
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

THE LOGIC OF RATIONAL GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

The expressivity of Graph Neural Networks (GNNs) can be described via ap-
propriate fragments of the first-order logic. In this context, uniform expressivity
guarantees that a GNN can express a logical query without the parameters depend-
ing on the size of the input graphs. It has been established that the two-variable
guarded fragment with counting (GC2) can be expressed uniformly via Rectified
Linear Unit (ReLU) GNNs Barceló et al. (2020). Moreover, GC2 is the frag-
ment that can be expressed at most by a GNN with any activation function. In
this article, we prove that, on the contrary of ReLU GNNs, there are GC2 queries
that cannot be uniformly expressed via any GNN with rational activations. As a
consequence, non-polynomial activation functions do not grant GNNs GC2 uni-
form expressivity in general, answering an open question formulated by Grohe
(2021). We then present a strict subfragment of GC2 (RGC2), and prove that ra-
tional GNNs can express RGC2 queries uniformly over all graphs. Our numerical
experiments illustrates that despite this theoretical disadvantage, rational GNNs
are still able to learn some GC2 queries if some level of error is allowed.

1 INTRODUCTION

Graph Neural Networks (GNNs) are deep learning architectures for input data that incorporates some
relational structure represented as a graph, and have proven to be very performant and efficient for
various types of learning problems ranging from chemistry Reiser et al. (2022), social network anal-
ysis Zhang et al. (2022), bioinformatics and protein-ligand interation Khalife et al. (2021); Knutson
et al. (2022), autonomous driving Singh & Srivastava (2022); Gammelli et al. (2021); Chen et al.
(2021), and techniques to enhance optimization algorithms Khalil et al. (2017; 2022) to name a few.
Understanding the ability of GNNs to compute, approximate or express functions over graphs, and
the dependence of their capacity on the activation function is beneficial for every aspect of learning:
from the understanding of the target class, the design of a GNN for a given task, to the algorithmic
training. For example, certain activation functions may endow GNNs with more expressivity than
others, or require less parameters to express the same functions.

In this context, several approaches have been conducted in order to describe and characterize the
expressive power of GNNs. The first approach consists in comparing GNNs to other standard com-
putation models on graphs such as the color refinement or the Wesfeiler-Leman algorithms. These
comparisons stand to reason, because the computational models of GNNs, Weisfeiler-Leman, and
color refinement algorithms are closely related. They all operate under the paradigm of inferring
global graph structure from local neighborhood computations. In that regard, it has been proven
Morris et al. (2019); Xu et al. (2018) that the color refinement algorithm precisely captures the ex-
pressivity of GNNs. More precisely, there is a GNN distinguishing two nodes of a graph if and
only if color refinement assigns different colors to these nodes. This results holds if one supposes
that the size of the underlying neural networks are allowed to grow with the size of the input graph.
Hence, in his survey, Grohe (2021) emphasizes the fact that this equivalence has been established
only for unbounded GNN, and asks: Can GNNs with bounded size simulate color refinement? In
Aamand et al. (2022), the authors answer by the negative if the underlying neural network are sup-
posed to have Rectified Linear Unit (ReLU) activation functions. In Khalife & Basu (2023) the
authors provide a generalization of this result, for GNNs with piecewise polynomial activation func-
tions. Furthermore, explicit lower bounds on the neural network size to simulate the color refinement
can be derived for piecewise-polynomial activation functions given upper bounds on the number of
regions of a neural network with piecewise-polynomial activation.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

The second line of research to study the expressive power of GNNs is to characterize the types of
boolean queries that a GNN can simulate. For example, can a GNN express if a vertex of a graph
is part of a clique of given size? Furthermore, can we characterize the set of queries that can be
expressed by GNNs? If the number of parameters of the GNN does not depend on the size of
the input graph, the GNN is said to express the query uniformly. Therefore, uniform expressivity
guarantees that the number of parameters remains only dependent on the complexity of the target
query1. This becomes relevant from a practical standpoint as it captures the expressivity of GNNs
with a fixed number of parameters with respect to the number of vertices in the input graphs. The
suitable logic over labelled graphs for GNNs is a two variable fragment of graded model logic,
referred to as GC2. Any GNN expresses a query of this logic, and conversely, any query of this logic
can be expressed by a GNN whose size and iterations only depends on the depth of the query Barceló
et al. (2020); Grohe (2021). For specific activation functions such as ReLUs, the size of a GNN
required to express a given query of GC2 does not depend on the size of the input graph, but only
on depth of the query. In recent results Grohe (2023), the author provides a non-uniform description
of the logic expressible by GNNs with rational piecewise-linear activations (or equivalently, rational
ReLUs). The non-uniform results are presented for GNNs with general arbitrary real weights and
activation functions. Additionally, Rosenbluth et al. (2023) compared the impact of the aggregation
function on the expressivity of GNNs, showing that GNNs with Max or Mean aggregation functions
have distinct expressivity from the Sum aggregation GNNs. In this article, we focus on uniform
expressivity and consider the following question: What is the impact of the activation on the logic
uniformly expressed by GNNs?

A natural start for such investigation are polynomial activations. They have demonstrated clear
limitations for feedforward Neural Networks (NNs) as exposed with the celebrated theorem of ap-
proximation Leshno et al. (1993), stating that polynomial activations are the only ones leading to
NNs being unable to approximate any continuous function on a compact set. For example, in the
case of NNs, rational activations (i.e. fractions of polynomials) do not share this limitation. Beyond
this ability, rational activations yield efficient approximation power of continous functions Boullé
et al. (2020), if one is allowed to consider different rational activation functions (of bounded degree)
in the neural networks. In the same spirit, this article exposes a comparison of the power of the
activation function in the case of GNNs. In particular, we will compare rational activations with
those of piecewise linear activations whose expressive power is known.

Main contributions. In this work we present an additional step towards a complete understanding of
the impact of the activation function on the logical expressivity of GNNs. We show that the class of
GNNs with rational activations (i.e. all activation functions that are fractions of polynomials2) have
weaker expressivity than piecewise linear activations, or ReLUs. We prove that GNNs with rational
activations cannot express all GC2 queries uniformly over all graphs, while they can with ReLU
GNNs. Our approach demonstrates that this limitation is inherent to rational activations, as our
findings remain valid even when the following contidions are allowed: i) the weights of the rational
GNNs are arbitrary real numbers with infinite precision, and ii) the weights of the ReLU GNNs
are restricted to integers (also, the underlying neural networks are supposed to have finitely many
linear pieces). This result holds for sum-aggregation function and can be extended to aggregation
functions that are rational with bounded-degree3. This shows how the power of GNNs can change
immensely if one changes the activation function of the neural networks. These results also seem
to suggest that ReLU GNNs possess special ability for uniform expressivity over rational GNNs, a
property in contrast with the efficient approximation power of rational NNs Boullé et al. (2020). In
addition, we describe a strict subfragment of GC2, called RGC2, that rational GNNs can express
uniformly.

We would like to point out we focus our study solely on the ability of classes of GNNs to express
given queries (i.e. can we even find a GNN in the class that does the job?). In particular, we do not
address the question of how the learning process impacts expressivity in this work, but we briefly
touch upon those interactions with some numerical experiments.

1We shall see that we can attribute a notion of depth over queries, that can be interpreted as a measure of
complexity.

2For theoretical and practical considerations, we limit our study to fractions having no real pole.
3This is abuse of the notion “rational” as aggregation functions are defined on multisets. Here, an aggrega-

tion is rational if it remains rational in the entries of the multiset.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

The rest of this article is organized as follows. Section 2 presents the definitions of GNNs and the
background logic. In Section 3, we state our main result and compare it to the existing ones. Section
4 presents an overview of the proof of our negative result. Section 5 presents the technical definitions
and overview for our positive results. Our numerical experiments are presented in Section 6. We
conclude with some discussion and open questions in Section 7.

2 PRELIMINARIES

2.1 RATIONAL GRAPH NEURAL NETWORKS (GNNS)

We assume the input graphs of GNNs to be finite, undirected, simple, and vertex-labeled: a graph is
a tupleG = (V (G), E(G), P1(G), · · · , Pℓ(G)) consisting of a finite vertex set V (G), a binary edge
relationE(G) ⊂ V (G)2 that is symmetric and irreflexive, and unary relations P1(G), · · · , Pℓ(G) ⊂
V (G) representing ℓ > 0 vertex labels. In the following, we suppose that the Pi(G)’s form a
partition of the set of vertices of G, i.e. each vertex has a unique label. Also, the number ℓ of
labels, which we will also call colors, is supposed to be fixed and does not grow with the size of
the input graphs. This allows to model the presence of features of the vertices of input graphs. In
order to describe the logic of GNNs, we also take into account access to the color of the vertices
into the definition of the logic considered, as we shall see in Section 2.2. For a graph G and a
vertex v ∈ V (G), NG(v) := {y ∈ V (G) : {x, y} ∈ E} is the set of neigbhors of v. If there is
no ambiguity about which graph G is being considered, we simply use N(v). |G| will denote the
number of vertices of G. We use simple curly brackets for a set X = {x ∈ X} and double curly
brackets for a multiset Y = {{y ∈ Y }}. For a set X , |X| is the cardinal of X . When m is a positive
integer, Sm is the set of permutations of {1, · · · ,m}. ∥.∥ is the Euclidean norm, i.e., for a vector
x ∈ Rm, ∥x∥ :=

(∑m
i=1 x

2
i

)1/2
. Finally, if E is a real vector space, I a subset of E, span{I}

refers to the set of all finite linear combinations of vectors of I , i.e. span{I} := {
∑m

i=1 λixi : λ ∈
Rm, x1, · · · , xm ∈ I,m ∈ N− {0}}.

