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ABSTRACT

Recently, multimodal large language models (MLLMs) have demonstrated strong
visual understanding and decision-making capabilities, enabling the exploration
of autonomously improving MLLMs in unknown environments. However, ex-
ternal feedback like human or environmental feedback is not always available.
To address this challenge, existing methods primarily focus on enhancing the
decision-making capabilities of MLLMs through voting and scoring mechanisms,
while little effort has been paid to improving the environmental comprehension of
MLLMs in unknown environments. To fully unleash the self-learning potential of
MLLMs, we propose a novel actor-critic self-learning paradigm, dubbed SELU,
inspired by the actor-critic paradigm in reinforcement learning. The critic em-
ploys self-asking and hindsight relabeling to extract knowledge from interaction
trajectories collected by the actor, thereby augmenting its environmental compre-
hension. Simultaneously, the actor is improved by the self-feedback provided by
the critic, enhancing its decision-making. We evaluate our method in the AI2-
THOR and VirtualHome environments, and SELU achieves critic improvements
of approximately 28% and 30%, and actor improvements of about 20% and 24%
via self-learning.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have demonstrated impressive perceptual and un-
derstanding capabilities across various domains, e.g., web applications (Ma et al., 2024; Tao et al.,
2024; Liu et al., 2024), robotics (Xiong et al., 2024; Li et al., 2024b), gaming (Li et al., 2024c; Qi
et al., 2024; Xu et al., 2024), and autonomous driving (Wen et al., 2024; Zhang et al., 2024). Thanks
to their powerful capabilities, many works, e.g., Jarvis-1 (Wang et al., 2023b), STEVE-1 (Lifshitz
et al., 2023), and Cradle (Tan et al., 2024b), directly utilize the pre-trained MLLMs to complete
various decision-making tasks in different embodied environments.

However, the generalization ability of existing pre-trained MLLMs cannot meet the needs of all
environments. For some uncommon environments, embodied MLLMs often exhibit hallucinations
and poor visual understanding (Huang et al., 2024; Jiang et al., 2024). In more detail, they cannot
distinguish left from right and fail to recognize where objects are (Tan et al., 2024b). The reason is
that MLLMs have not been further grounded with the environments (Su et al., 2022; Sun et al., 2024).
Grounding can be realized by fine-tuning on the experiences from interacting with the environments.
Based on the evaluation methods, experience can be categorized into three types: human feedback
(Dai et al., 2024; Kirk et al., 2024), environmental feedback (Tan et al., 2024a; Wang et al., 2024b),
and self-feedback (Pang et al., 2024; Madaan et al., 2023). The first two types require additional
efforts as illustrated in Figure 1(a). Human feedback necessitates expert annotations, which can be
costly and influenced by preferences (McAleese et al., 2024). Environmental feedback assumes we
can obtain a dynamics model of the environment and build the reward model (Sontakke et al., 2023;
Urcelay et al., 2024). Unfortunately, many environments including the real world do not meet such
requirements, so these grounding methods are not general. Therefore, we are committed to finding
a general way to fill in the remaining gaps.

Assuming we are facing an unknown embodied environment and cannot obtain external feedback,
we can only rely on the capabilities of the MLLM itself. Some work, see Figure 1(b), utilizes the
evaluation (discriminative) ability of the pre-trained model itself (Wang et al., 2023a; Huang et al.,
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Figure 1: Comparison of our framework with other frameworks in terms of the feedback type.

2023) to evaluate its own decision-making, and uses such self-feedback to enhance the model’s
decision-making (generative) capabilities. However, it is easy to see this kind of self-learning is
constrained by the static evaluation ability of the model to improve decision-making capability. Ide-
ally, we hope that self-learning can work similarly to the actor-critic paradigm (Konda & Tsitsiklis,
1999) in reinforcement learning, where the actor and critic can mutually enhance each other’s per-
formance. If so, the potential for actor enhancement will be greatly expanded. Unlike reinforcement
learning, which can obtain external rewards for training, we do not assume that we can get any
external feedback. Therefore, we aim to develop a new actor-critic self-learning paradigm for
embodied MLLMs in unknown environments.

In this paper, we introduce a novel SElf-Learning paradigm in Unknown environments, dubbed
SELU, as illustrated in Figure 1(c). Inspired by the actor-critic paradigm in reinforcement learning,
our paradigm learns to simultaneously optimize the MLLM’s ability to understand the environment
and to make decisions. For the actor module, we fine-tune the model based on the self-feedback
from the critic. As the actor gets improved, it can roll-out more successful trajectories to fine-tune
the critic. However, without environmental feedback, the critic may provide inaccurate feedback
at the beginning of the training phase, which might mislead the overall optimization. Therefore,
we adopt self-asking to correct self-feedback and leverage hindsight relabeling to increase sample
efficiency by turning the failure trajectory into a successful one. These high-quality and diverse
trajectories are deemed to enhance the critic’s comprehension of the environment. Ultimately, the
coupling of these two components mutually promotes the improvement of each other, unleashing
the full self-learning potential of MLLMs.

Our key contributions can be summarized as follows:

• We propose a self-learning paradigm for embodied MLLMs, SELU, inspired by the actor-
critic paradigm in reinforcement learning, which enables MLLMs to self-adapt to unknown
environments.

