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ABSTRACT

Forecasting conservation-governed dynamics is often constrained by sparse sens-
ing: in practice, we may have only a single downstream sensor and noisy exoge-
nous variables. In this work we design an Adaptive Physics-Informed Latent Net-
work (APILANET) that learns a latent field and enforces conservation of physics
law in the weak form using a learned, normalized space—time measure. Normal-
ization makes physics enforcement insensitive to quadrature resolution and con-
centrates it on transient violations. A monotone, Lipschitz measurement layer
maps latent variables to observed targets, improving identifiability from a single
sensor. An adaptive, bounded scheduler scales the physics and smoothness loss
terms with meaningful representations, emphasizing conservation of physics laws
during events while preserving training stability. Learning a space-time measure
for weak-form enforcement, combined with a monotone mapping and adaptive
scheduling, enables accurate, data-efficient single-sensor forecasting in physics-
governed systems. We evaluate APILANET through a hydrological case study,
APILANET outperforms strong sequence baselines and reduces MSE during ex-
treme events, while improving Nash—Sutcliffe efficiency. Code will be released
upon acceptance.

1 INTRODUCTION

Learning the evolution of physical systems from sparse, noisy observations is a central challenge in
scientific machine learning. Many natural and engineered processes are governed by partial differ-
ential equations (PDEs), yet in practice we often observe only a single location or a few boundary
points over time. Examples span climate dynamics [Zanella et al.| (2023, biomedical flows |Ling
et al. (2024), battery state-of-health [Wang et al.| (2025), and river hydraulics. Classical physics-
based models typically require dense boundary/interior supervision and careful calibration, while
purely data-driven forecasters struggle to extrapolate reliably and to maintain physical consistency
over long horizons Nathaniel et al.| (2024); Azad et al.| (2025).

Physics-Informed Neural Networks (PINNs) Raissi et al.| (2019) embed governing laws into learn-
able models by penalizing PDE residuals. For conservation laws such as

O¢h(t,z) + 0.Q(t, x) = Rpwoj(t, z), (D

strong-form PINNs minimize a pointwise residual alongside a data term. This is ill-matched to
sparse-observation regimes: (i) it relies on dense interior collocation or full boundary data, (ii) it
uses static trade-offs between data and physics losses that can destabilize optimization, and (iii) it
offers limited interpretability of learned dynamics and failure modes |Kim et al.| (2021)); Rohrhofer,
et al.[(2023). Recent adaptive weighting schemes (e.g., SA-PINN (McClenny & Braga-Neto, [2023)
and ReLoBRal.o (Ling et al.l 2024)) rebalance residuals but remain agnostic to real-time signal
structure and do not address the lack of spatial supervision.

We propose APILANET, an Adaptive Physics-Informed Latent Neural Network for forecasting
PDE-constrained systems from single-point time series. APILANET reconstructs a latent spatiotem-
poral domain anchored at the observation site and enforces equation[T]in the weak form by integrat-
ing residuals against learned test functions rather than penalizing pointwise errors. This lowers
regularity requirements, removes the need for interior collocation, and better reflects sensing setups
where temporal signals are dense but spatial coverage is sparse.
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Figure 1: APILaNet overview. Single-gauge input window: stage h(t) and exogenous drivers. A
latent mesh reach x € [0, 1] is instantiated for weak physics. (A) Dual streams infer discharge compo-
nents: BASE-LSTM and QUICK-LSTM. A gate o€ [0, 1] mixes them, Q = aQquick + (1—) Qpase-

(B) Monotone rating curve fiono maps discharge to stage h = Smono(@) with 0 finono/0Q > 0
(enforced by a small monotonicity penalty). (C) Weak—form physics on the latent mesh: heads
predict hy and 0,Qp; a learned weight Ay (¢, x) emphasizes where residuals matter. The driver
projection Ry (¢, x) = 7(t) e~" injects forcing. Residual R = hy + 9,Qp — R, is penalized in
the weak form. (D) Adaptive scheduling: bounded signals modulate Apge and Agmoorn. Total loss
L = Lgata + Apde Lipde + Asmooth Lcons + AmonoLmono- An ensemble yields mean 4 band for uncertainty.

At a high level, a dual-stream sequence encoder (base- and quick-flow) infers a latent discharge
field Qg (t, z); a monotone neural rating curve maps discharge to stage; and automatic differenti-
ation evaluates the weak-form residual in equation 2] Training is adaptive: physics penalties are
modulated online by bounded signals (prediction error, rainfall, event likelihood), tightening con-
servation during transients and deferring to observations in quiescent periods. Although motivated
by hydrology, the framework applies to 1-D conservation laws under sparse spatial supervision.

2

) 2

2

1
/0 (Deho(t, ) + 02Qo(t, ) — Ru(t, z)) dy(t,2) da

LppE = |

The contributions of this paper are threefold: (1) APILa framework—a measure-weighted weak
form for single-sensor conservation learning on a latent 1-D reach, instantiated via learned test
functions and shown equivalent to a normalized space—time density view, with a variational dual-
stream discharge prior (H'/BV) for interpretable base/quick responses; (2) Theory—conditions
for single-gauge identifiability under a monotone, Lipschitz observation and mild driver excita-
tion, reparameterization invariance of the weak objective on the latent reach, and an equivalence
between learned-density and learned test-function formulations; (3) Adaptive physics schedul-
ing—a bounded, signal-aware scheme that modulates auxiliary physics terms in time, \;(t) =
clip(AY (143", vk si(t)), [\, A2X]), prioritizing conservation during transients while preserv-
ing stability.

We organize the paper as follows: Section [2] reviews related work; Section [3] formalizes the latent

weak-form framework and the adaptive training scheme; Section [4] details datasets and protocol;
Section [3] concludes.
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2 RELATED WORK

Physics-informed learning from sparse observations. PINNs embed governing laws via residual
penalties and have shown wide appeal across scientific domains Raissi et al.|(2019). Yet strong-form
residuals typically presume dense interior collocation and can be brittle under scarce spatial super-
vision. Variants that relax regularity or integrate residuals against test functions (weak/variational
forms) aim to improve robustness to noise and discretization while reducing collocation burden,
but they still require careful loss balancing and often lack guarantees under single-sensor settings
(see empirical discussions in [Nathaniel et al.| (2024); |Azad et al.| (2025); Rohrhofer et al.| (2023)).
Training stability in PINNs frequently hinges on the choice of trade-off weights between data and
physics losses. Recent adaptive schemes rebalance terms during optimization, e.g., self-adaptive
PINNs (SA-PINN) McClenny & Braga-Neto| (2023) and ReLoBRalLo [Ling et al.| (2024), which
adjust coefficients based on gradient magnitudes or residual statistics. These methods are largely
signal-agnostic and momentum-driven, and they do not exploit domain cues available at run time,
such as event likelihood or regime changes, to modulate physics pressure.

For 1-D conservation systems observed at a single site (e.g., stage/discharge), sequence encoders are
often used to form latent dynamics, while observation models (rating curves) impose a monotone
relationship between discharge and stage. Prior work typically treats the observation link as fixed
or unconstrained; monotone neural parameterizations provide a learnable but physically consistent
mapping. However, most approaches neither enforce conservation in a weak form over a latent reach
nor couple it with adaptive, signal-aware scheduling.

APILANET differs by (i) enforcing a measure-weighted weak form on a latent 1-D domain anchored
at the observation site, avoiding dense interior collocation; (ii) using a monotone learnable rating
curve to tie latent discharge to measured stage; and (iii) introducing an EMA-free, signal-driven
adaptive schedule that modulates auxiliary physics terms online. Together these address sparse
spatial supervision, stability, and physical consistency beyond prior PINNs and adaptive-weighting
strategies |Raissi et al.| (2019); McClenny & Braga-Neto|(2023); [Ling et al.[(2024).

2.1 PROBLEM SETUP & NOTATION

Let  C R? be a bounded Lipschitz domain with horizon [0,7]. We model a latent state u :
Q x [0,T] — RP approximately governed by following equation

du(z,t) + V- Flu(z,t)) = S(z, 1), (x,t) € 2 x(0,T), 3)

with flux F : RP — RP*4 and source S. Initial/boundary data are u(-,0) = ug € L*(2;RP) and
B(u, F(u)) = gaq on 0Q x (0,T). Exogenous drivers £ : [0,7] — R™ act through a bounded
projection

S('at) :Pn[g]('ﬂf)v P LQ(OaT;Rm) HLQ(Q X (OvT);Rp)a 4)
parameterized by x € K. When (2 is implicit we work on a latent 1-D chart (ﬁ, ¢) with C'! diffeo-
morphism ¢ : 12— €); Jacobian factors are absorbed into the sampling/importance measure.

We observe a single downstream time series via a bounded linear functional C € (H!(Q;R?))* and
a shape-constrained measurement map

for which we use a monotone, Lipschitz parameterization enforced by architecture. Given obser-
vations y(t,) at Tobs = {t,}2_,, the task is: from a history of length L;, and drivers &, predict
{y(tns1)s - Y(tntLoy, )} We write t,, = nAt and ap.pyr = (a(tn), ..., a(tytr)); mini-batches
are contiguous windows (Y pn—r.:n: En—Linin+ Lot ) -

For analysis we assume
ue L0, T; H' (4 RP)) and dyu € L¥0,T; H™ (4 RP)),
so the terms in the weak form are well-defined when F is C'! on the range of uy. With test functions

¢ € Hi(2;RP), multiplying equation by  and integrating by parts in space yields
<atU7 @>H*1,H1 - /

(F(u),Vy)dx — /S-godx = 0 forae.te (0,7). (6)
Q Q
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A weak solution of equation B is u with u(-, 0) = ug satisfying equation@for all ¢ € H{ (or for
all o € H'! when nonzero boundary traces are retained), with S = P, [£]. A neural parameterization
ug induces ¥y via equation [3} training penalizes weak-form residuals using a learned, normalized
space—time importance density Ay : Q x [0,7] — (0,1] with [ Ay dzdt = 1, together with a
supervised discrepancy between y and 7y. The objective (adaptive weights and shape constraints)
and training details are given in §@ Assumptions (compact): (A1) F is C'* and locally Lipschitz
on the range of ug; (A2) ¢ € L*(0,7T) and P, is bounded L? — L?; (A3) C is bounded and g
satisfies its structural constraint; (A4) Ay, € L° and normalized. Remark. On graphs, replace V- by
BT f with incidence matrix B; the development is unchanged.