Definition 1 (Rational fractions/functions). For a positive integer m, R(X1, · · · , Xm) refers to the
field of rational fractions over the field K = R. For any positive integer m, a rational fraction is a
pair (P,Q) (represented as P

Q),where P,Q ∈ R[X1, · · · , Xm] are multivariate polynomials. The
degree of R is the pair (deg(P), deg(Q)). In the following, we make no formal distinction between
rational fractions and rational functions, defined as functions taking values as the ratio between
two polynomial functions. We also restrict our GNN study to fractions having no real pole, i.e. the
polynomial Q has no root in Rm.

Definition 2 (Neural Network (NN)). Fix an activation function σ : R → R. For any number
of hidden layers k ∈ N, input and output dimensions w0, wk+1 ∈ N, a Rw0 → Rwk+1 Neural
Network (NN) with activation function σ is given by specifying a sequence of k natural numbers
w1, w2, · · · , wk representing widths of the hidden layers and a set of k + 1 affine transformations
Ti : Rwi−1 → Rwi , i = 1, . . . , k + 1. Such a NN is called a (k + 1)-layer NN, and has k hidden
layers. The function f : Rw0 → Rwk+1 computed or represented by this NN is:

f = Tk+1 ◦ σ ◦ Tk ◦ · · ·T2 ◦ σ ◦ T1.

In the following, the Rectified Linear Unit activation function ReLU : R → R≥0 is defined as
ReLU(x) = max(0, x). The Sigmoid activation function Sigmoid : R → (0, 1) is defined as
Sigmoid(x) = 1

1+e−x .

Definition 3 (Graph Neural Network (GNN)). A GNN is characterized by:

◦ A positive integer T called the number of iterations, positive integers (dt)t∈{1,··· ,T} and
(d′t)t∈{0,··· ,T} for inner dimensions. d0 = d′0 = ℓ is the input dimension of the GNN
(number of colors) and dT is the output dimension.

◦ a sequence of combination and aggregation functions (combt, aggt)t∈{1,··· ,T}. Each ag-
gregation function aggt maps each finite multiset of vectors of Rdt−1 to a vector in Rd′

t .
For any t ∈ {1, · · · , T}, each combination function combt : Rdt−1+d′

t −→ Rdt is a neural
network with given activation function σ : R −→ R.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

The update rule of the GNN at iteration t ∈ {0, · · · , T − 1} for any labeled graph G and vertex
v ∈ V (G), is given by:

ξt+1(v) = combt(ξ
t(v), aggt{{ξt(w) : w ∈ NG(v)}})

Each vertex v is initially attributed an indicator vector ξ0(v) of size ℓ, encoding the color of the
node v: the colors being indexed by the palette {1, · · · , ℓ}, ξ0(v) = ei (the i-th canonical vector)
if the color of the vertex v is i. We say that a GNN has rational activations provided the underlying
neural network comb has rational activation functions.
Remark 1. The type of GNN exposed in Definition 3 is sometimes referred to as aggregation-
combine GNNs without global readout. Here are a few variants that can be found in the litterature:

• Recurrent GNNs, where combt and aggt functions do not depend on the iteration t. The
results presented in this article extends to recurrent GNNs as any aggregation-combine
GNN without global readout can be reduced polynomially to a recurrent one.

• GNNs with global readout, for which aggregation functions also take as input the em-
beddings of all the vertices of the graph. See Remark 3 for known results from a logic
standpoint.

• General Message-passing GNNs that allow operations before the aggregation on the neigb-
hors as well as the current vertex (targeted messages). We refer to Grohe & Rosenbluth
(2024) for a some elements of comparison of expressivity of targeted vs standard ones.

2.2 LOGICAL BACKGROUND

First order logic on graphs. In this subsection we present the logical foundations for queries
in graph theory. We refer the interested reader to Appendix B containing details for the general
construction. Let ℓ > 0 be a fixed number of colors, and let G = (V (G), E(G), P 1(G), ..., P ℓ(G))
be a colored graph. The first-order language of graph theory we consider is built up in the usual way
from a alphabet containing:

• the logical connectives ∧,∨,¬,→
• the quantifiers ∀ and ∃
• equality symbol =
• the universe A of the logic is given by A := V

• variables x0, x1, · · · (countably many)
• the vocabulary S is composed of:

◦ a binary edge relation symbol E: (x, y) ∈ A2 are related if and only if (x, y) ∈ E.
◦ unary relation symbols Col1, · · · ,Colℓ indicating if a vertex has a given color

The set of formulas in the logic is a set of strings over the alphabet. To interpret these formulas and
the logic over every graph, we need for each graph a map I defined on the relations:

• for every i ∈ [ℓ], I(Coli) : A→ {0, 1}
• I(E) : A×A→ {0, 1}

The pair (A, I) is called an S-structure for the first order logic FO(S). Provided this S-structure, one
can safely construct simple examples of formulas at the graph level (we will see in the next paragraph
that we need something more to interpret them at the vertex level). Namely, the following formula
interpreted over a graph G = (V,E) expresses that no vertex v ∈ V is isolated: ∀x∃yE(x, y).
Similarly, the formula ∀x¬E(x, x) expresses the fact that we do not want any self loops. A more
interesting example is given by

ψ := ∀x∀y[E(x, y) → E(y, x) ∧ x ̸= y] (1)

expressing that G is undirected and loop-free. Similarly

ϕ := ∀x∃y∃z(¬(y = z) ∧ E(x, y) ∧ E(x, z)) ∧ ∀w(E(x,w) → ((w = y) ∨ (w = z))) (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

expresses that every node x of the considered graph has exactly two out-neigbhors.

Free variables and assignments. Since GNNs can output values for every vertex of a graph, the
formulas we are interested in order to describe them from a logical standpoint must also take as “in-
put” some vertex variable. Therefore, we need to add some component to the S-structure described
as above, resulting in what we call an interpretation.

First we need the concept of bound and free variable of a formula. A bound variable of a formula
is a variable for which the scope of a quantifier applies. In comparison, a free variable is not bound
to a quantifier in that formula. Previous Formulas 1 and 2 contain no free variable. In contrast,
the formula ϕ(x) := ∃y∃z(¬(y = z) ∧ E(x, y) ∧ E(x, z)), which expresses that vertex v has two
out-neighbors, has a single free variable x. To interpret formulas with one (resp. k) free variable,
we need an assignment that maps the set of free variables in the logic, to the universe A (resp. Ak).

Now, an interpretation of FO(S) is a pair (U , β) where U is an S-structure and β is an assignment. To
interpret a formula with free variables, every graph is associated to an S-structure and an assignment;
both are usually implicit in practice. Any formula in FO(S) (with and without free variables) can
now be thought of as a 0/1 function on the class of all interpretations of FO(S):

1. If ϕ is a formula without a free variable (in this case, the formula is said to be a sentence),
then any graph G is an S-structure and is mapped to 0 or 1, depending on whether G
satisfies ϕ or not.

2. If ϕ(x) is a formula with a single free variable x, then any pair (G, v), where G = (V,E)
is a graph and v ∈ V , is an interpretation with G as the S-structure and the assignment β
maps x to v. Thus, every pair (G, v) is mapped to 0 or 1, depending on whether (G, β)
satisfies ϕ or not. This example can be extended to handle formulas with multiple free
variables, where we may want to model 0/1 functions on subsets of vertices.

Definition 4. (Queries as Boolean functions) Let G be a graph and let v ∈ V (G) be a vertex of G.
If Q has a free variable query (of type (2) above), Q(G, v) ∈ {0, 1} refers to the query interpreted
and evaluated using the pair (G, v).

Definition 5. The depth of a formula ϕ is defined recursively as follows. If ϕ is of the form Coli for
i ∈ [ℓ], then its depth is 1. If ϕ = ¬ϕ′ or ϕ = ∀xϕ′ or ϕ = ∃xϕ′, then the depth of ϕ is the depth of ϕ′
plus 1. If ϕ = ϕ1⋆ϕ2 with ⋆ ∈ {∨,∧,→,↔}, then the depth of ϕ is 1+max(depth(ϕ1), depth(ϕ2)).

In order to characterize the logic of GNNs, we are interested in a fragment of the first order logic,
defined as follows.

