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ABSTRACT

Deep Neural Networks (DNNs) are vulnerable to unseen noise, lighting the need
to identify the deficiencies of DNNs to mitigate this vulnerability. In the field of
adversarial attacks, existing works investigate the deficiencies causing the vulner-
ability of DNNs, quantifying the vulnerability of DNNs and demonstrating the
transferability of adversarial examples where adversarial examples crafted for one
model can deceive another. Among the related works, adversarial transferabil-
ity attracts much attention since transferable adversarial examples enable black-
box attacks and raise concerns about DNNs. Although various novel adversarial
attacks are presented to improve the adversarial transferability, the property of
DNNs that leads to the improvements remains unidentified. This work delves
into this issue and reveals that different benign input with different features ac-
tivates mostly different neurons in a model, and the model may be viewed as an
ensemble including different submodels capturing different features. Therefore,
an adversarial attack can activate more neurons to generate the adversarial exam-
ples, thus probably making the examples applicable to diverse models to enhance
the adversarial transferability. Also, data transformation can help exclude wrong
answers to boost the adversarial example. The extensive experiments demonstrate
the soundness and superiority of our work.

1 INTRODUCTION

To identify the deficiencies of DNNs, researchers investigate the way to deceive a model by adding
noise to inputs, which refers to an adversarial attack. Recently, it reveals that these adversarial
attacks can deceive another model while crafting noisy inputs for one model. Thus the transferability
study of adversarial attacks is shifted into the highlight and many novel transfer-based adversarial
attacks are proposed to improve the transferability of adversarial attacks.

There are various transfer-based adversarial attacks including gradient-based methods (Goodfellow
et al., 2014; Kurakin et al., 2018; Dong et al., 2018; Fang et al., 2024), input transformation-based
methods (Xie et al., 2019; Zou et al., 2020; Lin et al., 2024; Zhu et al., 2024a), model-related meth-
ods (Zhang et al., 2023; Xiaosen et al., 2023; Wang et al., 2024b), ensemble-based methods (Liu
et al., 2016; Chen et al., 2023a;b) and generation-based methods (Naseer et al., 2019; Zhu et al.,
2024b). Although these methods greatly improve the transferability of adversarial attacks, the defi-
ciencies of DNNs are not clearly identified. Therefore, in this work, we focus on the mechanism of
transfer-based adversarial attacks, helping identify the deficiencies of DNNs.

Among these transfer-based adversarial attacks, transformation-based methods are straightforward
and popular. These methods improve adversarial transferability by augmenting data and some of
these methods take the averaged gradients of several augmented data as the optimization dynamics
of adversarial examples. Specifically, given an objective function J(·) and a surrogate classifier f , a
benign example x and the corresponding label y are taken to generate the adversarial example xadv ,
then the update process of the attacks can be formulated as

xadv
t = xadv

t−1 + α · sign(
∑
i

∇xadv
t−1

J(f(φi(x
adv
t−1)), y)), (1)

where xadv
t represents an adversarial example of the t-th iteration and the α is the step size. The φi

represents the i-th random transformation.
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(a) Overlapping of neurons activated by different
benign inputs in a model.

(b) Sketch of possible neuron activation in a
model.

Figure 1: Neuron activation difference and adversarial transferability of surrogate models. (a) shows
the overlapping distribution of neurons activated by different benign inputs in a model and the
transfer-based attack success rate (in the ”()” below the model name) of different surrogate mod-
els. The overlapping is indicated by Averaged Neuron Activation Orthogonality (ANAO) in Eq. 5,
illustrating that most of the neurons activated by different inputs are different. Transfer-based attack
success rate represents averaged attack success rate over 9 target models. Lower Neuron Activation
Orthogonality means more different neurons activated by different inputs. (b) shows possible neuron
activation in a surrogate model with benign inputs X and adversarial inputs that have good adversar-
ial transferability, since Figure 1a suggests that the transfer-based attack success rate is higher while
different inputs activate more same neurons in a surrogate model.

Given a surrogate classifier f (s)
θ (·) and a target classifier fw(·), we take an benign input x into Eq.