3 METHOD

3.1 PANEL A: DUAL-STREAM DISCHARGE PRIOR WITH INPUT-DRIVEN GATING

From a single-gauge input window X.;, € RY*? we form two latent discharge sequences over

the forecast horizon 7 = 1:T": a slow component Quase(7) and a fast component (QQquick (7). The
encoders that produce these sequences are standard sequence models. We introduce an input—driven
gate a € [0, 1] and define the latent discharge passed to downstream panels by the convex combina-
tion

Qo(7) = aQquick(1) + (1 —a) Quase(7), @ =o0(g9(X1.)), (7)

where ¢ is an arbitrary scalar readout of the history and o is the logistic sigmoid. We enforce
Qbase, Qquick = 0, hence Qg > 0 by construction. This single nonnegative Qg is the only discharge
signal consumed by the rating link and weak physics. To bias the decomposition toward interpretable
dynamics, we regularize the streams with complementary seminorms:

T T
2

Rbase = Z(AQbase (T)) > Rquick = Z‘AQquick (T)’ (3

T=2 T=2

Here AQ.(T) = Q(7) — Q(T — 1). Rpase promotes H'~type smoothness; R quick is a BV/TV prior.
These terms are novel in our context as a paired Sobolev/BV prior that encourages low—frequency
“baseflow” and high—variation “quickflow” within a single latent mixture.

Assumption 1. The history readouts that generate Qpase,Qquick and the gate g are
Ly, Ly, Ly—Lipschitz maps w.r.t. Xy.r,.

Theorem 1. Under Al, for any windows X, X',
1905 X) = Qo (s XNl < (Lalléall + Lollull + § 2y A(X)) 11X = X,

where Ag(X') = sup, |Qquick(7';X’) — Qvase(T; X’)|. If a uniform bound Ag(X') < Amax
holds, replace Ag(X'") by Amax. Proof in Appendix

Under mild encoder regularity, the gated mixture (Qy in equation [7] is Lipschitz in the input win-
dow, so small changes in X7.;, yield bounded changes in the latent discharge. Moreover, the paired
Sobolev/BV priors in equation 8 induce a Tikhonov—TV splitting that assigns low-frequency con-
tent to Qpase and high-variation content to Qquick. Formal statements and proofs are provided in

(Appendix B).
3.2 PANEL B: MONOTONE LATENT MAPPING

Panel B maps the aggregated driver from Panel A to the observed farget using a shallow neural
link without assuming any fixed parametric law. Concretely, a bias-enabled two-layer MLP with
SOFTPLUS activations is applied element-wise in time to the clamped (nonnegative) driver. The
biases absorb sensor offsets and the flexible link avoids imposing a fixed power-law shape. We
introduce (i) an empirical, order-preserving monotonicity surrogate that enforces a nondecreasing
driver—target map on the observed driver range without constraining weights, and (ii) a consistency
statement showing that, as design points densify, vanishing surrogate loss yields almost-everywhere
monotonicity over the training range.
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Given a finite set ¢ = {g¢;}}_, from the (clamped) driver range with qay < -+ < q(n), define
1
n—1

n—1

‘Cmono(e; q) = Z [f9 (Q(iJrl))_f@ (q(z))] o with [.’L‘]_ = maX{O, —JI}. We add ’Ymonoﬁmono
=1

to the 108s (Ymono=0.01).

Proposition 1. L.on0(0;9) = 0 if fo(qu+1)) = folqu) for all adjacent pairs. Moreover,
max; [fQ(Q(z)) - fl‘)(Q(i-ﬁ-l))}-‘r < (n - 1) £mon0(0; q)

If design sets @™ C [0, Qumax] densify, sup,, || fs,, [|co < 00, and a standard regularizer yields a
uniform total-variation bound, then a subsequence converges pointwise a.e. to a monotone limit
on [0, Qmax] when Emono(Qm;q(m)) — 0. Together, this surrogate-and-proof package gives a
lightweight way to impose a domain-plausible monotone observation link only where the data live,
improving identifiability and training stability without hard weight constraints.

3.3 PANEL C: WEAK-FORM PHYSICS ON THE LATENT MESH

We enforce mass balance in a latent spatiotemporal domain using only single-point time series.
Concretely, the model predicts two time-indexed sequences, an objective-time derivative dihg|7]
and a exogenous-space derivative d,Qg[7] and broadcasts them across a fixed X -cell latent spatial
grid. Exogenous rainfall is projected over this grid via a learnable, monotone spatial kernel. The
weak-form loss is the average of squared residuals weighted by a learned, non-negative field. We
introduce (i) A broadcast weak-form residual on a latent mesh that turns single-point supervision
into spatiotemporal physics via broadcasting and exogenous variable projection; (ii) an exponential
exogenous projection with learnable decay > 0 enabling spatial structure from point variable; (iii)
a learned spatial weighting field that emphasizes informative cells while remaining non-negative by
construction.

From classical weak form to APILaNet’s latent

weak form. We compare (i) the classical weak 3010y, i ) o ;'f. | Y 0.08
residual with constant test functions on a 1D strip, .y (I ‘ | I f 0.06
and (ii) our broadcast residual on a latent mesh - 0.04
with a learned, normalized weight. 220 iy A B ([Foor
Assumption 2 (Proxy derivatives and latent forc- 2 s J L Vil 0.00 g
ing). For each forecast step T € {1:T}, the %10‘ L ] L) "; -0.02 ©
model outputs proxies dihg[T] ~ Oih(T,-) and 2 i P, dile ) —-0.04
d,QolT] =~ 0,Q(7,-) that are (piecewise) con- 51 & i ‘ (| \ -0.06
stant in x when broadcast across a latent grid o4 [l SRR -0.08

{z;};2, C [0,1]. A single exogenous series is

projected to a latent forcing Ry(x) = Re™"* Eg;g MWMMM
with k > 0 learnable. '

forecast index

Assumption 3 (Learned, normalized measure). A
nonnegative field \y(x) > 0 induces a measure
dpg(z) = Ap(x) dz on [0, 1] that is (i) bounded
and bounded away from O on compact subsets,
and (ii) normalized so that fol Agp(z)de = 1.

Figure 2: Weak—form residual heat map ((¢, s)
with per-step mean E,|(]|.

Figurevisualizes the weak—form residual {(¢, s) = 9;h + 9,Q — R over the latent mesh. Hot/cold
bands in the heat map mark where conservation is violated in time () and across latent cells (s);
sharp vertical streaks coincide with storm onsets, showing that APILANET localizes transient im-
balance rather than spreading it uniformly. The bottom trace aggregates E;[|¢|] and highlights
when violations spike, which typically precedes or aligns with observed peaks. This diagnostic is
useful both for model debugging to identify how residual concentrate during extreme events and for
interpretability (where does the model “spend” its physics budget over the forecast horizon).

Theorem 2 (Reduction to classical weak form). Under Assumptions 23} the APILaNet broadcast
loss

T X
Loiel0,0) = 7 3 5" Nolay) (dholr] + duQulr] - Rofe)?

T=1j=1
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is a Riemann (cell-wise) quadrature of the classical weak L? (1e) residual of the continuity law with
constant test functions on each cell. In particular, as the latent grid refines (max; |z 41 —x;| — 0),

Loael0,6) — ;2_:1/0 (uho(r,2) + 0.Qo(7.x) — Ro(x))* djug(x).

Proof sketch. Broadcasting makes the trial/test functions piecewise constant in x, averaging over j
with weights A\ () is a normalized quadrature for the weighted L? norm.

Adaptive weighting map. Figure [3] visualizes
the learned space—time weight A(t, s) used in the
weak-form loss. The heat map shows that ) is not
uniform: it concentrates near informative regions
of the forecast (earlier steps and upstream latent
cells) and decays elsewhere, indicating that the
model allocates more penalty to transient, high-
signal zones. The bottom marginal E¢[A](¢) sum-
marizes this temporal emphasis, typically highest
near the start of the horizon and tapering with ¢,
while the right marginal E;[\](s) captures how @
weighting varies across the latent spatial index. oo @z ok @ 08 Lo 00 25
Together with Fig. 2] this confirms that API- e
LaNet both locates residual spikes and adaptively
“spends” its physics budget where it matters.

Adaptive weight A(t, s)

time t (normalized)
TP,

Figure 3: Adaptive weight field \(¢, s) learned
for the weak form. Left: heat map over time ¢
) and latent cell s. Bottom: temporal marginal
Interpretation. Theorem 2] says our broadcast E,[\(t). Right: spatial marginal E;[\](s).

10§s is not an ad-hoc penalty: .it is exactly a.cell— The weighting concentrates on high-signal re-
wise quadrature of the classical weak residual gions, emphasizing transients while deempha-
under a learned, normalized measure. In plain sizing: quiescent zones

terms, APILaNet turns a single-sensor sequence

into a principled weak-form discretization on a

latent mesh, while Ay acts as an importance map that concentrates physics where the signal is in-
formative. Refinement/consistency assumptions and results—namely Assumption 4 (approximation
and mesh refinement), Theorem 3 (consistency under refinement), and Corollary 1 (single-sensor
realizability through the monotone observation link)—are stated and proved in Appendix [D}.

3.4 ADAPTIVE PHYSICS SCHEDULING (PANEL D)

Panel D modulates physics strength. Two global multipliers act on the physics terms: a PDE weight
Apde and a derivative-consistency weight Acons. Each is computed instantaneously per minibatch
from available signals. In addition, a local nonnegative field A\ (¢, ) weights the PDE residual over
the latent mesh (Panel C). The effective PDE weight is Apde(?,2) = Apde Aloc(t; ). Objective:
allocate physics pressure when and where it matters without destabilizing training. We therefore
factorize the PDE weight into a global batch scalar and a /local nonnegative field over the latent
mesh:

1
Apae(t, ) = Apde Noc(t ), Moc(t, ) =0, == D> Nige(,75) = 1. ©)
The effective PDE term in the loss is

T X
1 ) .
Lite = Apde T DO Neelmwy)rolr, 412, rolr, 5] = Oiholr] + 02Qol7] — Ro(x5). (10)

T=1j=1

Instantaneous global scheduler. Let £ > 0 be the batch prediction loss, s € Rgo a vector of
auxiliary regime signals, and IT € [0, 1] an activity score. For i € {pde, cons} we set

where /\? >0 is a base level, (ay, ai,n) >0 are sensitivities, and clip enforces user-specified bounds.
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Algorithm 1: Adaptive Multi-Loss Scheduling with Factorized Local Weights

m
i=1

Inputs: batch D, model Fg, optimizer; bases {\{ } 7™ | ; sensitivities {cv;5 }; clips [\, A8X]
Outputs: updated parameters 6
for epoch=1... N do
foreach batch D do
compute per-losses {L£; (6, D) };~, ; optional local map Wie >0
compute batch signals { sy (D) },i(:l
for i = 1tom do
| A clip(A(1+ DA auesi), AP, ARex)
if Wiy used then

Wiee mw/(ﬁZ(t.m)eQ Wiee (2, 7‘))
Lot +— 2171:1 i L4 (07 D; I/Vloc)
optimizer.zero_grad();
backprop(Liot);
optimizer.step()

Assumption 4 (Bounded signals & normalized local field). During training, E, each compo-
nent of s, and 11 are bounded; the local field satisfies equation 9 and equation produces
Ai € [AF, AP

Theorem 3 (Monotone responsiveness with bounded pressure). Under Assumption [6] each \; in
equation [7_7] is nondecreasing in E, every component of s, and 11 (away from clips) and always
satisfies X' < A < AP Consequently equation is both responsive to harder-regime batches
and bounded fo avoid instability.