Definition 6 (Graded (or guarded) model logic with counting (GC) and GC2 Barceló et al. (2020)).
The alphabet of GC2 is composed of

• the logical connectives ∧,∨,¬,→

• the quantifiers ∀, and for every positive integer N , ∃≥N

• the universe A = V

• variables x0, x1, · · · (countably many)

• the vocabulary S:

◦ a binary edge relation symbol E: (x, y) ∈ A2 are related if and only if (x, y) ∈ E.
◦ unary relation symbols Col1, · · · ,Colℓ indicating if a vertex has a given color

In contrast with the first order logic, we do not have access to equality (=). ∃ is simply ∃≥1. For
a given unary relation R, the quantifier ∃≥NxR(x) means that there exists at least N elements x
verifying relation R. Similarly, ∃≥NxE(x, y) means that at least N vertices adjacent to y in the
considered graph. GC-formulas are formed from the atomic formulas by the Boolean connectives
and quantification restricted to formulas of the form ∃≥py(E(x, y)∧ψ)), where x and y are distinct
variables and x appears in ψ as a free variable. Note that every formula of GC has at least one free
variable. For example, ϕ(x) := ¬(∃≥2y(E(x, y) ∧ Col1(y)) ∧ ∃≥3z(E(x, z) ∧ Col2(z))) is a GC
formula.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

We refer to the 2-variable fragment of GC as GC2 (i.e. formulas with only two variables). Equiva-
lently, a GC2 formula F is either Coli(x) (returning 1 or 0 for one of the palette colors) or one of
the following:

¬ϕ(x), ϕ(x) ∧ ψ(x), or ∃≥Ny(E(x, y) ∧ ϕ(y))
where N is a positive integer and ϕ and ψ are GC2 formulas of lower depth than F .
Example 1 (Barceló et al. (2020)). All graded modal logic formulas naturally define unary queries.
Suppose ℓ = 2 (number of colors), and Col1 = Red, Col2 = Blue. Let:

γ(x) := Blue(x) ∧ ∃y(E(x, y) ∧ ∃≥2x(Edge(y, x) ∧ Red(x))

γ queries if x has blue color, and has at least one neigbhor which has at least two red neighbors.
Then γ is in GC2. Now,

δ(x) := Blue(x) ∧ ∃y(¬E(x, y) ∧ ∃≥2xE(y, x) ∧ Red(x))

is not in GC2 because the use of the guard ¬E(x, y) is not allowed. However,

η(x) := ¬(∃y(E(x, y) ∧ ∃≥2xE(y, x) ∧ Blue(x))

is in GC2 because the negation ¬ is applied to a formula in GC2.
Definition 7. Suppose that ξ is the vertex embedding computed by a GNN. We say that a GNN
expresses uniformly a unary query Q there is a real ϵ < 1

2 such that for all graphs G and vertices
v ∈ V (G). {

ξ(G, v) ≥ 1− ϵ if v ∈ Q(G)

ξ(G, v) ≤ ϵ if v /∈ Q(G)

3 FORMAL STATEMENTS OF RESULTS

Given Definition 7, we are now equipped to state the known previous results regarding the expres-
sivity of GNNs:
Theorem 1. Barceló et al. (2020); Grohe (2021) Let Q be a unary query expressible in graded
modal logic GC2. Then there is a GNN whose size depends only on the depth of the query, that
expresses Q uniformly.
Remark 2. Let ℓ be the number of colors of the vertices in the input graphs, the family of GNNs with
agg = sum, and comb(x, y) = ReLU(Ax + By + C) (where A ∈ Nℓ×ℓ, B ∈ Nℓ×ℓ and C ∈ Nℓ)
is sufficient to express all queries of GC2 uniformly. This result follows from the constructive proof
of Theorem 1 in Appendix A. Furthermore, for each query Q of depth q, there is a GNN of this type
with at most q iterations that expresses Q uniformly.
Example 2. Let Q be the following GC2 query:

Q(x) := Red(x) ∧ (∃yE(x, y) ∧ Blue(y))

asking if the vertex x has red color, and if it has a neighbor with blue color. Writing the subformulas
of Q: sub(Q) = (Q1, Q2, Q3, Q4) with Q1 = Red, Q2 = Blue, Q3 = ∃(E(x, y) ∧ Q2(y), and
Q4 = Q = Q1 ∧Q3, let

A =

1 0 0 0
0 1 0 0
0 0 0 0
1 0 1 0

 , B =

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 , c =

 0
0
0
−1

and let σ be the clipped ReLU function, i.e. σ(·) := min(1,max(0, ·)) (the clipped ReLU can
be computed by a neural network with ReLU activations). Then, it can be verified that Q can be
computed in 4 iterations with the update rule:

ξ0(G, v) = 1, ξt+1(G, v) := σ(Aξt(G, v) +B(
∑

w∈NG(v)

ξt(w)))

i.e. Qi(G, v) = ξ4(G, v)i. In particular, Qi(G, v) = 1 ⇐⇒ ξ4(G, v)i = 1. The ability of GNNs
to compute exactly GC2 queries is used in the proof of Theorem 1. We emphasize here that one
cannot mimic the proof for sigmoid activations, even by replacing exact computation by uniform
expressivity.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

In general, the logic of GNNs and their different variants beyond first-order queries remains elusive.
However, for aggregation-combine GNNs without global readout (cf. Remark 1), Theorem 1 has
the following partial converse:
Theorem 2. Barceló et al. (2020) Let Q be a unary query expressible by a GNN and also expressible
in first-order logic. Then Q is expressible in GC2. Furthermore, a logical classifier is captured by
an aggregation-combine GNN without global readout if and only if it can be expressed in GC2 logic.
Remark 3. The logic that fits GNNs with global readout is not GC2. IfC2 is the fragment of the first
order logic with counting quantifiers (∃≥p) and with at most 2 variables; then we have the following
result Barceló et al. (2020): Let Q be a Boolean or unary query expressible in C2. Then there is a
GNN with global readout that expresses Q.

In contrast with Theorem 1, we prove:
Theorem 3. There are GC2 queries that no GNN with rational activations can uniformly express.

Equivalently, if LR (resp. LReLU) is the set of first order logical queries uniformly expressible by
GNNs with rational activations (resp. ReLU activations), then LR ⊊ (LReLU = GC2). The query
used in our proof uses logical negation:

Qp(s) := ¬
(
∃≥1x(E(s, x) ∧ ∃≤(p−1)sE(x, s))

)
and can be extended to a large family of queries (cf. Remark 5). We can obtain the following corol-
lary by immediate contradiction, as GNNs with rational activations and aggregations can simulate
logical negation:
Corollary 1. There are queries of GC2 using only the guarded existential quantifiers with counting
∃≥KE, the logical and ∧ and the atomic formulas Col(.), that GNNs with rational activations cannot
uniformly express.

We complete the negative result describe above via a description of a strict subfragment of GC2,
RGC2 (presented in Section 5) that rational GNNs can uniformly express:
Theorem 4. For any queryQ of RGC2, there exists a rational GNN that expressesQ uniformly over
all graphs.

4 RATIONAL GNNS HAVE LIMITED EXPRESSIVITY

Overview. To prove our result we construct a GC2 query Q that no GNN with rational activation
can express over all graphs. We prove this statement by contradiction: on the one hand we interpret
the embedding returned by a rational GNN on a set of given input graphs, as a rational function of
some parameters of the graph structure. On the other hand, we interpret Q on the same set of input
graphs. We show that if GNN were to uniformly express Q, then the rational function obtained by
the first evaluation cannot verify the constraints imposed by Q. Our approach and can easily extend
to a large family of GC2 queries.

Similarly to those considered in Khalife & Basu (2023), our set of inputs are formed using rooted
unicolored trees of the form shown in Figure 1 which is a tree of depth two whose depth one ver-
tices have prescribed degrees k1, · · · , km, with k1, · · · , km ≥ 0. We first collect three elementary
Lemmas, one that will be useful to extract monomials of largest degree in a multivariate polyno-
mial (Lemma 1) then used for rational fractions (Lemma 2). Since the trees are parameterized by
m-tuples of integers k1, . . . , km, the embedding of the root node computed by the GNN at any iter-
ation is a function of these m integers. Since the activations are rational, these embeddings of the
root node are multivariate symmetric rational functions of k1, . . . , km (Lemma 3). Furthermore, the
degree of these rational functions is bounded by a constant independent of m. Our proof of Theo-
rem 3 builds on these results combined with fundamental properties of symmetric polynomials and
rational functions.
Remark 4. Note that the proof of Theorem 1 can be extended to a larger family of queries. Namely,
for any integer p ≥ 2, let

Qp(s) := ¬
(
∃≥1x(E(s, x) ∧ ∃≤(p−1)sE(x, s))

)
= ∀xE(s, x)∃≥psE(x, s)

Qp queries if vertex s has neighbors whose degree are all at least p. Then any (Qp)p∈N cannot be
expressed by any GNN with rational activations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

s

x1 x2 xm

k1 vertices k2 vertices · · · km vertices

Figure 1: T [k1, · · · , km]

Remark 5. The proof of Theorem 3 was initially attempted using queries of the form:

Q̃p(s) = ¬
(
∃≥1x(E(s, x) ∧ ∃≥(p+1)sE(x, s))

)
= ∀xE(s, x)∃≤psE(x, s)

Which expresses that all the neighbors of s have degree at most p. Note the similarity between
Qp from Remark 5 and Q̃p. Although Q̃p also seems a good candidate that cannot be expressed
uniformly by a GNN with rational activations and aggregations, we could not conclude with the
same approach as in the proof of Theorem 3, due to the following interesting fact:

There exists ϵ > 0 and a sequence of symmetric polynomial (pm)m∈N ∈ R[x1, · · · , xm] of bounded
degree (i.e. there exists an integer q such that for anym, deg(pm) ≤ q) and for anym, pm is greater
than ϵ on the vertices of the unit hypercube {0, 1}m, and less than −ϵ on all the other points of Nm.
pm = 1−

∑m
i=1 x

2
i +

∑m
i=1 x

4
i is an example of such sequence of symmetric polynomials.