1 with f
(s)
θ (·) and fw(·), respectively. If both the results of the

∑
i

∇xadv
t−1

J(·) with the surrogate and

target classifier are equal, the process in Eq. 1 is close to the white-box attack, which usually leads to
a great attack success rate. Intuitively, the closer the results of the

∑
i

∇xadv
t−1

J(·) with the surrogate

and target classifier, the better the attack success rate. Thus the introduction of data augmentation
to improve adversarial transferability implies that the augmented data may yield results that are
closer to the target model’s, compared to the original data. This suggests that the neurons activated
by augmented data in the surrogate classifier f

(s)
θ (·) are different from the original data, as the

objective function J(·) is unchanged.

To observe the neuron activation difference between different inputs, the difference must be quan-
tified in some ways. Thus we start with measuring the activation difference of a classifier f(·) for
different inputs in 3.1, and then investigate the mechanism of transfer-based adversarial attacks in
the next sections. Finally, based on our findings, an adversarial attack is proposed. This work can
be summarized as follows:

• Trained models may be viewed as an ensemble including different submodels capturing
different features since the activated neurons of the trained models with different inputs are
orthogonal to some extent.

• Data augmentation can help adversarial attacks avoid inefficient perturbations by averaging
the gradients of models with several augmented data.

• An adversarial attack is proposed to activate more submodels for improving adversarial
transferability and filtering inefficient perturbations by data augmentation.

2 RELATED WORK

There are many novel transfer-based adversarial attacks, and we introduce 3 types of related attacks
here.

Input Transformation-Based Attack. One of the most popular approaches is the input
transformation-based attack due to its effectiveness and simplicity. The input transformation-based
attack elaborate transformations to enhance adversarial transferability. DIM (Xie et al., 2019) ran-
domly resizes and adds padding to input examples to improve adversarial transferability. Conse-
quently, Zou et al. (2020) calculate the average gradient of several DIM’s transformed images to fur-
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ther improve adversarial transferability. Then many novel transformations are presented, which cal-
culate the average gradient of the transformed images to improve adversarial transferability. For ex-
ample, DeCowA (Lin et al., 2024) augments input examples via an elastic deformation, to obtain rich
local details of the augmented inputs. L2T (Zhu et al., 2024a) optimizes the input-transformation
trajectory along the adversarial iteration, achieving great performance. BSR (Wang et al., 2024a)
randomly shuffles and rotates the image blocks to generate adversarial examples.

Gradient-Based Attack. This approach elaborates on gradient-based dynamics to improve adver-
sarial transferability. FGSM (Goodfellow et al., 2014) adds a small perturbation in the direction
of the gradient, and then I-FGSM (Kurakin et al., 2018) presents an iterative version of FGSM.
Consequently, MI-FGSM (Dong et al., 2018) integrates the momentum term into the I-FGSM, as
part of the baseline attack. Recently, ADNA (Fang et al., 2024) explicitly characterizes adversarial
perturbations from a learned distribution by taking advantage of the asymptotic normality property
of stochastic gradient ascent.

Ensemble-Based Attack. Different from the other approaches, Liu et al. (2016) presents the first
ensemble-based attack which generates adversarial examples using multiple models. Later, several
sophisticated ensemble-based attacks are proposed to improve the adversarial transferability. For
example, MBA (Li et al., 2023) maximize the average prediction loss on several models obtained by
a single run of fine-tuning the surrogate model using Bayes optimization while AdaEA (Chen et al.,
2023a) adjust the weights of each surrogate model in ensemble attack using adjustment strategy and
reducing conflicts between surrogate models by reducing disparity of gradients of them.

Many of these innovative approaches are experience-based, and thus the mechanisms behind them
remain to be further explored.

3 METHODOLOGY

To observe the neuron activation difference between different inputs in one way, we try to intro-
duce metrics to quantify the orthogonality of neurons activated by different inputs in a model, and
then explore the effect of different inputs on neuron activation in a model, further revealing some
relationships between inputs and adversarial transferability.

