APILANET: ADAPTIVE PHYSICS-INFORMED LATENT NETWORK FOR SINGLE-SENSOR FORECASTING

Anonymous authors

000

001

002003004

010 011

012

014

015

016

017

018

019

020

021

024

025

026027028

029

031

033

034

037

038

040

041

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Forecasting conservation-governed dynamics is often constrained by sparse sensing: in practice, we may have only a single downstream sensor and noisy exogenous variables. In this work we design an Adaptive Physics-Informed Latent Network (APILANET) that learns a latent field and enforces conservation of physics law in the weak form using a learned, normalized space-time measure. Normalization makes physics enforcement insensitive to quadrature resolution and concentrates it on transient violations. A monotone, Lipschitz measurement layer maps latent variables to observed targets, improving identifiability from a single sensor. An adaptive, bounded scheduler scales the physics and smoothness loss terms with meaningful representations, emphasizing conservation of physics laws during events while preserving training stability. Learning a space-time measure for weak-form enforcement, combined with a monotone mapping and adaptive scheduling, enables accurate, data-efficient single-sensor forecasting in physicsgoverned systems. We evaluate APILANET through a hydrological case study, APILANET outperforms strong sequence baselines and reduces MSE during extreme events, while improving Nash-Sutcliffe efficiency. Code will be released upon acceptance.

1 Introduction

Learning the evolution of physical systems from sparse, noisy observations is a central challenge in scientific machine learning. Many natural and engineered processes are governed by partial differential equations (PDEs), yet in practice we often observe only a single location or a few boundary points over time. Examples span climate dynamics Zanella et al. (2023), biomedical flows Ling et al. (2024), battery state-of-health Wang et al. (2025), and river hydraulics. Classical physics-based models typically require dense boundary/interior supervision and careful calibration, while purely data-driven forecasters struggle to extrapolate reliably and to maintain physical consistency over long horizons Nathaniel et al. (2024); Azad et al. (2025).

Physics-Informed Neural Networks (PINNs) Raissi et al. (2019) embed governing laws into learnable models by penalizing PDE residuals. For conservation laws such as

$$\partial_t h(t, x) + \partial_x Q(t, x) = R_{\text{proj}}(t, x),$$
 (1)

strong-form PINNs minimize a pointwise residual alongside a data term. This is ill-matched to sparse-observation regimes: (i) it relies on dense interior collocation or full boundary data, (ii) it uses static trade-offs between data and physics losses that can destabilize optimization, and (iii) it offers limited interpretability of learned dynamics and failure modes Kim et al. (2021); Rohrhofer et al. (2023). Recent adaptive weighting schemes (e.g., SA-PINN (McClenny & Braga-Neto, 2023) and ReLoBRaLo (Ling et al., 2024)) rebalance residuals but remain agnostic to real-time signal structure and do not address the lack of spatial supervision.

We propose APILANET, an Adaptive Physics-Informed Latent Neural Network for forecasting PDE-constrained systems from single-point time series. APILANET reconstructs a latent spatiotemporal domain anchored at the observation site and enforces equation 1 in the weak form by integrating residuals against learned test functions rather than penalizing pointwise errors. This lowers regularity requirements, removes the need for interior collocation, and better reflects sensing setups where temporal signals are dense but spatial coverage is sparse.

Figure 1: **APILaNet overview.** Single-gauge input window: stage h(t) and exogenous drivers. A latent mesh reach $x \in [0,1]$ is instantiated for weak physics. (**A**) Dual streams infer discharge components: BASE-LSTM and QUICK-LSTM. A gate $\alpha \in [0,1]$ mixes them, $Q = \alpha Q_{\text{quick}} + (1-\alpha)Q_{\text{base}}$. (**B**) Monotone rating curve f_{mono} maps discharge to stage $\hat{h} = f_{\text{mono}}(Q)$ with $\partial f_{\text{mono}}/\partial Q \geq 0$ (enforced by a small monotonicity penalty). (**C**) Weak-form physics on the latent mesh: heads predict h_{θ} and $\partial_x Q_{\theta}$; a learned weight $\Lambda_{\psi}(t,x)$ emphasizes where residuals matter. The driver projection $R_{\kappa}(t,x) = \bar{r}(t) \, e^{-\kappa x}$ injects forcing. Residual $\mathcal{R} = \dot{h}_{\theta} + \partial_x Q_{\theta} - R_{\kappa}$ is penalized in the weak form. (**D**) Adaptive scheduling: bounded signals modulate λ_{pde} and λ_{smooth} . Total loss $L = L_{\text{data}} + \lambda_{\text{pde}} L_{\text{pde}} + \lambda_{\text{smooth}} L_{\text{cons}} + \lambda_{\text{mono}} L_{\text{mono}}$. An ensemble yields mean \pm band for uncertainty.

At a high level, a dual-stream sequence encoder (base- and quick-flow) infers a latent discharge field $Q_{\theta}(t,x)$; a monotone neural rating curve maps discharge to stage; and automatic differentiation evaluates the weak-form residual in equation 2. Training is adaptive: physics penalties are modulated online by bounded signals (prediction error, rainfall, event likelihood), tightening conservation during transients and deferring to observations in quiescent periods. Although motivated by hydrology, the framework applies to 1-D conservation laws under sparse spatial supervision.

$$\mathcal{L}_{\text{PDE}} = \left\| \int_0^1 \left(\partial_t h_{\theta}(t, x) + \partial_x Q_{\theta}(t, x) - R_{\kappa}(t, x) \right) \phi_{\psi}(t, x) \, dx \right\|_2^2, \tag{2}$$

The contributions of this paper are threefold: (1) *APILa framework*—a measure-weighted weak form for single-sensor conservation learning on a latent 1-D reach, instantiated via learned test functions and shown equivalent to a normalized space–time density view, with a variational dual-stream discharge prior (H¹/BV) for interpretable base/quick responses; (2) *Theory*—conditions for single-gauge identifiability under a monotone, Lipschitz observation and mild driver excitation, reparameterization invariance of the weak objective on the latent reach, and an equivalence between learned-density and learned test-function formulations; (3) *Adaptive physics scheduling*—a bounded, signal-aware scheme that modulates auxiliary physics terms in time, $\lambda_i(t) = \text{clip}(\lambda_i^0(1+\sum_k \alpha_{ik} s_k(t)), [\lambda_i^{\min}, \lambda_i^{\max}])$, prioritizing conservation during transients while preserving stability.

We organize the paper as follows: Section 2 reviews related work; Section 3 formalizes the latent weak-form framework and the adaptive training scheme; Section 4 details datasets and protocol; Section 5 concludes.

2 RELATED WORK

Physics-informed learning from sparse observations. PINNs embed governing laws via residual penalties and have shown wide appeal across scientific domains Raissi et al. (2019). Yet strong-form residuals typically presume dense interior collocation and can be brittle under scarce spatial supervision. Variants that relax regularity or integrate residuals against test functions (weak/variational forms) aim to improve robustness to noise and discretization while reducing collocation burden, but they still require careful loss balancing and often lack guarantees under single-sensor settings (see empirical discussions in Nathaniel et al. (2024); Azad et al. (2025); Rohrhofer et al. (2023)). Training stability in PINNs frequently hinges on the choice of trade-off weights between data and physics losses. Recent adaptive schemes rebalance terms during optimization, e.g., self-adaptive PINNs (SA-PINN) McClenny & Braga-Neto (2023) and ReLoBRaLo Ling et al. (2024), which adjust coefficients based on gradient magnitudes or residual statistics. These methods are largely signal-agnostic and momentum-driven, and they do not exploit domain cues available at run time, such as event likelihood or regime changes, to modulate physics pressure.

For 1-D conservation systems observed at a single site (e.g., stage/discharge), sequence encoders are often used to form latent dynamics, while observation models (rating curves) impose a monotone relationship between discharge and stage. Prior work typically treats the observation link as fixed or unconstrained; monotone neural parameterizations provide a learnable but physically consistent mapping. However, most approaches neither enforce conservation in a weak form over a latent reach nor couple it with adaptive, signal-aware scheduling.

APILANET differs by (i) enforcing a measure-weighted weak form on a latent 1-D domain anchored at the observation site, avoiding dense interior collocation; (ii) using a monotone learnable rating curve to tie latent discharge to measured stage; and (iii) introducing an EMA-free, signal-driven adaptive schedule that modulates auxiliary physics terms online. Together these address sparse spatial supervision, stability, and physical consistency beyond prior PINNs and adaptive-weighting strategies Raissi et al. (2019); McClenny & Braga-Neto (2023); Ling et al. (2024).

2.1 Problem setup & notation

Let $\Omega \subset \mathbb{R}^d$ be a bounded Lipschitz domain with horizon [0,T]. We model a *latent* state $u: \Omega \times [0,T] \to \mathbb{R}^p$ approximately governed by following equation

$$\partial_t u(x,t) + \nabla \cdot F(u(x,t)) = S(x,t), \qquad (x,t) \in \Omega \times (0,T), \tag{3}$$

with flux $F: \mathbb{R}^p \to \mathbb{R}^{p \times d}$ and source S. Initial/boundary data are $u(\cdot,0) = u_0 \in L^2(\Omega;\mathbb{R}^p)$ and $\mathcal{B}(u,F(u)) = g_{\partial\Omega}$ on $\partial\Omega \times (0,T)$. Exogenous drivers $\xi:[0,T] \to \mathbb{R}^m$ act through a bounded projection

$$S(\cdot,t) = \mathcal{P}_{\kappa}[\xi](\cdot,t), \qquad \mathcal{P}_{\kappa}: L^{2}(0,T;\mathbb{R}^{m}) \to L^{2}(\Omega \times (0,T);\mathbb{R}^{p}), \tag{4}$$

parameterized by $\kappa \in \mathcal{K}$. When Ω is implicit we work on a latent 1-D chart $(\widehat{\Omega}, \phi)$ with C^1 diffeomorphism $\phi : \widehat{\Omega} \to \Omega$; Jacobian factors are absorbed into the sampling/importance measure.

We observe a *single* downstream time series via a bounded linear functional $C \in (H^1(\Omega; \mathbb{R}^p))^*$ and a shape-constrained measurement map

$$\widehat{y}_{\theta}(t) = g_{\theta}(\mathcal{C}[u_{\theta}(\cdot, t)]) \in \mathbb{R}, \tag{5}$$

for which we use a monotone, Lipschitz parameterization enforced by architecture. Given observations $y(t_n)$ at $\mathcal{T}_{\text{obs}} = \{t_n\}_{n=1}^N$, the task is: from a history of length L_{in} and drivers ξ , predict $\{y(t_{n+1}), \ldots, y(t_{n+L_{\text{out}}})\}$. We write $t_n = n\Delta t$ and $a_{n:n+k} = (a(t_n), \ldots, a(t_{n+k}))$; mini-batches are contiguous windows $(y_{n-L_{\text{in}}:n}, \xi_{n-L_{\text{in}}:n+L_{\text{out}}})$.

For analysis we assume

$$u \in L^2(0,T;H^1(\Omega;\mathbb{R}^p))$$
 and $\partial_t u \in L^2(0,T;H^{-1}(\Omega;\mathbb{R}^p))$,

so the terms in the weak form are well-defined when F is C^1 on the range of u_θ . With test functions $\varphi \in H^1_0(\Omega; \mathbb{R}^p)$, multiplying equation 3 by φ and integrating by parts in space yields

$$\langle \partial_t u, \varphi \rangle_{H^{-1}, H^1} - \int_{\Omega} \langle F(u), \nabla \varphi \rangle \, dx - \int_{\Omega} S \cdot \varphi \, dx = 0 \quad \text{for a.e. } t \in (0, T).$$
 (6)

A weak solution of equation $3-\mathcal{B}$ is u with $u(\cdot,0)=u_0$ satisfying equation 6 for all $\varphi\in H^1_0$ (or for all $\varphi\in H^1$ when nonzero boundary traces are retained), with $S=\mathcal{P}_\kappa[\xi]$. A neural parameterization u_θ induces \widehat{y}_θ via equation 5; training penalizes weak-form residuals using a learned, normalized space—time importance density $\lambda_\psi:\Omega\times[0,T]\to(0,1]$ with $\int\!\!\!\int \lambda_\psi\,dx\,dt=1$, together with a supervised discrepancy between y and \widehat{y}_θ . The objective (adaptive weights and shape constraints) and training details are given in A=B. Assumptions (compact): (A1) A is A is bounded A is bounded and A satisfies its structural constraint; (A4) A is bounded A and normalized. Remark. On graphs, replace A by A with incidence matrix A; the development is unchanged.

3 Method

3.1 PANEL A: DUAL-STREAM DISCHARGE PRIOR WITH INPUT-DRIVEN GATING

From a single–gauge input window $X_{1:L} \in \mathbb{R}^{L \times d}$ we form two latent discharge sequences over the forecast horizon $\tau = 1:T$: a slow component $Q_{\text{base}}(\tau)$ and a fast component $Q_{\text{quick}}(\tau)$. The encoders that produce these sequences are standard sequence models. We introduce an input–driven gate $\alpha \in [0,1]$ and define the latent discharge passed to downstream panels by the convex combination

$$Q_{\theta}(\tau) = \alpha Q_{\text{quick}}(\tau) + (1 - \alpha) Q_{\text{base}}(\tau), \qquad \alpha = \sigma(g(X_{1:L})), \tag{7}$$

where g is an arbitrary scalar readout of the history and σ is the logistic sigmoid. We enforce $Q_{\text{base}}, Q_{\text{quick}} \geq 0$, hence $Q_{\theta} \geq 0$ by construction. This single nonnegative Q_{θ} is the only discharge signal consumed by the rating link and weak physics. To bias the decomposition toward interpretable dynamics, we regularize the streams with complementary seminorms:

$$\mathcal{R}_{\text{base}} = \sum_{\tau=2}^{T} (\Delta Q_{\text{base}}(\tau))^{2}, \qquad \mathcal{R}_{\text{quick}} = \sum_{\tau=2}^{T} |\Delta Q_{\text{quick}}(\tau)|. \tag{8}$$

Here $\Delta Q.(\tau) = Q(\tau) - Q(\tau - 1)$. \mathcal{R}_{base} promotes H^1 -type smoothness; \mathcal{R}_{quick} is a BV/TV prior. These terms are novel in our context as a *paired* Sobolev/BV prior that encourages low-frequency "baseflow" and high-variation "quickflow" within a single latent mixture.