• We leverage self-asking and hindsight relabeling to facilitate the improvement of the critic,
which greatly increase the sample efficiency and make the self-learning possible.

• We demonstrate the effectiveness of SELU in the AI2-THOR and VirtualHome environ-
ments, achieving critic improvements of approximately 28% and 30%, and actor improve-
ments of about 20% and 24%, respectively.

2 RELATED WORK

2.1 MLLMS WITH EXTERNAL FEEDBACK

In recent years, MLLMs has achieved impressive results across various visual benchmarks (Mathew
et al., 2021; Tang et al., 2024; Lu et al., 2024), demonstrating remarkable perception and decision-
making capabilities. However, these models still exhibit flaws and often generate unexpected out-
puts, such as perceptual hallucinations and unreasonable decisions (Yu et al., 2024; Chen et al.,
2024). Inspired by reinforcement learning, current approaches use external feedback to correct
MLLM’s erroneous outputs through a cycle of interaction, feedback, and correction (Pan et al.,
2024; Gero et al., 2023). Generally, there are two sources of external feedback: human preference
feedback and environmental feedback. Utilizing manually annotated data to align MLLMs output
with expert preferences (Kirk et al., 2024; Zhong et al., 2024), such as DPO (Rafailov et al., 2024),
PRO (Song et al., 2024), etc., has proven to be effective. Environmental feedback is typically derived
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from designing a reward function (Pang et al., 2024; Tan et al., 2024a) or pre-training an evaluation
model (Schick et al., 2023), which often require substantial support from expert data. For instance,
McAleese et al. (2024) first trained a critic model using expert data to score program code bugs, and
then applied these scores to train ChatGPT with PPO (Schulman et al., 2017), enhancing its debug-
ging capabilities. Compared to existing studies, we focus on the self-learning potential of MLLMs,
as external feedback may be not professional enough in unknown environments.

2.2 SELF-IMPROVEMENT IN LLMS

Self-improvement in Large Language Models (LLMs) has gained significant attention, as re-
searchers strive to develop models that can learn and adapt from their own outputs, interactions, and
internal feedback mechanisms, without relying on external human-labeled data (Yan et al., 2023;
Haluptzok et al., 2023). Early explorations in this area are based on unsupervised learning tech-
niques, where models learn representations from vast datasets without explicit human guidance
(Winter et al., 2022; Zhao et al., 2019). Expanded to LLMs, self-improvement goes further by en-
abling models to critique, refine, and adapt their behavior in a more autonomous manner (Tan et al.,
2023; Choi et al., 2024). There are two common self-improvement methods: prompt engineering
and fine-tuning. The former is an efficient and intuitive approach for large-scale LLMs, as it allows
for the establishment of various chains of thought (CoTs) (Wei et al., 2022) to address the same
problem (Huang et al., 2023; Feng et al., 2023). For instance, Madaan et al. (2023) demonstrated
that GPT-3.5 and GPT-4 can enhance the rationality of responses by simultaneously inputting a
question and reflecting on previous answers. The latter one is more useful for small-scale LLMs,
as the prompt engineering is unstable. Wang et al. (2024a) developed a fine-tuning dataset by gen-
erating negative responses to optimize the LLMs, thereby reducing the occurrence of unreasonable
answers. Based on these studies, we choose to use fine-tuning to optimize small-scale MLLMs.
However, existing methods overlook the enhancement of MLLM’s environment understanding ca-
pabilities. Therefore, we employ an actor-critic framework to facilitate comprehensive self-learning
in MLLMs, optimizing both perception and decision-making abilities.

3 PRELIMINARIES

3.1 ACTOR-CRITIC IN REINFORCEMENT LEARNING

Actor-critic (Konda & Tsitsiklis, 1999) is a widely adopted framework in reinforcement learning.
The agent consists of two learning modules: an actor and a critic, which are optimized iteratively.
The actor selects and executes actions based on current observations. The critic evaluates these
observations (and actions) by estimating their values based on reward signals received from the
environment, thereby guiding the actor to make improved choices in future. This framework takes
advantage of both policy-based learning and value-based learning and is popular nowadays like PPO
(Schulman et al., 2017).

3.2 ACTOR-CRITIC FOR MLLMS

With the development of MLLMs, the feedback provided to the agent is no longer constrained to
scalar values, like rewards; it can now include diverse modalities, such as natural language (Dong
et al., 2024). This enables the critic gain more specific and informative feedback on the outputs of
the actor. Consequently, it can provide more accurate guidance for actor improvement. A prevalent
approach in this domain is incorporating human feedback into the critic and building a static evalua-
tion module that can reflect human preference (Ouyang et al., 2022; Kirk et al., 2024). Specifically,
human annotated data is used to train a critic model (McAleese et al., 2024) or a reward model
(Sontakke et al., 2023; Wang et al., 2024b) to align the MLLM with human preferences better.
More rigorous approaches leverage external evaluation mechanisms, such as tool-interactive learn-
ing (Gou et al., 2024; Chen et al., 2021), or external knowledge sources like Wikipedia and the
Internet (Xu et al., 2023; Li et al., 2024a). However, regardless of whether preference labels or
external tools are used, human intervention remains inevitable. To overcome this reliance, meth-
ods like self-consistency (Wang et al., 2023a; Schick et al., 2023) employ a voting mechanism to
enable the model to evaluate its own behavior without relying on external information. However,
self-consistency lacks a learnable critic module, thus it cannot improve its grounding knowledge
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Figure 2: The framework of SELU. (lower) The actor MLLM, represented as a robot, collects
trajectories for the given instructions. (upper) The critic MLLM, denoted as a brain, evaluates
these trajectories and determines whether they complete the tasks, guiding the update of the actor
MLLM. In addition, the critic MLLM implements self-asking and hindsight relabeling to build a
dataset for optimizing itself. The whole framework does not require any external feedback, such as
environmental rewards or human annotations.