We scale physics by two knobs: a global, batch-wise multiplier that grows when the batch looks
hard (big errors, event cues) but remains clipped, and a local, nonnegative map over the latent mesh
that redistributes this budget to where residuals matter. The global rule makes physics responsive yet
bounded, the local normalization preserves the average strength while focusing effort in time—space.
Theorem [7] formalizes this: the scheduler is monotone in difficulty signals away from clips, and the
weights stay within [\IM") \I8X] 5o training remains stable even during peaks.

Panel D couples a global, signal-driven scheduler with a local, normalized weight over the latent
mesh. This design (i) amplifies physics during challenging regimes, (ii) keeps gradients well-scaled,
and (iii) yields an interpretable importance map Ajo. (¢, ). This formalizes that the schedule reacts in
the right direction to harder batches yet remains numerically safe via clipping—so physics pressure
increases when signals indicate difficulty, without runaway scaling. Formal proofs and ablations are
provided in Appendix [E].

4 EXPERIMENTS

4.1 PROTOCOLS

Datasets We conduct a hydrology case study and experiments on five real-world, single—sensor
benchmarks from UK catchments. We construct the same L X d input tensor for all sites using a
unified pipeline. The train/val/test configuration splits for each dataset are same.

Baselines We benchmark APILANET against eight competitive sequence-to-sequence forecast-
ers that span the main families of modern time—series modeling: Transformer Utilizing Cross-
Dimension Dependency for Multivariate Time Series Forecasting CrossFormer Zhang & Yan
(2023); patchwise Transformer PatchTST Nie et al. (2023); MLP token—-mixer 7S-Mixer |Chen
et al.| (2023)); convolutional token—mixer PatchMixer|Gong et al.[(2023)); selective state—space model
Mamba-S4Dao & Gu|(2024); iTransformer|Liu et al.| (2023)); and the neural decomposition methods
N-HITS |Challu et al.|(2022)) and N-BEATS |Oreshkin et al.| (2020).

Setup. All models ingest the same L x d input tensor and predict the same T-step horizon. In-
puts are feature-wise min—max scaled using statistics computed on the training split and applied
to val/test. We generate input—output pairs with a sliding window. We evaluate a fixed forecast
horizon T'=32 and look-back length L=32 based on Table |2 Primary metrics are Mean Squared
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Error (MSE) and Nash-Sutcliffe Efficiency (NSE); for event-focused analyses we additionally re-
port peak-timing and peak-magnitude errors (Afpea, Ahpeak). Baselines use the same inputs as
APILANET and follow the original authors’ recommended model sizes, optimizers, and regular-
ization. All methods are trained for the same epochs, batch size, and learning-rate schedule. Each
configuration is run with three fixed random seeds; and the mean of the metrics is reported. Full
dataset details, implementation, and hyperparameters appear in Appendix [A]

4.2 ABLATION STUDY

Ablation Design We report seven variants corresponding to Table |1} (1) APILaNet (full model);
(2) w/o X Adapt. (global); (3) w/o Ay Adapt. (local)—remove the local weighting (set A;=1) while
keeping the global scheduler \s; and the PDE loss; (4) w/o As; Adapt. (both)—freeze both weights
(fix \g=AJ and A\,=1) with the PDE loss retained; (5) w/o Monotone MLP—replace the monotone
rating-curve link by an unconstrained scalar MLP; (6) w/o PDE loss—drop the weak-form continuity
residual from the objective; (7) L4, only—pure data fit.

Table 1: Ablation at 8 h before extreme event on Stocksfield. Entries are mean4SD [95% CI] across
seeds. MSE is reported in X 10~ 1. Best results are red; second-best are blue.

Model A

(1) APILANET
(2) wio X\ Adapt. (a)
(3) w/o A Adapt. (b)

As PDE Atpeak (h)] Ahpeak (M)l MSE (x1071) | NSEt
v v
X X
X v
(4)w/o A Adapt. (¢) v X
v v
v v
X X

0.00-20.00 [0.00, 0.00] 0.464-0.19[0.18, 0.75] 0.454-0.14[0.25, 0.65] 0.51--0.15[0.29, 0.72]
0.00-20.00 [0.00, 0.00] 0.464-0.08 [0.33, 0.59] 0.532:0.06[0.45, 0.62] 0.42--0.06[0.33, 0.51]
0.00-0.00 [0.00, 0.00] 0.39--0.17[0.13, 0.64] 0.57£0.03[0.52, 0.61] 0.3820.03[0.33, 0.43]
0.00-20.00 [0.00, 0.00] 0.5240.07[0.41, 0.63] 0.5540.07[0.45, 0.65] 0.39-£0.07[0.29, 0.50]
0.00-20.00 [0.00, 0.00] 0.5140.16[0.27, 0.75] 0.532:0.04[0.47, 0.59] 0.412-0.04[0.35, 0.48]
0.25:£0.42[-0.19, 0.69] 0.402:0.14[0.25, 0.54] 0.640.27[0.36, 0.93] 0.29-0.29[-0.01, 0.61]
1.92£3.32[-3.01, 6.84] 0.68+0.24[0.32, 1.04] 0.740.35[0.22, 1.26] 0.19-£0.38[-0.37, 0.76]

Q

(5) w/o Mono MLP
(6) w/o PDE Loss
(7) APILANET Lgata

XX AANNA

Based on the results from Table E] , the full APILANET achieves the best MSE/NSE. Removing
adaptive weighting degrades accuracy—both schedulers matter: using only the A4 or only the A
field is inferior to using them together. Eliminating the PDE weak—form loss yields the largest drop
in peak timing and overall fit, while removing the monotone link also hurts MSE/NSE and stability.
Overall, gains are additive: monotone link + PDE loss + (A4 ® A,) scheduling produce the strongest
performance.

4.3 INFLUENCE OF INPUT SEQUENCE LENGTH

Table 2] shows that a medium context is consis-
tently best. Across all five catchments, the opti-
mal lookback is 32 steps (8 h at 15 min resolu-
tion): it yields the lowest MSE and the highest
NSE in every case (ACOMB MFs 0.021x 1072
/ 0.936, STOCKSFIELD 0.053x1072 / 0.886). Site }Me‘m |5 15 2w s 2%
Short histories (<16 steps) underfit transients

and hurt NSE, while very long histories (>128)  Acoms Grx
plateau or slightly degrade, likely due to mem-
ory dilution, heavier optimization, and fewer

distinct windows per epoch. The result is r0-  srocksmeLp ;4551’_:5(““7“
bust—64—128 steps are typically within a few
percent of the best—but 32 steps offers the best ~ NUNNYKIRK
accuracy—efficiency trade-off. We therefore fix
the lookback to 32 steps (8 h) in all remaining
experiments unless stated otherwise.

Table 2: Lookback sensitivity by catchment.
Mean MSE (], x1072) and NSE (1) across seven
input horizons (2—-128 h).

| Lookback window (time steps)

0.066 0.059 0.041 0.043 0.045 0.057 0.044

MSE (x1072)
Ni 0.857 0.873 0.911 0.906 0.909 0.909 0.910

SE

0.049 0.037 0.021 0.023 0.027 0.022 0.027

MSE (x10~2)
AcomB MFs ‘NSE 0.853 0.888 0.936 0.931 0.919 0.933 0.916

0.079 0.071 0.053 0.069 0.068 0.068 0.061
0.837 0.849 0.886 0.852 0.856 0.855 0.872

0.091 0.091 0.067 0.083 0.086 0.084 0.077

MSE (x1072)
NSE 0.913 0.941 0.959 0.941 0.921 0.914 0.913

MSE (x1072)]0.037 0.037 0.030 0.036 0.036 0.035 0.037
NSE

KNITSLEY 0.915 0.936 0.946 0.935 0.943 0.912 0.902

4.4 ADDITIONAL EXPERIMENTS

Beyond standard test-set accuracy, we benchmark early-warning performance by evaluating every
model’s ability to predict before the extreme event. This stress test probes how well a forecaster
anticipates extremes as lead time shortens—crucial for actionable response. Across all lead times,
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Table 3: Catchment-level forecasting. Test-set MSE (/) and NSE (7) across five UK catchments and
three events per catchment, with fixed prediction length and horizon.

Model
Metrics

APILANET CROSSFORMER PATCHTST TSMIXER PATCHMIXER MAMBA S4 ITRANSFORMER N-HITS N-BEATS
MSE| NSEf MSE| NSEt MSE| NSEt MSE| NSEf MSE| NSE{ MSE| NSEt MSE| NSEf MSE| NSEt MSE| NSEt

Event 1| 0.090 0.810 0.117 0.754 0471 0.009 0.127 0.733 0.117 0.753 0317 0333 0.122 0.744 0.362 0.238 0.337 0.290
Event2| 0.058 0.919 0.093 0.869 0385 0460 0.073 0.897 0.082 0.884 0.222 0.689 0.106 0.851 0.341 0.522 0311 0.564
Event3| 0935 0.329 0951 0318 2485 -0.783 0.926 0.335 1.514 -0.087 1357 0.026 0968 0305 1.682 -0.207 1.712 -0.229

Data

| Test | 0.010 0.907 0011 0901 0026 0762 0.010 0.904 0013 0876 0016 0.852 0011 0897 0020 0815 0019 0.821

Event 1| 0.054 0.885 0.077 0.836 0.443 0.061 0.052 0.890 0.064 0.863 0324 0314 0.103 0.781 0.382 0.191 0428 0.092
Event2| 0.018 0.970 0.058 0.902 0326 0450 0.025 0.957 0.109 0817 0208 0.649 0.076 0871 0.328 0.446 0339 0427
Event3| 0.370 0.638 0.706 0.309 1.131 -0.107 0.533 0478 0.553 0458 0872 0.146 0.752 0264 1.192 -0.167 1323 -0.295

‘ Test ‘0.005 0.937 0.008 0.904 0.015 0.811 0.006 0.927 0.006 0925 0.011 0.855 0.008 0.898 0.015 0811 0.016 0.795

