330 ± 0.263

A
C

O
M

B
M

F
S Event 1 0.170 ± 0.140 0.059 ± 0.054 0.070 ± 0.034 0.905 ± 0.047 0.000 ± 0.000 0.314 ± 0.089 0.288 ± 0.136 0.610 ± 0.184 0.500 ± 0.250 0.174 ± 0.150 0.164 ± 0.098 0.778 ± 0.133

Event 2 0.420 ± 0.140 0.149 ± 0.042 0.084 ± 0.016 0.889 ± 0.022 1.170 ± 1.010 0.288 ± 0.600 0.276 ± 0.071 0.636 ± 0.094 1.250 ± 0.430 0.068 ± 0.057 0.075 ± 0.050 0.901 ± 0.066
Event 3 0.830 ± 0.140 0.699 ± 0.157 1.924 ± 0.297 0.430 ± 0.088 0.830 ± 0.140 1.084 ± 0.144 3.337 ± 0.781 0.003 ± 0.231 0.750 ± 0.250 0.927 ± 0.032 2.427 ± 0.283 0.281 ± 0.084

Average 0.473 ± 0.333 0.302 ± 0.346 0.693 ± 1.067 0.741 ± 0.270 0.667 ± 0.602 0.562 ± 0.452 1.300 ± 1.763 0.416 ± 0.358 0.833 ± 0.382 0.390 ± 0.468 0.889 ± 1.333 0.653 ± 0.328

S
T

O
C

K
S

FI
E

L
D Event 1 1.420 ± 0.580 0.585 ± 0.115 1.015 ± 0.433 0.471 ± 0.226 1.330 ± 0.720 0.999 ± 0.096 2.862 ± 0.417 -0.491 ± 0.217 1.250 ± 0.660 0.686 ± 0.030 1.497 ± 0.114 0.220 ± 0.060

Event 2 × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± ×
Event 3 1.750 ± 0.000 0.964 ± 0.009 2.597 ± 0.062 -0.512 ± 0.036 1.000 ± 0.660 1.009 ± 0.015 2.774 ± 0.088 -0.615 ± 0.051 1.500 ± 0.430 0.916 ± 0.036 2.351 ± 0.140 -0.369 ± 0.082

Average 1.057 ± 0.930 0.516 ± 0.486 1.204 ± 1.309 -0.014 ± 0.492 0.777 ± 0.693 0.669 ± 0.580 1.879 ± 1.628 -0.369 ± 0.325 0.917 ± 0.804 0.534 ± 0.477 1.283 ± 1.190 -0.050 ± 0.298

N
U

N
N

Y
K

IR
K Event 1 2.750 ± 3.910 0.248 ± 0.085 0.382 ± 0.192 -0.646 ± 0.828 7.250 ± 0.000 0.263 ± 0.028 0.559 ± 0.165 -1.414 ± 0.714 4.170 ± 3.740 0.315 ± 0.007 0.515 ± 0.217 -1.219 ± 0.935

Event 2 1.920 ± 0.140 0.182 ± 0.053 0.330 ± 0.039 0.342 ± 0.079 1.920 ± 0.140 0.248 ± 0.115 0.418 ± 0.227 0.168 ± 0.451 2.000 ± 0.000 0.214 ± 0.110 0.336 ± 0.149 0.330 ± 0.298
Event 3 × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± ×

Average 1.557 ± 1.411 0.143 ± 0.128 0.237 ± 0.207 -0.101 ± 0.502 3.057 ± 3.756 0.170 ± 0.148 0.326 ± 0.291 -0.415 ± 0.869 2.057 ± 2.086 0.176 ± 0.161 0.284 ± 0.261 -0.296 ± 0.816

K
N

IT
S

L
E

Y Event 1 0.330 ± 0.140 0.072 ± 0.061 0.025 ± 0.021 0.953 ± 0.040 0.330 ± 0.140 0.128 ± 0.085 0.076 ± 0.048 0.857 ± 0.089 0.170 ± 0.140 0.237 ± 0.044 0.190 ± 0.067 0.645 ± 0.124

Event 2 0.580 ± 0.140 0.186 ± 0.087 0.125 ± 0.107 0.892 ± 0.092 0.920 ± 0.760 0.395 ± 0.099 0.443 ± 0.173 0.619 ± 0.149 1.000 ± 0.660 0.345 ± 0.052 0.409 ± 0.189 0.648 ± 0.162
Event 3 1.250 ± 0.870 0.189 ± 0.022 0.257 ± 0.097 -0.071 ± 0.404 0.330 ± 0.290 0.135 ± 0.023 0.092 ± 0.007 0.617 ± 0.030 0.920 ± 0.520 0.223 ± 0.034 0.213 ± 0.061 0.113 ± 0.256