of the environment it interacts with. In contrast to previous work, we propose a novel actor-critic
based paradigm aimed at achieving self-learning for both the actor MLLM and critic MLLM, en-
abling them to iteratively improve decision-making and grounding abilities without external human
feedback or environmental rewards.

4 METHOD

The framework of our method is shown in Figure 2. It consists of two components: the actor
MLLM and the critic MLLM. The actor MLLM follows instructions and collects trajectories in the
environment. The critic MLLM evaluates the collected trajectories and acquires bootstrapped data
via self-asking and hindsight relabeling to optimize itself (Section 4.1). Guided by the success de-
tection results from the critic MLLM, the actor MLLM subsequently improves its decision-making
performance in the environment (Section 4.2). By combining the two processes, we can achieve
coupled improvements of the critic MLLM and the actor MLLM (Section 4.3).

4.1 CRITIC: SELF-ASKING AND HINDSIGHT RELABELING

As introduced in Section 1, enhancing the interpretation of environmental grounding information is
crucial for an MLLM to improve its performance. In our framework, we achieve this objective via
self-asking and hindsight relabeling to acquire bootstrapped data for optimizing the critic MLLM.

Specifically, given an instruction I , the actor MLLM collects a trajectory by following this instruc-
tion. The critic takes the last frame oT of this trajectory as input, using it as the detection frame to
determine whether the task depicted by I is completed,

ld = Mc(I, pd, oT ), (1)

where Mc denotes the critic MLLM, ld ∈ {“yes”, “no”} is the result of the success detection, and
pd is a prompt for the detection. If the detection result is ld = “yes”, we consider this trajectory
to be a successful sample for the given instruction and store this trajectory directly into the critic
fine-tuning dataset Dcritic in the format (I, pd, oT , ld), as shown by trajectory 1 in Figure 2. This
trajectory includes environmental grounding information that aligns with the knowledge contained
in the critic MLLM.

If the detection result is ld = “no”, which means the critic MLLM views this trajectory as a failure
for instruction I . We first apply self-asking to examine the state of task-related objects, as the
decision made by the critic MLLM might not be precise due to potential hallucinations. The critic
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MLLM is used to obtain the object states,
l′d = Mc(ls, I), ls = Mc(jI , ps, oT ) (2)

where jI is the object name extracted from instruction I by a text-processing function, ps is the
prompt for object state analysis, ls is the analysis result, and Mc provides a new success detection
l′d based on ls and I . The format is corrected to (I, pd, oT , l

′
d) and will be stored into the critic

fine-tuning dataset Dcritic if l′d = “yes”. For example, in trajectory 2 of Figure 2, the critic MLLM
initially misjudged the completion of the “open cabinet” task. However, when prompted to focus on
the state of the cabinet, it successfully self-corrected its judgment.

If the critic MLLM still considers the trajectory as failure, we propose to use hindsight relabeling
to make use of this trajectory, since it might be helpful for learning the environmental grounding of
other instructions. Hindsight relabeling is a method that originated in goal-conditioned reinforce-
ment learning (Andrychowicz et al., 2017). It is based on a simple principle: if a trajectory does
not complete the target task, it can be viewed as having accomplished other tasks or subtasks. For
example, as shown in trajectory 3 in Figure 2, although it does not complete the task “open cabinet”,
it successfully completes another task “open drawer”. Therefore, we relabel this trajectory with
the instruction “open drawer” to help the critic MLLM recognize the completion of the relabeled
instruction. We can write this process as,

I ′ = Mc(lh, aI), lh = Mc(aI , ph, oT ) (3)
where aI is the verb extracted from the instruction I by another text-processing function. ph is the
prompt for hindsight relabeling, and lh is the output, which is usually an object name or None. Mc

checks whether any objects, other than the target object, in the observation oT have completed the
task associated with aI . Mc generates a new instruction I ′ if lh is not None. After that, we store the
data (I ′, pd, oT , “yes”) into the critic fine-tuning datasetDcritic. Finally, if a failed trajectory proves
meaningless after hindsight relabeling, it is considered as not helpful for the MLLM to understand
the environment and discarded.

By applying self-asking and hindsight relabeling, we create a fine-tuning dataset Dcritic containing
the last frames considered as successful by the critic itself and the last frames relabeled as successful
after self-asking and hindsight relabeling.