Event 1| 0.019 0.747 0.047 0.389 0879 -0.130 0.279 0.642 0.250 0.678 0.568 0270 0.443 0430 -1.01 -0.299 1.097 -0.410
Event 2 X X X X X X X X X X X X X X X X X X
Event3| 0.396 0315 0.361 0.370 0.607 -0.051 0.358 0.381 0.698 -0.209 0.442 0234 0486 0.158 0.673 -0.167 0.757 -0.311

| Test | 0.013 0.879 0016 0851 4.059 -2.665 0.014 0.873 0016 0859 0.019 0.830 0020 0817 0025 0773 0026 0.762

Event 1| 0.116 0.862 0.257 0.695 0325 0.614 0212 0.748 0.158 0.813 0.273 0.675 0.184 0.781 0.343 0.593 0.382 0.546
Event2 | 0.043 0.926 0.056 0902 0249 0566 0.054 0.907 0.282 0.509 0.133 0.768 0.093 0.839 0.180 0.686 0.216 0.624
Event 3 X X X X X X X X X X X X X X X X X X

NUNNYKIRK [ STOCKSFIELD | ACOMB MFS | ACOMB GRN

‘ Test ‘0.003 0.972  0.004 0958 0.009 0925 0.004 0.962 0.005 0.951 0.006 0.944 0.005 0954 0.009 00923 0.009 0.922

% |Event1]0.008 0960 0017 0910 0.160 0.164 0029 0.845 0037 0808 0.122 0362 0027 0856 0.148 0224 0.143 0251
7 |Event2| 0.056 0907 0089 0854 0473 0219 0.089 0901 0.135 0777 0323 0466 0.78 0707 0421 0306 0405 0332
S [Event3]0.028 0738 0017 0839 0091 0.68 0.021 0803 0.012 089 0072 0299 0033 0697 0092 0.152 0093 0.147
| Test | 0.004 0939 0004 0928 0012 0810 0.003 0942 0004 0930 0008 0.862 0.005 0911 00LL 0821 0011 0.824
Best (1) | Count | 13 13 0 0 0 0 4 4 1 1 0 0 0 0 0 0 0 0

APILANET delivers the lowest MSE and highest NSE in most catchments, while also minimizing
peak timing and magnitude errors (Atpear, Ahpeak). Notably, performance degrades gracefully as the
warning window widens (8 h — 2 h), indicating stable physics-aware generalization rather than last-
minute correction. These results suggest APILANET provides earlier and more reliable alerts than
state-of-the-arts baselines, making it better aligned with real-world decision timelines for real-world
preparedness and incident management. (Appendix [F).

4.5 MAIN RESULTS

Across five UK catchments and three events per site, APILANET attains the strongest overall accu-
racy (Table [3). On the Test split it achieves the best MSE|/NSET on four of five catchments, with
a close second on Khnitsley (0.004/0.939 vs. 0.003/0.942 for TSMIXER). Counting all rows, API-
LANET secures the most top-1 entries by a wide margin, while the nearest competitor (TSMIXER)
records 4/4 and PATCHMIXER 1/1. These gains are consistent across seeds (mean+SD reported),
and are largest on the Acomb sites and Nunnykirk, indicating that the latent-physics prior and mono-
tone observation link translate into both lower error and higher efficiency in sparse-sensing regimes.

5 CONCLUSION AND FUTURE WORK

We introduced APILANET, an Adaptive Physics-Informed Latent Network for single-sensor fore-
casting that couples sequence learning with weak-form conservation. A dual-stream latent prior
with input-driven gating, a monotone observation link, and a learned, normalized space—time mea-
sure deliver stable training and targeted physics enforcement. On five UK catchments, APILANET
improves NSE and lowers flood-peak MSE over strong state-of-the-arts, suggesting a practical ap-
plication for conservation-governed forecasting under sparse sensing.

We analyzed the limitations of our work and briefly discuss some directions for future research:
(1) Beyond 1-D. Generalize the latent PDE from a reach-averaged 1-D mesh to multi-reach/graph
geometries and lightweight momentum terms. (ii) Safer observation mapping. Add physics-aware
shape priors and uncertainty quantification to the monotone link for robust extrapolation outside
the observed flow range. (iii) Richer hydrologic states and interpretability. Learn time—space wet-
ness/state variables (beyond a single decay «) and integrate XAl diagnostics to attribute predictions
to latent physics and drivers.
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A APPENDIX A

Ethics Statement We used large language models (LLMs) solely to polish writing e.g., improving
clarity, grammar, and flow. All ideas, methods, experiments, analyses, figures, and conclusions are
the authors’ own. No data, code, or results were generated by LLMs, and all citations and factual
statements were verified by the authors.

Reproducibility Statement We provide the theoretical background throughout the paper and in
the Technical Appendix, including assumptions, definitions, and proofs supporting our claims. Upon
acceptance, we will release the full codebase, configuration files, and scripts to reproduce all exper-
iments in a public GitHub repository; the URL will be announced to preserve double-blind review.

A.1 DATASETS

Data source. All datasets used in this study were extracted from the UK Environment Agency
Hydrology service (https://environment .data.gov.uk/hydrology/explore). We
used publicly available gauge series and constructed train/test splits per catchment as summarized
in Table [
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Table 4: Dataset overview by site (Train+Test merged). All series are 15 min cadence and include
10 features per site. Source: UK Environment Agency Hydrology.

Site |Rows (total) Features Time range Med. interval
Acomb GH 320590 10 2016-01-01 — 2025-02-28 15 min
Acomb MSFD 321260 10 2016-01-01 — 2025-02-28 15 min
Knitlsey 315535 10 2016-01-01 — 2024-12-30 15 min
Nunnykirk 315505 10 2016-01-01 — 2024-12-30 15 min
Stocksfield 110857 10 2022-01-01 — 2025-02-28 15 min

Preprocessing. Timestamps were parsed and sorted; all series operate at a 15 min cadence. We
retain provider units and engineer a 10D feature vector per timestamp. Here Ah and AZh are
first/second differences of level; daily min/daily_max are previous-day extrema (computed
per calendar day and shifted by 96 steps = 24 h to avoid leakage), then forward/backward filled;
future_rainis a32-step (8 h) lead of rain (placeholder when not observed); AWI is an exponen-
tially weighted antecedent wetness index with 5-day decay; and rain_3h/rain_24h are rolling
rainfall sums over 12 and 96 steps. After feature construction we drop any residual NaNs. Features
are scaled with a Min—-Max transform fitted on the training split and applied to validation/test. For
sequence modeling we form input/output windows of 32/32 steps (8 h/8 h); training uses an 80/20
chronological split with shuffling only on the training loader (validation/test are not shuffled).

Notation. Let {tT}Z:1 be the forecast timestamps (uniform step At), and let y, and ¢, denote the
observed and predicted water level at ¢,

Mean Squared Error (MSE).

N

T
1 . 2
MSE = E (yT fyT) .
T=1
Nash—Sutcliffe Efficiency (NSE).

ZT:1 (gr - y‘r)2 _ 1 4
NSE =1 - ==/~~~ ¥y = = Yr-
ZZ:l(yT - g)Q Tzzjl

Peak timing error (Atpc.c). Let 7)., € argmax, y, and Tgred € arg max, .. We report the
(absolute) timing difference in hours:
Atpeauk = ‘t'r*

— * *
pred - tTng ’ - | Tpl"ed - 7—Obs At

(With 15 min cadence, At = 0.25h.)

Peak height error (Ahpc.x). We compare the peak magnitudes over the forecast window:

Ahpear = |InTaX3)T - mgxyT‘ (meters).

Optimization & training. All experiments are conducted on a single workstation with an
NVIDIA RTX 4090 (24 GB), an Intel Core i9-14900KS, and 128 GB of RAM All models are
trained in PyTorch with Adam (learning rate 1 x 10~3), mini—batches of 64, and shuffled training
streams; validation/test loaders are not shuffled. We use a deep ensemble of A =3 independently
trained instances for each seed we reinstantiate the data loaders with the same seed to obtain re-
producible shuffles. At inference, we average ensemble outputs for the point forecast and report
the ensemble standard deviation as an estimate of epistemic uncertainty. Unless otherwise stated,
input and forecast horizons are 32 steps (15 min cadence = 8 h lookback/8 h horizon), and the same
preprocessing and scaling are applied across all runs.

"No multi-GPU or distributed training is used.
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Reproducibility. We will release scripts that (i) download the raw CSVs from the Hydrology
service, (ii) apply the exact parsing and split logic used in this paper, and (iii) regenerate all summary
tables.

B APPENDIX B : PANEL A: DUAL-STREAM DISCHARGE PRIOR WITH
INPUT-DRIVEN GATING

Notation. For a sequence z € R” define the forward difference Az(1) = z(1) — 2(7 — 1)
for 7 > 2. We write the Sobolev—seminorm |z||%, = ZZZQ(AZ(T))2 and the total variation
|zl|Tv = 2322 |Az(7)|. A history window is X;.;, € RY*?; the most recent vector is 21, € R,

B.1 MODEL AND TRAINING OBJECTIVE

Two sequence encoders (e.g., LSTMs) produce nonnegative discharge sequences

Qb(X)7 Qq(X) S Rgm Qb = ¢b(X)7 Qq = ¢q(X)7

and a scalar gate is computed from the history (in code: from zp)
a(X) =o(g(X)) €[0,1],  o(u) =

The latent discharge propagated downstream is the convex mixture

1
1+e—uw "

Qo(75 X) = a(X) Qq(7: X) + (1 — a(X)) Qu(m; X),  Qp €RZ,. (12)
To bias the decomposition toward interpretable dynamics we add a paired prior
Ru(@b) = 1Qblf,  Ra(Qq) = [QqllTv- (13)

Let Lga, denote the supervised loss (on the task outputs). The Panel-A contribution to the training
objective is

La(X;0) = pu [|Qu(X)|Fn + pq [Qq(X) Ty, ppspg >0, (14)
and the full loss is Lioal = Ldata + L4 + Lphysics-

Remark (penalized joint learning). Unlike a constrained “recover (Qy, Q) given Qp” solve, our
implementation jointly learns Qy,, Q4 with the encoders by penalizing equation T3] during training.
This is exactly what the code does.

B.2  STABILITY OF THE GATED MIXTURE

Assumption B1 (encoder and gate regularity). There exist Lipschitz constants Ly, Ly, Ly > 0
such that

1@b(X) = @u(X oo < Ly [ X = X'[I, [1Qq(X) = Qq(X )]l < Lq [|IX — X[,

and [g(X) — g(X")| < L, || X — X'||, for a fixed norm || - || on RE*4, We use the standard bound
lo(u) = o(v)] < Flu—vl.