Assumption 1. The history readouts that generate $Q_{\rm base}, Q_{\rm quick}$ and the gate g are $L_{\rm b}, L_{\rm q}, L_g$ —Lipschitz maps w.r.t. $X_{1:L}$.

Theorem 1. Under A1, for any windows X, X',

$$\left\|Q_{\theta}(\cdot;X) - Q_{\theta}(\cdot;X')\right\|_{\infty} \leq \left(L_{\mathbf{q}}\|\phi_{\mathbf{q}}\| + L_{\mathbf{b}}\|\phi_{\mathbf{b}}\| + \frac{1}{4}L_{g}\,\Delta_{Q}(X')\right)\|X - X'\|,$$

where $\Delta_Q(X') = \sup_{\tau} \left| Q_{\text{quick}}(\tau; X') - Q_{\text{base}}(\tau; X') \right|$. If a uniform bound $\Delta_Q(X') \leq \Delta_{\text{max}}$ holds, replace $\Delta_Q(X')$ by Δ_{max} . Proof in Appendix B.

Under mild encoder regularity, the gated mixture Q_{θ} in equation 7 is Lipschitz in the input window, so small changes in $X_{1:L}$ yield bounded changes in the latent discharge. Moreover, the paired Sobolev/BV priors in equation 8 induce a Tikhonov–TV splitting that assigns low-frequency content to $Q_{\rm base}$ and high-variation content to $Q_{\rm quick}$. Formal statements and proofs are provided in (Appendix B).

3.2 PANEL B: MONOTONE LATENT MAPPING

Panel B maps the aggregated *driver* from Panel A to the observed *target* using a shallow neural link *without* assuming any fixed parametric law. Concretely, a bias-enabled two-layer MLP with SOFTPLUS activations is applied element-wise in time to the clamped (nonnegative) driver. The biases absorb sensor offsets and the flexible link avoids imposing a fixed power-law shape. We introduce (i) an *empirical*, *order-preserving monotonicity surrogate* that enforces a nondecreasing driver—target map on the *observed* driver range without constraining weights, and (ii) a *consistency* statement showing that, as design points densify, vanishing surrogate loss yields almost-everywhere monotonicity over the training range.

Given a finite set $\mathbf{q} = \{q_i\}_{i=1}^n$ from the (clamped) driver range with $q_{(1)} \leq \cdots \leq q_{(n)}$, define

$$\mathcal{L}_{\text{mono}}(\theta; \mathbf{q}) = \frac{1}{n-1} \sum_{i=1}^{n-1} \left[f_{\theta}(q_{(i+1)}) - f_{\theta}(q_{(i)}) \right]_{-}, \text{ with } [x]_{-} = \max\{0, -x\}. \text{ We add } \gamma_{\text{mono}} \mathcal{L}_{\text{mono}} \text{ to the loss } (\gamma_{\text{mono}} = 0.01).$$

Proposition 1. $\mathcal{L}_{mono}(\theta; \mathbf{q}) = 0$ if $f_{\theta}(q_{(i+1)}) \geq f_{\theta}(q_{(i)})$ for all adjacent pairs. Moreover, $\max_i [f_{\theta}(q_{(i)}) - f_{\theta}(q_{(i+1)})]_+ \leq (n-1) \mathcal{L}_{mono}(\theta; \mathbf{q})$.

If design sets $\mathbf{q}^{(m)} \subset [0,Q_{\max}]$ densify, $\sup_m \|f_{\theta_m}\|_{\infty} < \infty$, and a standard regularizer yields a uniform total-variation bound, then a subsequence converges pointwise a.e. to a monotone limit on $[0,Q_{\max}]$ when $\mathcal{L}_{\text{mono}}(\theta_m;\mathbf{q}^{(m)}) \to 0$. Together, this surrogate-and-proof package gives a lightweight way to impose a domain-plausible monotone observation link *only where the data live*, improving identifiability and training stability without hard weight constraints.

3.3 PANEL C: WEAK-FORM PHYSICS ON THE LATENT MESH

We enforce mass balance in a *latent* spatiotemporal domain using only single-point time series. Concretely, the model predicts two time-indexed sequences, an objective-time derivative $d_t h_{\theta}[\tau]$ and a exogenous-space derivative $d_x Q_{\theta}[\tau]$ and broadcasts them across a fixed X-cell latent spatial grid. Exogenous rainfall is projected over this grid via a learnable, monotone spatial kernel. The weak-form loss is the average of squared residuals weighted by a learned, non-negative field. We introduce (i) A *broadcast weak-form* residual on a latent mesh that turns single-point supervision into spatiotemporal physics via broadcasting and exogenous variable projection; (ii) an *exponential exogenous projection* with learnable decay $\kappa > 0$ enabling spatial structure from point variable; (iii) a *learned spatial weighting field* that emphasizes informative cells while remaining non-negative by construction.

From classical weak form to APILaNet's latent weak form. We compare (i) the classical weak residual with constant test functions on a 1D strip, and (ii) our broadcast residual on a latent mesh with a learned, normalized weight.

Assumption 2 (Proxy derivatives and latent forcing). For each forecast step $\tau \in \{1:T\}$, the model outputs proxies $d_t h_{\theta}[\tau] \approx \partial_t h(\tau, \cdot)$ and $d_x Q_{\theta}[\tau] \approx \partial_x Q(\tau, \cdot)$ that are (piecewise) constant in x when broadcast across a latent grid $\{x_j\}_{j=1}^X \subset [0,1]$. A single exogenous series is projected to a latent forcing $R_{\theta}(x) = \bar{R} e^{-\kappa x}$ with $\kappa > 0$ learnable.

Assumption 3 (Learned, normalized measure). A nonnegative field $\lambda_{\phi}(x) \geq 0$ induces a measure $\mathrm{d}\mu_{\phi}(x) = \lambda_{\phi}(x)\,\mathrm{d}x$ on [0,1] that is (i) bounded and bounded away from 0 on compact subsets, and (ii) normalized so that $\int_0^1 \lambda_{\phi}(x)\,\mathrm{d}x = 1$.

Figure 2: Weak–form residual heat map $\zeta(t,s)$ with per-step mean $\mathbb{E}_s|\zeta|$.

Figure 2 visualizes the weak–form residual $\zeta(t,s)=\partial_t h+\partial_x Q-R$ over the latent mesh. Hot/cold bands in the heat map mark where conservation is violated in time (t) and across latent cells (s); sharp vertical streaks coincide with storm onsets, showing that APILANET localizes transient imbalance rather than spreading it uniformly. The bottom trace aggregates $\mathbb{E}_s[\,|\zeta|\,]$ and highlights when violations spike, which typically precedes or aligns with observed peaks. This diagnostic is useful both for model debugging to identify how residual concentrate during extreme events and for interpretability (where does the model "spend" its physics budget over the forecast horizon).

Theorem 2 (Reduction to classical weak form). *Under Assumptions 2–3, the APILaNet broadcast loss*

$$\mathcal{L}_{\text{pde}}(\theta, \phi) = \frac{1}{TX} \sum_{\tau=1}^{T} \sum_{j=1}^{X} \lambda_{\phi}(x_j) \left(d_t h_{\theta}[\tau] + d_x Q_{\theta}[\tau] - R_{\theta}(x_j) \right)^2$$

is a Riemann (cell-wise) quadrature of the classical weak $L^2(\mu_{\phi})$ residual of the continuity law with constant test functions on each cell. In particular, as the latent grid refines (max_j |x_{j+1} - x_j| \rightarrow 0),

$$\mathcal{L}_{\text{pde}}(\theta,\phi) \rightarrow \frac{1}{T} \sum_{\tau=1}^{T} \int_{0}^{1} \left(\partial_{t} h_{\theta}(\tau,x) + \partial_{x} Q_{\theta}(\tau,x) - R_{\theta}(x) \right)^{2} d\mu_{\phi}(x).$$

Proof sketch. Broadcasting makes the trial/test functions piecewise constant in x; averaging over j with weights $\lambda_{\phi}(x_j)$ is a normalized quadrature for the weighted L^2 norm.

Adaptive weighting map. Figure 3 visualizes the learned space—time weight $\lambda(t,s)$ used in the weak-form loss. The heat map shows that λ is not uniform: it concentrates near informative regions of the forecast (earlier steps and upstream latent cells) and decays elsewhere, indicating that the model allocates more penalty to transient, high-signal zones. The bottom marginal $\mathbb{E}_s[\lambda](t)$ summarizes this temporal emphasis, typically highest near the start of the horizon and tapering with t, while the right marginal $\mathbb{E}_t[\lambda](s)$ captures how weighting varies across the latent spatial index. Together with Fig. 2, this confirms that API-LaNet both locates residual spikes and adaptively "spends" its physics budget where it matters.

Interpretation. Theorem 2 says our broadcast loss is not an ad-hoc penalty: it is exactly a cell-wise quadrature of the classical weak residual under a learned, normalized measure. In plain terms, APILaNet turns a single-sensor sequence into a principled weak-form discretization on a

Figure 3: Adaptive weight field $\lambda(t,s)$ learned for the weak form. Left: heat map over time t and latent cell s. Bottom: temporal marginal $\mathbb{E}_s[\lambda](t)$. Right: spatial marginal $\mathbb{E}_t[\lambda](s)$. The weighting concentrates on high-signal regions, emphasizing transients while deemphasizing quiescent zones.

latent mesh, while λ_{ϕ} acts as an importance map that concentrates physics where the signal is informative. Refinement/consistency assumptions and results—namely Assumption 4 (approximation and mesh refinement), Theorem 3 (consistency under refinement), and Corollary 1 (single-sensor realizability through the monotone observation link)—are stated and proved in Appendix D..

3.4 ADAPTIVE PHYSICS SCHEDULING (PANEL D)

Panel D modulates physics strength. Two global multipliers act on the physics terms: a PDE weight λ_{pde} and a derivative-consistency weight λ_{cons} . Each is computed *instantaneously per minibatch* from available signals. In addition, a *local* nonnegative field $\lambda_{\mathrm{loc}}(t,x)$ weights the PDE residual over the latent mesh (Panel C). The effective PDE weight is $\Lambda_{\mathrm{pde}}(t,x) = \lambda_{\mathrm{pde}} \lambda_{\mathrm{loc}}(t,x)$. **Objective:** allocate physics pressure *when* and *where* it matters without destabilizing training. We therefore factorize the PDE weight into a *global* batch scalar and a *local* nonnegative field over the latent mesh:

$$\Lambda_{\text{pde}}(t,x) = \lambda_{\text{pde}} \, \lambda_{\text{loc}}(t,x), \quad \lambda_{\text{loc}}(t,x) \ge 0, \quad \frac{1}{TX} \sum_{\tau=1}^{T} \sum_{j=1}^{X} \lambda_{\text{loc}}(\tau,x_j) = 1.$$
 (9)

The effective PDE term in the loss is

$$\mathcal{L}_{\text{pde}}^{\text{eff}} = \lambda_{\text{pde}} \cdot \frac{1}{TX} \sum_{\tau=1}^{T} \sum_{j=1}^{X} \lambda_{\text{loc}}(\tau, x_j) r_{\theta}[\tau, j]^2, \quad r_{\theta}[\tau, j] = \partial_t h_{\theta}[\tau] + \partial_x Q_{\theta}[\tau] - R_{\theta}(x_j). \quad (10)$$

Instantaneous global scheduler. Let $E \ge 0$ be the batch prediction loss, $\mathbf{s} \in \mathbb{R}_{\ge 0}^K$ a vector of auxiliary regime signals, and $\Pi \in [0, 1]$ an activity score. For $i \in \{\text{pde}, \text{cons}\}$ we set

$$\lambda_i = \operatorname{clip}\left(\lambda_i^0 \left(1 + E + \boldsymbol{\alpha}_i^{\mathsf{T}} \mathbf{s} + \alpha_{i,\Pi} \Pi\right), \ \lambda_i^{\min}, \ \lambda_i^{\max}\right), \tag{11}$$

where $\lambda_i^0 > 0$ is a base level, $(\alpha_i, \alpha_{i,\Pi}) \ge 0$ are sensitivities, and clip enforces user-specified bounds.