Average 0.720 ± 0.476 0.149 ± 0.067 0.136 ± 0.116 0.591 ± 0.574 0.527 ± 0.341 0.219 ± 0.152 0.204 ± 0.207 0.698 ± 0.138 0.697 ± 0.458 0.268 ± 0.067 0.271 ± 0.120 0.469 ± 0.308

K
IE

L
D

E
R

Event 1 0.330 ± 0.380 0.086 ± 0.051 0.040 ± 0.041 0.765 ± 0.242 0.420 ± 0.290 0.142 ± 0.021 0.066 ± 0.013 0.613 ± 0.076 0.080 ± 0.140 0.037 ± 0.014 0.012 ± 0.003 0.928 ± 0.018
Event 2 2.750 ± 0.000 0.064 ± 0.043 0.072 ± 0.008 -0.364 ± 0.160 1.500 ± 1.250 0.089 ± 0.015 0.078 ± 0.033 -0.481 ± 0.627 3.830 ± 2.770 0.068 ± 0.007 0.076 ± 0.021 -0.411 ± 0.021
Event 3 2.330 ± 0.950 0.043 ± 0.022 0.025 ± 0.023 0.341 ± 0.593 7.750 ± 0.000 0.066 ± 0.007 0.083 ± 0.022 -0.239 ± 0.333 1.750 ± 1.250 0.048 ± 0.030 0.024 ± 0.014 0.354 ± 0.376

Average 1.803 ± 0.443 0.064 ± 0.039 0.046 ± 0.024 0.247 ± 0.332 3.223 ± 0.513 0.099 ± 0.014 0.076 ± 0.023 -0.036 ± 0.345 1.887 ± 1.387 0.051 ± 0.017 0.037 ± 0.013 0.290 ± 0.138
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Table 10: Catchment-level forecasting 4 hours before peak. Metrics are mean±SD across seeds.
Errors: peak timing ∆tpeak (h)↓, peak height ∆hpeak (m)↓, MSE↓, NSE↑.

Data Split
APILANET CROSSFORMER TSMIXER

∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑ ∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑ ∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑

A
C

O
M

B
G

R
N Event 1 0.580 ± 0.140 0.383 ± 0.039 0.291 ± 0.060 0.526 ± 0.098 0.170 ± 0.140 0.508 ± 0.076 0.505 ± 0.186 0.176 ± 0.304 0.250 ± 0.000 0.432 ± 0.056 0.314 ± 0.059 0.489 ± 0.097

Event 2 0.500 ± 0.250 0.382 ± 0.015 0.324 ± 0.057 0.074 ± 0.163 0.330 ± 0.380 0.424 ± 0.090 0.457 ± 0.303 0.305 ± 0.865 0.750 ± 0.500 0.307 ± 0.039 0.253 ± 0.098 0.275 ± 0.280
Event 3 2.830 ± 1.180 1.383 ± 0.070 6.145 ± 0.153 -0.416 ± 0.036 3.750 ± 0.000 1.340 ± 0.102 6.276 ± 1.081 -0.446 ± 0.249 1.750 ± 0.500 1.429 ± 0.093 5.549 ± 0.581 -0.279 ± 0.134

Average 1.303 ± 1.323 0.716 ± 0.578 2.253 ± 3.370 0.061 ± 0.471 1.417 ± 2.022 0.757 ± 0.506 2.413 ± 3.346 0.012 ± 0.402 0.917 ± 0.764 0.723 ± 0.615 2.039 ± 3.040 0.162 ± 0.396

A
C

O
M

B
M

F
S Event 1 0.080 ± 0.140 0.123 ± 0.030 0.069 ± 0.021 0.863 ± 0.042 0.420 ± 0.140 0.208 ± 0.121 0.214 ± 0.145 0.576 ± 0.287 0.170 ± 0.140 0.195 ± 0.127 0.164 ± 0.152 0.676 ± 0.301

Event 2 0.500 ± 0.430 0.175 ± 0.082 0.147 ± 0.062 0.750 ± 0.105 0.670 ± 0.950 0.295 ± 0.037 0.279 ± 0.073 0.527 ± 0.124 1.670 ± 0.630 0.096 ± 0.082 0.115 ± 0.072 0.806 ± 0.0.121
Event 3 1.000 ± 0.250 0.732 ± 0.107 2.389 ± 0.149 0.109 ± 0.056 3.750 ± 0.000 1.126 ± 0.076 4.406 ± 0.505 -0.642 ± 0.188 2.000 ± 1.520 1.072 ± 0.106 3.662 ± 0.684 -0.365 ± 0.255