Theorem 4 (Lipschitz dependence of Qg on the history). Under Assumption Bl, for any windows
X, X/,

HQG('QX) - Q9<'§X/)HOO < (Lq + Ly + iLg AQ(X/)) ||X - X’H,
where Ag(X') = sup,|Qq(7; X) — Qu(7; X")|. If a uniform bound Ag(X') < Amax holds on
the training domain, we may replace Ag(X') by Apax.

Sketch. Using equation[12]
Qo(X) = Qo(: X') = a(X)(Qq(X) — Qq(X")) + (1 — a(X))(@n(X) — Qu(X"))
+ ((X) — a(X"))(Qq(X) — @n(X)).

Take || - ||oo, apply the encoder Lipschitz bounds to the first two terms, and the sigmoid bound
la(X) — a(X")| < 1g(X) — g(X')] < $L,4[|X — X'|| to the gate term; then collect constants.
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Interpretation. Small perturbations of the input history yield bounded changes in (9. The bound
decomposes additively into (i) variability of the fast stream, (ii) variability of the slow stream, and
(iil) gate sensitivity scaled by the instantaneous separation Ay between streams.

B.3 BIAS AND IDENTIFIABILITY OF THE PENALIZED SPLIT

Define the per-batch objective

T (X50) = Laaa(X50) + po | Qu(X)Fn + pq |Qa(X)llv-
At any stationary point of 7 (with respect to encoder parameters), the Euler—Lagrange/KKT condi-
tions yield the following qualitative structure.

Proposition 2 (Directional bias of the streams). Let 6* be a stationary point of J. Then the slow
stream Qy,(X;0*) minimizes a data-augmented functional that contains || DQ||3, while the fast
stream Qq(X; 0*) minimizes a data-augmented functional that contains || DQ||1. Consequently, Qy,
concentrates low-frequency energy and Q) concentrates high-variation energy (sparse differences).
The nonnegativity constraints preserve the physical sign.

Idea. Differentiate 7 with respect to the encoder outputs. The gradient contributions of || Qs ||
and || Qq||Tv are, respectively, DT (2 DQy,) (a smoothing operator) and D T (sign(D@Q,)) (an edge-
sparsifying operator). Balancing these with the data gradient yields the stated bias. Formal details
follow by standard subdifferential calculus for TV.

Identifiability discussion. When o € (0, 1) and the two priors are active (py, pq > 0), the opti-
mization favors a unique role allocation—smooth content in @)y, jump-sparse content in Q4. If «
saturates at {0, 1}, the inactive stream is under-determined by the mixture; in practice we discourage
saturation by ordinary early-training regularization on the gate (e.g., mild logit penalty) and by the
data loss coupling both streams through Q.

C APPENDIX C : PANEL B: PROPERTIES OF THE MONOTONE LATENT
MAPPING

Panel B maps the nonnegative driver ¢(7) € R>¢ (output of Panel A) to the target h(7) through
a shallow MLP fy : R>o — R applied elementwise in time: h(7) = fy(q(7)). We do not im-
pose weight sign constraints; instead we add a lightweight batchwise monotonicity surrogate that
encourages fy to be nondecreasing over the observed driver range.

Given a finite design set q = {¢;}?_; sampled from the current batch (or a fixed grid) and sorted
Q(l) S S Q(n), define

n—1
Lmono(0;q) = ! Z [foqus1)) — folaw)] _, []- = max{0, —x}. (15)
=1

n—14

We add YmonoLmono to the training objective (With Yy0no=0.01 in our experiments).

Proposition 3 (Immediate properties). If fo(qiiv1)) > fo(qu)) for all 4, then Liyono(05q) = 0.
Moreover,

| Jnax [fo(aw)) — folaurn)]l+ < (n—1) Liono(05a),

so the loss controls the largest adjacent monotonicity violation on the sampled range.

Let design sets q™) C [0, Qumayx] densify (mesh size — 0), and suppose sup,,, || fa,, ||cc < 00 and a
standard regularizer yields a uniform total-variation bound on fy . If Liono(0m; q(m)) — 0, then
a subsequence of {fp, } converges pointwise a.e. on [0, Qmax] to a nondecreasing limit. (Sketch:
Helly selection on uniformly BV functions + vanishing adjacent violations on a dense mesh implies
monotonicity a.e. of the limit.)

Practice. (i) We form q by sorting the per-batch driver values and compute equation[I3] (ii) The
surrogate only constrains the map where data lie (observed driver range), which is sufficient to sta-
bilize training and improve identifiability in practice. (iii) No architectural monotonicity constraints
are required; the approach is optimizer- and MLP-agnostic.
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D APPENDIX D : PANEL C: WEAK-FORM PHYSICS ON A LATENT MESH

Latent mesh and broadcasted residual. Let the forecast steps be 7 = 1:7" and the latent spatial
grid {x;};%, C [0,1]. The model outputs two time-indexed proxies (constant in z upon broadcast)

dthé)[T] ~ 8th(7-7')7 dTQO[T] ~ amQ(Tv ')a
and forms a latent forcing by projecting a single exogenous series via an exponential kernel
Ri.(z) = Re ™", % > 0 learnable, R = batch summary of rainfall.

A nonnegative space—time weighting field A4 (7,2) > 0 (produced by a small network on (7, z))
emphasizes informative regions. The broadcast weak residual is

T@[ij] = dthG[T] + deG[T] - Rn(xj)v

and the weak-form physics loss used in training is the normalized weighted average

T X
1
Lode(0,0) = X ZZ (1,2) rolT, 517, Ag(T,2) > 0. (16)

(Implementation: )\ is Softplus-positive; optionally we renormalize it per batch so its average over
(7, 7) is 1, but this is not required.)

C.1 FROM CLASSICAL WEAK RESIDUALS TO THE BROADCAST LOSS

Consider the 1-D continuity law on a strip,

Oh(t,x) + 0.Q(7,2) = R(x),  (m,2) € {1:T} x [0,1].
Let 14 be a learned nonnegative measure on [0, 1] with density A, (7, -) for each 7 (no sign changes;
boundedness holds in practice due to Softplus outputs).

Theorem 5 (Broadcast loss is a weighted weak residual). Assume (i) diho[7] and d,Qg|T] are
broadcast as piecewise-constant in x, (ii) R, is continuous in x, and (iii) \y(T,-) is bounded and
nonnegative. Then equation[I6]is a Riemann (cell-wise) quadrature of the weighted weak residual
with constant test functions on each cell:

Lpde(8, ¢) Z/ athg (1y2) + 0:Qp(7,z) — Ry (x ))2d/1,¢(7',$) + o(1),

where 0(1) — 0 as max; |z, 41 — ;| — 0. Sketch. Broadcasting makes trial/test functions piecewise
constant in x; the double sum is a normalized quadrature of the weighted L? residual over the latent
cells.

C.2 CONSISTENCY UNDER REFINEMENT AND APPROXIMATION

We formalize when vanishing broadcast loss enforces the PDE almost everywhere.

Assumption 5 (Approximation + bounded weights). There exist h*, Q*, R* with 0;h*+0,Q* = R*
a.e. such that: (i) dihg — 0;h* and d, Qg — 0,Q* in L*([0,1]) (over 7); (ii) R, — R* in L?([0,1])
as k — K*; (iii) the latent grid fill distance — 0; (iv) for each T, \y(T, -) is bounded on [0, 1] (and
optionally renormalized to unit mean).

Theorem 6 (Consistency of latent weak enforcement). Under Assumption@ if Lpae(8,¢) — 0 then
Oh* (1, x) + 0.Q*(1,x2) = R*(z)  forae. (1,2) € {1:T} x [0,1].

Sketch. By Theorem |5|the discrete loss converges to a weighted L? residual; bounded )\, and the
L? approximations imply the residual tends to 0 in L*(j1,), hence vanishes a.e.

15
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C.3 ROLE OF THE LEARNED WEIGHT FIELD AND EXPONENTIAL FORCING

Learned importance map. The nonnegative field A, (7, z) in equation [16|lets the model allocate
physics pressure to informative regions (e.g., transients or specific latent cells). Gradients take the
form

aﬁpde _ 2 . 8['pde _ 2 )
ddihelr]  TX Xj:/\¢(7',xj)r9[r,]], dd.Qo[r] ~ TX Zj:)‘¢(77$3)r«9[77]],
O0Lpde

d¢

so cells with large residuals attract more weight until balanced by normalization/other losses.

1 .
= % ZT@[T,]]Q Dphg(T,5).  (17)
7,]

Exponential projection. With R, () = Re™"* and £ > 0 learned, single-point exogenous input
induces a spatial latent loading that decays with x, enabling spatiotemporal structure from a single
time series while keeping the projection differentiable and stable.

C.4 RELATION TO CLASSICAL PINNS AND WEAK—FORM PINNS (MATHEMATICAL)

Classical (strong-form) PINNs. For a PDE AM[u] = f on [1:7] x , strong PINNs penalize
pointwise residuals at collocation points:

N
Lgrong(0) = %Z |Nug) (ri, 2:) = f (i, zi)|2 + (data/befic).
i=1

They require spatial collocation (7;, ;) and (via A') generally involve higher-order derivatives of
ug.

Weak-form (Galerkin) PINNs. Fix test functions {¢y }kK: 15 the weak residual is

Rweak(e; Spk) = /

1 K
Q(N[ue}— ) or da, cweak(e):?kzﬂmweak(g;@k),? + (data/befic).

With cellwise-constant o5, = Wq, this becomes a per-cell averaged L? residual, trading pointwise
sensitivity for integral robustness.

APILaNet’s broadcast weak form (Panel C). On a latent 1-D grid {z;} le, we broadcast time-

only proxies d;hg[7] and d,Qg[7] and use an exponentially projected forcing R, (z) = Re

—RIT.

T X
ro[7, ] = diho[T] + doQo[7] — Ri(x5),  Lpae(0,¢) = % DD dslrg)ralr ),

T=1j=1
with a learned nonnegative measure A4(7,-) (Sec. ??). By Thm. |5| L. is a Riemann quadrature
of a weighted weak L? residual with constant test functions.

E APPENDIX E : PANEL D: PROPERTIES AND PSEUDO-CODE

Recall (from Method, Eqns. equation [9}-equation[11). The effective PDE weight factorizes as

T X
1
Apde(tv'r) = )‘pde Aloc(t7x)7 )\loc(tvx) Z 07 ﬁ Z Z )\100(7—7 Ij) = 17

T7=1j=1
and the PDE contribution to the loss is

T X
1 . .
Lihe = Apde 7 2 2 Nac(ms @) ro[r,J1%, - rolr. ) = iholr] + 8:Qolr] — Ro(a;)-

T7=1j=1
Global weights are scheduled per mini-batch ¢ € {pde, cons} by

>\i = Cllp()\lo (1 + B+ a—irs + Qn H) , )\;‘nin’ )\?13,)()7

with base Y > 0, nonnegative sensitivities (e;, «; 1), and clipping bounds.