Algorithm 1: Adaptive Multi-Loss Scheduling with Factorized Local Weights

```
 \begin{aligned} & \textbf{Inputs:} \text{ batch } \mathcal{D}, \text{ model } \mathcal{F}_{\theta}, \text{ optimizer; bases } \left\{\lambda_{i}^{0}\right\}_{i=1}^{m}; \text{ sensitivities } \left\{\alpha_{ik}\right\}; \text{ clips } \left[\lambda_{i}^{\min}, \lambda_{i}^{\max}\right] \\ & \textbf{Outputs:} \text{ updated parameters } \theta \\ & \textbf{for } epoch = 1 \dots N \textbf{ do} \\ & \textbf{ foreach } batch \, \mathcal{D} \textbf{ do} \\ & \textbf{ compute per-losses } \left\{\mathcal{L}_{i}(\theta, \mathcal{D})\right\}_{i=1}^{m}; \text{ optional local map } W_{\text{loc}} \geq 0 \\ & \textbf{ compute batch signals } \left\{s_{k}(\mathcal{D})\right\}_{k=1}^{K}; \\ & \textbf{ for } i = 1 \textbf{ to } m \textbf{ do} \\ & \begin{vmatrix} \lambda_{i} \leftarrow \text{clip}\left(\lambda_{i}^{0}(1 + \sum_{k=1}^{K} \alpha_{ik}s_{k}\right), \, \lambda_{i}^{\min}, \, \lambda_{i}^{\max}\right) \\ & \textbf{ if } W_{\text{loc}} \, used \, \textbf{then} \\ & \begin{vmatrix} W_{\text{loc}} \leftarrow W_{\text{loc}}/\left(\frac{1}{|\Omega|}\sum_{(t,x) \in \Omega} W_{\text{loc}}(t,x)\right) \\ \mathcal{L}_{\text{tot}} \leftarrow \sum_{i=1}^{m} \lambda_{i} \, \mathcal{L}_{i}(\theta, \mathcal{D}; W_{\text{loc}}) \\ & \text{optimizer.zero.grad();} \\ & \text{backprop}(\mathcal{L}_{\text{tot}}; \\ & \text{optimizer.step()} \end{aligned}
```

Assumption 4 (Bounded signals & normalized local field). *During training, E, each component of* s, and Π are bounded; the local field satisfies equation 9; and equation 11 produces $\lambda_i \in [\lambda_i^{\min}, \lambda_i^{\max}]$.

Theorem 3 (Monotone responsiveness with bounded pressure). *Under Assumption 6*, each λ_i in equation 11 is nondecreasing in E, every component of s, and Π (away from clips) and always satisfies $\lambda_i^{\min} \leq \lambda_i \leq \lambda_i^{\max}$. Consequently equation 10 is both responsive to harder-regime batches and bounded to avoid instability.

We scale physics by two knobs: a *global*, batch-wise multiplier that grows when the batch looks hard (big errors, event cues) but remains clipped, and a *local*, nonnegative map over the latent mesh that redistributes this budget to where residuals matter. The global rule makes physics *responsive* yet *bounded*; the local normalization preserves the average strength while focusing effort in time–space. Theorem 7 formalizes this: the scheduler is monotone in difficulty signals away from clips, and the weights stay within $[\lambda_i^{\min}, \lambda_i^{\max}]$, so training remains stable even during peaks.

Panel D couples a *global*, signal-driven scheduler with a *local*, normalized weight over the latent mesh. This design (i) amplifies physics during challenging regimes, (ii) keeps gradients well-scaled, and (iii) yields an interpretable importance map $\lambda_{loc}(t,x)$. This formalizes that the schedule reacts in the right direction to harder batches yet remains numerically safe via clipping—so physics pressure increases when signals indicate difficulty, without runaway scaling. Formal proofs and ablations are provided in Appendix E..

4 EXPERIMENTS

4.1 Protocols

Datasets We conduct a hydrology case study and experiments on five real-world, single-sensor benchmarks from UK catchments. We construct the same $L \times d$ input tensor for all sites using a unified pipeline. The train/val/test configuration splits for each dataset are same.

Baselines We benchmark APILANET against eight competitive sequence-to-sequence forecasters that span the main families of modern time–series modeling: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting *CrossFormer* Zhang & Yan (2023); patchwise Transformer *PatchTST* Nie et al. (2023); MLP token–mixer *TS-Mixer* Chen et al. (2023); convolutional token–mixer *PatchMixer* Gong et al. (2023); selective state–space model *Mamba-S4* Dao & Gu (2024); *iTransformer* Liu et al. (2023); and the neural decomposition methods *N-HiTS* Challu et al. (2022) and *N-BEATS* Oreshkin et al. (2020).

Setup. All models ingest the same $L \times d$ input tensor and predict the same T-step horizon. Inputs are feature-wise min-max scaled using statistics computed on the training split and applied to val/test. We generate input-output pairs with a sliding window. We evaluate a fixed forecast horizon T=32 and look-back length L=32 based on Table 2. Primary metrics are Mean Squared

Error (MSE) and Nash–Sutcliffe Efficiency (NSE); for event-focused analyses we additionally report peak-timing and peak-magnitude errors ($\Delta t_{\rm peak}, \Delta h_{\rm peak}$). Baselines use the *same* inputs as APILANET and follow the original authors' recommended model sizes, optimizers, and regularization. All methods are trained for the same epochs, batch size, and learning-rate schedule. Each configuration is run with *three fixed random seeds*; and the mean of the metrics is reported. Full dataset details, implementation, and hyperparameters appear in Appendix A.

4.2 ABLATION STUDY

Ablation Design We report seven variants corresponding to Table 1: (1) **APILaNet** (full model); (2) $w/o \lambda Adapt. (global)$; (3) $w/o \lambda_g Adapt. (local)$ —remove the local weighting (set $\lambda_g \equiv 1$) while keeping the global scheduler λ_s and the PDE loss; (4) $w/o \lambda_s Adapt. (both)$ —freeze both weights (fix $\lambda_g = \lambda_g^0$ and $\lambda_g \equiv 1$) with the PDE loss retained; (5) w/o Monotone MLP—replace the monotone rating-curve link by an unconstrained scalar MLP; (6) w/o PDE loss—drop the weak-form continuity residual from the objective; (7) \mathcal{L}_{data} only—pure data fit.

Table 1: Ablation at 8 h before extreme event on Stocksfield. Entries are $mean\pm SD$ [95% CI] across seeds. MSE is reported in $\times 10^{-1}$. Best results are red; second-best are blue.

Model	λ_g	λ_s	PDE	Δt_{peak} (h) \downarrow	Δh_{peak} (m) \downarrow	$\mathbf{MSE}(\times 10^{-1})\downarrow$	NSE↑
(1) APILANET	✓	✓	✓	0.00±0.00 [0.00, 0.00]	$0.46\pm0.19[0.18, 0.75]$	0.45±0.14 [0.25, 0.65]	0.51±0.15 [0.29, 0.72]
(2) w/o λ Adapt. (a)	×	×	\checkmark	0.00 ± 0.00 [0.00, 0.00]	$0.46\pm0.08[0.33,0.59]$	0.53 ± 0.06 [0.45, 0.62]	0.42 ± 0.06 [0.33, 0.51]
(3) w/o λ Adapt. (b)	×	\checkmark	\checkmark	0.00 ± 0.00 [0.00, 0.00]	0.39 ± 0.17 [0.13, 0.64]	0.57 ± 0.03 [0.52, 0.61]	$\overline{0.38\pm0.03}$ [0.33, 0.43]
(4) w/o λ Adapt. (c)	\checkmark	\times	\checkmark	0.00±0.00 [0.00, 0.00]	0.52 ± 0.07 [0.41, 0.63]	0.55 ± 0.07 [0.45, 0.65]	$0.39\pm0.07[0.29, 0.50]$
(5) w/o Mono MLP	\checkmark	\checkmark	\checkmark	0.00 ± 0.00 [0.00, 0.00]	0.51 ± 0.16 [0.27, 0.75]	0.53 ± 0.04 [0.47, 0.59]	0.41 ± 0.04 [0.35, 0.48]
(6) w/o PDE Loss	\checkmark	\checkmark	×	0.25 ± 0.42 [-0.19, 0.69]	0.40 ± 0.14 [0.25, 0.54]	0.64 ± 0.27 [0.36, 0.93]	0.29 ± 0.29 [-0.01, 0.61]
(7) APILANET \mathcal{L}_{data}	×	×	×	1.92 ± 3.32 [-3.01, 6.84]	0.68 ± 0.24 [0.32, 1.04]	$0.74\pm0.35[0.22,1.26]$	0.19 ± 0.38 [-0.37, 0.76]

Based on the results from Table 1 , the full APILANET achieves the best MSE/NSE. Removing adaptive weighting degrades accuracy—both schedulers matter: using only the λ_g or only the λ_s field is inferior to using them together. Eliminating the PDE weak—form loss yields the largest drop in peak timing and overall fit, while removing the monotone link also hurts MSE/NSE and stability. Overall, gains are additive: monotone link + PDE loss + $(\lambda_g \oplus \lambda_s)$ scheduling produce the strongest performance.

4.3 Influence of Input Sequence Length

Table 2 shows that a medium context is consistently best. Across all five catchments, the optimal lookback is 32 steps (8 h at 15 min resolution): it yields the lowest MSE and the highest NSE in every case (ACOMB MFS 0.021×10^{-2} / 0.936, Stocksfield $0.053 \times 10^{-2} / 0.886$). Short histories (≤16 steps) underfit transients and hurt NSE, while very long histories (≥ 128) plateau or slightly degrade, likely due to memory dilution, heavier optimization, and fewer distinct windows per epoch. The result is robust—64-128 steps are typically within a few percent of the best—but 32 steps offers the best accuracy-efficiency trade-off. We therefore fix the lookback to 32 steps (8h) in all remaining experiments unless stated otherwise.

Table 2: Lookback sensitivity by catchment. Mean MSE $(\downarrow, \times 10^{-2})$ and NSE (\uparrow) across seven input horizons (2-128 h).

Site	Metric		Look	back w	indow	(time	steps)	
							256	
ACOMB GRN	$\left \begin{array}{l} \text{MSE} (\times 10^{-2}) \\ \text{NSE} \end{array} \right $	0.066 0.857	0.059 0.873	0.041 0.911	0.043 0.906	0.045 0.909	0.057 0.909	0.044 0.910
ACOMB MFS	$\left \begin{array}{l} \text{MSE} (\times 10^{-2}) \\ \text{NSE} \end{array} \right $	0.049 0.853	0.037 0.888	0.021 0.936	0.023 0.931	0.027 0.919	$\frac{0.022}{0.933}$	0.027 0.916
STOCKSFIELD	$\begin{array}{c} \text{MSE}(\times 10^{-2}) \\ \text{NSE} \end{array}$	0.079 0.837	0.071 0.849	0.053 0.886	0.069 0.852	0.068 0.856	0.068 0.855	$\frac{0.061}{0.872}$
Nunnykirk	$\begin{array}{c} \text{MSE}(\times 10^{-2}) \\ \text{NSE} \end{array}$	0.091	0.091 <u>0.941</u>	0.067 0.959	0.083 0.941	0.086 0.921	0.084 0.914	0.077 0.913
KNITSLEY	MSE (×10 ⁻²) NSE	0.037 0.915	0.037 0.936	0.030 0.946	0.036 0.935	0.036 0.943	0.035 0.912	0.037 0.902

4.4 ADDITIONAL EXPERIMENTS

Beyond standard test-set accuracy, we benchmark *early-warning* performance by evaluating every model's ability to predict before the extreme event. This stress test probes how well a forecaster anticipates extremes as lead time shortens—crucial for actionable response. Across all lead times,

Table 3: Catchment-level forecasting. Test-set MSE (\downarrow) and NSE (\uparrow) across five UK catchments and three events per catchment, with fixed prediction length and horizon.

Data	Model	APIL	ANET	CrossI	FORMER	PATC	HTST	TSM	IXER	PATCH	MIXER	Мам	BA S4	ITRANS	SFORMER	N-H	ITS	N-B	EATS
Data	Metrics	$MSE \!\!\downarrow$	NSE↑	MSE↓	NSE↑	$MSE{\downarrow}$	NSE↑	MSE↓	NSE↑	$MSE{\downarrow}$	NSE↑	MSE↓	NSE↑	MSE↓	NSE↑	$MSE\downarrow$	NSE↑	MSE↓	NSE↑
GRN	Event 1 Event 2 Event 3	0.090 0.058 0.935	0.810 0.919 0.329	0.117 0.093 0.951	0.754 0.869 0.318	0.471 0.385 2.485	0.009 0.460 -0.783	0.127 0.073 0.926	0.733 0.897 0.335	0.117 0.082 1.514	0.753 0.884 -0.087	0.317 0.222 1.357	0.333 0.689 0.026	0.122 0.106 0.968	0.744 0.851 0.305	0.362 0.341 1.682	0.238 0.522 -0.207	0.337 0.311 1.712	0.290 0.564 -0.229
ACOMB	Test	0.010	0.907	0.931	0.901	0.026	0.762	0.010	0.904	0.013	0.876	0.016	0.026	0.968	0.897	0.020	0.815	0.019	0.821
ACOMB MFS	Event 1 Event 2 Event 3	0.054 0.018 0.370 0.005	0.885 0.970 0.638 0.937	0.077 0.058 0.706 0.008	0.836 0.902 0.309 0.904	0.443 0.326 1.131 0.015	0.061 0.450 -0.107 0.811	0.052 0.025 0.533 0.006	0.890 0.957 0.478 0.927	0.064 0.109 0.553 0.006	0.863 0.817 0.458 0.925	0.324 0.208 0.872 0.011	0.314 0.649 0.146 0.855	0.103 0.076 0.752 0.008	0.781 0.871 0.264 0.898	0.382 0.328 1.192 0.015	0.191 0.446 -0.167 0.811	0.428 0.339 1.323 0.016	0.092 0.427 -0.295 0.795
STOCKSFIELD	Event 1 Event 2 Event 3	0.019 × 0.396 0.013	0.747 × 0.315 0.879	0.047 × 0.361 0.016	0.389 × 0.370 0.851	0.879 × 0.607 4.059	-0.130 × -0.051 -2.665	0.279 × 0.358 <u>0.014</u>	0.642 × 0.381 <u>0.873</u>	0.250 × 0.698 0.016	0.678 × -0.209 0.859	0.568 × 0.442 0.019	0.270 × 0.234 0.830	0.443 × 0.486 0.020	0.430 × 0.158 0.817	-1.01 × 0.673 0.025	-0.299 × -0.167 0.773	1.097 × 0.757 0.026	-0.410 × -0.311 0.762
NUNNYKIRK	Event 1 Event 2 Event 3	0.116 0.043 × 0.003	0.862 0.926 × 0.972	0.257 0.056 × 0.004	0.695 0.902 × 0.958	0.325 0.249 × 0.009	0.614 0.566 × 0.925	0.212 0.054 × 0.004	0.748 0.907 × 0.962	0.158 0.282 × 0.005	0.813 0.509 × 0.951	0.273 0.133 × 0.006	0.675 0.768 × 0.944	0.184 0.093 × 0.005	0.781 0.839 × 0.954	0.343 0.180 × 0.009	0.593 0.686 × 0.923	0.382 0.216 × 0.009	0.546 0.624 × 0.922
KNITSLEY	Event 1 Event 2 Event 3	0.008 0.056 0.028 0.004	0.960 0.907 0.738 0.939	0.017 0.089 0.017 0.004	0.910 0.854 0.839 0.928	0.160 0.473 0.091 0.012	0.164 0.219 0.168 0.810	0.029 0.059 0.021 0.003	0.845 0.901 0.803 0.942	0.037 0.135 0.012 0.004	0.808 0.777 0.890 0.930	0.122 0.323 0.072 0.008	0.362 0.466 0.299 0.862	0.027 0.178 0.033 0.005	0.856 0.707 0.697 0.911	0.148 0.421 0.092 0.011	0.224 0.306 0.152 0.821	0.143 0.405 0.093 0.011	0.251 0.332 0.147 0.824
Best (↑)	Count	13	13	0	0	0	0	4	4	1	1	0	0	0	0	0	0	0	0

APILANET delivers the lowest MSE and highest NSE in most catchments, while also minimizing peak *timing* and *magnitude* errors ($\Delta t_{\rm peak}$, $\Delta h_{\rm peak}$). Notably, performance degrades *gracefully* as the warning window widens (8 h \rightarrow 2 h), indicating stable physics-aware generalization rather than last-minute correction. These results suggest APILANET provides earlier and more reliable alerts than state-of-the-arts baselines, making it better aligned with real-world decision timelines for real-world preparedness and incident management. (Appendix F).