4.2 ACTOR: CRITIC-GUIDED IMPROVEMENT

Recent work has shown that the discriminative ability of an LLM exceeds its generative ability (Pang
et al., 2024). As MLLMs are typically trained the same way as LLMs, we believe that MLLMs’
evaluation abilities would also surpass their generation abilities. For instance, we can easily prompt
MLLMs to extract understanding from a given image, but it is challenging to prompt them to choose
an appropriate action based on perceived task-relevant information like distance or direction. Our
experiment in Section 5.2 also supports this conclusion, where the critic module always performs
better than the actor. Therefore, we propose using the critic MLLM to guide the improvement of the
actor MLLM in the environment without external feedback.

Specifically, the actor MLLM interacts with the environment and collects online trajectories. At
each timestep t, the actor generates an action plan la,t by,

la,t = Ma(I, pa, ot), (4)
where Ma represents the actor MLLM, I is the task instruction, pa is the prompt for action plan and
ot is the current image observation. After collecting a whole trajectory, the critic MLLM determines
whether this trajectory completes the instruction I , as described in Section 4.1. If the answer is
yes, we will put the whole trajectory into the actor fine-tuning dataset Dactor with a format of
{(I, pa, ot, la,t)}Tt=0. The relabeled successful trajectories after hindsight relabeling are also added
into the actor fine-tuning datasetDactor. Since this dataset only contains task completion trajectories,
the actor can quickly converge towards completing tasks in the current environment by fine-tuning
on the dataset. Note that the actor fine-tuning dataset Dactor consists of trajectory data, while the
critic fine-tuning dataset Dcritic only contains the last frames of these trajectories.

4.3 ACTOR-CRITIC COUPLING IMPROVEMENT

We employ Supervised Fine-Tuning (SFT) (Devlin et al., 2019; Brown et al., 2020) and Low-Rank
Adaptation (LoRA) (Hu et al., 2022) to update both the actor and critic MLLMs. Initially, the actor
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MLLM interacts with the environment to collect online trajectories containing grounding informa-
tion, as depicted in the lower part of Figure 2. The critic module then evaluates and classifies these
trajectories based on the last frame, as shown in the upper part of Figure 2. We select successful
trajectories identified by the critic MLLM to create the actor fine-tuning dataset Dactor. Subse-
quently, we utilize the last frame to construct the critic fine-tuning dataset Dcritic. The update of the
actor and critic can be performed iteratively, and make them both improve step-by-step. A detailed
pseudo-code for our algorithm is available in Appendix A.1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Environments. In order to simulate embodied MLLM interactions in unknown environments, we
select AI2-THOR (Kolve et al., 2022) and VirtualHome (Puig et al., 2018) for our experiments.
Both environments offer open-ended tasks, various interactive objects, and selectable camera per-
spectives, facilitating data collection for the actor and critic.

• AI2-THOR is an interactive simulation environment designed for embodied AI research.
The primary tasks require agents to navigate and interact with household objects. It offers
highly realistic 3D environments that simulate kitchens, living rooms, and other indoor
settings. AI2-THOR provides locobot and robotic arms as agents and enables agents to
perform complex actions like picking up, opening, toggling, and so on.

• VirtualHome is also an embodied simulation platform designed to imitate human activities
and tasks in home environments. It offers a rich set of virtual household scenes where
agents can perform tasks, such as sitting on a bench in the kitchen or grasping a waterglass
in the bedroom. This environment focuses on task completion through multi-step action
sequences, making it ideal for testing long-term planning.

Task Selection. Considering the training costs while demonstrating the feasibility of the framework,
we focus on three typical task categories in the AI2-THOR environment: pick up, open, and break.
Locobot is selected as the agent, as this work does not consider low-level control of robotic arms. To
ensure task diversity and feasibility, we first prompt the MLLM to explore the environment and use
the explore objects to initialize the instruction list which serves as the task set. We randomly sample
2-3 objects for each type of task. Considering the training costs, we restrict the maximum step for
all tasks to 10. We apply a similar approach in the VirtualHome environment, selecting ”female1”
as the agent and primarily testing in grab, open, and sit tasks.

MLLMs. To demonstrate the generalization capability of our framework, we conduct experiments
using two MLLMs: LLaVA (Liu et al., 2023) and Qwen-VL (Bai et al., 2023).

• LLaVA integrates a visual encoder with a language model to effectively process and re-
spond to multimodal inputs. It has gained prominence as one of the most popular MLLMs
due to its simple architecture and lower training data requirements. These features en-
able LLaVA to generate responses more swiftly, and suitable for inference to investigate
self-learning.

• Qwen-VL is the multimodal version of the large model series. Compared to other open-
source MLLMs, Qwen-VL is the first model to use a 448x448 resolution image input. Due
to its higher resolution, this model exhibits enhanced visual understanding capabilities.
We opt for Qwen-VL with the aim of better success detection, thereby facilitating more
efficient self-learning of MLLMs.

Baselines. We compare SELU with five methods to investigate the feasibility of self-learning of
MLLMs in embodied environments:

• DG refers to the results obtained through direct generation from the initial MLLM without
any fine-tuning.