5 TOWARDS A RATIONAL FRAGMENT OF GC2

We now turn our attention towards a subfragment of GC2 that use of existential quantifiers aligned
in the “same direction”, at the exception of the very last quantifier, as negation will only be allowed
for the last subformula. In particular, this removes logical conjunctions and negations inside nested
subformulas. This fragment will be used to describe what rational GNNs can express at the very
least. Informally, such limitation arises from the aggregation phase when the messages in the neigh-
borhood of a node, one obtains a signal that can become unbounded, and we lose track of the number
of neighbors that verify a given query, except at the very first iteration (captured by the set Ω0 in the
Definition below). Our counterexamples (see Remark 5) confirm this is indeed happening.
Definition 8 (Fragment RGC2 ⊆ GC2). The fragment RGC2 is composed of logical queries of Ω
constructed as follows:

• Ω0 contains Coli, ¬Coli, and ∃≥KyE(x, y)Coli(y) for some i ∈ [ℓ] and for some K ∈ N.

• Ω+ := {H(m)(ϕ) : m ∈ N, ϕ ∈ Ω0)}, where H : ϕ 7→ ϕ̃ extends queries to 1-hop
neighborhoods, i.e. ϕ̃(x) := ∃≥1y(E(x, y) ∧ ϕ(y)).

• Ω := {¬ψ with ψ ∈ Ω+} ∪ Ω+.

A few comments are in order. Note that the counting quantifier ∃≥K with K > 1 is not allowed on
top of other guarded fragments, so

ϕ1(x) := ∃≥3yE(x, y)(∃≥1xE(x, y)∧Red(x)) ϕ2(x) := ∃≥1yE(x, y)(∃≥1xE(x, y)∧Red(x))

ϕ1 is not in RGC2, but ϕ2 is.

Similarly,
ϕ1(x) = ¬(∃≥1yE(x, y)(∃≥1xE(y, x)(∃≥1yE(x, y) ∧Red(x))))

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

belongs to RGC2,

ϕ2(x) = ¬(∃≥1yE(x, y)(∃≥1xE(y, x)(∃≤1yE(x, y) ∧Red(x))))

does not (alternates between existential and non existential quantifiers). Neither does

ϕ3(x) = ¬(∃≥1yE(x, y)(¬∃≥1xE(y, x)(∃≥1yE(x, y) ∧Red(x))))

as it alternates between ∃≥1 and ¬∃≥1 in the nested formulas.

Finally, unlike the query Q1 in Remark 5

ϕ4(x) := ∀yE(x, y)(∃≤1E(x, y)) = ¬(∃≥1yE(x, y)(∃≥1xE(x, y))

is in RGC2.

Proof overview. Our positive result that GNNs with rational activations can express GC2 uniformly
(formally stated in Theorem 4) mostly relies on two observations. The first observation (stated
in Lemma 4 of the appendix), is that given any activation function of degree ≥ 2, and for any
polynomial, there exists a NN with that activation function that computes P . The second observation
is that in order to express RGC2 queries that are in Ω0, we only require to be able to set a combine
function to 0 for a finite number of values (integers), and at least one on the other integers. This is
achievable via a NN using the first observation and interpolation, provided the activation function is
polynomial of degree at least 2. Then, we then construct a proof by induction on the depth of the
queries of RGC2, starting with queries in Ω0, and then generalizing to all queries of RGC2.

6 NUMERICAL EXPERIMENTS

In this section, we investigate if the limitations of rational GNNs on the uniform side impacts the
ability of rational GNNs to learn GC2 queries with some level of error. To do so, we consider the
following queries:

Q1(v) := ¬
(
∃≥1y(E(y, v) ∧ (¬∃≥2vE(v, y)))

)
= ∀y

(
E(y, v) ∧ ∃≥2zE(z, y)

)
Q1(v) is expressing that all neigbhors of v have degree at least two. Note that Q is in GC2 and
has depth 4 (here, since trees are unicolored, we removed the color atomic queries for the sake of
presentation. Otherwise, the depth of the query would be 5).

Q2(v) = Red(v) ∧
(
∃≥1xE(x, v) ∧

(
∃≥1vE(v, x) ∧ Blue(v)

)
∧
(
∃≥1vE(v, x) ∧ Red(v)

))
Q2(v) is expressing that v is red, and has a neighbor that has a red neighbor and a blue neighbor.
Q2 is in GC2 as well and has depth 7. The vertices of the trees are colored as follows: the source
and depth-one vertices are red, and only the leaves are blue.

We compare the GNN’s ability to learn GC2 queries, depending on the activation considered (Ra-
tional vs. clipped reLU (CReLU): x 7→ min(1,max(0, x))). We consider the same two queries as
above and train two distinct GNNs: (a) A first GNN with rational activations, and (b) A second GNN
with CReLU activation functions. Both GNNs have 4 and 7 iterations when trained to learn the first
and second query respectively. Each iteration is attributed his own combine function, a feedforward
neural network with one hidden layer. This choice is justified by Theorem 1 that guarantees one
can compute exactly a GC2 query (with the ReLU one) with the number of iterations corresponding
to the depth of the query, and with only one hidden layer for the combine function. Our training
dataset is composed of 3750 graphs of varying size (between 50 and 2000 nodes) of average degree
5, generated randomly. Our testing dataset is composed of 1250 graphs with varying size between
50 and 2000 vertices, of average degree 5.

The experiments were conducted on a Mac-OS laptop with an Apple M1 Pro chip. The neural
networks were implemented using PyTorch 2.3.0 and Pytorch geometric 2.2.0, as well as the Ratio-
nal activations libary Delfosse et al. (2020). The details of the implementation are provided in the
supplementary material.

Results. Both GNNs seem to generalize well for both instance as the mean square error stabilizes
around a value for large graphs. Furthermore, the Rational GNN is even better at learning the first
query than the CReLU GNN. We explain this phenomenon as follows. Theorem 1 only guarantees

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

(a) Q1 (b) Q2

Figure 2: Learning queries with Rational GNN vs CReLU GNN. The mean square error per graph
on the test set is displayed as a function of the order of the graph.

that there exists a set of weights such that a CReLU GNN expresses uniformly the query. However,
this result do not say anything about how difficult it is to reach those weights, starting from random
weights and using a variant of stochastic gradient descent. For example, the weights of the matrices
of the GNNs that achieve this can be chosen with {−1, 0, 1} entries and with at most two non zero
entries per row. It seems unlikely that these set of weights can be reached easily with our method of
training the GNNs. The numerical procedure to train those GNNs largely impact the reachability of
those weights, limiting the theoretical advantage of CReLU over rational GNNs.

7 DISCUSSION AND OPEN PROBLEMS

Analyzing rigorously how the expressivity of GNNs is altered with the choice of activation function
is valuable as it can help in selecting an appropriate architecture for a given learning problem. In this
regard, the universal approximation properties of neural networks, and in particular the efficiency of
rational neural networks Boullé et al. (2020) for that purpose, may lead to believe that rational GNNs
have maximal expressivity from a formal logical standpoint. Our results show that it is not the case,
and rational GNNs have strictly weaker expressivity than ReLU GNNs. However, it is unclear if
such limitation carries over for other (non rational) aggregation functions such as max. Furthermore,
the proof of our positive result does not show that negation is never allowed in subformulas. We
conjecture it is not the case and that RGC2 is close to the logic expressed by rational GNNs. An
interesting path for future research is to understand whether this desirable property of ReLU GNNs
confer them a significant advantage over rational GNNs on graphs of bounded order, which may be
more relevant for practical applications.

It is also essential to note that expressivity is just one facet of practical use of GNNs and the related
machine learning algorithms. This article does not delve into other crucial aspects such as the
GNN’s ability to generalize from provided data, and the computational efficiency of learning and
inference. In particular, we have not investigated the ability of a GNN to learn a logical query from
examples and how the numerical optmization part used for training may impact expressivity. Our
numerical experiments suggest that these factors may be at play, including the architecture chosen
from learning that may differ from the ones that allow to express the uniform queries. We also wish
to convey that theoretical investigations on the expressivity of GNNs and logical expressivity can
suggest potential avenues to integrate logic-based and statistical reasoning in GNN architectures.

REFERENCES

Anders Aamand, Justin Chen, Piotr Indyk, Shyam Narayanan, Ronitt Rubinfeld, Nicholas Schiefer,
Sandeep Silwal, and Tal Wagner. Exponentially improving the complexity of simulating the

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

weisfeiler-lehman test with graph neural networks. Advances in Neural Information Processing
Systems, 35:27333–27346, 2022.

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations (ICLR 2020), 2020.

Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend. Rational neural networks. Advances in
neural information processing systems, 33:14243–14253, 2020.

Sikai Chen, Jiqian Dong, Paul Ha, Yujie Li, and Samuel Labi. Graph neural network and reinforce-
ment learning for multi-agent cooperative control of connected autonomous vehicles. Computer-
Aided Civil and Infrastructure Engineering, 36(7):838–857, 2021.