16
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D.1  ASSUMPTIONS AND IMMEDIATE CONSEQUENCES

Assumption 6 (Bounded signals & normalized local field). During training the batch prediction
loss E > 0, each component of the regime vector s > 0, and the activity score I1 € [0,1] are
bounded. The local field obeys \joe(T,2) > 0 and ﬁ PO j Moc(T,25) = 1. The clip enforces

A; € [Amin \max],
Theorem 7 (Monotone responsiveness with bounded pressure). Under Assumption [6] each \; is
(piecewise) nondecreasing in FE, in every component of s, and in Il (whenever unclipped), and
always satisfies X" < Xy < A", Moreover, when unclipped,

OAi _ = A7, — i\ ' — A\,
oF sk v oIl e

Proposition 4 (Lipschitz variation across batches). For consecutive batches k, k+1, when unclipped

IAFFD AW <\ (Ek“ — Ep| + > iml$mkt1 — Smok| + @i Tis — Hk|> ,

and with clipping, the same bound holds after projection to [N, XX Thus the scheduler is
Lipschitz in signal deltas and has no EMA-type lag.

Lemma 1 (Scale invariance under local normalization). With ﬁ 277 j Aoc(T,25) =1,

— 1
‘C;{Zie = Apde - r2, rii= TX Z)\loc(Ta xj) r

Hence the rescaling Ajoc = € Aipe, Apde = Apde/C leaves £y
this ambiguity and improves identifiability.

pde unchanged; normalization removes

D.2 GRADIENTS AND INTUITION

Using 7,; = diho[7] + d;Qp[7] — Re (), the partials of £ are

pde

o Eef‘f

2)
adtff:e =7 ZAloc T 25) Ty

&Ceff 9
ad 5de _ )\pde Z)\loc T, I, rT]? (18)
9

8£eff A
pde pde 2 ..
= r7; (before renormalization).
OMoe (T, x5) TX ™

Thus the learned field A, (Softplus-positive) allocates more weight to large residuals until balanced
by normalization and other losses; Apqc scales the overall physics pressure per batch.

D.3 PSEUDO-CODE (DOMAIN-AGNOSTIC)

We use the factorized schedule in Algorithm [2] It matches the Method section but is formatted for
one column.

D.4 PRACTICAL KNOBS
Clips. Choose [\, \"@X] g0 physics never dominates early but can rise during events. Sensi-

tivities. Start with small as (e.g., 1071-10°), increase if residuals persist. Spread regularizers
(optional). Entropy or ¢, penalties on )\, discourage collapse:

Remropy = B Z Aloc (7-7 xj) log Aloc (7-7 xj): Rlz = B Z ()\]00(7—7 xj) - %) 2'

TJ T.J

17
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Algorithm 2: Adaptive Multi-Loss Scheduling with Factorized Local Weights

Inputs: mini-batch D, model Fy, optimizer; bases {\] }; sensitivities {cv;x, }; clips [\, A2¥]
Outputs: updated parameters ¢
for epoch e = 1 to Nypocr do
foreach mini-batch D do
compute per-losses {£;(6, D) }i~; optional local map Wis >0
compute batch signals {sx(D)}~_, and activity II
fori =1tomdo
K

i — clip()\? (1 + Z ik Sk + am—[l'[), Amin, A;nax)

k

=1

if Wi, used then
A ﬁ Z(t,:):)eﬂ m()c(t7 .’L’),
VVIOC <~ VV]OC/Z

Lioi Z Ai Li(0, D; Wiec)
i=1
optimizer.zero_grad();
backprop(Liot);
optimizer.step()

F APPENDIX F : ADDITIONAL EXPERIMENTS

We report additional benchmarks that stress early—warning skill at four lead times before the ob-
served peak: 8h, 6 h, 4h, and 2h. At each lead time we (i) re-slice the dataset around the peak time;
(i) run every model with the same hyperparameters as Section 4} and (iii) report the mean across
three seeds. Primary metrics are MSE (]) and NSE (1); we additionally report peak timing error
Atpeak () and peak magnitude error Ahpyea (J). Across all sites, accuracy improves monotonically
as lead time shortens (§ h—2h). APILaNet retains the best or second-best MSE/NSE at every lead
time and consistently reduces Atpea and Ahpeq relative to strong sequence baselines.

18
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Figure 4: Model forecasts at four start times: (a) APILANET, (b) CROSSFORMER, (c) TSMIXER.

Table 5: Catchment-level forecasting 8 hours before peak. Metrics are mean+SD across seeds.
Errors: peak timing Atpeax ()], peak height Ahpeax (m), MSE], NSET.

APILANET CROSSFORMER TSMIXER

Data
Atpeakd Ahpeard MSEL NSET ‘ Atpeakd Ahpeard MSE] NSET ‘ Atpeakd Ahpeard MSE] NSET

Split ‘

Event 1 | 0.420 & 0.380 0.299 -+ 0.031 0.133 + 0.096 0.623 + 0.271 | 0.000 & 0.000 0.377 + 0.148 0.242 + 0.09 0.314 + 0.255 | 2.580 & 4.470 0.552 + 0.024 0.369 + 0.032 -0.044 =+ 0.090
Event2 | 0.170 & 0.290 0.314 £ 0.055 0.198 + 0.072 0.766 + 0.085 | 0.250 & 0.250 0.527 £ 0.007 0.479 + 0.034 0.434 £ 0.041 | 0.500 & 0.000 0.411 + 0.043 0.354 + 0.051 0.583 + 0.060
Event3 | 0.170 £ 0.290 1.339 4= 0.088 1.205 =+ 0.185 0.132 == 0.133 | 0.000 £ 0.000 1.348 4= 0.050 1.111 = 0.837 0.200 = 0.060 | 0.000 + 0.000 1.297 & 0.051 1.012 £ 0.089 0.271 =+ 0.064

AcomB GRN

Average | 0.253 + 0.144 0.651 £ 0.596 0.512 + 0.601 0.507 =+ 0.333 | 0.083 + 0.144 0.751 £ 0.523 0.611 £ 0.449 0.316 + 0.117 | 1.027 + 1.368 0.753 & 0.476 0.578 + 0.376 0.270 =+ 0.314
ge | 0.255 x 0.144 9751 x 0.525 9.316 x 0.117 0578 x 0.576

Event 1 | 0.000 & 0.000 0.122 £ 0.065 0.064 + 0.023 0.877 + 0.044 | 0.000 & 0.000 0.334 £ 0.098 0.201 #+ 0.136 0.612 + 0.262 | 0.000 & 0.000 0.237 + 0.030 0.112 + 0.040 0.783 + 0.078
Event 2 | 0.000 £ 0.000 0.107 4 0.075 0.033 + 0.010 0.877 =+ 0.040 | 0.000 + 0.000 0.192 4 0.054 0.109 =+ 0.054 0.586 =+ 0.206 | 0.000 + 0.000 0.101 + 0.018 0.034 -+ 0.015 0.870 -+ 0.058
Event3 | 0.000 £ 0.000 0.827 4 0.045 0.665 - 0.046 0.572 + 0.029 | 0.000 & 0.000 1.166 £ 0.062 1.267 & 0.129 0.184 = 0.083 | 0.000 & 0.000 0.929 + 0.079 0.805 + 0.148 0.481 + 0.096

ACOMB MFs

‘ Average ‘ 0.000 £ 0.000 0.352 & 0.411 0.254 £ 0.356 0.775 £ 0.176 | 0.000 £ 0.000 0.564 & 0.526 0.526 £ 0.644 0.461 £ 0.240 | 0.000 £+ 0.000 0.422 + 0.444 0.317 + 0.424 0.711 £ 0.204

Event 1 | 0.000 £ 0.000 0.463 + 0.192 0.452 + 0.135 0.506 + 0.147 | 2.080 & 3.610 1.022 + 0.052 1.072 # 0.167 -0.172 =+ 0.182 | 0.080 £ 0.140 0.850 + 0.065 0.689 + 0.109 0.246 + 119
Event 2 X £ X x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x
Event 3 | 0.000 & 0.000 0.949 + 0.033 0.900 + 0.068 -0.077 £ 0.082 | 0.000 & 0.000 0.995 £ 0.014 1.006 % 0.039 -0.203 £ 0.047 | 0.000 £ 0.000 0.971 + 0.017 0.947 + 0.036 -0.133 + 0.043

STOCKSFIELD

‘ Average ‘ 0.000 + 0.000 0.471 & 0.475 0.451 £ 0.450 0.143 £ 0.317 | 0.693 + 1.201 0.672 & 0.582 0.693 £ 0.601 -0.125 & 0.109 | 0.027 + 0.046 0.607 £ 0.529 0.545 + 0.490 0.038 + 0.192

Event 1 |4.750 & 4.160 0.241 + 0.050 0.171 + 0.089 -0.762 + 0.922 | 6.830 & 0.880 0.189 + 0.081 0.111 £ 0.019 -0.145 £ 0.204 | 5.170 £ 4.470 0.246 + 0.046 0.266 & 0.157 -1.744 + 1.623
Event 2 | 0.000 & 0.000 0.266 + 0.059 0.295 + 0.133 0.326 + 0.305 | 0.000 & 0.000 0.330 £ 0.088 0.278 + 0.158 0.364 + 0.361 | 0.000 & 0.000 0.312 + 0.090 0.302 + 0.119 0.309 + 0.274
Event 3 x £ x X £ X X £ X X £ X X £ X X £ X X £ x X £ x X £ x X £ x X £ x X £ x

NUNNYKIRK

‘ Average‘ 1.583 + 2.741 0.169 + 0.147 0.155 4 0.148 -0.145 -+ 0.558 | 2.277 + 3.946 0.173 + 0.166 0.130 + 0.140 0.073 + 0.262 | 1.723 + 2.986 0.186 + 0.164 0.189 & 0.165 -0.478 + 1.107

Event 1 |0.170 & 0.140 0.106 + 0.033 0.028 + 0.023 0.935 + 0.053 | 0.000 £ 0.000 0.159 £ 0.090 0.079 + 0.048 0.821 + 0.109 | 0.000 £ 0.000 0.137 + 0.036 0.073 + 0.028 0.834 + 0.064
Event2 | 0.080 & 0.140 0.155 + 0.153 0.064 + 0.024 0.916 + 0.032 | 0.420 & 0.720 0.317 £ 0.034 0.441 £+ 0.168 0.429 + 0.218 | 0.000 £ 0.000 0.287 + 0.207 0.195 + 0.172 0.748 + 0.223
Event 3 | 0.000 & 0.000 0.170 £ 0.008 0.124 + 0.047 0.271 £ 0.274 | 0.000 & 0.000 0.084 + 0.013 0.047 + 0.008 0.725 + 0.050 | 0.000 £ 0.000 0.197 £ 0.019 0.099 + 0.015 0.414 + 0.090

KNITSLEY

‘ Average ‘ 0.083 + 0.085 0.144 & 0.033 0.072 £ 0.048 0.707 £ 0.378 | 0.140 £ 0.242 0.187 & 0.119 0.189 £ 0.219 0.658 £ 0.204 | 0.000 + 0.000 0.207 & 0.075 0.122 + 0.064 0.665 + 0.222
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Table 6: Catchment-level forecasting 6 hours before peak. Metrics are mean+SD across seeds.
Errors: peak timing At,cax (h)], peak height Ahpcax (m)), MSE], NSET.