3.1 QUANTIFYING THE ORTHOGONALITY OF NEURONS ACTIVATED BY DIFFERENT INPUTS

The magnitude |∇θ| of the gradient ∇θ of the neuron θ w.r.t objective function can indicate the
influence of the weight on the result of a model (Bi et al., 2024), we refer as the extent of neuron
activation for the current model in this work. Then we try to formulate metrics to measure the
orthogonality of neurons activated by different inputs in a model. Given a model Mθ with two
inputs x1 and x2, we can count the activated neurons in which the |∇θ| is higher than the threshold,
and measure the orthogonality between the activated neurons of the model with inputs x1 and x2 by

1

S
⟨δ(|∇θ1| − a), δ(|∇θ2| − b)⟩ , δ(n) =

{
1, n > 0
0, n ≤ 0

, (2)

where S is the number of the neurons θ. The ∇θ1 and ∇θ2 represent the gradients of the neuron θ(l)

of the model Mθ with the inputs x1 and x2, respectively, while the hyperparameters a and b are the
thresholds. The hyperparameter a and b are unequal, due to the incomparable gradient magnitudes
of a model with different inputs. To avoid the introduction of the hyperparameters, we try to adopt
the |∇θ| as the weight to estimate the orthogonality. However, as shown in Figure 2 Left, the huge
size difference between the ∇θ of the model with different inputs hinders this process since the
model fits different data to different extents for the objective.

Thus, a normalization is introduced into the formulation which can be written as

1

S

〈
|∇θ1|√

1/S∥∇θ1∥2
,

|∇θ2|√
1/S∥∇θ2∥2

〉
. (3)

Also, there is another hindrance as shown in Figure 2 Right. There are great size differences between
the absolute gradients

∣∣∇θ(l)
∣∣ of different layers, due perhaps to the property of some structures (e.g.,

3
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Figure 2: Left: Absolute weight gradients of different layers in a model with different benign inputs.
The results are logarithmic due to large numerical differences. Right: Normalized absolute weight
gradients (calculated by Eq. 3) of different layers in a model with different benign inputs.

normalization layer). The neurons must be grouped according to the structure and layer they belong
to so that the Eq. 3 can make sense. Therefore, we calculate the Eq. 3 with a pair x1 and x2 for one
layer to quantify the Neuron Activation Orthogonality (NAO) by

NAO(x1, x2, l;Mθ) =

〈∣∣∣∇θ
(l)
1

∣∣∣ , ∣∣∣∇θ
(l)
2

∣∣∣〉∥∥∥∇θ
(l)
1

∥∥∥
2

∥∥∥∇θ
(l)
2

∥∥∥
2

(4)

where ∇θ
(l)
1 and ∇θ

(l)
2 represent the gradients of the neuron θ(l) of the l-th layer in the model

Mθ with the inputs x1 and x2, respectively. A lower NAO(x1, x2, l;Mθ) means that the neurons
activated by the two inputs are more different, i.e., orthogonal.

We can get a scalar result to compare neuron activation difference between two inputs by Averaged
Neuron Activation Orthogonality (ANAO)

ANAO(x1, x2;Mθ) =
1

S

∑
l

S(l) ·NAO(x1, x2, l;Mθ), (5)

where S(l) is the number of the neurons θ(l) in the l-th layer. Moreover, we sample pairs from
a dataset to calculate their ANAOs, observing the reflection of a model on the dataset. Given a
model Mθ and the training set X ∼ {xk}Kk=1, we calculate the ANAO(xi, xj ;Mθ) of different
pairs (xi, xj) sampled from the training set, and then the distribution of these ANAOs show whether
a model Mθ activates different neurons for different inputs with different features, in other words,
whether the model works like an ensemble of multi-models capturing different features.

As shown in Figure 1a, the ANAO distributions of 5 surrogate models suggest that models may
work like ensembles of multi-models capturing different features, especially the CNNs. For exam-
ple, nearly all pairs of data activate less than 30% same neurons in InceptionV3. This implies the
model may be viewed as an ensemble composed of some submodels capturing different features and
adversarial attacks naturally act like ensemble-based adversarial attacks (Liu et al., 2016), which
facilitates the adversarial transferability. Intuitively, we can force examples to activate more neurons
to improve adversarial transferability as shown in Figure 1b. Ideally, suppose an example activates
all submodels capturing different features. In that case, all the submodels contribute to this adver-
sarial example training. Then the generated adversarial example can attack models including similar
one of these submodels.

3.2 ACTIVATING MORE NEURONS IMPROVES ADVERSARIAL TRANSFERABILITY

An ideal adversarial example is visually indistinguishable from the original image, and thus pertur-
bation budget ϵ is introduced as perturbation magnitude limitation. Due to the limitation, adversarial
examples pose a challenge in activating all the submodels capturing different features, as shown in
Figure 3b. We sample a pair (x1, x2) from a dataset as the input of Eq. 5 to calculate ANAO and ob-
serve the orthogonality of neurons activated by the data pair (x1, x2). If we sample many pairs from
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(a) Overlapping of neurons activated by benign in-
puts in a model.