Average 0.527 ± 0.461 0.343 ± 0.338 0.868 ± 1.318 0.574 ± 0.407 1.613 ± 1.855 0.543 ± 0.507 1.633 ± 2.402 0.154 ± 0.690 1.280 ± 0.975 0.454 ± 0.537 1.314 ± 2.034 0.372 ± 0.642

S
T

O
C

K
S

FI
E

L
D Event 1 1.420 ± 0.760 0.588 ± 0.091 1.233 ± 0.569 0.191 ± 0.374 3.250 ± 0.660 1.032 ± 0.052 3.709 ± 0.157 -1.433 ± 0.103 1.920 ± 1.040 0.724 ± 0.049 1.495 ± 0.260 0.019 ± 0.171

Event 2 × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± ×
Event 3 2.420 ± 1.530 0.893 ± 0.085 2.994 ± 0.136 -1.349 ± 0.106 2.750 ± 0.250 0.742 ± 0.022 2.006 ± 0.278 -0.574 ± 0.218 3.500 ± 0.430 0.821 ± 0.080 2.571 ± 0.227 -1.017 ± 0.178

Average 1.280 ± 1.216 0.494 ± 0.454 1.409 ± 1.505 -0.386 ± 0.839 2.000 ± 1.750 0.591 ± 0.532 1.905 ± 1.856 -0.669 ± 0.722 1.807 ± 1.753 0.515 ± 0.449 1.355 ± 1.291 -0.333 ± 0.593

N
U

N
N

Y
K

IR
K Event 1 0.750 ± 1.300 0.138 ± 0.096 0.239 ± 0.162 -0.071 ± 0.724 4.000 ± 2.170 0.347 ± 0.008 1.011 ± 0.238 -3.515 ± 1.064 1.170 ± 0.950 0.305 ± 0.098 0.695 ± 0.471 -2.105 ± 2.103

Event 2 2.580 ± 0.760 0.116 ± 0.026 0.108 ± 0.044 0.513 ± 0.200 1.250 ± 0.250 0.248 ± 0.024 0.319 ± 0.061 -0.442 ± 0.277 2.080 ± 0.800 0.132 ± 0.046 0.129 ± 0.078 0.419 ± 0.349
Event 3 × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± ×

Average 1.110 ± 1.327 0.085 ± 0.074 0.116 ± 0.120 0.147 ± 0.319 1.750 ± 2.046 0.198 ± 0.179 0.443 ± 0.517 -1.319 ± 1.915 1.083 ± 1.043 0.146 ± 0.153 0.275 ± 0.370 -0.562 ± 1.352

K
N

IT
S

L
E

Y Event 1 0.580 ± 0.580 0.054 ± 0.046 0.056 ± 0.033 0.843 ± 0.092 0.330 ± 0.140 0.107 ± 0.099 0.074 ± 0.072 0.792 ± 0.203 0.000 ± 0.000 0.237 ± 0.060 0.205 ± 0.123 0.425 ± 0.345

Event 2 0.420 ± 0.520 0.100 ± 0.055 0.059 ± 0.025 0.923 ± 0.032 0.330 ± 0.380 0.359 ± 0.118 0.302 ± 0.179 0.609 ± 0.232 0.580 ± 0.290 0.215 ± 0.130 0.206 ± 0.087 0.733 ± 0.112
Event 3 1.080 ± 1.460 0.080 ± 0.013 0.137 ± 0.089 0.214 ± 0.510 3.750 ± 0.000 0.085 ± 0.015 0.129 ± 0.068 0.262 ± 0.393 2.500 ± 2.170 0.090 ± 0.032 0.058 ± 0.021 0.667 ± 0.122

Average 0.693 ± 0.344 0.078 ± 0.023 0.084 ± 0.046 0.660 ± 0.388 1.750 ± 1.975 0.184 ± 0.153 0.168 ± 0.119 0.554 ± 0.269 1.027 ± 1.308 0.181 ± 0.079 0.156 ± 0.085 0.608 ± 0.162

K
IE

L
D

E
R

Event 1 0.170 ± 0.140 0.030 ± 0.022 0.009 ± 0.006 0.936 ± 0.040 0.330 ± 0.380 0.055 ± 0.030 0.023 ± 0.010 0.846 ± 0.069 0.420 ± 0.380 0.064 ± 0.041 0.026 ± 0.018 0.824 ± 0.121