Quentin Delfosse, Patrick Schramowski, Alejandro Molina, Nils Beck, Ting-Yu Hsu, Yasien
Kashef, Salva Rüling-Cachay, and Julius Zimmermann. Rational activation functions. https:
//github.com/ml-research/rational_activations, 2020.

Daniele Gammelli, Kaidi Yang, James Harrison, Filipe Rodrigues, Francisco C Pereira, and Marco
Pavone. Graph neural network reinforcement learning for autonomous mobility-on-demand sys-
tems. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 2996–3003. IEEE,
2021.

Martin Grohe. The logic of graph neural networks. In 2021 36th Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), pp. 1–17. IEEE, 2021.

Martin Grohe. The descriptive complexity of graph neural networks. arXiv preprint
arXiv:2303.04613, 2023.

Martin Grohe and Eran Rosenbluth. Are targeted messages more effective? arXiv preprint
arXiv:2403.06817, 2024.

Sammy Khalife and Amitabh Basu. On the power of graph neural networks and the role of the
activation function. arXiv preprint arXiv:2307.04661, 2023.

Sammy Khalife, Thérèse Malliavin, and Leo Liberti. Secondary structure assignment of proteins in
the absence of sequence information. Bioinformatics Advances, 1(1):vbab038, 2021.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pp. 10219–10227, 2022.

Carter Knutson, Mridula Bontha, Jenna A Bilbrey, and Neeraj Kumar. Decoding the protein–ligand
interactions using parallel graph neural networks. Scientific reports, 12(1):7624, 2022.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward net-
works with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Houssam
Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks for
materials science and chemistry. Communications Materials, 3(1):93, 2022.

Eran Rosenbluth, Jan Toenshoff, and Martin Grohe. Some might say all you need is sum. arXiv
preprint arXiv:2302.11603, 2023.

Divya Singh and Rajeev Srivastava. Graph neural network with rnns based trajectory prediction of
dynamic agents for autonomous vehicle. Applied Intelligence, 52(11):12801–12816, 2022.

11

https://github.com/ml-research/rational_activations
https://github.com/ml-research/rational_activations

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Wentao Zhang, Yu Shen, Zheyu Lin, Yang Li, Xiaosen Li, Wen Ouyang, Yangyu Tao, Zhi Yang,
and Bin Cui. Pasca: A graph neural architecture search system under the scalable paradigm. In
Proceedings of the ACM Web Conference 2022, pp. 1817–1828, 2022.

A PROOF THAT PIECEWISE LINEAR GNNS (AND AGG=SUM) ARE AS
EXPRESSIVE AS GC2

Proof. We will prove the following claim from which the Theorem 1 will be an immediate corollary.

Claim. Let Q be a query in GC2, and let sub(Q) = (Q1, Q2, · · · , Qd) be an enumeration of the
subformulas ofQ. Then, there exists a ReLU GNN returning ξt such that for graphG and any vertex
v ∈ V (G), ξt(G, v) ∈ {0, 1}d, and for any i ∈ {1, · · · , d}, ξt+1

i (G, v) = 1 ⇐⇒ Qi(G, v) = 1.

The overall GNN will take as input the graph G as well as for each node of v, ξ0(G, v) ∈ {0, 1}ℓ
encoding the colors of each node of G; and after d iterations, outputs for each node a vector
ξd(G, v) ∈ {0, 1}d. Furthemore, at each intermediate iteration t ∈ {1, · · · , d− 1}, the constructed
GNN will verify ξt(G, v) ∈ {0, 1}d. This property will be crucial for the inductive argument to go
through.

In order to prove the claim, we simply need to find appropriate (combt)1≤t≤d and (aggt)1≤t≤d

functions such that if ξt verifying the update rule:

ξt+1(G, v) = combt(ξ
t(G, v), aggt({{ξt(G, v)) : v ∈ NG(v)}}))

then ξt computes the given query Q. We will prove that we can find such combt and aggt functions
by induction on the depth of Q.

Base case. If Q has depth 1, Q is one of ℓ color queries, and this can be computed via a GNN in one
iteration, whose underlying neural network is the projection onto the i−th coordinate, i.e.

- comb0(x, y) = proji(x)

- agg0 can be chosen as any aggregation function.

Induction step. Let suppose Q be a query of depth d > 1. By the induction hypothesis, we
here suppose that we have access to some (combt)1≤t≤d−1 and (combt)1≤t≤d−1 such that for any
j ∈ {1, · · · , d − 1} and for any 1 ≤ i ≤ j, Qj(v) = 1 ⇐⇒ ξij(v) = 1. Recall that sub(Q) =
(Q1, Q2, · · · , Qd), i.e. theQis form an enumeration of the subformulas ofQ. In particular,Qd = Q.
In the following construction, ξi keeps “in memory” the output of the subformulasQj , for j ≤ i. For
each case described below, we show that we are able to construct combd and aggd in the following
form:

- combd : Rd × Rd → Rd, (x, y) 7→ σ(AdX + BdY + cd), where σ(·) = min(1,max(0, ·)) is
the clipped ReLU. Note that a clipped ReLU can be computed by a Neural Network with ReLU
activations.

- aggd is the sum function.

Due to the inductive nature of GC2, one of the following holds:

• Case 1: there exist subformulas Qj and Qk of Q, such that ℓ(Qj) + ℓ(Qk) = d and
Q = Qj ∧Qk

• Case 2: Q(x) = ¬Qj(x) where Qj is a query of depth d− 1

• Case 3: there exists a subformula Qj of Q such that ℓ(Qj) = d − 1 and Q(x) =
∃≥Ny(E(x, y) ∧Qj(y))

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

We will first give general conditions on the update of the combinations and aggregate functions, and
then conclude that these conditions are actually be met by constant comb and agg functions:

- Ad gets the same first d− 1 rows as Ad−1.

- Bd gets the same first d− 1 rows as Bd−1

- cd get the same first d− 1 coordinates as cd−1,

• Case 1: The d-th row of Ad gets all zeros except: (Ad)jd = 1, (Ad)kd = 1. The d-th row
of Bt is set to 0. Set (cd)d = −1.

• Case 2: The d-th row of Ad gets all zeros except: (Ad)jd = −1. The d-th row of Bd is set
to 0. Set (cd)d = 1.

• Case 3: The d-th row of Ad is set to 0. The d-th row of Bd is set to 0 except (Bd)jd = 1.
Set (cd)d = −N + 1.

What remains to prove is the following:

For any i ∈ {1, · · · , d}, ξdi (G, v) = 1 ⇐⇒ Qi(G, v) = 1

Due to the update rule, the first d − 1 coordinates of ξd(G, v) are the same as ξd−1(G, v). Hence,
the property is true for i ≤ d − 1 by immediate induction. We are left to show that ξdd(G, v) =
1 ⇐⇒ Q(G, v) = Qd(G, v) = 1. Here, we use the fact that:

• for every node v, every coordinate of ξd−1(v) is in {0, 1}.

• σ is the clipped ReLU activation function: σ(·) = min(1,max(0, ·)).

Since ξd(G, v) = σ(Ad−1ξ
d−1(G, v) +Bd−1

∑
w∈N(v) ξ

d−1(G,w) + cd−1) This follows from an
immediate discussion on the three cases described previously, and ends the induction on d.

An important feature of the update described above is that (Ad, Bd, cd) verifies all the conditions
imposed for every (At, Bt, ct)1≤t≤d to compute all subformulas Qt. The updates of At, Bt and ct
are only made for the t-th row and t-th entry, and do not depend on the previous columns but only on
the query Q. Hence, we may as well start from the beginning by setting (At, Bt, ct) to (Ad, Bd, cd),
instead of changing these matrices at every iteration t. In these conditions, the combination function
combt, parametrized by At, Bt and ct can be defined independently of t. The same holds for aggt
as it can be chosen as the sum for any iteration.

Remark 6. The proof of Grohe (2021) presents an approach where the ReLU GNN is non-recurrent
(each combt in that case depends on t). The fact that ξt is a {0, 1}-vector is also crucial so that
the argument goes through. In particular, both proofs do not extend to other activations (such
as sigmoid), as there is no function f : R → R such that for some 0 < ϵ < 1

2 , and for any
x1, · · · , xN ∈ [0, 12 − ϵ] ∪ [12 + ϵ, 1],

f(

N∑
i=1

xi) ≥
1

2
+ ϵ ⇐⇒ there are at least p xi’s such that xi ≥

1

2
+ ϵ

On the one hand, it is necessary that f(x) ≥ 1
2 + ϵ for any x ≥ p. Furthermore, it is possible to

pick x1, · · · , xN such that for any i, xi ∈ [0, 12 − ϵ] but x1 + · · ·xN ≥ p. This in turn would imply
f(
∑N

i=1 xi) ≥
1
2 + ϵ but all xi’s are smaller than 1

2 . The previous property becomes verified if one
restricts to {0} ∪ {1} and fp(.) = cReLU(· − p+ 1) where cReLU is the clipped ReLU.