APILANET CROSSFORMER TSMIXER

Data
Atpeakd Ahpeard MSEL NSET ‘ Atpeakd Ahpeard MSE] NSET ‘ Atpeard Ahpeard MSE] NSET

Split ‘

Event 1 |0.750 £ 0.250 0.395 4 0.073 0.351 £ 0.165 0.553 + 0.210 | 0.250 & 0.000 0.484 + 0.151 0.447 4 0.359 0.430 & 0.459 | 0.830 + 0.520 0.581 = 0.088 0.665 + 0.239 0.152 + 0.305
Event2 | 0.750 & 0.500 0.351 £ 0.037 0.318 + 0.096 0.564 + 0.131 | 0.500 & 0.430 0.462 £ 0.032 0.478 4+ 0.075 0.345 £ 0.102 | 1.000 £ 0.430 0.344 + 0.010 0.268 + 0.069 0.632 + 0.095
Event3 | 1.580 4= 0.290 1.233 -+ 0.122 4.814 + 0.362 0.082 + 0.069 | 1.580 =& 0.140 1.339 + 0.089 4.562 + 0.497 0.130 + 0.095 | 1.250 & 0.500 1.320 + 0.074 4.171 + 0.413 0.205 + 0.079

AcomB GRN

‘ Average‘ 1.027 + 0.479 0.660 + 0.497 1.828 4 2.586 0.400 + 0.275 | 0.777 £ 0.707 0.762 £ 0.500 1.829 4 2.367 0.302 & 0.155 | 1.027 + 0.211 0.748 + 0.509 1.701 + 2.148 0.330 + 0.263

Event 1 | 0.170 & 0.140 0.059 £ 0.054 0.070 + 0.034 0.905 + 0.047 | 0.000 & 0.000 0.314 £ 0.089 0.288 + 0.136 0.610 + 0.184 | 0.500 & 0.250 0.174 £ 0.150 0.164 + 0.098 0.778 + 0.133
Event2 | 0.420 £ 0.140 0.149 + 0.042 0.084 + 0.016 0.889 + 0.022 | 1.170 & 1.010 0.288 + 0.600 0.276 + 0.071 0.636 + 0.094 | 1.250 £ 0.430 0.068 -+ 0.057 0.075 + 0.050 0.901 + 0.066
Event3 | 0.830 & 0.140 0.699 £ 0.157 1.924 4+ 0.297 0.430 + 0.088 | 0.830 & 0.140 1.084 £ 0.144 3.337 + 0.781 0.003 £ 0.231 | 0.750 & 0.250 0.927 + 0.032 2.427 + 0.283 0.281 + 0.084

ACOMB MFs

‘ Average ‘ 0.473 £ 0.333 0.302 & 0.346 0.693 £ 1.067 0.741 £ 0.270 | 0.667 + 0.602 0.562 & 0.452 1.300 £ 1.763 0.416 £ 0.358 | 0.833 + 0.382 0.390 + 0.468 0.889 + 1.333 0.653 + 0.328

Event 1 | 1.420 £ 0.580 0.585 + 0.115 1.015 + 0.433 0.471 + 0.226 | 1.330 & 0.720 0.999 + 0.096 2.862 + 0.417 -0.491 =+ 0.217 | 1.250 £ 0.660 0.686 + 0.030 1.497 + 0.114 0.220 + 0.060
Event 2 X £ x X £ x x £ x x £ x x £ x x £ x x £ x X £ x x £ x X £ x X £ x X £ x
Event 3 | 1.750 & 0.000 0.964 + 0.009 2.597 + 0.062 -0.512 + 0.036 | 1.000 £ 0.660 1.009 + 0.015 2.774 4 0.088 -0.615 £ 0.051 | 1.500 £ 0.430 0.916 + 0.036 2.351 + 0.140 -0.369 + 0.082

STOCKSFIELD

‘ Average ‘ 1.057 £ 0.930 0.516 + 0.486 1.204 + 1.309 -0.014 + 0.492| 0.777 + 0.693 0.669 + 0.580 1.879 £ 1.628 -0.369 & 0.325|0.917 + 0.804 0.534 + 0.477 1.283 + 1.190 -0.050 + 0.298

Event 1 |2.750 4 3.910 0.248 £ 0.085 0.382 + 0.192 -0.646 + 0.828 | 7.250 & 0.000 0.263 + 0.028 0.559 + 0.165 -1.414 £ 0.714 | 4.170 & 3.740 0.315 £ 0.007 0.515 4+ 0.217 -1.219 + 0.935
Event2 | 1.920 & 0.140 0.182 + 0.053 0.330 + 0.039 0.342 + 0.079 | 1.920 & 0.140 0.248 + 0.115 0.418 + 0.227 0.168 + 0.451 | 2.000 £ 0.000 0.214 + 0.110 0.336 + 0.149 0.330 + 0.298
Event 3 x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x x £ x

NUNNYKIRK

‘ Average‘ 1.557 £ 1.411 0.143 + 0.128 0.237 + 0.207 -0.101 £ 0.502 | 3.057 £ 3.756 0.170 + 0.148 0.326 + 0.291 -0.415 = 0.869 | 2.057 + 2.086 0.176 + 0.161 0.284 + 0.261 -0.296 -+ 0.816

Event 1 | 0.330 & 0.140 0.072 £ 0.061 0.025 + 0.021 0.953 + 0.040 | 0.330 & 0.140 0.128 + 0.085 0.076 + 0.048 0.857 + 0.089 | 0.170 £ 0.140 0.237 £ 0.044 0.190 + 0.067 0.645 + 0.124
Event2 | 0.580 £ 0.140 0.186 + 0.087 0.125 + 0.107 0.892 + 0.092 | 0.920 & 0.760 0.395 + 0.099 0.443 + 0.173 0.619 + 0.149 | 1.000 £ 0.660 0.345 + 0.052 0.409 + 0.189 0.648 + 0.162
Event3 | 1.250 & 0.870 0.189 + 0.022 0.257 4 0.097 -0.071 £ 0.404 | 0.330 & 0.290 0.135 + 0.023 0.092 + 0.007 0.617 + 0.030 | 0.920 & 0.520 0.223 £ 0.034 0.213 + 0.061 0.113 + 0.256

KNITSLEY

‘ Average ‘ 0.720 + 0.476 0.149 = 0.067 0.136 + 0.116 0.591 £ 0.574 | 0.527 + 0.341 0.219 + 0.152 0.204 £ 0.207 0.698 + 0.138 | 0.697 + 8 0.268 & 0.067 0.271 £ 0.120 0.469 + 0.308

Table 7: Catchment-level forecasting 4 hours before peak. Metrics are mean+SD across seeds.
Errors: peak timing Atpeax ()], peak height Ahpeax (m)l, MSE], NSET.

APILANET CROSSFORMER TSMIXER

Data
Atpead Ahpeaid MSE| NSET ‘ Atpearl Ahpeart MSEL NSET ‘ Atpead Ahpearl MSE| NSET

Split ‘

Event I [0.580 £ 0.140 0.383 £ 0.039 0.291 + 0.060 0.526 = 0.098 | 0.170 £ 0.140 0.508 £ 0.076 0.505 & 0.186 0.176 & 0.304 | 0.250 & 0.000 0.432 + 0.056 0.314 + 0.059 0.489 + 0.097
Event 2 |0.500 + 0.250 0.382 + 0.015 0.324 + 0.057 0.074 + 0.163 | 0.330 + 0.380 0.424 + 0.090 0.457 #+ 0.303 0.305 + 0.865 | 0.750 + 0.500 0.307 =+ 0.039 0.253 + 0.098 0.275 + 0.280
Event 3 |2.830 + 1.180 1.383 4 0.070 6.145 + 0.153 -0.416 + 0.036 | 3.750 + 0.000 1.340 -+ 0.102 6.276 &+ 1.081 -0.446 + 0.249 | 1.750 &+ 0.500 1.429 + 0.093 5.549 + 0.581 -0.279 + 0.134

AcomB GRN

‘Average 1.303 £ 1.323 0.716 + 0.578 2.253 + 3.370 0.061 + 0.471 | 1.417 & 2.022 0.757 4 0.506 2.413 £ 3.346 0.012 + 0.402 | 0.917 £ 0.764 0.723 4 0.615 2.039 + 3.040 0.162 + 0.396

Event 1 [0.080 £ 0.140 0.123 4 0.030 0.069 + 0.021 0.863 = 0.042 | 0.420 £ 0.140 0.208 £ 0.121 0.214 £ 0.145 0.576 4 0.287 | 0.170 = 0.140 0.195 + 0.127 0.164 4+ 0.152 0.676 + 0.301
Event2 |0.500 £ 0.430 0.175 4 0.082 0.147 + 0.062 0.750 + 0.105 | 0.670 £ 0.950 0.295 £ 0.037 0.279 #+ 0.073 0.527 & 0.124 | 1.670 &+ 0.630 0.096 + 0.082 0.115 & 0.072 0.806 + 0.0.121
Event 3 | 1.000 & 0.250 0.732 + 0.107 2.389 + 0.149 0.109 + 0.056 | 3.750 & 0.000 1.126 £ 0.076 4.406 + 0.505 -0.642 + 0.188 | 2.000 + 1.520 1.072 + 0.106 3.662 + 0.684 -0.365 + 0.255

AcoMB MFs

‘ Average ‘ 0.527 + 0.461 0.343 + 0.338 0.868 + 1.318 0.574 = 0.407 | 1.613 + 1.855 0.543 £ 0.507 1.633 & 2.402 0.154 £ 0.690 | 1.280 + 0.975 0.454 + 0.537 1.314 + 2.034 0.372 + 0.642

