
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

JACOBIAN DESCENT FOR MULTI-OBJECTIVE
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Many optimization problems require balancing multiple conflicting objectives.
As gradient descent is limited to single-objective optimization, we introduce its
direct generalization: Jacobian descent (JD). This algorithm iteratively updates
parameters using the Jacobian matrix of a vector-valued objective function, in
which each row is the gradient of an individual objective. While several methods
to combine gradients already exist in the literature, they are generally hindered
when the objectives conflict. In contrast, we propose projecting gradients to fully
avoid conflict while ensuring that they preserve an influence proportional to their
norm. We prove significantly stronger convergence guarantees with this approach,
supported by our empirical results. Our method also enables instance-wise risk
minimization (IWRM), a novel learning paradigm in which the loss of each training
example is considered a separate objective. Applied to simple image classification
tasks, IWRM exhibits promising results compared to the direct minimization of the
average loss. Additionally, we outline an efficient implementation of JD using the
Gramian of the Jacobian matrix to reduce time and memory requirements.

1 INTRODUCTION

The field of multi-objective optimization studies minimization of vector-valued objective func-
tions (Sawaragi et al., 1985; Ehrgott, 2005; Branke, 2008; Deb et al., 2016). In deep learning, a
widespread approach to train a model with multiple objectives is to combine those into a scalar
loss function minimized by stochastic gradient descent. While this method is simple, it comes at
the expense of potentially degrading some individual objectives. Without prior knowledge of their
relative importance, this is undesirable. In opposition, multi-objective optimization methods typically
attempt to optimize all objectives simultaneously, without making arbitrary compromises: the goal is
to find points for which no improvement can be made on some objectives without degrading others.

Early works have attempted to extend gradient descent (GD) to consider several objectives simultane-
ously, and thus several gradients (Fliege & Svaiter, 2000; Désidéri, 2012). Essentially, they propose
a heuristic to prevent the degradation of any individual objective. Several other works have built
upon this method, analyzing its convergence properties or extending it to a stochastic setting (Fliege
et al., 2019; Poirion et al., 2017; Mercier et al., 2018). Later, this has been applied to multi-task
learning to tackle conflict between tasks, illustrated by contradicting gradient directions (Sener &
Koltun, 2018). Many studies have followed, proposing various other algorithms for the training of
multi-task models (Yu et al., 2020; Liu et al., 2021a;b; Lin et al., 2021; Navon et al., 2022; Senushkin
et al., 2023; Chen et al., 2020). They commonly rely on an aggregator that maps a collection of
task-specific gradients (a Jacobian matrix) to a shared parameter update.

We propose to unify all such methods under the Jacobian descent (JD) algorithm, specified by an
aggregator.1 This algorithm aims to minimize a differentiable vector-valued function f : Rn → Rm

iteratively without relying on a scalarization of the objective. Under this formulation, the existing
methods are simply distinguished by their aggregator. Consequently, studying its properties is
essential for understanding the behavior and convergence of JD. Under significant conflict, existing
aggregators often fail to provide strong convergence guarantees. To address this, we propose AUPGrad,
specifically designed to resolve conflicts while naturally preserving the relative influence of individual
gradients.

1Our library enabling JD with PyTorch is available at https://github.com/***/***

1

https://github.com/***/***

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Furthermore, we introduce a novel stochastic variant of JD that enables the training of neural networks
with a large number of objectives. This unlocks a particularly interesting perspective: considering the
minimization of instance-wise loss vectors rather than the usual minimization of the average training
loss. As this paradigm is a direct generalization of the well-known empirical risk minimization
(ERM) (Vapnik, 1995), we name it instance-wise risk minimization (IWRM).

Our contributions are organized as follows: In Section 2, we formalize the JD algorithm and its
stochastic variants. We then introduce three important aggregator properties and define AUPGrad to
satisfy them. In the smooth convex case, we show convergence of JD withAUPGrad to the Pareto front.
We present applications for JD and aggregators in Section 3, emphasizing the IWRM paradigm. We
then discuss existing aggregators and analyze their properties in Section 4. In Section 5, we report
experiments with IWRM optimized with stochastic JD with various aggregators. Lastly, we address
computational efficiency in Section 6, giving a path towards an efficient implementation.

2 THEORETICAL FOUNDATION

A suitable partial order between vectors must be considered to enable multi-objective optimization.
Throughout this paper, ĺ denotes the relation defined for any pair of vectors u,v ∈ Rm as u ĺ v
whenever ui ĺ vi for all coordinates i. Similarly, ă is the relation defined by u ă v whenever
ui ă vi for all coordinates i. Furthermore, u ň v indicates that both u ĺ v and u ̸= v hold. The
Euclidean vector norm and the Frobenius matrix norm are denoted by ∥ · ∥ and ∥ · ∥F, respectively.
Finally, for any m ∈ N, the symbol [m] represents the range {i ∈ N : 1 ĺ i ĺ m}.

2.1 JACOBIAN DESCENT

In the following, we introduce Jacobian descent, a natural extension of gradient descent supporting
the optimization of vector-valued functions.

Suppose that f : Rn → Rm is continuously differentiable. Let Jf(x) ∈ Rm×n be the Jacobian
matrix of f at x, i.e.

Jf(x) =


∇f1(x)⊤
∇f2(x)⊤

...
∇fm(x)⊤

 =


∂

∂x1
f1(x)

∂
∂x2

f1(x) · · · ∂
∂xn

f1(x)
∂

∂x1
f2(x)

∂
∂x2

f2(x) · · · ∂
∂xn

f2(x)
...

...
. . .

...
∂

∂x1
fm(x) ∂

∂x2
fm(x) · · · ∂

∂xn
fm(x)

 (1)

Given x,y ∈ Rn, Taylor’s theorem yields

f(x+ y) = f(x) + Jf(x) · y + o(∥y∥), (2)

where o(∥y∥) indicates that lim∥y∥→0
f(x+y)−f(x)−Jf(x)·y

∥y∥ = 0. The term f(x) + Jf(x) · y is
the first-order Taylor approximation of f(x+ y). Via this approximation, we aim to select a small
update y that reduces f(x+ y), ideally achieving f(x+ y) ĺ f(x). As the approximation depends
on y only through Jf(x) · y, selecting the update based on the Jacobian is natural. A mapping
A : Rm×n → Rn reducing such a matrix into a vector is called an aggregator. For any J ∈ Rm×n,
A(J) is called the aggregation of J by A.

To minimize f , consider the update y = −ηA
(
Jf(x)

)
, where η is an appropriate step size, and A

is an appropriate aggregator. Jacobian descent simply consists in applying this update iteratively,
as shown in Algorithm 1. To put it into perspective, we also provide a minimal version of GD in
Algorithm 2. Remarkably, when m = 1, the Jacobian has a single row, so GD is a special case of JD
where the aggregator is the identity.

Algorithm 1: Jacobian descent with aggregator A
Input: x ∈ Rn, 0 ă η, T ∈ N, A : Rm×n → Rn

for t← 1 to T do
x← x− ηA

(
Jf(x)

)
Output: x

Algorithm 2: Gradient descent
Input: x ∈ Rn, 0 ă η, T ∈ N
for t← 1 to T do

x← x− η∇f(x)
Output: x

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Note that other gradient-based optimization algorithms, e.g. Adam (Kingma & Ba, 2014), can
similarly be extended to the multi-objective case.

In some settings, the exact computation of the update can be prohibitively slow or even intractable.
When dealing with a single objective, stochastic gradient descent (SGD) replaces the gradient ∇f(x)
with some estimation. More generally, stochastic Jacobian descent (SJD) relies on estimates of the
aggregation of the Jacobian. One approach, that we call stochastically estimated Jacobian descent
(SEJD), is to compute and aggregate an estimation of the Jacobian. Alternatively, when the number
of objectives is very large, we propose to aggregate a matrix whose rows are a random subset of the
rows of the true Jacobian. We call this approach stochastic sub-Jacobian descent (SSJD).