B LOGIC BACKGROUND: GENERAL DEFINITIONS

Definition 9. A first order logic is given by a countable set of symbols, called the alphabet of the
logic:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

1. Boolean connectives: ¬,∨,∧,→,↔

2. Quantifiers: ∀,∃

3. Equivalence/equality symbol: ≡

4. Variables: x0, x1, . . . (finite or countably infinite set)

5. Punctuation: (,) and ,.

6. (a) A (possibly empty) set of constant symbols.
(b) For every natural number n ≥ 1, a (possibly empty) set of n-ary function symbols.
(c) For every natural number n ≥ 1, a (possibly empty) set of n-ary relation symbols.

Remark 7. Items 1-5 are common to any first order logic. Item 6 changes from one system of logic
to another. Example: In Graph theory, the first order logic has:

• no constant symbols

• no function symbol

• a single 2-ary relation symbol E (which is interpreted as the edge relation between ver-
tices). When graphs are supposed labeled with ℓ colors: ℓ function symbols col1, · · · , colℓ.
coli(v ∈ G).

The set of symbols from Item 6 is called the vocabulary of the logic. It will be denoted by S and the
first order logic based on S will be denoted by FO(S).

Definition 10. The set of terms in a given first order logic FO(S) is a set of strings over the alphabet
defined inductively as follows:

1. Every variable and constant symbol is a term.

2. If f is an n-ary function symbol, and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term.

Definition 11. The set of formulas in a given first order logic is a set of strings over the alphabet
defined inductively as follows:

1. If t1, t2 are terms, then t1 ≡ t2 is a formula.

2. If R is an n-ary relation symbol, and t1, . . . , tn are terms, then R(t1, . . . , tn) is a formula.

3. If ϕ is a formula, then ¬ϕ is a formula.

4. If ϕ1, ϕ2 are formulas, then (ϕ1 ∨ ϕ2), ϕ1 ∧ ϕ2, ϕ1 → ϕ2 and ϕ1 ↔ ϕ2 are formulas.

5. If ϕ is a formula and x is a variable, then ∀xϕ and ∃xϕ are formulas.

The set of all variable symbols that appear in a term t will be denoted by var(t). The set of free
variables in a formula is defined using the inductive nature of formulas:

1. free(t1 ≡ t2) = var(t1) ∪ var(t2)

2. free(R(t1, . . . , tn)) = var(t1) ∪ . . . ∪ var(tn)

3. free(¬ϕ) = free(ϕ)

4. free(ϕ1 ⋆ ϕ2) = var(ϕ1) ∪ var(ϕ2), where ⋆ ∈ {∨,∧,→,↔}
5. free(∀xϕ) = free(ϕ) \ {x}
6. free(∃xϕ) = free(ϕ) \ {x}

Remark 8. The same variable symbol may be a free symbol in ϕ, but appear bound to a quantifier
in a subformula of ϕ.

Definition 12. The set of sentences in a first order logic are all the formulas with no free variables,
i.e., {ϕ : free(ϕ) = ∅}.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Definition 13. Given a first order logic FO(S), an S-structure is a pair U = (A, I) where A is a
nonempty set, called the domain/universe of the structure, and I is a map defined on S such that

1. I(c) is an element of A for every constant symbol c.

2. I(f) is a function from An to A for every n-ary function symbol f .

3. I(R) is a function from An to {0, 1} (or equivalently, a subset of An) for every n-ary
relation symbol R.

Given an S-structure U = (A, I) for FO(S), an assignment is a map from the set of variables in
the logic to the domain A. An interpretation of FO(S) is a pair (U , β), where U is an S-structure
and β is an assignment.

We say that an interpretation (U , β) satisfies a formula ϕ, if this assignment restricted to the free
variables in ϕ evaluates to 1, using the standard Boolean interpretations of the symbols of the first
order logic in Items 1-5 of Definition 9.
Definition 14. The depth of a formula ϕ is defined recursively as follows. If ϕ is of the form in
points 1. or 2. in Definition 11 , then its depth is 1. If ϕ = ¬ϕ′ or ϕ = ∀xϕ′ or ϕ = ∃xϕ′, then the
depth of ϕ is the depth of ϕ′ plus 1. If ϕ = ϕ1 ⋆ ϕ2 with ⋆ ∈ {∨,∧,→,↔}, then the depth of ϕ is
one plus the maximum of the depths of ϕ1 and ϕ2.

This is equivalent to the depth of the tree representing the formula, based on the inductive definition.
The length/size of the formula is the total number nodes in this tree. Up to constants, this is the
number of leaves in the tree, which are called the atoms of the formula.

C ADDITIONAL DEFINITION AND LEMMAS

Definition 15 (Embeddings and refinement). Given a set X , an embedding ξ is a function taking
as input a graph G and a vertex v ∈ V (G), and returns an element ξ(G, v) ∈ X . We say that an
embedding ξ refines an embedding ξ′ if and only if for any graph G and any v ∈ V (G), ξ(G, v) =
ξ(G, v′) =⇒ ξ′(G, v) = ξ′(G, v′). When the graph G is clear from context, we use ξ(v) as
shorthand for ξ(G, v).
Definition 16 (Color refinement). Given a graph G, and v ∈ V (G), let (G, v) 7→ col(G, v) be
the function which returns the color of the node v. The color refinement refers to a procedure that
returns a sequence of embeddings crt, computed recursively as follows:

- cr0(G, v) = col(G, v)

- For t ≥ 0, crt+1(G, v) := (crt(G, v), {{crt(G,w) : w ∈ N(v)}})
In each round, the algorithm computes a coloring that is finer than the one computed in the previous
round, that is, crt+1 refines crt. For some t ≤ n := |G|, this procedure stabilises: the coloring does
not become strictly finer anymore.

The following connection between color refinement and GNNs will be useful to prove our main
result. Notably, the theorem holds regardless of the choice of the aggregation function agg and the
combination function comb.
Theorem 5 (Morris et al. (2019); Xu et al. (2018)). Let d be a positive integer, and let ξ be the
output of a GNN after d iterations. Then crd refines ξ, that is, for all graphs G,G′ and vertices
v ∈ V (G), v′ ∈ V (G′), cr(d)(G, v) = crd(G′, v′) =⇒ ξ(G, v) = ξ(G′, v′).
Lemma 1. Let p be a positive integer and let S ⊂ Np be a finite subset of integral vectors of the
nonnegative orthant, such that S contains a non zero vector. Then there exist x∗ ∈ S and u ∈ Np

such that

i) if |S| = 1 then ⟨x∗, u⟩ > 0

ii) if |S| ≥ 2 then for any x ∈ S − {x∗}, ⟨x∗, u⟩ > ⟨x, u⟩.

Proof. If |S| = 1 the existence of x∗ and u such that i) holds is clear as S is the singleton of a
vector that is non zero. To deal with ii) in the case |S| ≥ 2, consider one vector x∗ maximizing the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Euclidean norm over S, i.e. ∥x∗∥2 = maxx∈S∥x∥2 then let x ∈ S − {x∗}. Such x∗ and x exist
because S is finite and |S| ≥ 2.

- Case 1: x is not colinear to x∗. It follows from the Cauchy-Schwarz inequality, that ⟨x∗, x⟩ <
∥x∗∥∥x∥. Hence

⟨x∗, x∗ − x⟩ = ∥x∗∥2 − ⟨x∗, x⟩ > ∥x∗∥(∥x∗∥ − ∥x∥) > 0

- Case 2: x ∈ S − {x∗} is colinear to x∗, i.e. x = λx∗ with λ ∈ R. Since x∗ is maximizing the
2-norm on S, then 0 ≤ λ < 1. Then

⟨x∗, x∗ − x⟩ = ∥x∗∥(1− λ) > 0

In both cases, ⟨x∗, x∗ − x⟩ > 0. Hence, we can set u := x∗ ∈ S ⊂ Np, and the Lemma is
proved.

The following Lemma simply states that the vector u ∈ Np can be chosen the same if one is given a
pair of sets S and S′, at the price of one inequality being possibly non strict.
Lemma 2. Let p be a positive integer, and let S, S′ be two finite subsets of Np, such that |S| ≥ 2
and |S′| ≥ 2. Then there exists u ∈ Np, x∗ ∈ S and y∗ ∈ S such that for any x ∈ S − {x∗} and
any y ∈ S′ − {y∗} such that:

i) If there is u ∈ Np maximizing the 2-norm both on S and S′, i.e. S and S′ have a common
element u = argmax({∥x∥ : x ∈ S}) = argmax({∥y∥ : y ∈ S′}), then ⟨x∗, u⟩ > ⟨x, u⟩ and
⟨y∗, u⟩ > ⟨y, u⟩.
ii) If S (resp. S′) has the element of strictly greatest 2-norm among S ∪ S′, then ⟨x∗, u⟩ > ⟨x, u⟩,
⟨y∗, u⟩ ≥ ⟨y, u⟩ and ⟨x⋆, u⟩ > ⟨y⋆, u⟩ (resp. ⟨y∗, u⟩ > ⟨x, u⟩, ⟨x∗, u⟩ ≥ ⟨y, u⟩ and ⟨y⋆, u⟩ >
⟨x⋆, u⟩).