4.5 Main Results

Across five UK catchments and three events per site, APILANET attains the strongest overall accuracy (Table 3). On the **Test** split it achieves the best MSE\$\psi\$/NSE\$\phi\$ on four of five catchments, with a close second on Knitsley (0.004/0.939 vs. 0.003/0.942 for TSMIXER). Counting all rows, APILANET secures the most top-1 entries by a wide margin, while the nearest competitor (TSMIXER) records 4/4 and PATCHMIXER 1/1. These gains are consistent across seeds (mean±SD reported), and are largest on the Acomb sites and Nunnykirk, indicating that the latent-physics prior and monotone observation link translate into both lower error and higher efficiency in sparse-sensing regimes.

5 CONCLUSION AND FUTURE WORK

We introduced APILANET, an Adaptive Physics-Informed Latent Network for single-sensor fore-casting that couples sequence learning with weak-form conservation. A dual-stream latent prior with input-driven gating, a monotone observation link, and a learned, normalized space—time measure deliver stable training and targeted physics enforcement. On five UK catchments, APILANET improves NSE and lowers flood-peak MSE over strong state-of-the-arts, suggesting a practical application for conservation-governed forecasting under sparse sensing.

We analyzed the limitations of our work and briefly discuss some directions for future research: (i) Beyond 1-D. Generalize the latent PDE from a reach-averaged 1-D mesh to multi-reach/graph geometries and lightweight momentum terms. (ii) Safer observation mapping. Add physics-aware shape priors and uncertainty quantification to the monotone link for robust extrapolation outside the observed flow range. (iii) Richer hydrologic states and interpretability. Learn time–space wetness/state variables (beyond a single decay κ) and integrate XAI diagnostics to attribute predictions to latent physics and drivers.

ACKNOWLEDGMENTS

To preserve double-blind review, acknowledgments and funding details are intentionally omitted. They will be added in the camera-ready version upon acceptance.

REFERENCES

- Abdus Samad Azad, Nahina Islam, Md Nurun Nabi, Hifsa Khurshid, and Mohammad Ashraful Siddique. Developments and trends in water level forecasting using machine learning models—a review. *IEEE Access*, 13:63048–63065, 2025. doi: 10.1109/ACCESS.2025.3557910.
- Cristian Challu, Kin G. Olivares, Boris N. Oreshkin, Federico Garza, Max Mergenthaler-Canseco, and Artur Dubrawski. N-hits: Neural hierarchical interpolation for time series forecasting, 2022. URL https://arxiv.org/abs/2201.12886.
- Si-An Chen, Chun-Liang Li, Nate Yoder, Sercan O. Arik, and Tomas Pfister. Tsmixer: An all-mlp architecture for time series forecasting, 2023. URL https://arxiv.org/abs/2303.06053.
- Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms through structured state space duality. In *International Conference on Machine Learning (ICML)*, 2024.
- Zeying Gong, Yujin Tang, and Junwei Liang. Patchmixer: A patch-mixing architecture for long-term time series forecasting. 2023. URL https://api.semanticscholar.org/CorpusID: 263334059.
- Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jhin, and Noseong Park. Dpm: A novel training method for physics-informed neural networks in extrapolation. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(9):8146–8154, May 2021. doi: 10.1609/aaai.v35i9. 16992. URL https://ojs.aaai.org/index.php/AAAI/article/view/16992.
- Hang Jung Ling, Salomé Bru, Julia Puig, Florian Vixège, Simon Mendez, Franck Nicoud, Pierre-Yves Courand, Olivier Bernard, and Damien Garcia. Physics-guided neural networks for intraventricular vector flow mapping. *IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control*, 71(11):1377–1388, 2024. doi: 10.1109/TUFFC.2024.3411718.
- Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer: Inverted transformers are effective for time series forecasting. *arXiv* preprint *arXiv*:2310.06625, 2023.
- Levi D. McClenny and Ulisses M. Braga-Neto. Self-adaptive physics-informed neural networks. *Journal of Computational Physics*, 474:111722, 2023. ISSN 0021-9991. doi: https://doi. org/10.1016/j.jcp.2022.111722. URL https://www.sciencedirect.com/science/article/pii/S0021999122007859.
- Juan Nathaniel, Yongquan Qu, Tung Nguyen, Sungduk Yu, Julius Busecke, Aditya Grover, and Pierre Gentine. Chaosbench: A multi-channel, physics-based benchmark for subseasonal-to-seasonal climate prediction. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems, volume 37, pp. 43715–43729. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/4d3684dd7926754b48bc6cd99a840232-Paper-Datasets_and_Benchmarks_Track.pdf.
- Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In *International Conference on Learning Representations*, 2023.
- Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-BEATS: Neural basis expansion analysis for interpretable time series forecasting. In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=rlecqn4YwB.

- M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational Physics*, 378:686–707, 2019. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.045. URL https://www.sciencedirect.com/science/article/pii/S0021999118307125.
- Franz M. Rohrhofer, Stefan Posch, Clemens Gößnitzer, and Bernhard C. Geiger. Data vs. physics: The apparent pareto front of physics-informed neural networks. *IEEE Access*, 11:86252–86261, 2023. doi: 10.1109/ACCESS.2023.3302892.
- Lingchen Wang, Tao Yang, and Bo Hu. A battery state-of-health estimation method for real-world electric vehicles based on physics-informed neural networks. *IEEE Sensors Journal*, 25 (9):15577–15587, 2025. doi: 10.1109/JSEN.2025.3549486.
- Andrea Zanella, Sergio Zubelzu, and Mehdi Bennis. Sensor networks, data processing, and inference: The hydrology challenge. *IEEE Access*, 11:107823–107842, 2023. doi: 10.1109/ACCESS. 2023.3318739.
- Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In *International Conference on Learning Representations*, 2023.

A APPENDIX A

Ethics Statement We used large language models (LLMs) solely to polish writing e.g., improving clarity, grammar, and flow. All ideas, methods, experiments, analyses, figures, and conclusions are the authors' own. No data, code, or results were generated by LLMs, and all citations and factual statements were verified by the authors.

Reproducibility Statement We provide the theoretical background throughout the paper and in the Technical Appendix, including assumptions, definitions, and proofs supporting our claims. Upon acceptance, we will release the full codebase, configuration files, and scripts to reproduce all experiments in a public GitHub repository; the URL will be announced to preserve double-blind review.

A.1 DATASETS

Data source. All datasets used in this study were extracted from the UK Environment Agency Hydrology service (https://environment.data.gov.uk/hydrology/explore). We used publicly available gauge series and constructed train/test splits per catchment as summarized in Table 4.

Table 4: Dataset overview by site (Train+Test merged). All series are 15 min cadence and include 10 features per site. Source: UK Environment Agency Hydrology.

Site	Rows (total)	Features	Time range	Med. interval
Acomb GH	320590	10	2016-01-01 — 2025-02-28	15 min
Acomb MSFD	321260	10	2016-01-01 — 2025-02-28	15 min
Knitlsey	315535	10	2016-01-01 — 2024-12-30	15 min
Nunnykirk	315505	10	2016-01-01 — 2024-12-30	15 min
Stocksfield	110857	10	2022-01-01 — 2025-02-28	15 min

Preprocessing. Timestamps were parsed and sorted; all series operate at a 15 min cadence. We retain provider units and engineer a 10D feature vector per timestamp. Here Δh and $\Delta^2 h$ are first/second differences of level; daily_min/daily_max are previous-day extrema (computed per calendar day and shifted by 96 steps = 24 h to avoid leakage), then forward/backward filled; future_rain is a 32-step (8 h) lead of rain (placeholder when not observed); AWI is an exponentially weighted antecedent wetness index with 5-day decay; and rain_3h/rain_24h are rolling rainfall sums over 12 and 96 steps. After feature construction we drop any residual NaNs. Features are scaled with a Min-Max transform fitted on the training split and applied to validation/test. For sequence modeling we form input/output windows of 32/32 steps (8 h/8 h); training uses an 80/20 chronological split with shuffling only on the training loader (validation/test are not shuffled).

Notation. Let $\{t_{\tau}\}_{\tau=1}^{T}$ be the forecast timestamps (uniform step Δt), and let y_{τ} and \hat{y}_{τ} denote the observed and predicted water level at t_{τ} .

Mean Squared Error (MSE).

MSE =
$$\frac{1}{T} \sum_{\tau=1}^{T} (\hat{y}_{\tau} - y_{\tau})^{2}$$
.

Nash-Sutcliffe Efficiency (NSE).

NSE =
$$1 - \frac{\sum_{\tau=1}^{T} (\hat{y}_{\tau} - y_{\tau})^{2}}{\sum_{\tau=1}^{T} (y_{\tau} - \bar{y})^{2}}, \quad \bar{y} = \frac{1}{T} \sum_{\tau=1}^{T} y_{\tau}.$$

Peak timing error ($\Delta t_{\rm peak}$). Let $\tau_{\rm obs}^{\star} \in \arg \max_{\tau} y_{\tau}$ and $\tau_{\rm pred}^{\star} \in \arg \max_{\tau} \hat{y}_{\tau}$. We report the (absolute) timing difference in hours:

$$\Delta t_{\rm peak} \; = \; \left| \; t_{\tau_{\rm pred}^{\star}} - t_{\tau_{\rm obs}^{\star}} \; \right| \; = \; \left| \; \tau_{\rm pred}^{\star} - \tau_{\rm obs}^{\star} \; \right| \; \Delta t.$$

(With 15 min cadence, $\Delta t = 0.25$ h.)

Peak height error (Δh_{peak}). We compare the peak magnitudes over the forecast window:

$$\Delta h_{\text{peak}} = \left| \max_{\tau} \hat{y}_{\tau} - \max_{\tau} y_{\tau} \right| \text{ (meters)}.$$

Optimization & training. All experiments are conducted on a single workstation with an NVIDIA RTX 4090 (24 GB), an Intel Core i9-14900KS, and 128 GB of RAM. All models are trained in PyTorch with **Adam** (learning rate 1×10^{-3}), mini-batches of **64**, and shuffled training streams; validation/test loaders are not shuffled. We use a **deep ensemble** of M=3 independently trained instances for each seed we reinstantiate the data loaders with the same seed to obtain reproducible shuffles. At inference, we average ensemble outputs for the point forecast and report the ensemble standard deviation as an estimate of epistemic uncertainty. Unless otherwise stated, input and forecast horizons are 32 steps (15 min cadence \Rightarrow 8 h lookback/8 h horizon), and the same preprocessing and scaling are applied across all runs.

¹No multi-GPU or distributed training is used.

Reproducibility. We will release scripts that (i) download the raw CSVs from the Hydrology service, (ii) apply the exact parsing and split logic used in this paper, and (iii) regenerate all summary tables.

B APPENDIX B: PANEL A: DUAL-STREAM DISCHARGE PRIOR WITH INPUT-DRIVEN GATING

Notation. For a sequence $z \in \mathbb{R}^T$ define the forward difference $\Delta z(\tau) = z(\tau) - z(\tau - 1)$ for $\tau \geq 2$. We write the Sobolev-seminorm $\|z\|_{\mathrm{H}^1}^2 = \sum_{\tau=2}^T (\Delta z(\tau))^2$ and the total variation $\|z\|_{\mathrm{TV}} = \sum_{\tau=2}^T |\Delta z(\tau)|$. A history window is $X_{1:L} \in \mathbb{R}^{L \times d}$; the most recent vector is $x_L \in \mathbb{R}^d$.