2.2 DESIRABLE PROPERTIES FOR AGGREGATORS

An inherent challenge of multi-objective optimization is to manage conflicting objectives (Sener &
Koltun, 2018; Yu et al., 2020; Liu et al., 2021a). Substituting the update y = −ηA

(
Jf(x)

)
into the

first-order Taylor approximation f(x) + Jf(x) ·y yields f(x)−ηJf(x) ·A
(
Jf(x)

)
. In particular,

if 0 ĺ Jf(x) · A
(
Jf(x)

)
, then no coordinate of the approximation of f will increase. A pair of

vectors x,y ∈ Rn is said to conflict if x⊤y ă 0. Hence, for a sufficiently small η, if any row of
Jf(x) conflicts withA

(
Jf(x)

)
, the corresponding coordinate of f will increase. When minimizing

f , avoiding conflict between the aggregation and any gradient is thus desirable, motivating the first
property.
Definition 1 (Non-conflicting). Let A : Rm×n → Rn be an aggregator. If for all J ∈ Rm×n,
0 ĺ J · A(J), then A is said to be non-conflicting.

For any collection of vectors C ⊆ Rn, the dual cone of C is {x ∈ Rn : ∀y ∈ C, 0 ĺ x⊤y} (Boyd &
Vandenberghe, 2004). Notice that an aggregator A is non-conflicting if and only if for any J , A(J)
is in the dual cone of the rows of J .

In a step of GD, the update scales proportionally to the gradient norm. Small gradients thus lead to
small updates, and conversely, large gradients lead to large updates. To maintain coherence with GD,
it would be natural that the rows of the Jacobian also contribute to the aggregation proportionally to
their norm. Scaling each row of Jf(x) by the corresponding element of some vector c ∈ Rm yields
diag(c) · Jf(x). This insight can then be formalized as the following property.
Definition 2 (Linear under scaling). Let A : Rm×n → Rn be an aggregator. If for all J ∈ Rm×n,
the mapping from any 0 ă c ∈ Rm toA

(
diag(c) ·J

)
is linear in c, thenA is said to be linear under

scaling.

Finally, as ∥y∥ decreases asymptotically to 0, the precision of the first-order Taylor approximation
f(x) + Jf(x) · y improves, as highlighted in (2). The projection y′ of any candidate update y onto
the span of the rows of Jf(x) satisfies Jf(x) · y′ = Jf(x) · y and ∥y′∥ ĺ ∥y∥, so this projection
decreases the norm of the update while preserving the value of the approximation. Without additional
information about f , it is thus reasonable to select y directly in the row span of Jf(x), i.e. to have a
vector of weights w ∈ Rm satisfying y = Jf(x)⊤ ·w. This yields the last desirable property.
Definition 3 (Weighted). Let A : Rm×n → Rn be an aggregator. If for all J ∈ Rm×n, there exists
w ∈ Rm satisfying A(J) = J⊤ ·w, then A is said to be weighted.

2.3 UNCONFLICTING PROJECTION OF GRADIENTS

We now define the unconflicting projection of gradients aggregator AUPGrad, specifically designed to
be non-conflicting, linear under scaling, and weighted. In essence, it projects each gradient onto the
dual cone of the rows of the Jacobian and averages the results, as illustrated in Figure 1a.

For any J ∈ Rm×n and x ∈ Rn, the projection of x onto the dual cone of the rows of J is

πJ(x) = argmin
y∈Rn: 0ĺJy

∥y − x∥2. (3)

Denoting by ei ∈ Rm the ith standard basis vector, J⊤ei is the ith row of J . AUPGrad is defined as

AUPGrad(J) =
1

m

∑
i∈[m]

πJ(J
⊤ei). (4)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

UPGrad

(a) AUPGrad(J) (ours)

Mean

DualProj

MGDA

(b) AMean(J), AMGDA(J) and ADualProj(J)

Figure 1: Aggregation of J = [g1 g2]
⊤ ∈ R2×2 by four different aggregators. The dual cone of

{g1, g2} is represented in green.
(a) AUPGrad projects g1 and g2 onto the dual cone and averages the results.
(b) The mean AMean(J) =

1
2 (g1 + g2) conflicts with g1. ADualProj projects this mean onto the dual

cone, so it lies on its boundary. AMGDA(J) is almost orthogonal to g2 because of its larger norm.

Since the dual cone is convex, it is closed under positive combinations of its elements. For any J ,
AUPGrad(J) is thus always in the dual cone of the rows of J , so AUPGrad is non-conflicting. Note that
if no pair of gradients conflicts, AUPGrad simply averages the rows of the Jacobian.

Since πJ is a projection onto a closed convex cone, if x ∈ Rn and 0 ă a ∈ R, then πJ(a · x) =
a · πJ(x). By (4), AUPGrad is thus linear under scaling.

When n is large, the projection in (3) is prohibitively expensive to compute. An alternative but
equivalent approach is to use its dual formulation, which is independent of n.

Proposition 1. Let J ∈ Rm×n. For any u ∈ Rm, πJ(J
⊤u) = J⊤w with

w ∈ argmin
v∈Rm: uĺv

v⊤JJ⊤v. (5)

Proof. See Appendix A.2.

The problem defined in (5) can be solved efficiently using a quadratic programming solver, such as
those bundled in qpsolvers (Caron et al., 2024). For any i ∈ [m], let wi be given by (5) when
substituting u with ei. Then, by Proposition 1,

AUPGrad(J) = J⊤

 1

m

∑
i∈[m]

wi

 . (6)

This provides an efficient implementation of AUPGrad and proves that it is weighted. AUPGrad can also
be easily extended to incorporate a vector of preferences by replacing the average in (4) and (6) by a
weighted sum with positive weights. This extension remains non-conflicting, linear under scaling,
and weighted.

2.4 CONVERGENCE TO THE PARETO FRONT

We now provide theoretical convergence guarantees of JD with AUPGrad when minimizing some
f : Rn → Rm satisfying standard assumptions. If for a given x ∈ Rn, there exists no y ∈ Rn

satisfying f(y) ň f(x), then x is said to be Pareto optimal. The set X∗ ⊆ Rn of Pareto optimal
points is called the Pareto set, and its image f(X∗) is called the Pareto front.

Whenever f
(
λx + (1 − λ)y

)
ĺ λf(x) + (1 − λ)f(y) holds for any pair of vectors x,y ∈ Rn

and any λ ∈ [0, 1], f is said to be ĺ-convex. Moreover, f is said to be β-smooth whenever∥∥Jf(x)− Jf(y)∥∥F ĺ β∥x− y∥ holds for any pair of vectors x,y ∈ Rn.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Theorem 1. Let f : Rn → Rm be a β-smooth and ĺ-convex function. Suppose that the Pareto
front f(X∗) is bounded and that for any x ∈ Rn, there is x∗ ∈ X∗ satisfying f(x∗) ĺ f(x).2 Let
x1 ∈ Rn, and for all t ľ 1, xt+1 = xt− ηAUPGrad

(
Jf(xt)

)
, with η = 1

β
√
m

. Let wt be the weights
definingAUPGrad

(
Jf(xt)

)
as per (6), i.e.AUPGrad

(
Jf(xt)

)
= Jf(xt)

⊤ ·wt. If wt is bounded, then
f(xt) converges to f(x∗) for some x∗ ∈ X∗. In other words, f(xt) converges to the Pareto front.

Proof. See Appendix A.3.

Empirically, wt appears to converge to some w∗ ∈ Rm satisfying both 0 ă w∗ and Jf(x∗)⊤w∗ =
0. This suggests that the boundedness of wt could be relaxed or even removed from the set of
assumptions of Theorem 1.

Another commonly studied type of convergence for multi-objective optimization is convergence
to a stationary point. If for a given x ∈ Rn, there exists 0 ň w satisfying Jf(x)⊤w = 0 then
x is said to be Pareto stationary. Even though every Pareto optimal point is Pareto stationary, the
converse does not hold, even in the convex case. The function [x y]

⊤ 7→
[
x2 y2

]⊤
illustrates

this discrepancy. Its Pareto set only contains the origin, but its set of Pareto stationary points is the
union of the two axes. Despite being necessary, convergence to a Pareto stationary point is thus not a
sufficient condition for optimality and, hence, constitutes a rather weak guarantee. To the best of our
knowledge, AUPGrad is the first non-conflicting aggregator that provably converges to the Pareto front
in the smooth convex case.