Proof. Case i): In this case, both u and u′ obtained from Lemma 1 coincide, as there is a common
element maximizing the 2-norm over S and S′. We know that there exists u = argmax{∥x∥ : x ∈
S} = u′ = argmax{∥y∥ : y ∈ S′} ∈ Np such that for any x ∈ S − {x∗} and any y ∈ S′ − {y∗},
⟨x∗, u⟩ > ⟨x, u⟩ and ⟨y∗, u⟩ > ⟨y, u⟩.
Case ii): We only treat the case where S has the strictly greatest 2-norm by symmetry of the role of
S and S′. Lemma 1 tells us there is u := argmax({∥x∥ : x ∈ S}) such that for any x ∈ S − {x∗},
⟨x∗, u⟩ > ⟨x, u⟩. Now, for every y ∈ S′, let y = yu + yu⊥ be the orthonormal decomposition of y
in Rp = span(u)

⊕
u⊥. Note that both component vectors are still in Np.

For every y ∈ S, ⟨x⋆, y⟩ = ⟨x⋆, yu⟩ + ⟨x⋆, yu⊥⟩. This proves that by selecting one y∗ with largest
coordinate on span(u) gives: ⟨y⋆, u⟩ ≥ ⟨y, u⟩ for every y ∈ S′ − {y⋆}, which is the inequality that
was claimed. The inequality may not be strict as such y⋆ may not be the unique element maximizing
⟨y⋆, u⟩. The last claimed inequality follow from x∗ = u (cf. Lemma 1) and the chain of inequalities
⟨x⋆, u⟩ = ∥x⋆∥2 > ∥y⋆∥∥x⋆∥ ≥ ⟨y⋆, u⟩.

Lemma 3. Let ξt(T [k1, . . . , km], s) ∈ Rd be the embedding of the tree displayed in Figure 1
obtained via a GNN with rational activations after t iterations, where ξ0(v) = 1 for all vertices
v ∈ V (T [k1, . . . , km]). Then, for any iteration t, and for every coordinate ξti(T [k1, . . . , km], s),
there exists a rational function Fi such that ξti(T [k1, . . . , km], s) = Fi(k1, · · · , km). Furthermore,
the degrees of the numerator and denominator of each Fi do not depend on m, but only on the
underlying neural network and t.

Proof. For clarity, we will perform two separate inductions, one for the existence of the rational
function, and one for the degree boundedness.

Rational function. We first prove by induction on t that, for any vertex v ∈ V (T [k1, · · · , km]), all
the coordinates of ξt(T [k1, . . . , km], v) are rational functions of the ki’s.

Base case: for t = 0 this is trivial since all vertices are initialised with the constant rational function
1, whose degree does not depend on m.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Induction step: Suppose the property is true at iteration t, i.e for each node w, ξt(T [k1, . . . , km], w)
is (coordinate-wise) a rational functions of the ki’s. Since

ξt+1(T [k1, . . . , km], v) = combt(ξ
t(T [k1, . . . , km], v),

aggt({{ξt(T [k1, · · · , km], w) : w ∈ N(v)}}))
where combt is a neural network with rational activations, hence a rational function. Also, aggt is
supposed rational in the entries of its multiset argument. Then by composition, each coordinate of
ξt+1(T [k1, . . . , km], v) is a rational function of k1, · · · , km.

Degree boundedness. We will prove that the degree of the numerators and denominators of
ξt(T [k1, · · · , km], s) are both respectively bounded by qt and rt.

Base case: At the first iteration (t = 0), Pm is constant equal to 1 (q1 = 1 and r1 = 0) for any m.

Induction step: Suppose that for any iteration t ≤ T , there exists qt ∈ N (that does not depend
on m nor the vertex v ∈ V (T [k1, · · · , km])), such that for every positive integer m, every vertex
v ∈ T [k1, · · · , km], and for every iteration t, deg(Fi) ≤ (qt, rt). Then, using again the update rule:

ξt+1(T [k1, · · · , km], v)︸ ︷︷ ︸
Qm

=combt(ξ
t(T [k1, · · · , km], v)︸ ︷︷ ︸

Rm

,

aggt({{ξt(T [k1, · · · , km], w) : w ∈ N(v)}})︸ ︷︷ ︸
Sm

)

Rm and Sm are rational fractions. By the induction hypothesis, for any m, deg(Rm) ≤ (qt, rt) and
deg(Sm) ≤ (qt, rt).

Each coordinate of the function combt is a rational fraction of degree independent of m (neural
network with a rational activation). Let (ai, bi) be the degree of its i-th coordinate for i ∈ [d]. The
degree of the i-th coordinate Qm is at most (ai× qtrt, bi× qtrt). Hence the property remains true at
t+1 for each coordinate i, setting qt+1 := (maxi∈[d] ai)×qtrt and rt+1 := (maxi∈[d] bi)×qtrt.

We can now build towards the:

Proof of Theorem 3. Recall that the fractions we consider have no real pole. Consider the following
query of GC2:

Q(s) = ¬
(
∃≥1x(E(s, x) ∧ ∃≤1sE(x, s))

)
= ∀xE(s, x)∃≥2sE(x, s)

Q is true if and only if all the neigbhors of the node s have degree at least 2. Namely
Q(T [0, k2, · · · , km], s) is false and Q(T [k1, · · · , km], s) is true for every positive integers
k1, · · · , km. We will prove by contradiction that any bounded GNN with rational activations cannot
uniformly express the query Q. Let Rm := ξt(T [k1, · · · , km], s) be the embedding of the source
node of T [k1, · · · , km] returned by a GNN with rational activations, after a fixed number of itera-
tions t.

Suppose that Rm can uniformly express the query Q, then;{
Rm(k1, · · · , km) ≥ 1− ϵ if s ∈ Q(T [k1, · · · , km], s)

Rm(k1, · · · , km) ≤ ϵ if s /∈ Q(T [k1, · · · , km], s)

Let R̃m := Rm − 1
2 and ϵ′ := 1

2 − ϵ. Interpreting the query Q over T [k1, · · · , km] implies the
following constraints on the sequence of rational functions R̃m:

∃ϵ′ > 0 such that ∀k ∈ Nm

{
∃i ∈ {1, · · · ,m}, ki = 0 =⇒ R̃m(k) ≤ −ϵ′
∀i ∈ {1, · · · ,m}, ki > 0 =⇒ R̃m(k) ≥ ϵ′

(3)

Let R̃m = P̃m

Q̃m
be the irreducible representation of R̃m,and let S (resp. S′) be the set of exponents

of the monomials of P̃m (resp. Q̃m), i.e.

S := {(α1, · · · , αm) ∈ Nm : α1 + · · ·+ αm ≤ q and kα1
1 · · · kαm

m

is a monomial of P̃m}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

S′ := {(α1, · · · , αm) ∈ Nm : α1 + · · ·+ αm ≤ q and kα1
1 · · · kαm

m

is a monomial of Q̃m}

First |S| = 0 is impossible as R̃m would have no zeroes and Conditions 3 cannot be met. Henceforth
we suppose that |S| ≥ 2 and |S′| ≥ 2 (the other cases are discussed hereafter).

Lemma 3 tells us that there exists a uniform bound on the degree of both P̃m and Q̃m: there exists
a positive integer k such that for every integer m, deg(P̃m) ≤ k and deg(Q̃m) ≤ k. Henceforth, we
will suppose that m > 2k, so that max(deg(P̃m),deg(Q̃m)) < m

2 .

Consider the three exclusive cases:

i) there is a common element of S and S′ maximizing the 2-norm

ii) max({∥x∥ : x ∈ S}) > max({∥y∥ : y ∈ S′})
iii) max({∥x∥ : x ∈ S}) < max({∥y∥ : y ∈ S′})
Lemma 2 (with p = m) tells us there exists α∗ ∈ S, β∗ ∈ S′ and u = (u1, · · · , um) ∈ Nm such
that

- Case i): for any α ∈ S − {α∗} and for any β ∈ S′ − {α∗}, ⟨α∗, u⟩ > ⟨α, u⟩ and ⟨β∗, u⟩ > ⟨β, u⟩
- Case ii): for any α ∈ S−{α∗} and for any β ∈ S′ −{α∗}, ⟨α∗, u⟩ > ⟨α, u⟩ and ⟨β∗, u⟩ ≥ ⟨β, u⟩
and ⟨α∗, u⟩ > ⟨β⋆, u⟩.
- Case iii): for any α ∈ S−{α∗} and for any β ∈ S′−{α∗}, ⟨α∗, u⟩ > ⟨α, u⟩ and ⟨β∗, u⟩ ≥ ⟨β, u⟩
and ⟨β∗, u⟩ > ⟨α⋆, u⟩.

Claim 1: In all cases, the (univariate) monomial t⟨α
∗,u⟩ is the monomial of P̃m(tu1 , · · · , tum) of

largest degree.

Proof.

P̃m =
∑
α∈S

γαk
α1
1 · · · kαm

m =⇒ P̃m(tu1 , · · · , tum−1 , tum) =
∑
α∈S

γαt
⟨α,u⟩

Hence, the monomial of largest degree of P̃m(tu1 , · · · , tum) is the one such that ⟨α, u⟩ is (strictly)
maximized when α ∈ S. By construction, it is α∗.

Claim 2: For every α ∈ S, α′ ∈ S′, there exists i ∈ [m] such that αi = 0 and α′
i = 0.