Event 2 4.170 ± 0.520 0.049 ± 0.025 0.033 ± 0.008 -1.066 ± 0.513 2.000 ± 2.380 0.098 ± 0.009 0.074 ± 0.011 -3.584 ± 0.683 1.580 ± 1.700 0.053 ± 0.027 0.035 ± 0.035 -1.161 ± 2.177
Event 3 2.000 ± 0.430 0.056 ± 0.017 0.021 ± 0.011 -2.070 ± 1.639 1.500 ± 1.500 0.067 ± 0.023 0.027 ± 0.019 -2.968 ± 2.826 0.750 ± 0.660 0.037 ± 0.029 0.012 ± 0.007 -0.794 ± 0.946

Average 2.113 ± 0.363 0.045 ± 0.021 0.021 ± 0.008 -0.733 ± 0.731 1.277 ± 1.420 0.073 ± 0.021 0.041 ± 0.013 -1.902 ± 1.193 0.917 ± 0.913 0.051 ± 0.032 0.024 ± 0.020 -0.377 ± 1.081

Table 11: Catchment-level forecasting 2 hours before peak. Metrics are mean±SD across seeds.
Errors: peak timing ∆tpeak (h)↓, peak height ∆hpeak (m)↓, MSE↓, NSE↑.

Data Split
APILANET CROSSFORMER TSMIXER

∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑ ∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑ ∆tpeak↓ ∆hpeak↓ MSE↓ NSE↑

A
C

O
M

B
G

R
N Event 1 0.250 ± 0.250 0.403 ± 0.057 0.281 ± 0.062 0.444 ± 0.123 0.080 ± 0.140 0.506 ± 0.080 0.557 ± 0.259 -0.102 ± 0.514 0.670 ± 0.380 0.497 ± 0.016 0.485 ± 0.101 0.041 ± 0.200

Event 2 0.330 ± 0.140 0.305 ± 0.052 0.161 ± 0.082 0.551 ± 0.230 0.580 ± 0.380 0.360 ± 0.061 0.211 ± 0.124 0.412 ± 0.346 0.580 ± 0.380 0.364 ± 0.029 0.209 ± 0.025 0.415 ± 0.070
Event 3 5.33 ± 0.380 1.267 ± 0.113 6.142 ± 0.967 -1.196 ± 0.346 3.420 ± 2.040 1.427 ± 0.049 6.110 ± 0.622 -1.183 ± 0.222 2.500 ± 2.180 1.298 ± 0.167 5.001 ± 1.337 -0.790 ± 0.478

Average 1.970 ± 2.910 0.658 ± 0.529 2.195 ± 3.419 -0.067 ± 0.979 1.360 ± 1.801 0.764 ± 0.579 2.293 ± 3.310 -0.291 ± 0.814 1.250 ± 1.083 0.720 ± 0.505 1.898 ± 2.691 -0.111 ± 0.617

A
C

O
M

B
M

F
S Event 1 0.500 ± 0.250 0.178 ± 0.041 0.192 ± 0.139 0.522 ± 0.347 0.250 ± 0.000 0.243 ± 0.101 0.306 ± 0.279 0.253 ± 0.680 0.330 ± 0.140 0.172 ± 0.026 0.107 ± 0.021 0.738 ± 0.051

Event 2 0.750 ± 0.250 0.051 ± 0.030 0.031 ± 0.017 0.885 ± 0.063 1.500 ± 0.250 0.206 ± 0.024 0.166 ± 0.009 0.391 ± 0.034 0.750 ± 0.250 0.147 ± 0.083 0.109 ± 0.082 0.601 ± 0.299
Event 3 4.170 ± 2.320 0.737 ± 0.064 3.258 ± 0.925 -1.162 ± 0.614 5.750 ± 0.000 1.021 ± 0.034 4.988 ± 0.332 -2.310 ± 0.220 4.330 ± 2.450 0.972 ± 0.031 3.349 ± 0.202 -1.222 ± 0.134

Average 1.807 ± 2.051 0.322 ± 0.365 1.160 ± 1.819 0.082 ± 1.092 2.500 ± 2.883 0.490 ± 0.460 1.820 ± 2.744 -0.555 ± 1.521 1.803 ± 2.198 0.430 ± 0.469 1.188 ± 1.873 0.039 ± 1.095

S
T

O
C

K
S

FI
E

L
D Event 1 1.330 ± 0.140 0.679 ± 0.104 1.593 ± 0.552 -0.634 ± 0.566 1.330 ± 0.380 0.997 ± 0.056 3.189 ± 0.435 -2.270 ± 0.446 1.080 ± 0.380 0.721 ± 0.097 1.586 ± 0.460 -0.627 ± 0.472