In addition to the asymptotic convergence guarantees of Theorem 1, Appendix A.3 provides the
following rate of convergence for any number of iterations T ∈ N:

1

T

∑
t∈[T]

w⊤
t

(
f(xt)− f(x∗)

)
ĺ

√
m

T

(∥∥f(x1)− f(x∗)
∥∥+ β

2
∥x1 − x∗∥2

)
.

Although this result does not directly provide a convergence rate for f , the bound 1 ĺ wt, suggests a
convergence rate of O

(
1
T

)
, offering valuable insight into the algorithm’s asymptotic behavior.

3 APPLICATIONS

Instance-wise risk minimization. In machine learning, we generally have access to a training
set consisting of m examples. The goal of empirical risk minimization (ERM) (Vapnik, 1995) is
simply to minimize the average loss over the whole training set. More generally, instance-wise risk
minimization (IWRM) considers the loss associated with each training example as a distinct objective.
Formally, if x ∈ Rn are the parameters of the model and fi(x) is the loss associated to the ith
example, the respective objective functions of ERM and IWRM are:

(Empirical risk) f̄(x) =
1

m

∑
i∈[m]

fi(x) (7)

(Instance-wise risk) f(x) = [f1(x) f2(x) · · · fm(x)]
⊤ (8)

Naively using GD for ERM is inefficient in most practical cases, so a prevalent alternative is to use
SGD or one of its variants. Similarly, using JD for IWRM is typically intractable. Indeed, it would
require computing a Jacobian matrix with one row per training example at each iteration. In contrast,
we can use the Jacobian of a random batch of training example losses. Since it consists of a subset of
the rows of the full Jacobian, this approach is a form of stochastic sub-Jacobian descent, as introduced
in Section 2.1. IWRM can also be extended to cases where each fi is a vector-valued function. The
objective would then be the concatenation of the losses of all examples.

Multi-task learning. In multi-task learning, a single model is trained to perform several related
tasks simultaneously, leveraging shared representations to improve overall performance (Ruder,
2017). At its core, multi-task learning is a multi-objective optimization problem (Sener & Koltun,

2This condition is a generalization to the case m ľ 1 of the existence of a minimizer x∗ ∈ Rn when m = 1.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

2018), making it a straightforward application for Jacobian descent. Yet, the conflict between
tasks is often too limited to justify the overhead of computing all task-specific gradients, i.e. the
whole Jacobian (Kurin et al., 2022; Xin et al., 2022). In such cases, a practical approach is to
minimize some linear scalarization of the objectives using an SGD-based method. Nevertheless,
we believe that a setting with inherent conflict between tasks naturally prescribes Jacobian descent
with a non-conflicting aggregator. We analyze several related works applied to multi-task learning in
Section 4.

Adversarial training. In adversarial domain adaptation, the feature extractor of a model is trained
with two conflicting objectives: The features should be helpful for the main task and should be
unable to discriminate the domain of the input (Ganin et al., 2016). Likewise, in adversarial fairness,
the feature extractor is trained to both minimize the predictability of sensitive attributes, such as
race or gender, and maximize the performance on the main task (Adel et al., 2019). Combining
the corresponding gradients with a non-conflicting aggregator could enhance the optimization of
such methods. We believe that the training of generative adversarial networks (Goodfellow et al.,
2014) could be similarly formulated as a multi-objective optimization problem. The generator and
discriminator could then be jointly optimized with JD.

Momentum-based optimization. In gradient-based single-objective optimization, several methods
use some form of gradient momentum to improve their convergence speed (Polyak, 1964). Essentially,
their updates consider an exponential moving average of past gradients rather than just the last one. An
appealing idea is to modify those algorithms to make them combine the gradient and the momentum
with some aggregator, such as AUPGrad, instead of summing them. This would apply to many popular
optimizers, like SGD with Nesterov momentum (Nesterov, 1983), Adam (Kingma & Ba, 2014),
AdamW (Loshchilov & Hutter, 2019) and NAdam (Dozat, 2016).

Distributed optimization. In a distributed data-parallel setting with multiple machines or multiple
GPUs, model updates are computed in parallel. This can be viewed as multi-objective optimization
with one objective per data share. Rather than the typical averaging, a specialized aggregator, such as
AUPGrad, could thus combine the model updates. This consideration can even be extended to federated
learning, in which multiple entities participate in the training of a common model from their own
private data by sharing model updates (Kairouz et al., 2021). In this setting, as security is one of the
main challenges, the non-conflicting property of the aggregator could be key.

4 EXISTING AGGREGATORS

In the context of multi-task learning, several works have proposed iterative optimization algorithms
based on the combination of task-specific gradients (Sener & Koltun, 2018; Yu et al., 2020; Liu
et al., 2021b;a; Lin et al., 2021; Navon et al., 2022; Senushkin et al., 2023). These methods can be
formulated as variants of JD parameterized by different aggregators. More specifically, since the
gradients are stochastically estimated from batches of data, these are cases of what we call SEJD.
In the following, we briefly present the most prominent aggregators and summarize their properties
in Table 1. As a baseline, we also consider AMean, which simply averages the rows of the Jacobian.
Their formal definitions are provided in Appendix B. Some of them are also illustrated in Figure 1b.

ARGW aggregates the matrix using a random vector of weights (Lin et al., 2021). AMGDA gives the
aggregation that maximizes the smallest improvement (Désidéri, 2012; Sener & Koltun, 2018; Fliege
& Svaiter, 2000). ACAGrad maximizes the smallest improvement in a ball around the average gradient
whose radius is parameterized by c ∈ [0, 1[(Liu et al., 2021a). APCGrad projects each gradient onto
the orthogonal hyperplane of other gradients in case of conflict, iteratively and in a random order (Yu
et al., 2020). It is, however, only non-conflicting when m ĺ 2, in which case APCGrad = m · AUPGrad.
IMTL-G is a method to balance some gradients with impartiality (Liu et al., 2021b). It is only defined
for linearly independent gradients, but we generalize it as a formal aggregator, denoted AIMTL-G,
in Appendix B.6. Aligned-MTL orthonormalizes the Jacobian and weights its rows according to
some preferences (Senushkin et al., 2023). We denote by AAligned-MTL this method with uniform
preferences. ANash-MTL aggregates Jacobians by finding the Nash equilibrium between task-specific
gradients (Navon et al., 2022). Lastly, the GradDrop layer (Chen et al., 2020) defines a custom
backward pass that combines gradients with respect to some internal activation. The corresponding

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

aggregator, denoted AGradDrop, randomly drops out some gradient coordinates based on their sign and
sums the remaining ones.

In the context of continual learning, to limit forgetting, an idea is to project the gradient onto the
dual cone of gradients computed with past examples (Lopez-Paz & Ranzato, 2017). This idea can be
translated into an aggregator that projects the mean gradient onto the dual cone of the rows of the
Jacobian. We name this ADualProj.

Several other works consider the gradients to be noisy when making their theoretical analysis (Liu
& Vicente, 2021; Zhou et al., 2022; Fernando et al., 2022; Chen et al., 2024; Xiao et al., 2024).
Their solutions for combining gradients are typically stateful. Although this could enhance practical
convergence rates, we have restricted our focus to the analysis of stateless aggregators. Exploring
and analyzing a generalized Jacobian descent algorithm, that would preserve some state over the
iterations, is a promising future direction.

In the federated learning setting, several aggregators have been proposed to combine the model
updates while being robust to adversaries (Blanchard et al., 2017; Guerraoui et al., 2018; Chen et al.,
2017; Yin et al., 2018). We do not study them here as they mainly focus on security aspects.

Table 1: Properties satisfied for any number of objectives. Proofs are provided in Appendix B.

Ref. Aggregator Non-
conflicting

Linear under
scaling Weighted

— AMean ✗ ✓ ✓
Désidéri (2012) AMGDA ✓ ✗ ✓
Lopez-Paz & Ranzato (2017) ADualProj ✓ ✗ ✓
Yu et al. (2020) APCGrad ✗ ✓ ✓
Chen et al. (2020) AGradDrop ✗ ✗ ✗
Liu et al. (2021b) AIMTL-G ✗ ✗ ✓
Liu et al. (2021a) ACAGrad ✗ ✗ ✓
Lin et al. (2021) ARGW ✗ ✓ ✓
Navon et al. (2022) ANash-MTL ✓ ✗ ✓
Senushkin et al. (2023) AAligned-MTL ✗ ✗ ✓
(ours) AUPGrad ✓ ✓ ✓

5 EXPERIMENTS

In the following, we present empirical results for instance-wise risk minimization on some simple
image classification datasets. IWRM is performed by stochastic sub-Jacobian descent, as described
in Section 3. A key consideration is that when the aggregator is AMean, this approach becomes
equivalent to empirical risk minimization with SGD. It is thus used as a baseline for comparison.