(b) Overlapping of neurons activated by adversar-
ial inputs (generated by MI-FGSM) in a model.

Figure 3: Neuron activation difference of surrogate models. (a) and (b) shows an overlapping dis-
tribution of neurons activated by different benign inputs and adversarial inputs, respectively. The
overlapping is indicated by Averaged Neuron Activation Orthogonality (ANAO) in Eq. 5. Lower
Neuron Activation Orthogonality means more different neurons activated by different inputs.

the same dataset (ILSVRC2012), then we can count and analyze the frequency where the ANAO
of different pairs lie in different ranges. Compare the results in Figure 3b with ones in Figure 3a,
given a surrogate model and a gradient-based adversarial attack, the generated adversarial examples
can activate more neurons in this model than benign ones, exhibiting to some extent adversarial
transferability. This also supports that activating more neurons improves adversarial transferability.

To further demonstrate this, we generate adversarial examples by adding random noise into the
benign examples. We evaluate the neuron activation of these adversarial examples by ANAO with
a benign example and the corresponding adversarial example as inputs, which can be calculated by
where the ANAO can be written as

ANAO(x, xadv;Mθ) =
1

S

∑
l

S(l) ·NAO(x, xadv, l;Mθ). (6)

To avoid bias, we randomly sample the additive noises from a uniform distribution and an image xi

from a dataset X , and then calculate the mean ANAO (mANAO) which can written as

mANAO(X;Mθ) =
1

I

∑
xi∈X

ANAO(xi, x
adv
i ;Mθ), (7)

where I is the number of samples. We introduce and evaluate the adversarial transferability by the
mean Accuracy. The I is the number of the dataset X and the S(l) is the weight number of the
l-th layer in the model Mθ, which sums up to S. The lower mANAO suggests that the adversarial
examples may activate more neurons. Table 1 illustrates the relationship between neuron activation
and adversarial transferability, further supporting that, given a specific noise type, activating more
neurons can improve adversarial transferability. The results also shows that the noise type has a
significant effect on the results, highlight the necessity to identify the effective perturbation type. As
such, the next section will be dedicated to do it.

Table 1: The mANAO and mean ASR (Attack Success Rate) of examples with noise. We generate
noisy examples as adversarial examples to observe the relationship between neuron activation and
adversarial transferability.

Noise Intensity 4 8 16 32 64

Uniform Noise mANAO 0.92 0.83 0.69 0.51 0.32
mean ASR 11.7 17.9 33.3 68.9 99.9

Normal Noise mANAO 0.97 0.91 0.81 0.66 0.43
mean ASR 8.0 9.8 14.9 31.2 70.9

3.3 AVERAGING THE GRADIENTS OF AUGMENTED DATA AVOIDS INEFFICIENT
PERTURBATIONS

As mentioned in 3.2, there is a perturbation budget ϵ as perturbation magnitude limitation. To
improve adversarial transferability under this limitation, we need to avoid inefficient perturbations
and pick more efficient ones instead. Therefore, we discuss this issue in this section.
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Data augmentation is widely used to improve data diversity during model training. This technique
can help data-driven models to enhance invariance against specific transformation features, and thus
the perturbation generated by the gradient of the submodel capturing these features will be inef-
fective. To improve adversarial transferability, such perturbation should be avoided due to the per-
turbation intensity limitation. A straightforward solution is to generate an adversarial example by
averaging the gradient of this input with random instances of the specific transformation, as this
process forces the other submodels to contribute to perturbation updating instead. This is supported
by the results in Table 2. Specifically, compared with the baseline with no transformation, the
mANAO increases if we take 1 random rotation of the input and optimize the adversarial exam-
ple for only 1 iteration. This suggests that perturbation generation no longer relies on submodels
that capture rotation features. Furthermore, as the number of random transformations increases, the
mNAO experiences a decrease, indicating that these transformations facilitate the activation of addi-
tional submodels that capture diverse features beyond those related to these transformations. At 10
iterations, random transformations help adversarial examples improve transferability with similar
mANAO and perturbation intensity, demonstrating that averaging the gradients of augmented data
can avoid inefficient perturbation generation.