B.1 MODEL AND TRAINING OBJECTIVE

Two sequence encoders (e.g., LSTMs) produce nonnegative discharge sequences

$$Q_{b}(X), Q_{q}(X) \in \mathbb{R}^{T}_{>0}, \qquad Q_{b} = \phi_{b}(X), \ Q_{q} = \phi_{q}(X),$$

and a scalar gate is computed from the history (in code: from x_L)

$$\alpha(X) = \sigma(g(X)) \in [0,1], \qquad \sigma(u) = \frac{1}{1 + e^{-u}}.$$

The latent discharge propagated downstream is the convex mixture

$$Q_{\theta}(\tau; X) = \alpha(X) Q_{q}(\tau; X) + (1 - \alpha(X)) Q_{b}(\tau; X), \qquad Q_{\theta} \in \mathbb{R}^{T}_{>0}.$$
 (12)

To bias the decomposition toward interpretable dynamics we add a paired prior

$$\mathcal{R}_{b}(Q_{b}) = \|Q_{b}\|_{H^{1}}^{2}, \qquad \mathcal{R}_{q}(Q_{q}) = \|Q_{q}\|_{TV}.$$
 (13)

Let \mathcal{L}_{data} denote the supervised loss (on the task outputs). The Panel-A contribution to the training objective is

$$\mathcal{L}_A(X;\theta) = \rho_b \|Q_b(X)\|_{H^1}^2 + \rho_q \|Q_q(X)\|_{TV}, \qquad \rho_b, \rho_q > 0, \tag{14}$$

and the full loss is $\mathcal{L}_{total} = \mathcal{L}_{data} + \mathcal{L}_A + \mathcal{L}_{physics}$.

Remark (penalized joint learning). Unlike a constrained "recover $(Q_{\rm b},Q_{\rm q})$ given Q_{θ} " solve, our implementation *jointly learns* $Q_{\rm b},Q_{\rm q}$ with the encoders by penalizing equation 13 during training. This is exactly what the code does.

B.2 STABILITY OF THE GATED MIXTURE

Assumption B1 (encoder and gate regularity). There exist Lipschitz constants $L_{\rm b}, L_{\rm q}, L_g \geq 0$ such that

$$||Q_{\rm b}(X) - Q_{\rm b}(X')||_{\infty} \le L_{\rm b} ||X - X'||, \quad ||Q_{\rm q}(X) - Q_{\rm q}(X')||_{\infty} \le L_{\rm q} ||X - X'||,$$

and $|g(X) - g(X')| \le L_g ||X - X'||$, for a fixed norm $||\cdot||$ on $\mathbb{R}^{L \times d}$. We use the standard bound $|\sigma(u) - \sigma(v)| \le \frac{1}{4}|u - v|$.

Theorem 4 (Lipschitz dependence of Q_{θ} on the history). Under Assumption B1, for any windows X, X',

$$\|Q_{\theta}(\cdot;X) - Q_{\theta}(\cdot;X')\|_{\infty} \le \left(L_{\mathbf{q}} + L_{\mathbf{b}} + \frac{1}{4}L_{g}\Delta_{Q}(X')\right)\|X - X'\|,$$

where $\Delta_Q(X') = \sup_{\tau} |Q_q(\tau; X') - Q_b(\tau; X')|$. If a uniform bound $\Delta_Q(X') \leq \Delta_{\max}$ holds on the training domain, we may replace $\Delta_Q(X')$ by Δ_{\max} .

Sketch. Using equation 12,

$$Q_{\theta}(\cdot; X) - Q_{\theta}(\cdot; X') = \alpha(X) (Q_{q}(X) - Q_{q}(X')) + (1 - \alpha(X)) (Q_{b}(X) - Q_{b}(X')) + (\alpha(X) - \alpha(X')) (Q_{q}(X') - Q_{b}(X')).$$

Take $\|\cdot\|_{\infty}$, apply the encoder Lipschitz bounds to the first two terms, and the sigmoid bound $|\alpha(X) - \alpha(X')| \le \frac{1}{4}|g(X) - g(X')| \le \frac{1}{4}L_q\|X - X'\|$ to the gate term; then collect constants.

Interpretation. Small perturbations of the input history yield bounded changes in Q_{θ} . The bound decomposes additively into (i) variability of the fast stream, (ii) variability of the slow stream, and (iii) gate sensitivity scaled by the instantaneous separation Δ_Q between streams.

B.3 BIAS AND IDENTIFIABILITY OF THE PENALIZED SPLIT

Define the per-batch objective

702

703

704

705 706

707

708 709

710

711

712

713

714

715

716

717

718

719

720

721 722

723

724

725

726

727 728

729

730 731

732

733

734

735 736

737

738

739

740 741

742

743

748

749

750

751

752 753

754

755

$$\mathcal{J}(X;\theta) = \mathcal{L}_{\text{data}}(X;\theta) + \rho_{\text{b}} \|Q_{\text{b}}(X)\|_{H^{1}}^{2} + \rho_{\text{q}} \|Q_{\text{q}}(X)\|_{TV}.$$

At any stationary point of \mathcal{J} (with respect to encoder parameters), the Euler-Lagrange/KKT conditions yield the following qualitative structure.

Proposition 2 (Directional bias of the streams). Let θ^* be a stationary point of \mathcal{J} . Then the slow stream $Q_{\rm b}(X;\theta^{\star})$ minimizes a data-augmented functional that contains $\|DQ\|_2^2$, while the fast stream $Q_q(X;\theta^*)$ minimizes a data-augmented functional that contains $\|DQ\|_1$. Consequently, Q_b concentrates low-frequency energy and Q_q concentrates high-variation energy (sparse differences). The nonnegativity constraints preserve the physical sign.

Idea. Differentiate $\mathcal J$ with respect to the encoder outputs. The gradient contributions of $\|Q_{\mathrm{b}}\|_{\mathrm{H}^1}^2$ and $||Q_a||_{TV}$ are, respectively, $D^{\top}(2DQ_b)$ (a smoothing operator) and $D^{\top}(\text{sign}(DQ_a))$ (an edgesparsifying operator). Balancing these with the data gradient yields the stated bias. Formal details follow by standard subdifferential calculus for TV.

Identifiability discussion. When $\alpha \in (0,1)$ and the two priors are active $(\rho_b, \rho_q > 0)$, the optimization favors a unique role allocation—smooth content in Q_b , jump-sparse content in Q_q . If α saturates at $\{0,1\}$, the inactive stream is under-determined by the mixture; in practice we discourage saturation by ordinary early-training regularization on the gate (e.g., mild logit penalty) and by the data loss coupling both streams through Q_{θ} .

APPENDIX C: PANEL B: PROPERTIES OF THE MONOTONE LATENT MAPPING

Panel B maps the nonnegative driver $q(\tau) \in \mathbb{R}_{>0}$ (output of Panel A) to the target $h(\tau)$ through a shallow MLP $f_{\theta}: \mathbb{R}_{\geq 0} \to \mathbb{R}$ applied elementwise in time: $h(\tau) = f_{\theta}(q(\tau))$. We do *not* impose weight sign constraints; instead we add a lightweight batchwise monotonicity surrogate that encourages f_{θ} to be nondecreasing over the *observed* driver range.

Given a finite design set $\mathbf{q} = \{q_i\}_{i=1}^n$ sampled from the current batch (or a fixed grid) and sorted $q_{(1)} \leq \cdots \leq q_{(n)}$, define

$$\mathcal{L}_{\text{mono}}(\theta; \mathbf{q}) = \frac{1}{n-1} \sum_{i=1}^{n-1} \left[f_{\theta}(q_{(i+1)}) - f_{\theta}(q_{(i)}) \right]_{-}, \qquad [x]_{-} = \max\{0, -x\}.$$
 (15)

We add $\gamma_{\text{mono}} \mathcal{L}_{\text{mono}}$ to the training objective (with $\gamma_{\text{mono}} = 0.01$ in our experiments).

Proposition 3 (Immediate properties). If $f_{\theta}(q_{(i+1)}) \geq f_{\theta}(q_{(i)})$ for all i, then $\mathcal{L}_{\text{mono}}(\theta; \mathbf{q}) = 0$. Moreover,

whosever,
$$\max_{1 \leq i \leq n-1} [f_{\theta}(q_{(i)}) - f_{\theta}(q_{(i+1)})]_{+} \leq (n-1) \mathcal{L}_{\text{mono}}(\theta; \mathbf{q}),$$
 so the loss controls the largest adjacent monotonicity violation on the sampled range.

Let design sets $\mathbf{q}^{(m)} \subset [0, Q_{\max}]$ densify (mesh size $\to 0$), and suppose $\sup_m \|f_{\theta_m}\|_{\infty} < \infty$ and a standard regularizer yields a uniform total-variation bound on f_{θ_m} . If $\mathcal{L}_{\text{mono}}(\theta_m; \mathbf{q}^{(m)}) \to 0$, then a subsequence of $\{f_{\theta_m}\}$ converges pointwise a.e. on $[0, Q_{\max}]$ to a nondecreasing limit. (Sketch: Helly selection on uniformly BV functions + vanishing adjacent violations on a dense mesh implies monotonicity a.e. of the limit.)

Practice. (i) We form q by sorting the per-batch driver values and compute equation 15. (ii) The surrogate only constrains the map where data lie (observed driver range), which is sufficient to stabilize training and improve identifiability in practice. (iii) No architectural monotonicity constraints are required; the approach is optimizer- and MLP-agnostic.

D APPENDIX D: PANEL C: WEAK-FORM PHYSICS ON A LATENT MESH

Latent mesh and broadcasted residual. Let the forecast steps be $\tau = 1:T$ and the latent spatial grid $\{x_j\}_{j=1}^X \subset [0,1]$. The model outputs two *time-indexed* proxies (constant in x upon broadcast)

$$d_t h_{\theta}[\tau] \approx \partial_t h(\tau, \cdot), \qquad d_x Q_{\theta}[\tau] \approx \partial_x Q(\tau, \cdot),$$

and forms a latent forcing by projecting a single exogenous series via an exponential kernel

$$R_{\kappa}(x) = \bar{R} e^{-\kappa x}, \qquad \kappa > 0$$
 learnable, $\bar{R} = \text{batch summary of rainfall.}$

A nonnegative space–time weighting field $\lambda_{\phi}(\tau,x) \geq 0$ (produced by a small network on (τ,x)) emphasizes informative regions. The broadcast weak residual is

$$r_{\theta}[\tau, j] = d_t h_{\theta}[\tau] + d_x Q_{\theta}[\tau] - R_{\kappa}(x_i),$$

and the weak-form physics loss used in training is the normalized weighted average

$$\mathcal{L}_{\text{pde}}(\theta, \phi) = \frac{1}{TX} \sum_{\tau=1}^{T} \sum_{j=1}^{X} \lambda_{\phi}(\tau, x_{j}) r_{\theta}[\tau, j]^{2}, \qquad \lambda_{\phi}(\tau, x) \ge 0.$$
 (16)

(Implementation: λ_{ϕ} is Softplus-positive; optionally we renormalize it per batch so its average over (τ, j) is 1, but this is not required.)

C.1 From Classical weak residuals to the broadcast loss

Consider the 1-D continuity law on a strip,

$$\partial_t h(\tau, x) + \partial_x Q(\tau, x) = R(x), \qquad (\tau, x) \in \{1:T\} \times [0, 1].$$

Let μ_{ϕ} be a learned *nonnegative* measure on [0,1] with density $\lambda_{\phi}(\tau,\cdot)$ for each τ (no sign changes; boundedness holds in practice due to Softplus outputs).

Theorem 5 (Broadcast loss is a weighted weak residual). Assume (i) $d_t h_{\theta}[\tau]$ and $d_x Q_{\theta}[\tau]$ are broadcast as piecewise-constant in x, (ii) R_{κ} is continuous in x, and (iii) $\lambda_{\phi}(\tau, \cdot)$ is bounded and nonnegative. Then equation 16 is a Riemann (cell-wise) quadrature of the weighted weak residual with constant test functions on each cell:

$$\mathcal{L}_{\text{pde}}(\theta,\phi) = \frac{1}{T} \sum_{\tau=1}^{T} \int_{0}^{1} \left(\partial_{t} h_{\theta}(\tau,x) + \partial_{x} Q_{\theta}(\tau,x) - R_{\kappa}(x) \right)^{2} d\mu_{\phi}(\tau,x) + o(1),$$

where $o(1) \to 0$ as $\max_j |x_{j+1} - x_j| \to 0$. Sketch. Broadcasting makes trial/test functions piecewise constant in x; the double sum is a normalized quadrature of the weighted L^2 residual over the latent cells.

C.2 Consistency under refinement and approximation

We formalize when vanishing broadcast loss enforces the PDE almost everywhere.

Assumption 5 (Approximation + bounded weights). There exist h^*, Q^*, R^* with $\partial_t h^* + \partial_x Q^* = R^*$ a.e. such that: (i) $d_t h_\theta \to \partial_t h^*$ and $d_x Q_\theta \to \partial_x Q^*$ in $L^2([0,1])$ (over τ); (ii) $R_\kappa \to R^*$ in $L^2([0,1])$ as $\kappa \to \kappa^*$; (iii) the latent grid fill distance $\to 0$; (iv) for each τ , $\lambda_\phi(\tau,\cdot)$ is bounded on [0,1] (and optionally renormalized to unit mean).

Theorem 6 (Consistency of latent weak enforcement). Under Assumption 5, if $\mathcal{L}_{pde}(\theta, \phi) \to 0$ then

$$\partial_t h^{\star}(\tau, x) + \partial_x Q^{\star}(\tau, x) = R^{\star}(x)$$
 for a.e. $(\tau, x) \in \{1:T\} \times [0, 1]$.

Sketch. By Theorem 5 the discrete loss converges to a weighted L^2 residual; bounded λ_{ϕ} and the L^2 approximations imply the residual tends to 0 in $L^2(\mu_{\phi})$, hence vanishes a.e.