We train convolutional neural networks on subsets of SVHN (Netzer et al., 2011), CIFAR-
10 (Krizhevsky et al., 2009), EuroSAT (Helber et al., 2019), MNIST (LeCun et al., 1998), Fashion-
MNIST (Xiao et al., 2017) and Kuzushiji-MNIST (Clanuwat et al., 2018). To make the comparisons
as fair as possible, we have tuned the learning rate very precisely for each aggregator, as explained
in detail in Appendix C.1. We have also run the same experiments several times independently to
gain confidence in our results. Since this leads to a total of 43776 training runs across all of our
experiments, we have limited the size of each training dataset to 1024 images, greatly reducing
computational costs. Note that this is strictly an optimization problem: we are not studying the
generalization of the model, which would be captured by some performance metric on a test set.
Other experimental settings, such as the network architectures and the total computational budget
used to run our experiments, are given in Appendix C. Figure 2 reports the main results on SVHN
and CIFAR-10, two of the datasets exhibiting the most substantial performance gap. Results on the
other datasets and aggregators are reported in Appendix D.1. They also demonstrate a significant
performance gap.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) SVHN: training loss

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.5

1.0

1.5

2.0
Ca

te
go

ric
al

 c
ro

ss
-e

nt
ro

py
Mean (SGD)
UPGrad (ours)
MGDA

Aligned-MTL

PCGrad
DualProj

(b) SVHN: update similarity to the SGD update

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(c) CIFAR-10: training loss

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
MGDA

Aligned-MTL

PCGrad
DualProj

(d) CIFAR-10: update similarity to the SGD update

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 2: Optimization metrics obtained with IWRM with 1024 training examples and a batch size
of 32, averaged over 8 independent runs. The shaded area around each curve shows the estimated
standard error of the mean over the 8 runs. Curves are smoothed for readability. Best viewed in color.

Here, we compare the aggregators in terms of their average loss over the training set: the goal of ERM.
For this reason, it is rather surprising that AMean, which directly optimizes this objective, exhibits a
slower convergence rate than some other aggregators. In particular, AUPGrad, and to a lesser extent
ADualProj, provide improvements on all datasets.

Figures 2b and 2d show the similarity between the update of each aggregator and the update given
by AMean. For AUPGrad, a low similarity indicates that there are some conflicting gradients with
imbalanced norms (a setting illustrated in Figure 1). Our interpretation is thus that AUPGrad prevents
gradients of hard examples from being dominated by those of easier examples early into the training.
Since fitting those is more complex and time-consuming, it is beneficial to consider them earlier. We
believe the similarity increases later on because the gradients become more balanced. This further
suggests a greater stability of AUPGrad compared to AMean, which may allow it to perform effectively
at a higher learning rate and, consequently, accelerate its convergence.

The sub-optimal performance of AMGDA in this setting can be attributed to its sensitivity to small
gradients. If any row of the Jacobian approaches zero, the aggregation by AMGDA will also approach
zero. This observation illustrates the discrepancy between stationarity and optimality, as discussed
in Section 2.4. A notable advantage of linearity under scaling is to explicitly prevent this from
happening.

Overall, these experiments demonstrate a high potential for the IWRM paradigm and confirm the
relevance of JD, and more specifically of SSJD, as multi-objective optimization algorithms. Besides,
the superiority of AUPGrad in such a simple setting supports our theoretical results.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

While increasing the batch size in SGD reduces variance, the effect of doing so in SSJD combined
withAUPGrad is non-trivial, as it also tightens the dual cone. Additional results obtained when varying
the batch size or updating the parameters with the Adam optimizer are available in Appendices D.2
and D.3, respectively.

While an iteration of SSJD is more expensive than an iteration of SGD, its runtime is influenced by
several factors, including the choice of aggregator, the parallelization capabilities of the hardware
used for Jacobian computation, and the implementation. Appendix E provides memory usage and
computation time considerations for our methods. Additionally, we propose a path towards a more
efficient implementation in the next section.

6 GRAMIAN-BASED JACOBIAN DESCENT

When the number of objectives is dominated by the number of parameters of the model, the main
overhead of JD comes from the usage of a Jacobian matrix rather than a single gradient. In the
following, we motivate an alternative implementation of JD that only uses the inner products between
each pair of gradients.

For any J ∈ Rm×n, the matrix G = JJ⊤ is called the Gramian of J and is positive semi-definite.
Let Mm ⊆ Rm×m be the set of positive semi-definite matrices. The Gramian of the Jacobian,
denoted Gf(x) = Jf(x) · Jf(x)⊤ ∈Mm, captures the relations – including conflicts – between
all pairs of gradients. Whenever A is a weighted aggregator, the update of JD is y = −ηJf(x)⊤w
for some vector of weights w ∈ Rm. Substituting this into the Taylor approximation of (2) gives

f(x+ y) = f(x)− ηGf(x) ·w + o

(
η
√
w⊤ · Gf(x) ·w

)
. (9)

This expression only depends on the Jacobian through its Gramian. It is thus sensible to focus
on aggregators whose weights are only a function of the Gramian. Denoting this function as
W : Mm → Rm, those aggregators satisfy A(J) = J⊤ · W(G). Remarkably, all weighted aggre-
gators of Table 1 can be expressed in this form. In the case of AUPGrad, this is clearly demonstrated in
Proposition 1, which shows that the weights depend on G. For such aggregators, substitution and
linearity of differentiation3 then yield

A
(
Jf(x)

)
= ∇

(
W
(
Gf(x)

)⊤ · f)(x). (10)

After computingW
(
Gf(x)

)
, a step of JD would thus only require the backpropagation of a scalar

function. The computational cost of applyingW depends on the aggregator and is often dominated
by the cost of computing the Gramian.

We now outline a method to compute the Gramian of the Jacobian without ever having to store the
full Jacobian in memory. Similarly to the backpropagation algorithm, we can leverage the chain rule.
Let g : Rn → Rk and f : Rk → Rm, then for any x ∈ Rn, the chain rule for Gramians is

G(f ◦ g)(x) = Jf
(
g(x)

)
· Gg(x) · Jf

(
g(x)

)⊤
. (11)

Moreover, when the function has multiple inputs, the Gramian can be computed as a sum of individual
Gramians. Let f : Rn1+···+nk → Rm and x =

[
x⊤
1 · · · x⊤

k

]⊤
. We can write Jf(x) as the

concatenation of Jacobians [Jx1
f(x) · · · Jxk

f(x)], where Jxi
f(x) is the Jacobian of f with

respect to xi evaluated at x. For any i ∈ [k], let Gxi
f(x) = Jxi

f(x) · Jxi
f(x)⊤. Then

Gf(x1, . . . ,xk) =
∑
i∈[k]

Gxi
f(x1, . . . ,xk). (12)

When a function is made of compositions and concatenations of elementary functions, the Gramian
of the Jacobian can thus be expressed with sums and products of partial Jacobians.

We now provide an example algorithm to compute the Gramian of a sequence of layers. For 0 ĺ i ă k,
let fi : Rni × Rℓi → Rni+1 be a layer parameterized by pi ∈ Rℓi . Given x0 ∈ Rn0 , for 0 ĺ i ă k,

3For any x ∈ Rn and any w ∈ Rm, Jf(x)⊤w = ∇
(
w⊤f

)
(x)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

the activations are recursively defined as xi+1 = fi(xi,pi). Algorithm 3 illustrates how (11) and
(12) can be combined to compute the Gramian of the network with respect to its parameters.