• SC (Wang et al., 2023a) represents an optimization method of MLLMs through self-
consistency. Specifically, we employ multiple chains of thought (CoT) to prompt an MLLM
to answer the same question, followed by majority voting. In our experiments, we utilize
three different CoTs to guide the MLLM, ultimately voting for the most reasonable action.
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• LMSI (Huang et al., 2023) is a self-improvement method based on SC. It generates “high-
confidence” answers for unlabeled questions to build fine-tuning datasets. This approach
enables the LLM to iteratively improve its performance based on the voting mechanism,
and we extend this approach to MLLMs.

• Self-Refine (Madaan et al., 2023) involves multiple rounds of self-reflection, followed by
self-optimization based on the reflection results. This method focuses on prompt optimiza-
tion and has been validated for feasibility in large-scale LLMs, such as GPT-4. In our
experiments, we reflect 3 rounds to get the final result.

• SELU-One represents the method of using the same MLLM to simultaneously perform
actor and critic tasks, and fine-tuning with a combination of actor and critic datasets. This
approach aims to investigate the feasibility of utilizing a single MLLM to meet the require-
ments of our framework.

5.2 AI2-THOR

LLaVA. We first demonstrate the effectiveness of SELU in the AI2-THOR environment. After on-
line interactions with the environment and fine-tuning of LLaVA, the critic exhibits an average per-
formance improvement of approximately 27%, while the actor achieves an improvement of around
20% compared to the original model. Table 1 and Table 2 present the accuracy of task success
detection and task success rate respectively.

Table 1: Accuracy of task success detection in the AI2-THOR environment.

Method Pick up Open Break Avg.

DG 80.67% 36.50% 50.50% 55.89%
SELU-One 68.67% 30.50% 25.50% 41.56%

SELU 94.33% 67.50% 87.50% 83.11%

Table 2: Task success rate in the AI2-THOR environment. SC and Self-Refine use prompt engineer-
ing to realize self-learning, whereas LMSI and SELU utilize fine-tuning.

Method Pick Up Open Break Avg.

DG 68.33% 65.00% 15.50% 49.61%
SC 65.67% 68.50% 17.50% 50.56%

Self-Refine 69.67% 70.50% 14.50% 51.56%
LMSI 75.67% 52.50% 19.50% 49.22%

SELU-One 91.33% 85.50% 27.50% 68.11%
SELU 94.67% 83.50% 30.50% 69.56%

In Table 1, it is evidenced that the unified fine-tuning of the actor and the critic (SELU-One) leads
to a decline in success detection, even worse than the original critic. Although SELU-One achieves
a task success rate comparable to that of SELU as shown in Table 2, the compromised critic will
result in SELU-One incorrectly analyzing the trajectory in subsequent epochs.

Table 2 demonstrates that baselines are not suitable for the self-learning of embodied MLLMs. Both
prompt-engineering and fine-tuning baselines struggle to improve the decision-making ability of the
MLLM. The reason is that the embodied MLLM cannot give a correct task detection with a lack of
environmental understanding. As we can see in Table 1, the initial judgment of the MLLM (DG)
on tasks is only about 55%. In this case, merely optimizing the prompt to create multiple CoTs for
repeated reflection does not help the MLLM gain task achievement details in an unknown environ-
ment. Therefore, neither SC nor Self-Refine can substantially enhance the task success rate. For
fine-tuning baselines, relying on statistical voting to validate its own behavior even leads to worse
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performance. For instance, in the Open task, for LMSI the task detection accuracy of 36.5% causes
the actor’s performance to drop from 65% to 52.5% after fine-tuning. These results demonstrate the
necessity of the critic module in SELU, and optimizing the critic is crucial for enhancing the actor’s
performance.

Notably, in the Open task, we can observe a low accuracy of success detection for SELU; however, it
still helps the actor improve. This highlights the role of hindsight relabeling, which will be discussed
in detail in Section 5.4.

Qwen-VL. In order to prove that SELU can help different MLLMs achieve self-learning, we select
Qwen-VL and test it in the AI2-THOR environment under the same setting. The result is shown in
Table 3, which indicates that SELU can help Qwen-VL improve the task evaluation capability by
about 24% and the decision-making performance by approximately 23%.

Table 3: Self-learning performance of SELU on Qwen-VL in the AI2-THOR environment.

Task
Critic Actor

DG-Qwen-VL SELU-Qwen-VL DG-Qwen-VL SELU-Qwen-VL

Pick Up 73.33% 95.67% 57.67% 95.33%
Open 51.00% 81.50% 46.50% 68.00%
Break 63.50% 83.50% 12.50% 21.50%
Avg. 62.61% 86.89% 38.89% 61.61%

5.3 VIRTUALHOME

We then conduct experiments in the VirtualHome environment, which incorporates a greater variety
of items and human agents, thereby enriching the experimental environments to demonstrate the
effectiveness of our method. The experimental results are presented in Tables 4 and 5. In this en-
vironment, SELU enhances LLaVA task evaluation capability by approximately 30% and improves
decision-making performance by around 24%, and it also outperforms baselines. As the environ-
ment becomes more complex, the lack of environmental understanding causes SC and Self-Refine
to negatively impact the decision-making of the original embodied MLLM, as the performance of
SC and Self-Refine are even lower than DG, shown in Table 5.

Table 4: Accuracy of task success detection in the VirtualHome environment.