Table 2: The role of the used transformation in our proposed AdaAES. The mean perturbation
intensity represents the mean of l2-normalization of the generated perturbations. There are just the
MI-FGSM with or without the specific transformation during the adversarial example generation.

Transformation mANAO Perturbation intensity Loss Mean ASR
1 iteration, 1 random transformation

None 0.71 1.57 6.93 13.23
Rotation 0.92 1.30 0.90 7.33
Resized Padding 0.88 1.57 1.52 10.41
Block Shuffle 0.84 1.57 2.63 9.18

1 iteration, 10 random transformation
None 0.71 1.57 6.93 13.23
Rotation 0.89 1.56 1.41 9.48
Resized Padding 0.83 1.57 2.76 14.02
Block Shuffle 0.80 1.57 3.67 11.50

10 iterations, 10 random transformation
None 0.39 10.00 40.76 48.13
Rotation 0.35 10.28 16.03 73.98
Resized Padding 0.38 10.34 19.79 77.81
Block Shuffle 0.34 10.17 32.94 72.34

3.4 PROPOSED TRANSFER-BASED ADVSERAIAL ATTACK

In this section, we propose an adversarial attack to Adaptively Activate Effective Submodels, called
AdaAES. Our AdaAES introduces several random transformations to avoid ineffective perturbations
and adaptively activate more neurons by calculating the mANAO (Eq. 7) and picking the minimum.
The overview and pseudocode of our proposed AdaAES are shown in Figure 4 and 1, respectively.

We first add a tiny additional noise sampled from a uniform distribution into the input, purifying
noisy gradients. By default, we make 8 noisy inputs in parallel and then transform these noisy
inputs. According to these baseline methods (Dosovitskiy et al., 2020; Simonyan & Zisserman,
2014; Liu et al., 2016), the random rotation, resizing and padding widely used in baseline methods
are introduced as part of our transformations (φt−1(·) in Figure 4) due to the reason described
in 3.3. Block shuffle is also introduced to suppress the activation of submodels capturing local
features, which improves the adversarial transferability for DNNs capturing global features. The
hyperparameters of these transformations can be selected automatically by comparing the mANAOs,
and thus we only set a large range of the hyperparameters. Concretely, the maximum angle of
random rotation is sampled from a uniform distribution (0, 180) by default while the number of
split blocks for the block shuffle is randomly sampled from the set {1,2,3,4,5}. The random resized
padding setup follows the setup in Xie et al. (2019), that is, the maximum value of the scaling factor
range is uniformly sampled from 1.14 to 1.66 while the minimum is fixed to 1.
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Figure 4: Overview of our proposed AdaAES.

Algorithm 1 Our proposed AdaAES.

1: Input: an benign example x0, adversarial example xadv
t , perturbation budget ϵ, transforma-

tion φ, step size α, noise strength β1, iteration T , candidate number N1, noise number N2,
transformation number I .

2: Initialize α = ϵ/T , xadv
0 = x0, g0 = 0.

3: for t = 1 to T do
4: for n1 = 1 to N1 do
5: Sample noisen2

N2
n2=1 from the uniform distribution (−β1, β1) and I transformation in-

stances {φ(i)
t }Ii=1 with random hyperparamters.

6: Update the dynamics gt =
N2∑
n2

I∑
i

∇xadv
t−1

J(f(φi(x
adv
t−1 + noisen2)), y) .

7: Update the momentum gt = gt−1 +
gt

∥gt∥1
.

8: Generate the candidate x
(c)
t = clip(xadv

t−1 + α · sign(gt), 0, 1).

9: Calculate the ANAO(x0, x
(c)
t , f) = 1

S

∑
l

S(l) ·
〈∣∣∣∇θ

(l)
0

∣∣∣,∣∣∣∇θ
(l)
t

∣∣∣〉∥∥∥∇θ
(l)
0

∥∥∥
2

∥∥∥∇θ
(l)
t

∥∥∥
2

(i.e., Eq. 5).

10: end for
11: Update x(adv)

t with x
(c)
t which has the minimum ANAO(x0, x

(c)
t , f) in candidate set {x(c)

t }.
12: end for

We use mANAO to show the effect of different numbers of random transformations and the results
are shown in Table 3. Table 3 shows that even many random transformations can help activate more
neurons. Therefore, we trade off computational cost against performance and set the random number
to 160 in total by default.