Algorithm 3: Gramian reverse accumulation for a sequence of layers
Jx ← I # Identity matrix of size nk × nk

G ← 0 # Zero matrix of size nk × nk

for i← k − 1 to 0 do
Jp ← Jpi

fi(xi,pi) · Jx # Jacobian of xk w.r.t. pi

Jx ← Jxi
fi(xi,pi) · Jx # Jacobian of xk w.r.t. xi

G ← G+ JpJ
⊤
p

Output: G

Generalizing Algorithm 3 to any computational graph and implementing it efficiently remains an
open challenge extending beyond the scope of this work.

7 CONCLUSION

In this paper, we introduced Jacobian descent (JD), a multi-objective optimization algorithm defined
by some aggregator that maps the Jacobian to an update direction. We identified desirable properties
for aggregators and proposedAUPGrad, addressing the limitations of existing methods while providing
stronger convergence guarantees. We also highlighted potential applications of JD and proposed
IWRM, a novel learning paradigm considering the loss of each training example as a distinct
objective. Given its promising empirical results, we believe this paradigm deserves further attention.
Additionally, we see potential forAUPGrad beyond JD, as a linear algebra tool for combining conflicting
vectors in broader contexts. As speed is the primary limitation of JD, we have outlined an algorithm
for efficiently computing the Gramian of the Jacobian, which could unlock JD’s full potential.
We hope this work serves as a foundation for future research in multi-objective optimization and
encourages a broader adoption of these methods.

Limitations and future directions. Our experimentation has some limitations. First, we only
evaluate JD on IWRM, a setting with moderately conflicting objectives. It would be essential
to develop proper benchmarks to compare aggregators on a wide variety of problems. Ideally,
such problems should involve substantially conflicting objectives, e.g. multi-task learning with
inherently competing or even adversarial tasks. Then, we have limited our scope to the comparison
of optimization speeds, disregarding generalization. While this simplifies the experiments and makes
the comparison rigorous, optimization and generalization are sometimes intertwined. We thus believe
that future works should focus on both aspects.

REFERENCES

Tameem Adel, Isabel Valera, Zoubin Ghahramani, and Adrian Weller. One-network adversarial
fairness. In AAAI Conference on Artificial Intelligence, 2019.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. Machine learning with
adversaries: Byzantine tolerant gradient descent. In Advances in Neural Information Processing
Systems, 2017.

Stephen P Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.

Jürgen Branke. Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer
Science & Business Media, 2008.

Stéphane Caron, Daniel Arnström, Suraj Bonagiri, Antoine Dechaume, Nikolai Flowers, Adam Heins,
Takuma Ishikawa, Dustin Kenefake, Giacomo Mazzamuto, Donato Meoli, Brendan O’Donoghue,
Adam A. Oppenheimer, Abhishek Pandala, Juan José Quiroz Omaña, Nikitas Rontsis, Paarth Shah,
Samuel St-Jean, Nicola Vitucci, Soeren Wolfers, Fengyu Yang, @bdelhaisse, @MeindertHH,
@rimaddo, @urob, and @shaoanlu. qpsolvers: Quadratic Programming Solvers in Python, 2024.
URL https://github.com/qpsolvers/qpsolvers.

10

https://github.com/qpsolvers/qpsolvers

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Lisha Chen, Heshan Fernando, Yiming Ying, and Tianyi Chen. Three-way trade-off in multi-objective
learning: Optimization, generalization and conflict-avoidance. In Advances in Neural Information
Processing Systems, 2024.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. In Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2017.

Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and
Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign
dropout. In Advances in Neural Information Processing Systems, 2020.

Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki Yamamoto, and David
Ha. Deep learning for classical japanese literature. In NeurIPS Workshop on Machine Learning
for Creativity and Design, 2018.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (ELUs). arXiv preprint arXiv:1511.07289, 2015.

Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. Multi-objective optimization. In Decision
sciences. CRC Press, 2016.

Timothy Dozat. Incorporating Nesterov momentum into Adam. In International Conference on
Learning Representations Workshop, 2016.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (MGDA) for multiobjective optimization.
Comptes Rendus Mathematique, 2012.

Matthias Ehrgott. Multicriteria Optimization. Springer Science & Business Media, 2005.

Heshan Devaka Fernando, Han Shen, Miao Liu, Subhajit Chaudhury, Keerthiram Murugesan, and
Tianyi Chen. Mitigating gradient bias in multi-objective learning: A provably convergent approach.
In International Conference on Learning Representations, 2022.

Jörg Fliege, A Ismael F Vaz, and Luís Nunes Vicente. Complexity of gradient descent for multiobjec-
tive optimization. Optimization Methods and Software, 2019.

Jörg Fliege and Benar Fux Svaiter. Steepest descent methods for multicriteria optimization. Mathe-
matical Methods of Operations Research, 2000.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of machine learning research, 2016.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, 2014.

Rachid Guerraoui, Sébastien Rouault, et al. The hidden vulnerability of distributed learning in
byzantium. In International Conference on Machine Learning, 2018.

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. EuroSAT: A novel dataset
and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 2019.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images, 2009.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vitaly Kurin, Alessandro De Palma, Ilya Kostrikov, Shimon Whiteson, and Pawan K Mudigonda. In
defense of the unitary scalarization for deep multi-task learning. In Advances in Neural Information
Processing Systems, 2022.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, 1998.

Baijiong Lin, Feiyang Ye, Yu Zhang, and Ivor W Tsang. Reasonable effectiveness of random
weighting: A litmus test for multi-task learning. arXiv preprint arXiv:2111.10603, 2021.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for
multi-task learning. In Advances in Neural Information Processing Systems, 2021a.

Liyang Liu, Yi Li, Zhanghui Kuang, Jing-Hao Xue, Yimin Chen, Wenming Yang, Qingmin Liao, and
Wayne Zhang. Towards impartial multi-task learning. In International Conference on Learning
Representations, 2021b.

Suyun Liu and Luis Nunes Vicente. The stochastic multi-gradient algorithm for multi-objective
optimization and its application to supervised machine learning. Annals of Operations Research,
2021.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continual learning. In
Advances in Neural Information Processing Systems, 2017.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Quentin Mercier, Fabrice Poirion, and Jean-Antoine Désidéri. A stochastic multiple gradient descent
algorithm. European Journal of Operational Research, 2018.

Aviv Navon, Aviv Shamsian, Idan Achituve, Haggai Maron, Kenji Kawaguchi, Gal Chechik, and
Ethan Fetaya. Multi-task learning as a bargaining game. In International Conference on Machine
Learning, 2022.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate O(1/k**2).
Proceedings of the USSR Academy of Sciences, 1983.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, 2011.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information Processing Systems,
2019.

Fabrice Poirion, Quentin Mercier, and Jean-Antoine Désidéri. Descent algorithm for nonsmooth
stochastic multiobjective optimization. Computational Optimization and Applications, 2017.

Boris T Polyak. Some methods of speeding up the convergence of iteration methods. USSR
computational mathematics and mathematical physics, 1964.

Sebastian Ruder. An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:1706.05098, 2017.

Yoshikazu Sawaragi, Hirotaka Nakayama, and Tetsuzo Tanino. Theory of Multiobjective Optimization.
Elsevier, 1985.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
Neural Information Processing Systems, 2018.

Dmitry Senushkin, Nikolay Patakin, Arseny Kuznetsov, and Anton Konushin. Independent component
alignment for multi-task learning. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Vladimir Naumovich Vapnik. The Nature of Statistical learning theory. Wiley New York, 1995.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Peiyao Xiao, Hao Ban, and Kaiyi Ji. Direction-oriented multi-objective learning: Simple and provable
stochastic algorithms. In Advances in Neural Information Processing Systems, 2024.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-task
optimization methods in deep learning even help? In Advances in Neural Information Processing
Systems, 2022.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International Conference on Machine Learning,
2018.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. In Advances in Neural Information Processing Systems,
2020.

Shiji Zhou, Wenpeng Zhang, Jiyan Jiang, Wenliang Zhong, Jinjie Gu, and Wenwu Zhu. On the
convergence of stochastic multi-objective gradient manipulation and beyond. In Advances in
Neural Information Processing Systems, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOFS

A.1 SUPPLEMENTARY THEORETICAL RESULTS

Recall that a function f : Rn → Rm is ĺ-convex if for all x,y ∈ Rn and any λ ∈ [0, 1],

f
(
λx+ (1− λ)y

)
ĺ λf(x) + (1− λ)f(y).