Event 2 × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± ×
Event 3 5.670 ± 0.140 0.753 ± 0.052 1.990 ± 0.099 -2.614 ± 0.181 5.330 ± 0.380 0.788 ± 0.069 2.004 ± 0.386 -2.639 ± 0.701 5.670 ± 0.140 0.728 ± 0.006 1.843 ± 0.258 -2.347 ± 0.469

Average 2.333 ± 2.965 0.477 ± 0.415 1.194 ± 1.053 -1.083 ± 1.364 2.220 ± 2.774 0.595 ± 0.526 1.731 ± 1.612 -1.636 ± 1.429 2.250 ± 3.011 0.483 ± 0.418 1.143 ± 0.998 -0.991 ± 1.215

N
U

N
N

Y
K

IR
K Event 1 0.670 ± 0.140 0.156 ± 0.112 0.459 ± 0.240 -4.731 ± 2.999 1.330 ± 0.760 0.362 ± 0.023 1.146 ± 0.093 -13.312 ± 1.164 0.830 ± 0.720 0.334 ± 0.061 0.773 ± 0.361 -8.646 ± 4.509

Event 2 1.750 ± 0.250 0.049 ± 0.040 0.052 ± 0.029 0.238 ± 0.427 1.000 ± 0.000 0.096 ± 0.067 0.069 ± 0.068 -0.009 ± 0.994 1.830 ± 0.800 0.084 ± 0.037 0.074 ± 0.032 -0.081 ± 0.482

Event 3 msd×× × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± × × ± ×

Average 0.807 ± 0.883 0.068 ± 0.080 0.170 ± 0.251 -1.498 ± 2.803 0.777 ± 0.693 0.153 ± 0.188 0.405 ± 0.643 -4.440 ± 7.683 0.887 ± 0.916 0.139 ± 0.174 0.282 ± 0.427 -2.909 ± 4.969

K
N

IT
S

L
E

Y Event 1 0.330 ± 0.290 0.027 ± 0.023 0.045 ± 0.030 0.724 ± 0.186 0.420 ± 0.140 0.146 ± 0.049 0.106 ± 0.009 0.355 ± 0.055 0.170 ± 0.140 0.210 ± 0.035 0.242 ± 0.009 -0.477 ± 0.058

Event 2 0.000 ± 0.000 0.078 ± 0.054 0.068 ± 0.036 0.885 ± 0.061 0.000 ± 0.000 0.084 ± 0.008 0.108 ± 0.029 0.818 ± 0.050 0.330 ± 0.380 0.148 ± 0.096 0.256 ± 0.111 0.567 ± 0.187

Event 3 5.330 ± 0.140 0.097 ± 0.056 0.123 ± 0.032 -1.641 ± 0.689 1.920 ± 3.320 0.023 ± 0.010 0.036 ± 0.009 0.225 ± 0.212 4.080 ± 2.890 0.004 ± 0.004 0.057 ± 0.013 -0.237 ± 0.272

Average 1.887 ± 2.987 0.067 ± 0.036 0.079 ± 0.040 -0.011 ± 1.414 0.780 ± 1.009 0.084 ± 0.062 0.083 ± 0.041 0.466 ± 0.312 1.527 ± 2.213 0.121 ± 0.106 0.185 ± 0.111 -0.049 ± 0.547

K
IE

L
D

E
R

Event 1 0.580 ± 0.250 0.045 ± 0.044 0.016 ± 0.012 0.829 ± 0.138 0.420 ± 0.140 0.034 ± 0.023 0.018 ± 0.008 0.809 ± 0.094 0.420 ± 0.290 0.114 ± 0.030 0.061 ± 0.025 0.342 ± 0.267

Event 2 1.080 ± 0.080 0.037 ± 0.007 0.011 ± 0.006 -0.107 ± 0.270 1.670 ± 0.380 0.030 ± 0.012 0.090 ± 0.045 -0.591 ± 0.792 1.250 ± 0.500 0.030 ± 0.003 0.063 ± 0.015 -0.857 ± 1.035

Event 3 0.170 ± 0.140 0.009 ± 0.010 0.011 ± 0.008 0.527 ± 0.366 0.580 ± 0.380 0.025 ± 0.024 0.240 ± 0.016 -0.053 ± 0.753 1.830 ± 2.550 0.022 ± 0.007 0.420 ± 0.028 -0.911 ± 1.255

Average 0.610 ± 0.157 0.028 ± 0.020 0.013 ± 0.009 0.416 ± 0.258 0.890 ± 0.300 0.030 ± 0.020 0.116 ± 0.023 0.055 ± 0.546 1.167 ± 1.113 0.055 ± 0.013 0.181 ± 0.023 -0.475 ± 0.852
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