We repeat the above process 20 times by default in parallel and output 20 candidates. Although
more repetitions can lead to performance gains, this also carries a heavy computational burden. We
calculate the mANAO of each candidate by Eq. 7 and pick up the candidate with the minimum
mANAO which means this candidate can activate more neurons. We repeat these processes for all
the iterations and output the generated adversarial example.

4 EXPERIMENTS

In this section, we introduce an ablation study to show the role of each component and compare
our proposed AdaAES with other attacks, showing the superiority of our method. For fairness,
we introduce a widely used PyTorch framework, TransferAttack1, to train all the transfer-based
adversarial attacks in the experiments.

1https://github.com/Trustworthy-AI-Group/TransferAttack
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Table 3: The relationship between the transformation number and the mANAO of the adversarial ex-
amples generated by MI-FGSM with the specific transformation number’s random transformations
(rotation, resized padding, and block shuffle).

number 1 10 40 80 160 320
mANAO 0.4750 0.3626 0.3281 0.3199 0.3130 0.3101

4.1 EXPERIMENTAL SETUP

We describe the used dataset, the implementation setup, and the input transformation setup in detail
here.

Dataset. Following the previous works (Wang et al., 2021; 2023; Zhu et al., 2024a), 1, 000 images
are randomly chosen from ILSVRC 2012 validation set (Russakovsky et al., 2015), and these images
are classified correctly by the models.

Implementation Setup. Following the widely used hyperparameter setup in the works (Dong et al.,
2018; Zhu et al., 2024a; Lin et al., 2024), we set the perturbation budget ϵ to 16/255, iteration number
T to 10, step size α to 1.6/255. By default, we adopt noise strength β1 as 1.6/255, candidate number
N1 as 20, noise number N2 as 8, and Transformation number I as 8.

Input Transformation Setup. The input transformation pipeline consists of random rotation, ran-
dom resized padding, and block shuffle. The hyperparameters of these input transformations are
adaptively selected. Random rotation’s hyperparameter (i.e., maximum angle) is sampled from
a uniform distribution (0, 180) by default. Block shuffle’s hyperparameter (i.e., number of split
blocks) is randomly sampled from the set {1,2,3,4,5}. If the number of split blocks is 1, block shuf-
fle is not adopted. Following the setup in Xie et al. (2019), the hyperparameter (i.e., the maximum
scaling factor value) of random resized padding is sampled from 1.14 to 1.66 while the minimum is
fixed to 1.

4.2 ABLATION STUDY

To clearly show the roles of different components of our proposed AdaAES, an ablation study is in-
troduced here and the results are shown in Table 4. Comparing the result of the only transformation
component (the 3th row in Table 4) with that of baseline (the 1th row in Table 4), the results un-
derscore the importance of avoiding ineffective perturbations which greatly enhance the maximum
potential performance of the candidate set. Comparing the result of the noise and transformation
component (the 4th row in Table 4) with that of the complete method, AdaAES (the last row in
Table 4), picking the optimal candidate helps yield the optimal result. The additive noise provides a
small performance gain in total.

Table 4: Ablation study of our proposed AdaAES. We adopt ResNet18 as the surrogate model
here. Cmp. N, T, and C represent the noise, transformation, and candidate components. There is no
ablation study of the only candidate component (i.e, “ 2⃝” in Figure 4) since the candidate component
cannot make sense without the random noise and transformation components (i.e, “ 1⃝” in Figure 4).

Cmp. Attack success rate (%)
N T C Res18 Res50 Res101 NeXt50 Dense121 VGG19 Incv3 ViT-S ViT-B PiT Visformer Swin

100.0 49.3 42.2 45.7 73.8 74.4 55.6 27.6 16.7 23.0 32.6 40.1
99.9 51.1 44.5 47.3 76.8 75.7 56.0 29.0 17.1 25.1 35.7 44.2

100.0 92.5 91.3 93.3 99.5 99.0 97.4 82.1 63.0 67.8 83.1 83.0
100.0 92.8 91.5 93.1 99.4 99.0 97.6 82.0 61.8 67.3 83.6 81.9
99.9 51.2 45.0 48.7 75.8 77.1 54.9 29.9 17.3 24.2 35.0 43.7

100.0 93.9 92.2 93.8 99.5 99.1 98.2 82.4 62.9 66.7 84.6 84.1
100.0 94.3 92.4 93.4 99.6 98.9 97.9 82.6 63.1 68.2 84.2 83.9

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

The Role of Transformation Number. We show the correlation between the transformation number
and the performance in Figure 5. The results demonstrate that more transformation number can
activate more neurons and improve adversarial transferability.