Lemma 1. If f : Rn → Rm is a continuously differentiable ĺ-convex function, then for any pair of
vectors x,y ∈ Rn, Jf(x)(y − x) ĺ f(y)− f(x).

Proof.

Jf(x)(y − x) = lim
λ→0+

f
(
x+ λ(y − x)

)
− f(x)

λ
(differentiation)

ĺ lim
λ→0+

f(x) + λ
(
f(y)− f(x)

)
− f(x)

λ
(ĺ-convexity)

= f(y)− f(x),

which concludes the proof. □

Lemma 2. Let J ∈ Rm×n, let u ∈ Rm and let x ∈ Rn, then

u⊤Jx ĺ ∥u∥ · ∥J∥F · ∥x∥

Proof. Let Ji be the ith row of J , then(
u⊤Jx

)2
ĺ ∥u∥2 · ∥Jx∥2

(
Cauchy-Schwartz

inequality

)
= ∥u∥2 ·

∑
i∈[m]

(
J⊤
i x
)2

ĺ ∥u∥2 ·
∑
i∈[m]

∥Ji∥2 · ∥x∥2
(

Cauchy-Schwartz
inequality

)
= ∥u∥2 · ∥J∥2F · ∥x∥2,

which concludes the proof. □

Recall that a function f : Rn → Rm is β-smooth if for all x,y ∈ Rn,∥∥Jf(x)− Jf(y)∥∥F ĺ β∥x− y∥ (13)

Lemma 3. Let f : Rn → Rm be β-smooth, then for any w ∈ Rm and any x,y ∈ Rn,

w⊤(f(x)− f(y)− Jf(y)(x− y)
)

ĺ
β

2
∥w∥ · ∥x− y∥2 (14)

Proof.

w⊤(f(x)− f(y)− Jf(y)(x− y)
)

= w⊤
(∫ 1

0

Jf
(
y + t(x− y)

)
(x− y) dt− Jf(y)(x− y)

) (
fundamental

theorem
of calculus

)
=

∫ 1

0

w⊤
(
Jf
(
y + t(x− y)

)
− Jf(y)

)
(x− y) dt

ĺ

∫ 1

0

∥w∥ ·
∥∥∥Jf(y + t(x− y)

)
− Jf(y)

∥∥∥
F
· ∥x− y∥ dt (Lemma 2)

ĺ

∫ 1

0

∥w∥ · βt · ∥x− y∥2 dt (β-smoothness 13)

=
β

2
∥w∥ · ∥x− y∥2,

which concludes the proof. □

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 PROPOSITION 1

Proposition 1. Let J ∈ Rm×n. For any u ∈ Rm, πJ(J
⊤u) = J⊤w with

w ∈ argmin
v∈Rm: uĺv

v⊤JJ⊤v. (5)

Proof. This is a direct consequence of Lemma 4. □

Lemma 4. Let J ∈ Rm×n, G = JJ⊤, u ∈ Rm. For any w ∈ Rm satisfying
u ĺ w (15a)
0 ĺ Gw (15b)
u⊤Gw = w⊤Gw (15c)

we have πJ(J
⊤u) = J⊤w. Such a w is the solution to

w ∈ argmin
uĺv

v⊤Gv.

Proof. The projection

πJ(J
⊤u) = argmin

x∈Rn:
0ĺJx

1

2
∥x− J⊤u∥2

is a convex program. Consequently, the KKT conditions are both necessary and sufficient. The
Lagragian is given by L(x,v) = 1

2∥x− J⊤u∥2 − v⊤Jx. The KKT conditions are then given by
∇xL(x,v) = 0

0 ĺ v

0 ĺ Jx

0 = v⊤Jx

⇔


x = J⊤(u+ v)

0 ĺ v

0 ĺ G(u+ v)

0 = v⊤G(u+ v)

⇔


x = J⊤(u+ v)

u ĺ u+ v

0 ĺ G(u+ v)

u⊤G(u+ v) = (u+ v)⊤G(u+ v)

The simple change of variable w = u+ v finishes the proof of the first part.

Since x = J⊤(u+ v), the Wolfe dual program of πJ(J
⊤u) gives

w ∈ u+ argmax
v∈Rm: 0ĺv

L
(
J⊤(u+ v),v

)
= u+ argmax

v∈Rm: 0ĺv

1

2

∥∥J⊤v
∥∥2 − v⊤JJ⊤(u+ v)

= u+ argmax
v∈Rm: 0ĺv

−1

2
v⊤Gv − v⊤Gu

= u+ argmin
v∈Rm: uĺu+v

1

2
(u+ v)⊤G(u+ v)

= argmin
v′∈Rm: uĺv′

1

2
v′⊤Gv′,

which concludes the proof. □

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.3 THEOREM 1

Theorem 1. Let f : Rn → Rm be a β-smooth and ĺ-convex function. Suppose that the Pareto
front f(X∗) is bounded and that for any x ∈ Rn, there is x∗ ∈ X∗ satisfying f(x∗) ĺ f(x). Let
x1 ∈ Rn, and for all t ∈ N, xt+1 = xt−ηAUPGrad

(
Jf(xt)

)
, with η = 1

β
√
m

. Let wt be the weights
definingAUPGrad

(
Jf(xt)

)
as per (6), i.e.AUPGrad

(
Jf(xt)

)
= Jf(xt)

⊤ ·wt. If wt is bounded, then
f(xt) converges to f(x∗) for some x∗ ∈ X∗. In other words, f(xt) converges to the Pareto front.

To prove the theorem we will need Lemmas 5, 6 and 7 below.

Lemma 5. Let J ∈ Rm×n and w = 1
m

∑m
i=1 wi be the weights defining AUPGrad(J) as per (6). Let,

as usual, G = JJ⊤, then,

w⊤Gw ĺ 1⊤Gw.

Proof. Observe that if, for any u,v ∈ Rm, ⟨u,v⟩ = u⊤Gv, then ⟨·, ·⟩ is an inner product. In this
Hilbert space, the Cauchy-Schwartz inequality reads as

(u⊤Gv)2 = ⟨u,v⟩2

ĺ ⟨u,u⟩ · ⟨v,v⟩
= u⊤Gu · v⊤Gv.

Therefore

w⊤Gw

=
1

m2

∑
i,j

w⊤
i Gwj

ĺ
1

m2

∑
i,j

√
w⊤

i Gwi ·
√
w⊤

j Gwj

(
Cauchy-Schwartz

inequality

)

=

(∑
i

1

m

√
w⊤

i Gwi

)2

ĺ
∑
i

1

m

(√
w⊤

i Gwi

)2

(Jensen’s inequality)

=
1

m

∑
i

w⊤
i Gwi (G positive semi-definite)

=
1

m

∑
i

ei
⊤Gwi (Lemma 4, (15c))

ĺ
1

m

∑
i

1⊤Gwi

(Lemma 4, (15b)
eiĺ1

)
= 1⊤Gw,

which concludes the proof. □

Lemma 6. Under the assumptions of Theorem 1, for any w ∈ Rm and any t ∈ N,

w⊤(f(xt+1)− f(xt)
)

ĺ
∥w∥
β
√
m

(
1

2
√
m
− w

∥w∥

)⊤

Gtwt.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Proof. For all t ∈ N, let Jt = Jf(xt), Gt = JtJ
⊤
t . Then xt+1 = xt−ηAUPGrad(Jt) = xt−ηJ⊤

t wt.
Therefore

w⊤(f(xt+1)− f(xt)
)

ĺ − ηw⊤JtJ
⊤
t wt +

βη2

2
∥w∥ · ∥J⊤

t wt∥2 (Lemma 3)

= − 1

β
√
m
w⊤Gtwt +

1

2βm
∥w∥ ·w⊤

t Gtwt (η= 1
β
√

m)

ĺ − 1

β
√
m
w⊤Gtwt +

1

2βm
∥w∥ · 1⊤Gtwt (Lemma 5)

=
∥w∥
β
√
m

(
1

2
√
m
− w

∥w∥

)⊤

Gtwt,

which concludes the proof. □

Lemma 7. Under the assumptions of Theorem 1, if x∗ ∈ X∗ satisfies 1⊤f(x∗) ĺ 1⊤f(xt) for all
t ∈ N, then

1

T

∑
t∈[T]

w⊤
t

(
f(xt)− f(x∗)

)
ĺ

1

T

(
1⊤(f(x1)− f(x∗)

)
+

β
√
m

2
∥x1 − x∗∥2

)
. (16)

Proof. We first bound, for any t ∈ N, 1⊤(f(xt+1)− f(xt)
)

as follows

1⊤(f(xt+1)− f(xt)
)

ĺ − 1

2β
√
m
· 1⊤Gtwt (Lemma 6

with w=1)

ĺ − 1

2β
√
m
·w⊤

t Gtwt. (Lemma 5)

Summing this over t ∈ [T] yields

1

2β
√
m

∑
t∈[T]

w⊤
t Gtwt

ĺ
∑
t∈[T]

1⊤(f(xt)− f(xt+1)
)

= 1⊤(f(x1)− f(xT+1)
)

(Telescoping sum)

ĺ 1⊤(f(x1)− f(x∗)
)
.