Proof. By contradiction: if there exists α ∈ S and α′ ∈ S′ such that for every j ∈ [m], αi > 0 or
α′
i > 0, this would imply that max(deg(P̃m), deg(Q̃m)) ≥ m

2 , a contradiction with the respective
choice of m and k that gave max(deg(P̃m), deg(Q̃m)) < m

2 .

Without loss of generality, suppose that the index i verifying Claim 2 for α∗ ∈ S and β∗ ∈ S′ is
i = m.

Claim 3: In these conditions, the (univariate) monomial t⟨α
∗,u⟩ is also the monomial of of largest

degree of P̃m(tu1 , · · · , tum−1 , 0).

Proof. Evaluating P̃m in (tu1 , · · · , tum−1 , 0) removes the contribution of each monomial of Pm

containing the last variable, and keeps only the contribution of the monomials containing it:

P̃m =
∑
α∈S

γαk
α1
1 · · · kαm

m =⇒ P̃m(tu1 , · · · , tum−1 , 0) =
∑

α∈Sα=(α1,··· ,αm−1,0)

γαt
⟨α,u⟩

Therefore, the monomial of largest degree of P̃m(tu1 , · · · , tum−1 , 0) is the one such that ⟨α, u⟩ is
(strictly) maximized when α ∈ S and αm = 0. By construction, such α is α∗.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Similarly, in case i) we obtain:

Claim 4: The (univariate) monomial t⟨β
∗,u⟩ is the monomial of Q̃m(tu1 , · · · , tum) of largest degree.

Claim 5: the (univariate) monomial t⟨β
∗,u⟩ is also the monomial of of largest degree of Q̃m(tu1 ,

· · · , tum−1 , 0).

Let (ηβ)β∈S′ be the coefficients of Q̃m. In case i), the five claims combined imply that

R̃m(tu1 , · · · , tum−1 , tum) ∼
t→+∞

R̃m(tu1 , · · · , tum−1 , 0) ∼
t→+∞

γα∗t⟨α
∗,u⟩

ηβ∗t⟨β∗,u⟩

In particular limt→+∞ R̃m(tu1 , · · · , tum) = limt→+∞ R̃m(tu1 , · · · , tum−1 , 0). This is a contradic-
tion with Conditions 3.

If case ii) holds, then Claims 4) and 5) are not necessarily true as some exponents may cancel out.
However, simply note in that case, due to strict inequalities obtained before Claim 1, that the degree
of P̃m(tu1 , · · · , tum) is strictly greater than the one of Q̃m(tu1 , · · · , tum), implying that

limt→+∞ R̃m(tu1 , · · · , tum) = limt→+∞ R̃m(tu1 , · · · , tum−1 , 0) ∈ {−∞,+∞}.

In case iii), with a similar reasoning as in case ii), we get limt→+∞ R̃m(tu1 , · · · , tum) =

limt→+∞ R̃m(tu1 , · · · , tum−1 , 0) = 0.

Finally, if |S′| = 0 then R̃m is a polynomial. In this case we do not need Claims 3 and 4, and
the reasoning still applies. If |S| = 1 or |S′| = 1 then we can apply Lemma 1 (case i)) to the
polynomials having only one monomial, and the same argument still goes through.

Lemma 4. Let σ be a univariate polynomial such that deg(σ) > 1 . Let M > 1 be an integer,
and let P ∈ R[X] be a univariate polynomial of degree M . Then there exists a feedforward neural
network f with activation function σ, whose size depends only on M , such that f = P .

Proof. Let σ be a univariate polynomial such that m := deg(σ) > 1. The set Aσ := span{σw,θ :
R → R, σw,θ(x) := σ(wx+θ) : w ∈ R, θ ∈ R} is the set of polynomials of degree at mostm. This
can be deduced, for example, from the fact that the polynomials 1, σ(X), σ(X + 1), · · · , σ(X +
m) are linearly independent, since the polynomials 1, (X + 1)m, (X + 2)m, · · · , (X + m)m are
linearly independent (this is for example, a consequence of the via the positivity of the Vandermonde
determinant form distinct integers). Hence, the family F = {1, σ(X), · · · , σ(X+m)} form a basis
of the vector space of polynomials of degree at mostm. Since Aσ is the set of functions computed by
a 1-hidden layer neural network with activation σ, we can prove the claim by induction on M ≥ 2:

Base case: (M=2). Proved above.

Induction step: Suppose that for some integer M , for any integer 0 < i ≤ M , for any polynomial
Pi of degree i, there exists a neural network fM of size that depends only on i such that fi = Pi.
Suppose we are given a polynomial P of degree M + 1. By the induction hypothesis, we first
reconstruct the polynomial Q(X) := XM as the output of one neuron. Now, σ ◦ Q has degree
M ×m > M . Hence, Aσ◦Q is the set of polynomials of degree at most 2m. In particular, we can
compute P as the output of a neural network by adding an additional hidden layer.

Proof of Theorem 4. Our proof is very similar to the one presented in Appendix A, and actually
shows that a polynomial GNN will do the job. Let Q be a query of RGC2 of depth d, that we
decompose in subformulas (Q1, · · · , Qd). By definition, Q1 ∈ Ω0 and all subqueries Qi for i ∈
{1, · · · , d − 1} are in the positive fragment Ω+. Only Q = Qd is potentially in Ω. We will prove
by induction on i ∈ {1, · · · , d − 1} that there is a polynomial GNN that outputs after d iterations
ξ ∈ Rd such that for every i ∈ {1, · · · , d − 1} the coordinate ξi is greater than 1 if the query Qi is
verified (for the considered vertex and graph) and returns exactly 0 if the query is not verified. The
subqueries belonging to Ω0 constitute our “base case”, and we make standard induction on the depth
when the query is in Ω+ − Ω0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Base case: We first prove that every query of Ω0 can be expressed. Any query of Ω0 is composed
of the following queries:

1) Coli or ¬Coli for some i ∈ [ℓ]. Since the initial feature embedding ξ0(v,G) ∈ {0, 1}ℓ encodes
the color of the node v, one can construct a combine function that returns: i) in first coordinate 1 if
the i-th coordinate is 1, and 0 when it is 0, and ii) zeroes in all d − 1 coordinates. This insures that
at the first iteration, the GNN expresses Q1.

2) If the query is of the form ∃≥KyE(x, y)Coli(y) for some i ∈ [ℓ] and for some K ∈ N. ξ1(v) is
a 0− 1 vector constructed as in case 1) above. One can construct a polynomial function P : R → R
(taking as input only the sum of the signals from the neigbhors) that is equal to 0 on every point of
{0, · · · ,K − 1}, and greater than 1 on N− {0, · · · ,K − 1}. This can be achieved, for instance, by
interpolation with the polynomial P = X(X − 1)(X − 2) · · · (X − (K − 1)), and using Lemma 4.
Concretely,

ξ2(G, v) = P̃ (
∑

w∈NG(v)

ξ1(G,w))

where P̃ is a vector with coordinates that are polynomials. The second coordinate of P̃ (correspond-
ing to the subquery considered) is P . The other coordinates of P̃ and the others are the identity
function. It is easy to see that ξ2(G, v) has the desired property.

Induction step: For i ≥ 2, Suppose we are given a subformula of Ω+, thenQi(x) = ∃≥1y(E(x, y)∧
Qi−1(y)) with Qi−1 ∈ Ω+. By the induction hypothesis, we can construct a GNN, whose output
ξ ∈ Rd verifies: for every j ∈ {1, · · · , i−1}, ξj is at least 1 ifQj is verified and equal to 0 otherwise.
Suppose we are given such GNN. At the update phase, when summing over the neighbors, one gets
a signal equal to 0 if there is no neighbor verifying Qi−1, and a signal of value at least 1 if one of
them does. Simply using the combine function that returns the same signal for all the coordinates
the i-th coordinate gives ξi expressing Qi. More precisely, we have

ξi(G, v) = Aiξ
i−1(G, v) +Bi

∑
w∈NG(G,v)

ξi−1(G,w)

where the combine function is the identity map Rd → Rd, Ai ∈ Rd×d has same first i − 1 rows as
Ai−1 and other rows are set to zero. Bi ∈ Rd×d has the same i − 1 rows as Bi−1 and i−th row
verifies Bi,i−1 = 1. All first i − 1 coordinates of ξi remains the same, and the new i-th coordinate
expresses the desired query.

Finally, if Q = Qd = ¬Qd−1 with Qd−1 ∈ Ω. By the result obtained above, we are in possession of
a polynomial GNN that is at least 1 when Qd−1 is verified, and exactly 0 when not. Simply consider
the update:

ξd(v,G) = Adξ
i−1(G, v)

Where the first d− 1 rows of Ad are the same as Ad−1 and the last row verifies Ad,d−1 = −1. This
insures that final query can be expressed by the GNN.

20

	Introduction
	Preliminaries
	Rational Graph Neural Networks (GNNs)
	Logical background

	Formal statements of results
	Rational GNNs have limited expressivity
	Towards a rational fragment of GC2
	Numerical experiments
	Discussion and open problems
	Proof that piecewise linear GNNs (and AGG=SUM) are as expressive as GC2
	Logic background: general definitions
	Additional definition and Lemmas