Method Grab Open Sit Avg.

DG 52.67% 35.33% 44.50% 44.17%
SELU-One 45.33% 15.67% 48.50% 36.50%

SELU 93.67% 83.33% 47.50% 74.83%

Table 5: Task success rate in the VirtualHome environment.

Method Grab Open Sit Avg.

DG 65.00% 83.33% 56.50% 68.28%
SC 52.67% 81.67% 61.50% 65.28%

Self-Refine 59.67% 74.33% 60.50% 64.83%
LMSI 35.67% 93.67% 52.50% 60.61%

SELU-One 83.67% 98.67% 94.50% 92.28%
SELU 93.33% 97.67% 93.50% 94.83%
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5.4 ABLATION STUDY

We conduct ablation experiments on the critic module and hindsight relabeling in the AI2-THOR
environemnt, and the results are shown in Table 6. SELU w/o HR means that we do not perform
hindsight relabeling to reanalyze the trajectory when evaluating the task. SELU w/o critic means that
we remove both self-asking and hindsight relabeling and use the data obtained from environment
interaction to directly fine-tune the actor. In this case, the evaluation result of the critic is derived
from the original MLLM.

Table 6: Ablation study in the AI2-THOR environment.

Task
Critic (Success Detection Accuracy) Actor (Task Success Rate)
SELU w/o HR w/o critic SELU w/o HR w/o critic

Pick Up 94.33% 83.67% 80.67% 94.67% 67.33% 56.33%
Open 67.50% 31.50% 36.67% 83.50% 66.50% 72.50%
Break 87.50% 83.50% 50.50% 30.50% 27.50% 17.50%
Avg. 83.11% 66.22% 55.95% 69.56% 57.11% 48.78%

By comparing SELU and SELU w/o critic, we can see the importance of critic clearly. Only by
understanding the environment can we achieve the improvement of decision-making in all tasks. By
comparing SELU w/o HR and SELU w/o critic, we find that self-asking can correct the critic’s com-
prehension of the environmental task, but reflection on a single task is not enough. In Open tasks,
we find that the lack of hindsight relabeling directly leads to the disappearance for some instruc-
tions, which causes the declined performance of success detection and decision-making. We can
observe the improvement from SELU w/o HR to SELU. By incorporating hindsight relabeling, we
can perform a comprehensive multi-task evaluation for each trajectory, ensuring that the embodied
MLLM achieves self-learning on each task. Consequently, self-asking and hindsight relabeling are
essential components of the critic.

5.5 HYPERPARAMETER ANALYSIS

Online Dataset Size. Since the MLLMs fine-tuning process is sensitive to the dataset size, we
explore the amount of interaction data required to achieve effective learning for embodied tasks. We
conduct multiple tests on this variable based on picking up tasks in the AI2-THOR environment.
The results are presented in Figure 3(a).

The size of dataset is described by the number of trajectories for a single task. For instance, dataset-
10k indicates that 10k trajectories are collected for a specific task, such as picking up an apple,
during online interactions. We evaluate the performance through the actor in terms of task success
rate. We can see that the performance of dataset-1k is close to that of dataset-10k. For dataset-10k, it
takes about two days to collect one epoch data. To balance experimental performance with sampling
efficiency, we opt to sample 1k trajectories per task in our experiments.

Based on this conclusion, we employ a data augmentation method during the actor training process.
Since MLLMs tend to prioritize text over images when making decisions, they often focus exces-
sively on the text prompt and overlook image comprehension. To address this issue, we shuffle the
action lists in the prompts of training data to provide multiple prompts for the same image. This ap-
proach not only increases the dataset size, but also strengthens the connection between the MLLM
policy and the observations.

Learning Rate. The learning rate is a critical factor, which prevents us from using the same MLLM
for the actor and critic. We test different learning rates for the actor and critic separately on picking
up tasks in the AI2-THOR, and the results are shown in Figure 3(b). We find that, due to the varying
sizes of the fine-tuning datasets, using a uniform learning rate inevitably leads to overfitting or un-
derfitting in one of the components, thereby impacting the overall performance of SELU. Therefore,
we ultimately use two MLLMs to construct the SELU framework, ensuring effective self-learning.
In our experiments, the learning rate for the critic is set to 2e-6, while that for the actor is set to 2e-5.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.1k 0.5k 1k 10k
Dataset Size

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

Pick Up the Lettuce
Pick Up the Apple

Pick Up the Bread

(a) Dataset Size

2e-7 2e-6 2e-5 2e-4
Learning Rate

40

60

80

100

Pe
rfo

rm
an

ce
 (%

)

Actor
Critic

(b) Learning Rate

Initial 1st 2nd 3rd
Training Iterations

40

60

80

100

Pe
rfo

rm
an

ce
 (%

)

Actor
Critic

(c) Training Iterations

Figure 3: Hyperparameter study of SELU on picking up tasks in the AI2-THOR environment: (a)
explores the size of the interaction dataset required for embodied MLLMs, (b) illustrates why a
single MLLM is not suitable for SELU from the perspective of learning rare, and (c) demonstrates
that the effect of multiple training iterations.