(
Assumption

1⊤f(x∗)ĺ1⊤f(xT+1)

)
(17)

Since 0 ĺ wt,

w⊤
t

(
f(xt)− f(x∗)

)
ĺ w⊤

t Jt(xt − x∗) (Lemma 1)

=
1

η
(xt − xt+1)

⊤(xt − x∗) (xt+1=xt−ηJ⊤
t wt)

=
1

2η

(
∥xt − xt+1∥2 + ∥xt − x∗∥2 − ∥xt+1 − x∗∥2

) (
Parallelogram

law

)
=

1

2β
√
m
w⊤

t Gtwt +
β
√
m

2

(
∥xt − x∗∥2 − ∥xt+1 − x∗∥2

)
. (η= 1

β
√

m)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Summing this over t ∈ [T] yields∑
t∈[T]

w⊤
t

(
f(xt)− f(x∗)

)
ĺ

1

2β
√
m

∑
t∈[T]

w⊤
t Gtwt +

β
√
m

2

(
∥x1 − x∗∥2 − ∥xT+1 − x∗∥2

)
(Telescoping sum)

ĺ
1

2β
√
m

∑
t∈[T]

w⊤
t Gtwt +

β
√
m

2
∥x1 − x∗∥2

ĺ 1⊤(f(x1)− f(x∗)
)
+

β
√
m

2
∥x1 − x∗∥2. (By (17))

Scaling down this inequality by T yields

1

T

∑
t∈[T]

w⊤
t

(
f(xt)− f(x∗)

)
ĺ

1

T

(
1⊤(f(x1)− f(x∗)) +

β
√
m

2
∥x1 − x∗∥2

)
,

which concludes the proof. □

We are now ready to prove Theorem 1.

Proof. For all t ∈ N, let Jt = Jf(xt), Gt = JtJ
⊤
t . Then

xt+1 = xt − ηAUPGrad(Jt)

= xt − ηJ⊤
t wt.

Substituting w = 1 in the term 1
2
√
m
− w

∥w∥ of Lemma 6 yields

1

2
√
m
− w

∥w∥
= − 1

2
√
m

ă 0.

Therefore there exists some ε ą 0 such that any w ∈ Rm with ∥1−w∥ ă ε satisfies 1
2
√
m

ă w
∥w∥ .

Denote by Bε(1) = {w ∈ Rm : ∥1 − w∥ ă ε}, i.e. for all w ∈ Bε(1), 1
2
√
m

ă w
∥w∥ . By the

non-conflicting property of AUPGrad, 0 ĺ Gtwt and therefore for all w ∈ Bε(1),

w⊤(f(xt+1)− f(xt)
)

ĺ
∥w∥
β
√
m

(
1

2
√
m
− w

∥w∥

)
Gtwt (Lemma 6)

ĺ 0.

Since w⊤f(xt) is bounded and non-increasing, it converges. Since Bε(1) contains a basis of Rm,
f(xt) converges to some f∗ ∈ Rm. By assumption on f , there exists x∗ in the Pareto set satisfying
f(x∗) ĺ f∗.

We now prove that f(x∗) = f∗. Since f(x∗) ĺ f∗, it is sufficient to show that 1⊤(f∗−f(x∗)
)

ĺ 0.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

First, the additional assumption of Lemma 7 applies since 1⊤f(xt) decreases to 1⊤f∗ which is
larger than 1⊤f(x∗). Therefore

1⊤(f∗ − f(x∗)
)

ĺ

m

T

∑
t∈[T]

wt

⊤ (
f∗ − f(x∗)

) (
f(x∗)ĺf∗

1ĺmwt
by (15a)

)
=

m

T

∑
t∈[T]

w⊤
t

(
f∗ − f(xt) + f(xt)− f(x∗)

)

=
m

T

∑
t∈[T]

w⊤
t

(
f∗ − f(xt)

)
+
∑
t∈[T]

w⊤
t

(
f(xt)− f(x∗)

)
ĺ

m

T

∑
t∈[T]

w⊤
t

(
f∗ − f(xt)

)
+ 1⊤(f(x1)− f(x∗)

)
+

β
√
m

2
∥x1 − x∗∥2

 (Lemma 7)

(18)

Taking the limit as T →∞, we get

1⊤(f∗ − f(x∗)
)

ĺ lim
T→∞

m

T

∑
t∈[T]

w⊤
t

(
f∗ − f(xt)

)
ĺ lim

T→∞

m

T

∑
t∈[T]

∥wt∥ ·
∥∥f∗ − f(xt)

∥∥ (
Cauchy-Schwartz

inequality

)
= 0,

(
wt bounded
f(xt)→f∗

)
which concludes the proof. □

The proof of Theorem 1 provides some additional insights about the convergence rate as well as some
notion of convergence in the non-convex case.

Convergence rate. Combining the equality f∗ = f(x∗) and (18), we have

1

T

∑
t∈[T]

w⊤
t

(
f(xt)− f(x∗)

)
ĺ

1

T
1⊤(f(x1)− f(x∗)

)
+

β
√
m

2T
∥x1 − x∗∥2

Furthermore, the Cauchy-Schwartz inequality yields 1⊤(f(x1)−f(x∗)
)

ĺ
√
m ·
∥∥f(x1)−f(x∗)

∥∥,
so

1

T

∑
t∈[T]

w⊤
t

(
f(xt)− f(x∗)

)
ĺ

√
m

T

(∥∥f(x1)− f(x∗)
∥∥+ β

2
∥x1 − x∗∥2

)
(19)

This hints a convergence rate of order O
(
1
T

)
, whose constant depends on the initial point x1.

Non-convex setting. The proof of (17) does not require the convexity of the objective function.
This bound can be equivalently formulated as

1

T

T∑
t=1

∥∥J⊤
t wt

∥∥2 ĺ
2β
√
m

T
1⊤(f(x1)− f(x∗)

)
(20)

This shows the convergence of the updates in the non-convex setting, under the smoothness condition
of Theorem 1. Note that this does not prove the convergence of xt, which is in line with the current
limitations of gradient descent in the single-objective setting.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B PROPERTIES OF EXISTING AGGREGATORS

In the following, we prove the properties of the aggregators from Table 1. Some aggregators, e.g.
ARGW, AGradDrop and APCGrad, are non-deterministic and are thus not technically functions but rather
random variables whose distribution depends on the matrix J ∈ Rm×n to aggregate. Still, the
properties of Section 2.2 can be easily adapted to a random setting. If A is a random aggregator, then
for any J , A(J) is a random vector in Rn. The aggregator is non-conflicting if A(J) is in the dual
cone of the rows of J with probability 1. It is linear under scaling if for all J ∈ Rm×n, there is a –
possibly random – matrix J ∈ Rm×n such that for all 0 ă c ∈ Rm,A(diag(c) ·J) = J⊤ ·c. Finally,
A is weighted if for any J ∈ Rm×n there is a – possibly random – weighting w ∈ Rm satisfying
A(J) = J⊤ ·w.

B.1 MEAN

AMean simply averages the rows of the input matrix, i.e. for all J ∈ Rm×n,

AMean(J) =
1

m
J⊤ · 1 (21)

✗ Non-conflicting. AMean

([
−2
4

])
= [1], which conflicts with [−2], so AMean is not non-

conflicting.