C.3 ROLE OF THE LEARNED WEIGHT FIELD AND EXPONENTIAL FORCING

Learned importance map. The nonnegative field $\lambda_{\phi}(\tau, x)$ in equation 16 lets the model allocate *physics pressure* to informative regions (e.g., transients or specific latent cells). Gradients take the form

$$\frac{\partial \mathcal{L}_{\text{pde}}}{\partial d_t h_{\theta}[\tau]} = \frac{2}{TX} \sum_j \lambda_{\phi}(\tau, x_j) \, r_{\theta}[\tau, j], \quad \frac{\partial \mathcal{L}_{\text{pde}}}{\partial d_x Q_{\theta}[\tau]} = \frac{2}{TX} \sum_j \lambda_{\phi}(\tau, x_j) \, r_{\theta}[\tau, j],$$

$$\frac{\partial \mathcal{L}_{\text{pde}}}{\partial \phi} = \frac{1}{TX} \sum_{\tau, j} r_{\theta}[\tau, j]^2 \, \partial_{\phi} \lambda_{\phi}(\tau, x_j). \quad (17)$$

so cells with large residuals attract more weight until balanced by normalization/other losses.

Exponential projection. With $R_{\kappa}(x) = \bar{R}e^{-\kappa x}$ and $\kappa > 0$ learned, single-point exogenous input induces a *spatial* latent loading that decays with x, enabling spatiotemporal structure from a single time series while keeping the projection differentiable and stable.

C.4 RELATION TO CLASSICAL PINNS AND WEAK-FORM PINNS (MATHEMATICAL)

Classical (strong-form) PINNs. For a PDE $\mathcal{N}[u] = f$ on $[1:T] \times \Omega$, strong PINNs penalize pointwise residuals at collocation points:

$$\mathcal{L}_{\text{strong}}(\theta) = \frac{1}{N} \sum_{i=1}^{N} \left| \mathcal{N}[u_{\theta}](\tau_i, x_i) - f(\tau_i, x_i) \right|^2 + (\text{data/bc/ic}).$$

They require spatial collocation (τ_i, x_i) and (via \mathcal{N}) generally involve higher-order derivatives of u_{θ} .

Weak-form (Galerkin) PINNs. Fix test functions $\{\varphi_k\}_{k=1}^K$; the weak residual is

$$\mathcal{R}_{\text{weak}}(\theta; \varphi_k) = \int_{\Omega} \left(\mathcal{N}[u_{\theta}] - f \right) \varphi_k \, dx, \qquad \mathcal{L}_{\text{weak}}(\theta) = \frac{1}{K} \sum_{k=1}^{K} \left| \mathcal{R}_{\text{weak}}(\theta; \varphi_k) \right|^2 + (\text{data/bc/ic}).$$

With cellwise-constant $\varphi_k = \mathbb{1}_{\Omega_k}$ this becomes a per-cell averaged L^2 residual, trading pointwise sensitivity for integral robustness.

APILaNet's broadcast weak form (Panel C). On a *latent* 1-D grid $\{x_j\}_{j=1}^X$, we broadcast time-only proxies $d_t h_{\theta}[\tau]$ and $d_x Q_{\theta}[\tau]$ and use an exponentially projected forcing $R_{\kappa}(x) = \bar{R}e^{-\kappa x}$:

$$r_{\theta}[\tau, j] = d_t h_{\theta}[\tau] + d_x Q_{\theta}[\tau] - R_{\kappa}(x_j), \qquad \mathcal{L}_{\text{pde}}(\theta, \phi) = \frac{1}{TX} \sum_{\tau=1}^{T} \sum_{j=1}^{X} \lambda_{\phi}(\tau, x_j) r_{\theta}[\tau, j]^2,$$

with a learned nonnegative measure $\lambda_{\phi}(\tau,\cdot)$ (Sec. ??). By Thm. 5, \mathcal{L}_{pde} is a *Riemann quadrature* of a weighted weak L^2 residual with constant test functions.

E APPENDIX E: PANEL D: PROPERTIES AND PSEUDO-CODE

Recall (from Method, Eqns. equation 9-equation 11). The effective PDE weight factorizes as

$$\Lambda_{\text{pde}}(t,x) = \lambda_{\text{pde}} \ \lambda_{\text{loc}}(t,x), \quad \lambda_{\text{loc}}(t,x) \ge 0, \quad \frac{1}{TX} \sum_{\tau=1}^{T} \sum_{j=1}^{X} \lambda_{\text{loc}}(\tau,x_j) = 1,$$

and the PDE contribution to the loss is

$$\mathcal{L}_{\text{pde}}^{\text{eff}} = \lambda_{\text{pde}} \frac{1}{TX} \sum_{\tau=1}^{T} \sum_{j=1}^{X} \lambda_{\text{loc}}(\tau, x_j) r_{\theta}[\tau, j]^2, \quad r_{\theta}[\tau, j] = \partial_t h_{\theta}[\tau] + \partial_x Q_{\theta}[\tau] - R_{\theta}(x_j).$$

Global weights are scheduled per mini-batch $i \in \{pde, cons\}$ by

$$\lambda_i = \operatorname{clip}\left(\lambda_i^0 \left(1 + E + \boldsymbol{\alpha}_i^{\mathsf{T}} \mathbf{s} + \alpha_{i,\Pi} \Pi\right), \lambda_i^{\min}, \lambda_i^{\max}\right),$$

with base $\lambda_i^0 > 0$, nonnegative sensitivities $(\alpha_i, \alpha_{i,\Pi})$, and clipping bounds.

D.1 ASSUMPTIONS AND IMMEDIATE CONSEQUENCES

Assumption 6 (Bounded signals & normalized local field). During training the batch prediction loss $E \geq 0$, each component of the regime vector $\mathbf{s} \geq 0$, and the activity score $\Pi \in [0,1]$ are bounded. The local field obeys $\lambda_{loc}(\tau,x) \geq 0$ and $\frac{1}{TX} \sum_{\tau,j} \lambda_{loc}(\tau,x_j) = 1$. The clip enforces $\lambda_i \in [\lambda_i^{\min}, \lambda_i^{\max}]$.

Theorem 7 (Monotone responsiveness with bounded pressure). Under Assumption 6, each λ_i is (piecewise) nondecreasing in E, in every component of s, and in Π (whenever unclipped), and always satisfies $\lambda_i^{\min} \leq \lambda_i \leq \lambda_i^{\max}$. Moreover, when unclipped,

$$\frac{\partial \lambda_i}{\partial E} = \lambda_i^0, \qquad \frac{\partial \lambda_i}{\partial s_k} = \alpha_{ik} \lambda_i^0, \qquad \frac{\partial \lambda_i}{\partial \Pi} = \alpha_{i,\Pi} \lambda_i^0.$$

Proposition 4 (Lipschitz variation across batches). For consecutive batches k, k+1, when unclipped

$$\left|\lambda_i^{(k+1)} - \lambda_i^{(k)}\right| \le \lambda_i^0 \left(|E_{k+1} - E_k| + \sum_m \alpha_{im} |s_{m,k+1} - s_{m,k}| + \alpha_{i,\Pi} |\Pi_{k+1} - \Pi_k| \right),$$

and with clipping, the same bound holds after projection to $[\lambda_i^{\min}, \lambda_i^{\max}]$. Thus the scheduler is Lipschitz in signal deltas and has no EMA-type lag.

Lemma 1 (Scale invariance under local normalization). With $\frac{1}{TX} \sum_{\tau,j} \lambda_{loc}(\tau,x_j) = 1$,

$$\mathcal{L}_{\mathrm{pde}}^{\mathit{eff}} = \lambda_{\mathrm{pde}} \cdot \overline{r^2}, \quad \overline{r^2} := rac{1}{TX} \sum_{ au, j} \lambda_{loc}(au, x_j) \, r_{ au j}^2.$$

Hence the rescaling $\lambda_{loc} \mapsto c \, \lambda_{loc}$, $\lambda_{pde} \mapsto \lambda_{pde}/c$ leaves \mathcal{L}_{pde}^{eff} unchanged; normalization removes this ambiguity and improves identifiability.

D.2 Gradients and intuition

Using $r_{\tau j} = d_t h_{\theta}[\tau] + d_x Q_{\theta}[\tau] - R_{\theta}(x_j)$, the partials of \mathcal{L}_{pde}^{eff} are

$$\frac{\partial \mathcal{L}_{\text{pde}}^{\text{eff}}}{\partial d_{t} h_{\theta}[\tau]} = \frac{2\lambda_{\text{pde}}}{TX} \sum_{j} \lambda_{\text{loc}}(\tau, x_{j}) \, r_{\tau j},$$

$$\frac{\partial \mathcal{L}_{\text{pde}}^{\text{eff}}}{\partial d_{x} Q_{\theta}[\tau]} = \frac{2\lambda_{\text{pde}}}{TX} \sum_{j} \lambda_{\text{loc}}(\tau, x_{j}) \, r_{\tau j},$$

$$\frac{\partial \mathcal{L}_{\text{pde}}^{\text{eff}}}{\partial \lambda_{\text{loc}}(\tau, x_{j})} = \frac{\lambda_{\text{pde}}}{TX} \, r_{\tau j}^{2} \quad \text{(before renormalization)}.$$
(18)

Thus the learned field λ_{loc} (Softplus-positive) allocates more weight to large residuals until balanced by normalization and other losses; λ_{pde} scales the overall physics pressure per batch.

D.3 PSEUDO-CODE (DOMAIN-AGNOSTIC)

We use the factorized schedule in Algorithm 2. It matches the Method section but is formatted for one column.

D.4 PRACTICAL KNOBS

Clips. Choose $[\lambda_i^{\min}, \lambda_i^{\max}]$ so physics never dominates early but can rise during events. Sensitivities. Start with small α s (e.g., 10^{-1} – 10^0), increase if residuals persist. Spread regularizers (optional). Entropy or ℓ_2 penalties on λ_{loc} discourage collapse:

$$\mathcal{R}_{\text{entropy}} = \beta \sum_{\tau,j} \lambda_{\text{loc}}(\tau, x_j) \log \lambda_{\text{loc}}(\tau, x_j), \quad \mathcal{R}_{\ell_2} = \beta \sum_{\tau,j} \left(\lambda_{\text{loc}}(\tau, x_j) - \frac{1}{X} \right)^2.$$

Algorithm 2: Adaptive Multi-Loss Scheduling with Factorized Local Weights

```
Inputs: mini-batch \mathcal{D}, model \mathcal{F}_{\theta}, optimizer; bases \left\{\lambda_{i}^{0}\right\}; sensitivities \left\{\alpha_{ik}\right\}; clips \left[\lambda_{i}^{\min}, \lambda_{i}^{\max}\right] Outputs: updated parameters \theta for epoch \ e=1 to N_{epoch} do foreach mini-batch \ \mathcal{D} do compute per-losses \left\{\mathcal{L}_{i}(\theta,\mathcal{D})\right\}_{i=1}^{m}; optional local map W_{\text{loc}} \geq 0 compute batch signals \left\{s_{k}(\mathcal{D})\right\}_{k=1}^{K} and activity \Pi for i=1 to m do \begin{vmatrix} \lambda_{i} \leftarrow \text{clip}\left(\lambda_{i}^{0}\left(1+\sum_{k=1}^{K}\alpha_{ik}\ s_{k}+\alpha_{i,\Pi}\Pi\right),\lambda_{i}^{\min},\lambda_{i}^{\max}\right) \end{vmatrix} if W_{\text{loc}} used then \begin{vmatrix} Z \leftarrow \frac{1}{|\Omega|}\sum_{(t,x)\in\Omega}W_{\text{loc}}(t,x);\\ W_{\text{loc}} \leftarrow W_{\text{loc}}/Z \end{vmatrix} \mathcal{L}_{\text{tot}} \leftarrow \sum_{i=1}^{m}\lambda_{i}\ \mathcal{L}_{i}(\theta,\mathcal{D};W_{\text{loc}}) optimizer.zero_grad(); backprop(\mathcal{L}_{\text{tot}}); optimizer.step()
```

F APPENDIX F : ADDITIONAL EXPERIMENTS

We report additional benchmarks that stress early—warning skill at four lead times before the observed peak: $\bf 8h, 6h, 4h$, and $\bf 2h$. At each lead time we (i) re-slice the dataset around the peak time; (ii) run every model with the same hyperparameters as Section 4; and (iii) report the mean across three seeds. Primary metrics are MSE (\downarrow) and NSE (\uparrow); we additionally report peak timing error $\Delta t_{\rm peak}$ (\downarrow) and peak magnitude error $\Delta h_{\rm peak}$ (\downarrow). Across all sites, accuracy improves monotonically as lead time shortens ($\bf 8h \rightarrow 2h$). APILaNet retains the best or second-best MSE/NSE at every lead time and consistently reduces $\Delta t_{\rm peak}$ and $\Delta h_{\rm peak}$ relative to strong sequence baselines.

Figure 4: Model forecasts at four start times: (a) APILANET, (b) CROSSFORMER, (c) TSMIXER.

Table 5: Catchment-level forecasting 8 hours before peak. Metrics are mean \pm SD across seeds. Errors: peak timing $\Delta t_{\rm peak}$ (h) \downarrow , peak height $\Delta h_{\rm peak}$ (m) \downarrow , MSE \downarrow , NSE \uparrow .