Training Iterations. The goal of our framework is to achieve multi-iteration self-learning improve-
ment; therefore, we also evaluate the results of multiple rounds of fine-tuning on picking up tasks in
the AI2-THOR environment. The results are presented in Figure 3(c).

Our results indicate that multiple iterations of fine-tuning do not consistently improve SELU’s per-
formance in every iteration. Both the actor and critic exhibit significant performance improvements
during the first iteration of fine-tuning, but show fluctuations and minimal growth in the subsequent
iterations. We attribute this limitation to the performance of the critic. The critic performs the suc-
cess detection based on the last frame of the trajectory, making it difficult to compare the quality
of successful trajectories. Once the actor reaches a level sufficient to roughly complete the task,
we lack the nuanced supervisory signals to guide the actor for further improvement. Consequently,
while there is a notable improvement after the first iteration, subsequent enhancements are limited.
We also attempt to increase the number of frames for success detection. However, the performance
of the small-scale MLLM does not meet our needs.

6 CONCLUSION AND LIMITATION

In this paper, we introduce SELU, a method for MLLMs to achieve self-learning in unknown en-
vironments. SELU facilitates interaction with the environment, analyzes interaction trajectories,
builds an online dataset, and performs coupled optimization of the actor and critic. We employ
self-asking and hindsight relabeling to enhance the critic task evaluation capabilities. Ablation
experiments demonstrate that relabeling significantly expands the critic task judgment range. By
leveraging the principle that MLLMs possess stronger perceptual abilities than decision-making
abilities, we improve the performance of the actor policy. We test SELU in the AI2-THOR and
VirtualHome environments, achieving critic improvements of approximately 28% and 30%, and
policy improvements of about 20% and 24%, respectively. Additionally, to validate the applicability
of SELU across different MLLMs, we evaluate it on Qwen-VL, resulting in a 23% performance
enhancement.

One limitation of SELU is the lack of a detailed evaluation of the trajectories that complete the tasks.
SELU can help embodied MLLM to self-learn how to accomplish tasks in unknown environments.
The next urgent problem to address is how to complete tasks more efficiently and optimize actions
more effectively. In future work, we will explore finer-grained critic signals to perform more accu-
rate quality assessments of trajectories, guiding embodied MLLMs to tackle more complex tasks,
like long-horizon combination tasks.
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A APPENDIX

A.1 PSEUDOCODE OF SELU

algorithm 1 SELU
Input: critic MLLM Mc, actor MLLM Ma, critic fine-tuning dataset Dcritic, actor fine-tuning

dataset Dactor, maximum timestep T , initial instruction list L, success detection prompt pd
and action plan prompt pa

Output: critic MLLM Mc, actor MLLM Ma

1: Dcritic, Dactor ← {}
2: function ”SELU”
3: for instruct I in L do
4: while data collecting not done do
5: for timestep t = 1 to T do
6: get observation ot from env
7: la,t = Ma(I, pa, ot)
8: use la,t to interact with env
9: end for

10: ld = Mc(I, pd, oT )
11: if ld = “yes” then
12: store (I, pd, oT , ld) into Dcritic

13: store (I, pa, ot, la,t), t = 1, ...T into Dactor

14: else
15: get l′d through self-asking
16: if l′d = “yes” then
17: store (I, pd, oT , l

′
d) into Dcritic

18: store (I, pa, ot, la,t), t = 1, ...T into Dactor

19: else
20: get I ′ through hindsight relabeling
21: if I ′ ̸= “None” then
22: store (I ′, pd, oT , yes) into Dcritic

23: store (I ′, pa, ot, la,t), t = 1, ...T into Dactor

24: end if
25: end if
26: end if
27: end while
28: end for
29: optimization Mc and Ma by Dcritic and Dactor

30: return critic MLLM Mc, actor MLLM Ma

31: end function

A.2 IMPLEMENTATION DETAILS

A.2.1 ENVIRONMENT DETAILS

Figure 4 shows our experiment environments. Both environments restrict agents to only interact with
visible items, limiting their operational range to guarantee behavior plans realistic. Therefore, the
actor MLLM makes decisions based on first-person perspective input to ensure accuracy as Figure
4(a) and Figure 4(c) show. Given the limitations of the first-person view, the critic MLLM uses a
third-person perspective to evaluate the trajectory, reducing hallucinations and obtaining accurate
scene information as Figure 4(b) and Figure 4(d) show.

The positioning of the third-person camera is crucial, as it should accurately capture the agent’s
position and the objects it interacts with. Any occlusion or interference can impair the MLLM’s
understanding of the image, thereby affecting the results of critic success detection and hindsight
relabeling.
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(a) AI2-THOR 1 (b) AI2-THOR 2

(c) VirtualHome 1 (d) VirtualHome 2

Figure 4: The diagram of experimental environments. We utilize the first-person perspective for
decision-making and a third-person perspective for trajectory evaluation.

A.2.2 MLLM DETAILS

The specific MLLMs we use are LLaVA-V1.6-Mistral-7B and Qwen-VL (Qwen-7B). We use LoRA
to fine-tune them, the hyperparameters are as follows.