Figure 5: Mean ASR (Attack Success Rate) and mANAO of our proposed AdaAES with different
transformation number setups.

4.3 COMPARATIVE EXPERIMENTS

In this section, we adopt 5 common neural networks as surrogate models to compare our proposed
AdaAES with other advanced attacks and evaluate the attack success rate of different transfer-based
adversarial attacks on twelve models including ResNet18 (He et al., 2016), ResNet50 (He et al.,
2016), ResNet101 (He et al., 2016), ResNeXt50 (Xie et al., 2017), DenseNet121 (Huang et al.,
2017), VGG19 (Simonyan & Zisserman, 2014), InceptionV3 (Szegedy et al., 2017), ViT-S (Doso-
vitskiy et al., 2020), ViT-B (Dosovitskiy et al., 2020), PiT-B (Zhang et al., 2023), Visformer (Chen
et al., 2021), and Swin Transformer (Liu et al., 2021). We pick 7 adversarial attacks as the compar-
ative methods where MI-FGSM and DEM are integrated into our method, and the other advanced
methods are proposed recently. Comparison with MI-FGSM and DEM can further show the role of
different components in our AdaAES, while comparison with the other advanced methods proposed
recently demonstrates the importance of this work in practice.

Table 5: Attack success rate (%) across twelve models on the adversarial examples crafted on
ResNet-18 by different attacks.

Attack Res18 Res50 Res101 NeXt Dense VGG Inc ViT-S ViT-B PiT Visformer Swin
MI-FGSM 100.0 49.3 42.2 45.7 73.8 74.4 55.6 27.6 16.7 23.0 32.6 40.1
DEM 100.0 82.5 76.8 81.8 97.5 95.1 92.1 58.7 39.1 46.0 66.3 65.9
SIA 100.0 91.9 87.6 89.7 99.2 98.6 91.5 62.7 43.9 58.5 77.3 77.0
ANDA 100.0 80.5 74.7 78.6 96.6 94.8 85.6 53.1 38.6 49.5 66.1 68.8
BSR 100.0 90.5 86.0 88.4 98.8 98.7 90.3 60.8 43.0 57.9 77.3 75.9
DeCowA 100.0 89.0 85.0 88.3 98.5 98.4 94.4 72.3 56.5 63.7 80.5 79.8
L2T 100.0 91.5 87.6 91.6 98.6 98.8 94.8 67.4 51.0 64.7 78.8 81.2
Ours 100.0 94.3 92.4 93.4 99.6 98.9 97.9 82.6 63.1 68.2 84.2 83.9

Table 6: Attack success rate (%) across twelve models on the adversarial examples crafted on In-
ceptionV3 by different attacks.

Attack Res18 Res50 Res101 NeXt Dense VGG Inc ViT-S ViT-B PiT Visformer Swin
MI-FGSM 47.3 30.0 28.1 28.5 44.5 47.9 97.9 23.1 13.7 16.9 24.3 28.8
DEM 77.2 57.1 55.5 57.6 78.8 76.0 99.0 47.4 30.6 35.5 47.7 49.2
SIA 87.9 69.2 65.4 69.0 85.9 83.6 99.9 49.1 34.7 46.5 58.9 61.5
ANDA 66.1 50.1 48.4 49.8 69.5 66.0 99.7 38.1 27.2 31.8 42.9 45.6
BSR 87.7 71.9 67.5 70.6 87.0 85.6 99.8 51.1 37.0 48.7 62.8 65.6
DeCowA 78.7 57.8 57.3 61.1 78.5 78.8 98.0 47.4 32.1 38.9 49.6 54.7
L2T 83.9 70.6 67.8 70.4 84.6 80.7 98.9 52.4 37.3 49.2 56.6 61.6
Ours 92.5 75.7 73.0 76.0 92.1 89.3 99.9 65.1 45.0 53.8 66.2 70.5
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Table 7: Attack success rate (%) across twelve models on the adversarial examples crafted on
DenseNet121 by different attacks.