Data	Split		APII	ANET			Crossl	FORMER			TSM	IXER	
Data	Spiit	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \downarrow$	MSE↓	NSE↑	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \downarrow$	$MSE\downarrow$	NSE↑	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\rm peak} \!\!\downarrow$	MSE↓	NSE†
×	Event 1	0.420 ± 0.380	0.299 ± 0.031	0.133 ± 0.096	0.623 ± 0.271	0.000 ± 0.000	0.377 ± 0.148	0.242 ± 0.09	0.314 ± 0.255	2.580 ± 4.470	0.552 ± 0.024	0.369 ± 0.032	-0.044 ± 0.090
B B	Event 2	0.170 ± 0.290	0.314 ± 0.055	$\textbf{0.198} \pm \textbf{0.072}$	0.766 ± 0.085	0.250 ± 0.250	0.527 ± 0.007	0.479 ± 0.034	0.434 ± 0.041	0.500 ± 0.000	0.411 ± 0.043	0.354 ± 0.051	0.583 ± 0.060
COM	Event 3	0.170 ± 0.290	1.339 ± 0.088	1.205 ± 0.185	0.132 ± 0.133	0.000 ± 0.000	1.348 ± 0.050	1.111 ± 0.837	0.200 ± 0.060	0.000 ± 0.000	1.297 ± 0.051	1.012 ± 0.089	0.271 ± 0.064
<	Average	0.253 ± 0.144	0.651 ± 0.596	0.512 ± 0.601	0.507 ± 0.333	0.083 ± 0.144	0.751 ± 0.523	0.611 ± 0.449	0.316 ± 0.117	1.027 ± 1.368	0.753 ± 0.476	0.578 ± 0.376	0.270 ± 0.314
ES	Event 1	0.000 ± 0.000	0.122 ± 0.065	0.064 ± 0.023	0.877 ± 0.044	0.000 ± 0.000	0.334 ± 0.098	0.201 ± 0.136	0.612 ± 0.262	0.000 ± 0.000	0.237 ± 0.030	0.112 ± 0.040	0.783 ± 0.078
2 8	Event 2	0.000 ± 0.000	$\underline{0.107\pm0.075}$	0.033 ± 0.010	$\textbf{0.877}\pm\textbf{0.040}$	0.000 ± 0.000	0.192 ± 0.054	0.109 ± 0.054	0.586 ± 0.206	0.000 ± 0.000	0.101 ± 0.018	0.034 ± 0.015	0.870 ± 0.058
COM	Event 3	0.000 ± 0.000	0.827 ± 0.045	0.665 ± 0.046	0.572 ± 0.029	0.000 ± 0.000	1.166 ± 0.062	1.267 ± 0.129	0.184 ± 0.083	0.000 ± 0.000	$\underline{0.929\pm0.079}$	$\underline{0.805\pm0.148}$	$\underline{0.481\pm0.096}$
_ <	Average	0.000 ± 0.000	0.352 ± 0.411	0.254 ± 0.356	0.775 ± 0.176	0.000 ± 0.000	0.564 ± 0.526	0.526 ± 0.644	0.461 ± 0.240	0.000 ± 0.000	0.422 ± 0.444	0.317 ± 0.424	0.711 ± 0.204
9	Event 1	0.000 ± 0.000	0.463 ± 0.192	0.452 ± 0.135	0.506 ± 0.147	2.080 ± 3.610	1.022 ± 0.052	1.072 ± 0.167	-0.172 ± 0.182	0.080 ± 0.140	0.850 ± 0.065	0.689 ± 0.109	0.246 ± 119
SHI	Event 2	$\times \pm \times$	\times \pm \times	\times \pm \times	$\times \pm \times$	$\times \pm \times$	\times \pm \times	\times \pm \times	\times \pm \times	$\times \pm \times$	\times \pm \times	$\times \pm \times$	\times \pm \times
Š.	Event 3	0.000 ± 0.000	0.949 ± 0.033	$\textbf{0.900}\pm\textbf{0.068}$	-0.077 ± 0.082	0.000 ± 0.000	0.995 ± 0.014	1.006 ± 0.039	-0.203 ± 0.047	0.000 ± 0.000	$\underline{0.971\pm0.017}$	0.947 ± 0.036	<u>-0.133 ± 0.043</u>
S	Average	0.000 ± 0.000	0.471 ± 0.475	0.451 ± 0.450	0.143 ± 0.317	0.693 ± 1.201	0.672 ± 0.582	0.693 ± 0.601	$\text{-0.125}\pm0.109$	0.027 ± 0.046	$\underline{0.607\pm0.529}$	$\underline{0.545\pm0.490}$	$\underline{0.038\pm0.192}$
X X	Event 1	4.750 ± 4.160	0.241 ± 0.050	0.171 ± 0.089	-0.762 ± 0.922	6.830 ± 0.880	0.189 ± 0.081	0.111 ± 0.019	-0.145 ± 0.204	5.170 ± 4.470	0.246 ± 0.046	0.266 ± 0.157	-1.744 ± 1.623
ΣK	Event 2	0.000 ± 0.000	0.266 ± 0.059	0.295 ± 0.133	$\underline{0.326\pm0.305}$	0.000 ± 0.000	0.330 ± 0.088	0.278 ± 0.158	0.364 ± 0.361	0.000 ± 0.000	0.312 ± 0.090	0.302 ± 0.119	0.309 ± 0.274
NND	Event 3	$\times \pm \times$	\times \pm \times	\times \pm \times	$\times \pm \times$	$\times \pm \times$	\times \pm \times	\times \pm \times	\times \pm \times	×±×	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$
z	Average	1.583 ± 2.741	0.169 ± 0.147	0.155 ± 0.148	-0.145 ± 0.558	2.277 ± 3.946	$\underline{0.173\pm0.166}$	0.130 ± 0.140	0.073 ± 0.262	1.723 ± 2.986	0.186 ± 0.164	0.189 ± 0.165	-0.478 ± 1.107
>:	Event 1	0.170 ± 0.140	0.106 ± 0.033	0.028 ± 0.023	0.935 ± 0.053	0.000 ± 0.000	0.159 ± 0.090	0.079 ± 0.048	0.821 ± 0.109	0.000 ± 0.000	0.137 ± 0.036	0.073 ± 0.028	0.834 ± 0.064
SLE	Event 2	0.080 ± 0.140	0.155 ± 0.153	0.064 ± 0.024	0.916 ± 0.032	0.420 ± 0.720	0.317 ± 0.034	0.441 ± 0.168	0.429 ± 0.218	0.000 ± 0.000	0.287 ± 0.207	0.195 ± 0.172	0.748 ± 0.223
KNITSLEY	Event 3	0.000 ± 0.000	$\underline{0.170\pm0.008}$	0.124 ± 0.047	0.271 ± 0.274	0.000 ± 0.000	0.084 ± 0.013	$\textbf{0.047} \pm \textbf{0.008}$	0.725 ± 0.050	0.000 ± 0.000	0.197 ± 0.019	0.099 ± 0.015	0.414 ± 0.090
	Average	0.083 ± 0.085	0.144 ± 0.033	0.072 ± 0.048	0.707 ± 0.378	0.140 ± 0.242	0.187 ± 0.119	0.189 ± 0.219	0.658 ± 0.204	0.000 ± 0.000	0.207 ± 0.075	0.122 ± 0.064	0.665 ± 0.222

Table 6: Catchment-level forecasting 6 hours before peak. Metrics are mean \pm SD across seeds. Errors: peak timing $\Delta t_{\rm peak}$ (h) \downarrow , peak height $\Delta h_{\rm peak}$ (m) \downarrow , MSE \downarrow , NSE \uparrow .

		I	4 DII	ANET		l	Choool	ORMER		TSMIXER				
Data	Split	$\Delta t_{\mathrm{peak}} \downarrow$	APII Δh _{peak} ↓	MSE.I.	NSE↑	$\Delta t_{\mathrm{peak}} \downarrow$	∠h _{peak} ↓	MSE.I.	NSE↑	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \downarrow$	MSE.L.	NSE†	
			→r*peak↓	1110224	TOL	_ opeak↓	△**peak↓	····DL4	TOL	□ upeak ↓	△.r.peak↓	мощ	11021	
N N	Event 1	0.750 ± 0.250	0.395 ± 0.073	0.351 ± 0.165	0.553 ± 0.210	0.250 ± 0.000	0.484 ± 0.151	0.447 ± 0.359	0.430 ± 0.459	0.830 ± 0.520	0.581 ± 0.088	0.665 ± 0.239	0.152 ± 0.305	
9	Event 2	0.750 ± 0.500	$\underline{0.351\pm0.037}$	$\underline{0.318\pm0.096}$	$\underline{0.564\pm0.131}$	0.500 ± 0.430	0.462 ± 0.032	0.478 ± 0.075	0.345 ± 0.102	1.000 ± 0.430	0.344 ± 0.010	0.268 ± 0.069	0.632 ± 0.095	
ACOMB	Event 3	1.580 ± 0.290	1.233 ± 0.122	4.814 ± 0.362	0.082 ± 0.069	1.580 ± 0.140	1.339 ± 0.089	$\underline{4.562\pm0.497}$	0.130 ± 0.095	1.250 ± 0.500	1.320 ± 0.074	4.171 ± 0.413	0.205 ± 0.079	
~	Average	1.027 ± 0.479	0.660 ± 0.497	1.828 ± 2.586	0.400 ± 0.275	$\textbf{0.777}\pm\textbf{0.707}$	0.762 ± 0.500	1.829 ± 2.367	0.302 ± 0.155	1.027 ± 0.211	0.748 ± 0.509	1.701 ± 2.148	0.330 ± 0.263	
MFS	Event 1	0.170 ± 0.140	0.059 ± 0.054	0.070 ± 0.034	0.905 ± 0.047	0.000 ± 0.000	0.314 ± 0.089	0.288 ± 0.136	0.610 ± 0.184	0.500 ± 0.250	0.174 ± 0.150	0.164 ± 0.098	0.778 ± 0.133	
m	Event 2	0.420 ± 0.140	0.149 ± 0.042	0.084 ± 0.016	0.889 ± 0.022	1.170 ± 1.010	0.288 ± 0.600	0.276 ± 0.071	0.636 ± 0.094	1.250 ± 0.430	0.068 ± 0.057	0.075 ± 0.050	0.901 ± 0.066	
СОМІ	Event 3	0.830 ± 0.140	0.699 ± 0.157	1.924 ± 0.297	0.430 ± 0.088	0.830 ± 0.140	1.084 ± 0.144	3.337 ± 0.781	0.003 ± 0.231	0.750 ± 0.250	0.927 ± 0.032	2.427 ± 0.283	0.281 ± 0.084	
Ϋ́	Average	0.473 ± 0.333	0.302 ± 0.346	0.693 ± 1.067	0.741 ± 0.270	$\underline{0.667\pm0.602}$	0.562 ± 0.452	1.300 ± 1.763	0.416 ± 0.358	0.833 ± 0.382	0.390 ± 0.468	0.889 ± 1.333	0.653 ± 0.328	
9	Event 1	1.420 ± 0.580	0.585 ± 0.115	1.015 ± 0.433	0.471 ± 0.226	1.330 ± 0.720	0.999 ± 0.096	2.862 ± 0.417	-0.491 ± 0.217	1.250 ± 0.660	0.686 ± 0.030	1.497 ± 0.114	0.220 ± 0.060	
E	Event 2	×±×	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	×±×	$\times \pm \times$	×±×	×±×	
OCK	Event 3	1.750 ± 0.000	$\underline{0.964\pm0.009}$	2.597 ± 0.062	-0.512 ± 0.036	1.000 ± 0.660	1.009 ± 0.015	2.774 ± 0.088	-0.615 ± 0.051	1.500 ± 0.430	0.916 ± 0.036	2.351 ± 0.140	-0.369 ± 0.082	
ST	Average	1.057 ± 0.930	0.516 ± 0.486	1.204 ± 1.309	-0.014 ± 0.492	$\textbf{0.777} \pm \textbf{0.693}$	0.669 ± 0.580	1.879 ± 1.628	-0.369 ± 0.325	0.917 ± 0.804	0.534 ± 0.477	1.283 ± 1.190	-0.050 ± 0.298	
×	Event 1	2.750 ± 3.910	0.248 ± 0.085	0.382 ± 0.192	-0.646 ± 0.828	7.250 ± 0.000	0.263 ± 0.028	0.559 ± 0.165	-1.414 ± 0.714	4.170 ± 3.740	0.315 ± 0.007	0.515 ± 0.217	-1.219 ± 0.935	
X.	Event 2	1.920 ± 0.140	0.182 ± 0.053	0.330 ± 0.039	0.342 ± 0.079	1.920 ± 0.140	0.248 ± 0.115	0.418 ± 0.227	0.168 ± 0.451	2.000 ± 0.000	0.214 ± 0.110	0.336 ± 0.149	0.330 ± 0.298	
NUNNX	Event 3	×±×	$\times \pm \times$	\times \pm \times	$\times \pm \times$	$\times \pm \times$	\times \pm \times	\times \pm \times	\times \pm \times	×±×	$\times \pm \times$	$\times \pm \times$	\times \pm \times	
Ź	Average	1.557 ± 1.411	0.143 ± 0.128	0.237 ± 0.207	-0.101 ± 0.502	3.057 ± 3.756	$\underline{0.170\pm0.148}$	0.326 ± 0.291	-0.415 ± 0.869	2.057 ± 2.086	0.176 ± 0.161	0.284 ± 0.261	-0.296 ± 0.816	
>	Event 1	0.330 ± 0.140	0.072 ± 0.061	0.025 ± 0.021	0.953 ± 0.040	0.330 ± 0.140	0.128 ± 0.085	0.076 ± 0.048	0.857 ± 0.089	0.170 ± 0.140	0.237 ± 0.044	0.190 ± 0.067	0.645 ± 0.124	
SLE	Event 2	0.580 ± 0.140	0.186 ± 0.087	0.125 ± 0.107	0.892 ± 0.092	0.920 ± 0.760	0.395 ± 0.099	0.443 ± 0.173	0.619 ± 0.149	1.000 ± 0.660	0.345 ± 0.052	0.409 ± 0.189	0.648 ± 0.162	
KNITSLEY	Event 3	1.250 ± 0.870	0.189 ± 0.022	0.257 ± 0.097	-0.071 ± 0.404	0.330 ± 0.290	0.135 ± 0.023	0.092 ± 0.007	0.617 ± 0.030	0.920 ± 0.520	0.223 ± 0.034	0.213 ± 0.061	0.113 ± 0.256	
×	Average	0.720 ± 0.476	0.149 ± 0.067	0.136 ± 0.116	0.591 ± 0.574	0.527 ± 0.341	$\underline{0.219\pm0.152}$	0.204 ± 0.207	0.698 ± 0.138	0.697 ± 0.458	0.268 ± 0.067	0.271 ± 0.120	0.469 ± 0.308	

Table 7: Catchment-level forecasting 4 hours before peak. Metrics are mean \pm SD across seeds. Errors: peak timing $\Delta t_{\rm peak}$ (h) \downarrow , peak height $\Delta h_{\rm peak}$ (m) \downarrow , MSE \downarrow , NSE \uparrow .