Table 7: Hyperparameters of LLaVA fine-tuning by LoRA

Hyperparameters Value

train batch size 16
eval batch size 4

gradient accumulation steps 1
learning rate actor 2e-5
learning rate critic 2e-6

warmup ratio 0.03
weight decay 0.0

model max length 2048
lr scheduler type ”cosine”

tf32 True
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Table 8: Hyperparameters of Qwen-VL fine-tuning by LoRA

Hyperparameters Value

train batch size 2
eval batch size 1

gradient accumulation steps 8
learning rate actor 1e-5
learning rate critic 1e-6

warmup ratio 0.01
weight decay 0.1
adam beta2 0.95

model max length 2048
lr scheduler type ”cosine”

bf16 True
lazy preprocess True

A.3 VISUALIZATION OF ACTOR AND CRITIC ON LLAVA IN AI2-THOR

We use the embodied actor MLLM to interact with the unknown environment, and collect trajecto-
ries for evaluation from the critic MLLM. An example for ’pick up the lettuce’ is as follows.

ACTOR Prompt:
This is the current observation from a robot. Now the robot needs to 
finish the task {instruction}, you can only choose the following action to 
interact with the environment, which are {action_list}. If you choose 
Pick up Object, OpenObject, SliceObject, or DirtyObject, you should 
give a specific object name. Now the objects you can interact with are 
{visible_objs_str}. What's your next action to implement the command 
to {instruction}? You should output your action and the reasoning. The 
output format should be:

Action:...
Object:...
Reasoning:...

ACTOR

ACTOR MLLM Response:
Based on the image provided, the robot should perform the following action to pick up the lettuce:
 Action: 'MoveAhead’
 Object: None
 Reasoning: The robot is currently positioned at the edge of the counter, and to reach the lettuce, it 
needs to move forward. Once the robot is closer to the lettuce, it can then perform the 'PickupObject' action 
to pick up the lettuce.

Figure 5: A visualization of the actor MLLM interacting with the AI2-THOR environment. The
agent is instructed to pick up the lettuce. As the lettuce is far away, the agent needs to move closer
before attempting to pick it up.

We use the critic MLLM to perform success detection on each trajectory and use self-asking and
hindsight relabeling techniques to build bootstrapped dataset. An example for ’break the mug’ is as
follows.
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CRITIC

CRITIC Success Detection Prompt:
The image shows a third-person view from the robot‘s perspective in a 
kitchen environment. Please check whether the {instruction.objects} in 
the image is {instruction.verb → adj.} or not? You should output yes or 
no, and the reasoning. The output format should be:  

Result:...
Reasoning:...

CRITIC MLLM Response:
 Result: Yes
 Reasoning: The image shows a robot with a camera, and the camera is positioned in such a way 
that it is capturing a view of a kitchen counter. On the counter, there is a mug that appears to be in a 
broken state, with pieces missing or scattered around. This is evident from the visible gaps and the 
overall appearance of the mug, which suggests it has been damaged or shattered.

Figure 6: A visualization of the critic MLLM conducting success detection on a trajectory. Since
the trajectory has completed the ’break the mug’ task, it can be added to the fine-tuning dataset.

A.4 PROMPTS FOR SELU

The specific prompts we use for SELU are:

Actor-Interaction with Env

This is the current observation from a {agent} in a {AI2-THOR/VirtualHome} environ-
ment. Now the {agent} needs to finish the task {instruction}, you can only choose the
following action to interact with the environment, which are {action list}. If you choose
{PickupObject/GrabObject}, OpenObject, {BreakObject/SitObject}, you should give a spe-
cific object name. Now the objects you can interact with are {visible objs str}. What’s your
next action to implement the command to {instruction}? You should output your action and
the reasoning. The output format should be:
Action:...
Object:...
Reasoning:...

Critic-Success Detection

The image shows a third-person view from the {agent}’s perspective in a {AI2-
THOR/VirtualHome} environment. Please check whether the {instruction.objects} in the
image is {instruction.verb→ adj.} or not? You should output yes or no, and the reasoning.
The output format should be:
Result:...
Reasoning:...
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Critic-Self Asking 1

The image shows a third-person view from the {agent}’s perspective in a {AI2-
THOR/VirtualHome} environment. Please check the state of the {instruction.objects} in
the image. You should output the state and the reasoning. The output format should be:
State:...
Reasoning:...

Critic-Self Asking 2

The image shows a third-person view from the {agent}’s perspective in a {AI2-
THOR/VirtualHome} environment. The {instruction.objects} in the observation is in
{objects.state} state, please determine whether the {instruction} has been completed or not.
You should output yes or no, and the reasoning. The output format should be:
Result:...
Reasoning:...

Critic-hindsight relabeling 1

The image shows a third-person view from the {agent}’s perspective in a {AI2-
THOR/VirtualHome} environment. Please see the image carefully. Determine whether there
is any object that is {instruction.verb→ adj.} by the {agent}? You should output the object
name and the reasoning. The output format should be:
Object:...
Reasoning:...

Critic-hindsight relabeling 2

The image shows a third-person view from the {agent}’s perspective in a {AI2-
THOR/VirtualHome} environment. The {relabeling.object} in the observation is
{instruction.verb → adj.}, you should give a new instruction based on it. The original in-
struction is {instruction}, what’s the new instruction? The output format should be:
New instruction:...
Reasoning:...
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