Event | | 1.420 + 0.760 0.588 4 0.091 1.233 + 0.569 0.191 =+ 0.374 | 3.250 + 0.660 1.032 £ 0.052 3.709 % 0.157 -1.433 + 0.103 | 1.920 & 1.040 0.724 + 0.049 1.495 + 0.260 0.019 + 0.171
Event 2 X+ x x + x x £ x x £ x x £ x x £ x x £ x x £ x X+ x x £ x x £ x X+ x
Event 3 |2.420 £ 1.530 0.893 & 0.085 2.994 + 0.136 -1.349 £ 0.106 | 2.750 £ 0.250 0.742 + 0.022 2.006 + 0.278 -0.574 + 0.218 | 3.500 = 0.430 0.821 + 0.080 2.571 + 0.227 -1.017 + 0.178

STOCKSFIELD

0.386 + 0.839

2.000 + 1.750 0.591 £ 0.532 1.905 4 1.856 -0.669 + 0.722

‘A\'erage‘ 1.280 + 1.216 0.494 + 0.454 1.409 + 1.505 07 + 1.753 0.515 4+ 0.449 1.355 £ 1.291 -0.333 £ 0.593

Event I [0.750 £ 1.300 0.138 £ 0.096 0.239 + 0.162 -0.071 =+ 0.724 | 4.000 £ 2.170 0.347 £ 0.008 1.011 & 0.238 -3.515 + 1.064 | 1.170 & 0.950 0.305 £ 0.098 0.695 + 0.471 -2.105 + 2.103
Event 2 |2.580 £ 0.760 0.116 4 0.026 0.108 + 0.044 0.513 = 0.200 | 1.250 £ 0.250 0.248 =+ 0.024 0.319 & 0.061 -0.442 + 0.277 | 2.080 = 0.800 0.132 + 0.046 0.129 + 0.078 0.419 + 0.349
Event 3 x £ x X + x x £ x x £ x X+ x x £ x X £ x X £ x x £ x X+ x X £ X x £ x

NUNNYKIRK

‘ Average | 1.110 + 1.327 0.085 + 0.074 0.116 £ 0.120 0.147 + 0.319 | 1.750 == 2.046 0.198 & 0.179 0.443 £ 0.517 -1.319 £ 1.915 | 1.083 + 1.043 0.146 + 0.153 0.275 + 0.370 -0.562 + 1.352

Event 1 [0.580 £ 0.580 0.054 & 0.046 0.056 + 0.033 0.843 = 0.092 | 0.330 £ 0.140 0.107 £ 0.099 0.074 + 0.072 0.792 4 0.203 | 0.000 % 0.000 0.237 £ 0.060 0.205 & 0.123  0.425 £ 0.345
Event2 |0.420 £ 0.520 0.100 £ 0.055 0.059 + 0.025 0.923 + 0.032 | 0.330 £ 0.380 0.359 £ 0.118 0.302 + 0.179 0.609 £ 0.232 | 0.580 &+ 0.290 0.215 £ 0.130 0.206 + 0.087 0.733 + 0.112
Event 3 | 1.080 + 1.460 0.080 + 0.013 0.137 + 0.089 0.214 & 0.510 | 3.750 + 0.000 0.085 + 0.015 0.129 + 0.068 0.262 + 0.393 | 2.500 + 2.170 0.090 =+ 0.032 0.058 + 0.021 0.667 + 0.122

KNITSLEY

‘Averﬂgc ‘ 0.693 + 0.344 0.078 £ 0.023 0.084 + 0.046 0.660 = 0.388 | 1.750 + 1.975 0.184 £ 0.153 0.168 + 0.119 0.554 £ 0.269 | 1.027 + 1.308 0.181 + 0.079 0.156 + 0.085 0.608 + 0.162

Figure 5: Test performance across five UK catchments. Bars show NSE (1) and MSE (|; x1073
axis units) for APILANET and baselines; error bars denote mean+SD over 3 seeds.
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Table 8: Catchment-level forecasting 2 hours before peak. Metrics are mean+SD across seeds.
Errors: peak timing Atpeak (h)], peak height Ahpeax (m)), MSE], NSET.

Data| Split APILANET CROSSFORMER TSMIXER
Atpeard Ahpeard MSE| NSET Atpearl Ahpearl MSE| NSET Atpear Ahpearl MSE| NSET

% | Event1 {0250 £ 0250 0.403 = 0.057 0.281 + 0.062 0.444 - 0.123 | 0.080 £ 0.140 0.506 & 0.080 0.557 £ 0.259 -0.102 & 0.514 | 0.670 £ 0.380 0.497 & 0.016 0.485 + 0.101 0.041 £ 0.200
E Event2 |0.330 £ 0.140 0.305 £ 0.052 0.161 + 0.082 0.551 =+ 0.230 | 0.580 & 0.380 0.360 + 0.061 0.211 & 0.124 0.412 £ 0.346 | 0.580 & 0.380 0.364 £ 0.029 0.209 + 0.025 0.415 + 0.070
5 Event3 | 533 £ 0.380 1.267 £ 0.113 6.142 = 0.967 -1.196 % 0.346 | 3.420 & 2.040 1.427 £ 0.049 6.110 + 0.622 -1.183 + 0.222 | 2.500 & 2.180 1.298 + 0.167 5.001 + 1.337 -0.790 + 0.478
<

‘Average ‘ 1.970 £ 2.910 2.195 4 3.419 -0.067 + 0.979 | 1.360 + 1.801 0.764 + 0.579 2.293 £ 3310 -0.291 & 0.814 | 1.250 & 1.083 0.720 + 0.505 1.898 + 2.691 -0.111 £ 0.617
£ | Event1 [0.500 + 0.250 0.178 £ 0.041 0.192 + 0.139 0.522 + 0.347 | 0.250 + 0.000 0.243 £ 0.101 0.306 & 0.279  0.253 £ 0.680 |0.330 £ 0.140 0.172 £ 0.026 0.107 £ 0.021 0.738 + 0.051
E Event2 [0.750 £ 0.250 0.051 =+ 0.030 0.031 + 0.017 0.885 =+ 0.063 | 1.500 & 0.250 0.206 + 0.024 0.166 & 0.009 0.391 =+ 0.034 | 0.750 & 0.250 0.147 + 0.083 0.109 + 0.082 0.601 + 0.299
é Event3 |4.170 4 2320 0.737 + 0.064 3.258 4 0.925 -1.162 + 0.614 | 5.750 £ 0.000 1.021 & 0.034 4.988 + 0.332 -2.310 + 0.220 | 4.330 & 2.450 0.972 + 0.031 3.349 & 0.202 -1.222 + 0.134
<

‘ Average ‘ 1.807 + 2,051 0.322 + 0.365 1.160 + 1.819 0.082 + 1.092 | 2.500 + 2.883 0.490 + 0.460 1.820 + 2.744 -0.555 + 1.521 | 1.803 + 2.198 0.430 + 0.469 1.188 + 1.873 0.039 + 1.095
é Event 1 | 1.330 £ 0.140 0.679 £ 0.104 1.593 + 0.552 -0.634 + 0.566 | 1.330 &= 0.380 0.997 £ 0.056 3.189 & 0.435 -2.270 4 0.446 | 1.080 & 0.380 0.721 + 0.097 1.586 + 0.460 -0.627 + 0.472
Z | Event2 X £ x X + x X + x x £ x X+ x X + x X £ x X + x X + x X £ x x £ x X+ x
§ Event 3 |5.670 £ 0.140 0.753 £ 0.052 1.990 + 0.099 -2.614 + 0.181 | 5.330 & 0.380 0.788 £ 0.069 2.004 & 0.386 -2.639 & 0.701 |5.670 & 0.140 0.728 + 0.006 1.843 + 0.258 -2.347 + 0.469
£
“ ‘Average ‘ 2.333 +£2.965 0.477 £ 0.415 1.194 4 1.053 -1.083 + 1.364 | 2.220 + 2.774 0.595 £ 0.526 1.731 £ 1.612 -1.636 & 1.429 |2.250 & 3.011 0.483 + 0.418 1.143 + 0.998 -0.991 £ 1.215
2 | Event1 [0.670 £ 0.140 0.156 £ 0.112 0.459 =+ 0.240 -4.731 = 2.999 | 1.330 + 0.760 0.362 £ 0.023 1.146 & 0.093 -13.312 & 1.164 | 0.830 £ 0.720 0.334 £ 0.061 0.773 + 0.361 -8.646 + 4.509
Z
E Event2 | 1.750 £ 0.250 0.049 £ 0.040 0.052 + 0.029 0.238 =+ 0.427 | 1.000 £ 0.000 0.096 + 0.067 0.069 + 0.068 -0.009 + 0.994 | 1.830 & 0.800 0.084 + 0.037 0.074 = 0.032 -0.081 =+ 0.482
g Event 3 msdx X x £ x X+ x X+ x x £ x X+ x X+ x X+ x X+ x X+ x x £ x x + x
z

‘ Average ‘ 0.807 + 0.883 0.068 £ 0.080 0.170 4 0.251 -1.498 4 2.803 | 0.777 £ 0.693 0.153 + 0.188 0.405 £ 0.643 -4.440 £ 7.683 | 0.887 £ 0.916 0.139 + 0.174 0.282 + 0.427 -2.909 + 4.969
> | Event1 [0.330 £ 0.290 0.027 £ 0.023 0.045 & 0.030 0.724 £ 0.186 | 0.420 & 0.140 0.146 + 0.049 0.106 £ 0.009 0.355 £ 0.055 |0.170 & 0.140 0.210 & 0.035 0.242 £ 0.009 -0.477 £ 0.058
=
Z | Event2 [0.000 £ 0.000 0.078 £ 0.054 0.068 + 0.036 0.885 + 0.061 | 0.000 = 0.000 0.084 + 0.008 0.108 + 0.029 0.818 + 0.050 |0.330 & 0.380 0.148 + 0.096 0.256 £ 0.111 0.567 + 0.187
z = = =
E Event 3 |5.330 £ 0.140 0.097 £ 0.056 0.123 + 0.032 -1.641 + 0.689 | 1.920 & 3.320 0.023 + 0.010 0.036 + 0.009 0.225 + 0.212 | 4.080 & 2.890 0.004 + 0.004 0.057 + 0.013 -0.237 + 0.272

‘ Average ‘ 1.887 + 2.987 0.067 £ 0.036 0.079 & 0.040 -0.011 + 1.414|0.780 = 1.009 0.084 + 0.062 0.083 + 0.041 0.466 + 0.312 | 1.527 & 2.213 0.121 £ 0.106 0.185 £ 0.111 -0.049 £ 0.547
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