Data	Split		APIL	ANET			Crossl	FORMER		TSMixer				
Data	Spin	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \!\!\downarrow$	MSE↓	NSE†	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \downarrow$	MSE↓	NSE↑	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \downarrow$	MSE↓	NSE↑	
GRN	Event 1	0.580 ± 0.140	0.383 ± 0.039	0.291 ± 0.060	0.526 ± 0.098	0.170 ± 0.140	0.508 ± 0.076	0.505 ± 0.186	0.176 ± 0.304	0.250 ± 0.000	$\underline{0.432\pm0.056}$	$\underline{0.314\pm0.059}$	$\underline{0.489 \pm 0.097}$	
	Event 2	0.500 ± 0.250	0.382 ± 0.015	$\underline{0.324\pm0.057}$	0.074 ± 0.163	0.330 ± 0.380	0.424 ± 0.090	0.457 ± 0.303	0.305 ± 0.865	0.750 ± 0.500	0.307 ± 0.039	0.253 ± 0.098	0.275 ± 0.280	
ACOMB	Event 3	2.830 ± 1.180 1	1.383 ± 0.070	$\underline{6.145\pm0.153}$	-0.416 ± 0.036	3.750 ± 0.000	1.340 ± 0.102	6.276 ± 1.081	$\text{-0.446}\pm0.249$	1.750 ± 0.500	1.429 ± 0.093	5.549 ± 0.581	-0.279 ± 0.134	
~	Average	1.303 ± 1.323	0.716 ± 0.578	$\underline{2.253 \pm 3.370}$	$\underline{0.061\pm0.471}$	1.417 ± 2.022	0.757 ± 0.506	2.413 ± 3.346	0.012 ± 0.402	0.917 ± 0.764	$\underline{0.723\pm0.615}$	2.039 ± 3.040	0.162 ± 0.396	
MFS	Event 1	0.080 ± 0.140	0.123 ± 0.030	0.069 ± 0.021	0.863 ± 0.042	0.420 ± 0.140	0.208 ± 0.121	0.214 ± 0.145	0.576 ± 0.287	0.170 ± 0.140	0.195 ± 0.127	0.164 ± 0.152	0.676 ± 0.301	
	Event 2	0.500 ± 0.430	0.175 ± 0.082	0.147 ± 0.062	$\underline{0.750\pm0.105}$	0.670 ± 0.950	0.295 ± 0.037	0.279 ± 0.073	0.527 ± 0.124	1.670 ± 0.630	0.096 ± 0.082	0.115 ± 0.072	$0.806\pm0.0.121$	
ACOMB	Event 3	1.000 ± 0.250	0.732 ± 0.107	2.389 ± 0.149	0.109 ± 0.056	3.750 ± 0.000	1.126 ± 0.076	4.406 ± 0.505	$\text{-}0.642\pm0.188$	2.000 ± 1.520	1.072 ± 0.106	$\underline{3.662\pm0.684}$	-0.365 ± 0.255	
~	Average	0.527 ± 0.461 (0.343 ± 0.338	0.868 ± 1.318	0.574 ± 0.407	1.613 ± 1.855	0.543 ± 0.507	1.633 ± 2.402	0.154 ± 0.690	1.280 ± 0.975	0.454 ± 0.537	1.314 ± 2.034	0.372 ± 0.642	
TD	Event 1	1.420 ± 0.760	0.588 ± 0.091	1.233 ± 0.569	0.191 ± 0.374	3.250 ± 0.660	1.032 ± 0.052	3.709 ± 0.157	-1.433 ± 0.103	1.920 ± 1.040	0.724 ± 0.049	1.495 ± 0.260	0.019 ± 0.171	
SHI	Event 2	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	\times \pm \times	\times \pm \times	\times \pm \times	\times \pm \times	$\times \pm \times$	\times \pm \times	\times \pm \times	
STOCKSFIELD	Event 3	2.420 ± 1.530 (0.893 ± 0.085	2.994 ± 0.136	$\text{-1.349}\pm0.106$	2.750 ± 0.250	0.742 ± 0.022	2.006 ± 0.278	$\textbf{-0.574}\pm\textbf{0.218}$	3.500 ± 0.430	$\underline{0.821\pm0.080}$	$\underline{\textbf{2.571}\pm\textbf{0.227}}$	-1.017 ± 0.178	
S	Average	1.280 ± 1.216 (0.494 ± 0.454	1.409 ± 1.505	-0.386 ± 0.839	2.000 ± 1.750	0.591 ± 0.532	1.905 ± 1.856	-0.669 ± 0.722	1.807 ± 1.753	0.515 ± 0.449	1.355 ± 1.291	-0.333 ± 0.593	
X X	Event 1	0.750 ± 1.300	0.138 ± 0.096	0.239 ± 0.162	-0.071 ± 0.724	4.000 ± 2.170	0.347 ± 0.008	1.011 ± 0.238	-3.515 ± 1.064	1.170 ± 0.950	0.305 ± 0.098	0.695 ± 0.471	-2.105 ± 2.103	
ΥKI	Event 2	2.580 ± 0.760 (0.116 ± 0.026	$\textbf{0.108} \pm \textbf{0.044}$	0.513 ± 0.200	1.250 ± 0.250	0.248 ± 0.024	0.319 ± 0.061	$\text{-0.442}\pm0.277$	2.080 ± 0.800	$\underline{0.132\pm0.046}$	$\underline{0.129\pm0.078}$	0.419 ± 0.349	
NUNNYK	Event 3	$\times \pm \times$	\times \pm \times	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	\times \pm \times	\times \pm \times	$\times \pm \times$	$\times \pm \times$	$\times \pm \times$	\times \pm \times	\times \pm \times	
z	Average	1.110 ± 1.327	0.085 ± 0.074	0.116 ± 0.120	0.147 ± 0.319	1.750 ± 2.046	0.198 ± 0.179	0.443 ± 0.517	-1.319 ± 1.915	1.083 ± 1.043	0.146 ± 0.153	$\underline{0.275\pm0.370}$	-0.562 ± 1.352	
>:	Event 1	0.580 ± 0.580	0.054 ± 0.046	0.056 ± 0.033	0.843 ± 0.092	0.330 ± 0.140	0.107 ± 0.099	0.074 ± 0.072	0.792 ± 0.203	0.000 ± 0.000	0.237 ± 0.060	0.205 ± 0.123	0.425 ± 0.345	
SLE	Event 2	0.420 ± 0.520 (0.100 ± 0.055	0.059 ± 0.025	0.923 ± 0.032	0.330 ± 0.380	0.359 ± 0.118	0.302 ± 0.179	0.609 ± 0.232	0.580 ± 0.290	$\underline{0.215\pm0.130}$	$\underline{0.206\pm0.087}$	0.733 ± 0.112	
KNITSLEY	Event 3	1.080 ± 1.460 (0.080 ± 0.013	0.137 ± 0.089	0.214 ± 0.510	3.750 ± 0.000	$\underline{0.085\pm0.015}$	$\underline{0.129\pm0.068}$	$\underline{0.262\pm0.393}$	2.500 ± 2.170	0.090 ± 0.032	0.058 ± 0.021	0.667 ± 0.122	
_	Average	0.693 ± 0.344 (0.078 ± 0.023	0.084 ± 0.046	0.660 ± 0.388	1.750 ± 1.975	0.184 ± 0.153	0.168 ± 0.119	0.554 ± 0.269	$\underline{1.027\pm1.308}$	$\underline{0.181\pm0.079}$	$\underline{0.156\pm0.085}$	$\underline{0.608\pm0.162}$	

Figure 5: **Test performance across five UK catchments.** Bars show NSE (\uparrow) and MSE (\downarrow ; $\times 10^{-3}$ axis units) for APILANET and baselines; error bars denote mean \pm SD over 3 seeds.

Table 8: Catchment-level forecasting 2 hours before peak. Metrics are mean \pm SD across seeds. Errors: peak timing $\Delta t_{\rm peak}$ (h) \downarrow , peak height $\Delta h_{\rm peak}$ (m) \downarrow , MSE \downarrow , NSE \uparrow .

			APII	ANET		1	Cross	FORMER		TSMIXER				
Data	Split	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \downarrow$	MSE↓	NSE†	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \downarrow$	MSE↓	NSE†	$\Delta t_{\mathrm{peak}} \downarrow$	$\Delta h_{\mathrm{peak}} \downarrow$	MSE↓	NSE↑	
GRN	Event 1				0.444 ± 0.123 0.551 ± 0.230				-0.102 ± 0.514 0.412 ± 0.346	0.670 ± 0.380 0.580 ± 0.380			$\frac{0.041 \pm 0.200}{0.415 \pm 0.070}$	
ACOMB	Event 3				-1.196 ± 0.346					2.500 ± 2.180				
_	Average	1.970 ± 2.910	0.658 ± 0.529	$\underline{2.195 \pm 3.419}$	-0.067 ± 0.979	$\underline{1.360\pm1.801}$	0.764 ± 0.579	2.293 ± 3.310	-0.291 ± 0.814	1.250 ± 1.083	$\underline{0.720\pm0.505}$	1.898 ± 2.691	-0.111 ± 0.617	
ACOMB MFS		0.750 ± 0.250	0.051 ± 0.030	0.031 ± 0.017	$\begin{array}{c} \underline{0.522\pm0.347} \\ 0.885\pm0.063 \\ \text{-}1.162\pm0.614 \end{array}$	1.500 ± 0.250	0.206 ± 0.024	0.166 ± 0.009		0.330 ± 0.140 0.750 ± 0.250 4.330 ± 2.450	0.147 ± 0.083	0.109 ± 0.082	$\begin{array}{c} \textbf{0.738} \pm \textbf{0.051} \\ \underline{\textbf{0.601}} \pm \textbf{0.299} \\ \underline{\textbf{-1.222}} \pm \textbf{0.134} \end{array}$	
ĕ	Average	1.807 ± 2.051	0.322 ± 0.365	1.160 ± 1.819	0.082 ± 1.092	2.500 ± 2.883	0.490 ± 0.460	1.820 ± 2.744	-0.555 ± 1.521	1.803 ± 2.198	0.430 ± 0.469	1.188 ± 1.873	0.039 ± 1.095	
OCKSFIELD	Event 1 Event 2 Event 3	$\times \pm \times$	\times \pm \times	\times ± \times	-0.634 ± 0.566 × ± × -2.614 ± 0.181	×±×	\times \pm \times	\times \pm \times	-2.270 ± 0.446 × ± × -2.639 ± 0.701	×±×	\times ± ×	\times \pm \times	\times \pm \times	
S	Average	2.333 ± 2.965	0.477 ± 0.415	1.194 ± 1.053	-1.083 ± 1.364	2.220 ± 2.774	0.595 ± 0.526	1.731 ± 1.612	-1.636 ± 1.429	2.250 ± 3.011	$\underline{0.483\pm0.418}$	1.143 ± 0.998	-0.991 ± 1.215	
NUNNYKIRK	Event 1 Event 2 Event 3				$\begin{array}{c} \text{-4.731} \pm 2.999 \\ \text{0.238} \pm 0.427 \\ \times \pm \times \end{array}$		$\begin{array}{c} 0.362 \pm 0.023 \\ 0.096 \pm 0.067 \\ \times \pm \times \end{array}$		-13.312 ± 1.164 -0.009 ± 0.994 × ± ×	l			-8.646 ± 4.509 -0.081 ± 0.482 × ± ×	
z	Average	$\underline{0.807\pm0.883}$	0.068 ± 0.080	0.170 ± 0.251	-1.498 ± 2.803	0.777 ± 0.693	0.153 ± 0.188	0.405 ± 0.643	-4.440 ± 7.683	0.887 ± 0.916	$\underline{0.139\pm0.174}$	$\underline{0.282\pm0.427}$	-2.909 ± 4.969	
KNITSLEY	Event 2	0.000 ± 0.000	0.078 ± 0.054	0.068 ± 0.036	$\begin{array}{c} \textbf{0.724} \pm \textbf{0.186} \\ \textbf{0.885} \pm \textbf{0.061} \\ \textbf{-1.641} \pm 0.689 \end{array}$	0.000 ± 0.000	0.084 ± 0.008		$0.355 \pm 0.055 \\ 0.818 \pm 0.050 \\ 0.225 \pm 0.212$	0.330 ± 0.380	0.148 ± 0.096	$\begin{array}{c} 0.242 \pm 0.009 \\ 0.256 \pm 0.111 \\ \underline{\textbf{0.057} \pm \textbf{0.013}} \end{array}$		
	Average	1.887 ± 2.987	0.067 ± 0.036	$\textbf{0.079}\pm\textbf{0.040}$	-0.011 ± 1.414	0.780 ± 1.009	$\underline{0.084\pm0.062}$	$\underline{0.083\pm0.041}$	0.466 ± 0.312	1.527 ± 2.213	0.121 ± 0.106	0.185 ± 0.111	-0.049 ± 0.547	