Attack Res18 Res50 Res101 NeXt Dense VGG Inc ViT-S ViT-B PiT Visformer Swin
MI-FGSM 74.9 61.5 50.9 55.2 99.9 68.5 58.0 31.6 20.6 27.9 41.4 44.3
DEM 98.0 91.0 85.8 89.1 99.9 94.4 94.2 63.7 48.8 52.8 75.4 70.2
SIA 98.6 95.6 92.2 94.9 100.0 97.6 91.9 64.6 48.3 67.5 84.6 81.7
ANDA 93.4 86.2 81.0 83.6 99.9 89.8 82.6 53.7 40.8 55.3 71.0 69.8
BSR 98.6 95.0 89.6 93.1 100.0 97.1 88.2 62.6 49.1 66.3 83.5 79.8
DeCowA 98.5 92.5 89.0 91.4 100.0 96.4 93.8 73.3 57.7 70.3 83.4 80.6
L2T 98.8 95.0 92.9 94.2 100.0 97.7 94.4 74.6 59.1 73.3 85.6 85.7
Ours 99.3 97.0 95.1 96.4 100.0 98.3 98.0 84.1 67.4 74.5 89.2 85.3

Table 8: Attack success rate (%) across twelve models on the adversarial examples crafted on ViT-S
by different attacks.

Attack Res18 Res50 Res101 NeXt Dense VGG Inc ViT-S ViT-B PiT Visformer Swin
MI-FGSM 51.4 33.6 30.3 33.8 48.9 54.7 45.0 100.0 69.2 37.4 42.6 54.1
DEM 88.8 81.4 79.7 81.9 89.2 88.0 90.3 99.9 95.2 88.1 88.1 90.4
SIA 86.2 80.3 76.4 78.3 87.4 85.8 80.6 100.0 95.7 84.9 86.0 90.3
ANDA 70.7 60.8 57.4 60.8 73.3 71.0 67.4 100.0 89.1 67.5 69.7 77.1
BSR 87.6 82.4 82.0 83.6 89.0 87.1 84.0 100.0 94.8 90.6 88.1 91.1
DeCowA 86.0 75.7 73.8 77.5 97.1 85.3 84.2 98.8 87.2 83.4 83.6 85.9
L2T 88.5 81.1 78.0 80.8 88.0 87.1 86.7 99.2 92.8 84.5 84.5 89.6
Ours 94.4 86.7 85.2 86.9 94.7 92.8 93.0 99.7 93.2 89.6 90.8 93.8

Table 9: Attack success rate (%) across twelve models on the adversarial examples crafted on ViT-B
by different attacks.

Attack Res18 Res50 Res101 NeXt Dense VGG Inc ViT-S ViT-B PiT Visformer Swin
MI-FGSM 52.8 39.3 33.8 38.8 50.9 57.3 46.4 72.0 97.3 40.5 43.4 54.7
DEM 85.1 77.8 78.5 78.4 87.4 85.3 86.3 93.7 97.9 86.9 85.2 85.9
SIA 77.4 75.2 72.8 76.1 80.5 79.0 76.0 90.4 97.3 81.4 81.4 84.5
ANDA 67.0 60.1 58.9 60.9 70.9 69.1 66.4 84.3 97.7 66.7 68.0 73.1
BSR 74.9 73.7 71.7 73.2 78.4 75.2 75.3 84.1 93.9 78.2 76.0 79.7
DeCowA 82.1 74.3 74.1 76.0 81.8 79.1 81.4 86.7 92.2 83.1 82.4 82.6
L2T 82.9 78.2 76.7 77.9 83.0 82.3 82.0 90.2 95.7 82.2 82.6 85.5
Ours 89.4 84.1 84.1 86.6 91.2 89.1 89.4 94.0 96.1 90.7 90.1 90.5

As shown in Tables 5, 6,7,8 and 9, our proposed AdaAES achieves the state-of-the-art result over
the 5 experiments in total, supporting the robustness and superiority of our work.

5 CONCLUSIONS

We offer metrics to measure the orthogonality of neurons activated by different inputs, thus inves-
tigating the mechanism of transfer-based adversarial attacks and exploring the relationship between
inputs, surrogate models, and adversarial transferability from a certain perspective. It reveals that
activating more effective submodels in a model can generate better adversarial examples. Activating
more neurons can make perturbations effective for more models capturing different features. Aver-
aging the gradients of inputs with random transformation can avoid ineffective perturbation. Also,
a straightforward attack based on the above mechanism is proposed to achieve great adversarial
transferability.
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