✓ Linear under scaling. For any c ∈ Rm, AMean(diag(c) · J) = 1
mJ⊤ · c, which is linear in c.

AMean is therefore linear under scaling.

✓ Weighted. By (21), AMean is weighted with constant weighting equal to 1
m1.

B.2 MGDA

The optimization algorithm presented in Désidéri (2012), called MGDA, is tied to a particular method
for aggregating the gradients. We thus refer to this aggregator as AMGDA. The dual problem of this
method was also introduced independently in Fliege & Svaiter (2000). We show the equivalence
between the two solutions to make the analysis of AMGDA easier.

For all J ∈ Rm×n, the aggregation described in Désidéri (2012) is defined as

AMGDA(J) = J⊤ ·w (22)

with w ∈ argmin
0ĺv:

1⊤v=1

∥∥J⊤v
∥∥2 (23)

In Equation (3) of Fliege & Svaiter (2000), the following problem is studied:

min
α∈R,x∈Rn:

Jxĺα1

α+
1

2
∥x∥2 (24)

We show that the problems in (23) and (24) are dual to each other. Furthermore, the duality
gap is null since this is a convex problem. The Lagrangian of the problem in (24) is given by
L(α,x,µ) = α+ 1

2∥x∥
2−µ⊤(α1−Jx). Differentiating w.r.t. α and x gives respectively 1−1⊤µ

and x + J⊤µ. The dual problem is obtained by setting those two to 0 and then maximizing the

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Lagrangian on 0 ĺ µ and α, i.e.

argmax
α,0ĺµ:

1⊤µ=1

α+
1

2

∥∥J⊤µ
∥∥2 − µ⊤ (α1+ JJ⊤µ

)
= argmax

α,0ĺµ:

1⊤µ=1

α+
1

2

∥∥J⊤µ
∥∥2 − αµ⊤1− µ⊤JJ⊤µ

= argmin
0ĺµ:

1⊤µ=1

1

2

∥∥J⊤µ
∥∥2

Therefore, (23) and (24) are equivalent, with x = −J⊤w.

✓ Non-conflicting. Observe that since in (24), α = 0 and x = 0 is feasible, the objective is
non-positive and therefore α ĺ 0. Substituting x = −J⊤w in J · x ĺ α1 ĺ 0 yields 0 ĺ JJ⊤w,
i.e. 0 ĺ J · AMGDA(J), so AMGDA is non-conflicting.

✗ Linear under scaling. With J =

[
2 0
0 2
a a

]
, if 0 ĺ a ĺ 1, AMGDA(J) =

[
a
a

]
. However, if a ľ 1,

AMGDA(J) =

[
1
1

]
. This is not affine in a, so AMGDA is not linear under scaling. In particular, if any

row of J is 0, AMGDA(J) = 0. This implies that the optimization will stop whenever one objective
has converged.

✓ Weighted. By (22), AMGDA is weighted.

B.3 DUALPROJ

The projection of a gradient of interest onto a dual cone was first described in Lopez-Paz & Ranzato
(2017). When this gradient is the average of the rows of the Jacobian, we call this aggregatorADualProj.
Formally,

ADualProj(J) =
1

m
· πJ

(
J⊤ · 1

)
(25)

where πJ is the projection operator defined in (3).

✓ Non-conflicting. By the constraint in (3), ADualProj is non-conflicting.

✗ Linear under scaling. With J =

[
2 0
−2a 2a

]
, if a ľ 1, ADualProj(J) =

[
0
a

]
. However, if

0.5 ĺ a ĺ 1, ADualProj(J) =

[
1− a
a

]
. This is not affine in a, so ADualProj is not linear under scaling.

✓ Weighted. By Proposition 1, ADualProj(J) = 1
mJ⊤ · w, with w ∈ argmin1ĺv v

⊤JJ⊤v.
ADualProj is thus weighted.

B.4 PCGRAD

APCGrad is described in Yu et al. (2020). It projects each gradient onto the orthogonal hyperplane of
other gradients in case of conflict with them, iteratively and in random order. When m ĺ 2, APCGrad
is deterministic and satisfies APCGrad = m · AUPGrad. Therefore, in this case, it satisfies all three
properties. When m ą 2, APCGrad is non-deterministic, so APCGrad(J) is a random vector.

For any index i ∈ [m], let gi = J⊤ · ei and let p(i) be a random vector distributed uniformly on
the set of permutations of the elements in [m] \ {i}. For instance, if m = 3, p(2) = [1 3]

⊤ with
probability 0.5 and p(2) = [3 1]

⊤ with probability 0.5. For notation convenience, whenever i

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

is clear from context, we denote jk = p(i)k. The iterative projection of APCGrad is then defined
recursively as:

gPC
i,1 = gi (26)

gPC
i,k+1 = gPC

i,k − 1{gPC
i,k · gjk ă 0}

gPC
i,k · gjk
∥gjk∥2

gjk (27)

We noticed that an equivalent formulation to the conditional projection of (27) is the projection onto
the dual cone of {gjk}:

gPC
i,k+1 = πg⊤

jk

(gPC
i,k) (28)

Finally, the aggregation is given by

APCGrad(J) =

m∑
i=1

gPC
i,m. (29)

✗ Non-conflicting. If J =

[
1 0
0 1
−0.5 −1

]
, the only non-conflicting direction is 0. However,

APCGrad(J) is uniform over the set
{[

0.4
0.2

]
,

[
0.8
0.2

]
,

[
0.4
−0.2

]
,

[
0.8
−0.2

]}
, i.e. APCGrad(J) is in the dual

cone of the rows of J with probability 0. APCGrad is thus not non-conflicting. Here, E[APCGrad(J)] =

[0.6 0]
⊤, so APCGrad is neither non-conflicting in expectation.

✓ Linear under scaling. To show that APCGrad is linear under scaling, let 0 ă c ∈ Rm, g′
i = cigi,

g′ PC
i,1 = g′

i and g′ PC
i,k+1 = πg′⊤

jk

(
g′ PC
i,k

)
. We show by induction that g′ PC

i,k = cig
PC
i,k.

The base case is given by g′ PC
i,1 = g′

i = cigi = cig
PC
i,1.

Then, assuming the induction hypothesis g′ PC
i,k = cig

PC
i,k, we show g′ PC

i,k+1 = cig
PC
i,k+1:

g′ PC
i,k+1 = πcjkg

⊤
jk

(
cig

PC
i,k

)
(Induction hypothesis)

g′ PC
i,k+1 = ciπg⊤

jk

(
g PC
i,k

)
(0ăci and 0ăcjk)

g′ PC
i,k+1 = cig

PC
i,k+1 (By (28))

ThereforeAPCGrad
(
diag(c)·J

)
=
∑m

i=1 cig
PC
i,m, so it can be written asAPCGrad

(
diag(c)·J

)
= J⊤ ·c

with J =
[
gPC
1,m · · · gPC

m,m

]⊤
. Therefore, APCGrad is linear under scaling.

✓ Weighted. For all i, gPC
i,m is always a random linear combination of rows of J . APCGrad is thus

weighted.

B.5 GRADDROP

The aggregator used by the GradDrop layer, which we denote AGradDrop, is described in Chen
et al. (2020). It is non-deterministic, so AGradDrop(J) is a random vector. Given J ∈ Rm×n, let

|J | ∈ Rm×n be the element-wise absolute value of J . Let P = 1
2

(
1+ J⊤·1

|J|⊤·1

)
∈ Rn, where the

division is element-wise. Each coordinate i ∈ [n] is independently assigned to the set I+ with
probability Pi and to the set I− otherwise. The aggregation at coordinate i ∈ I+ is given by the
sum of all positive Jji, for j ∈ [m]. The aggregation at coordinate i ∈ I− is given by the sum of all
negative Jji, for j ∈ [m]. Formally,

AGradDrop(J) =

∑
i∈I+

ei
∑

j∈[m]:
Jjią0

Jji

+

∑
i∈I−

ei
∑

j∈[m]:
Jjiă0

Jji

 (30)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

✗ Non-conflicting. If J =

[
−2
1

]
, then P = [1/3]. Therefore, P

[
AGradDrop(J) = [−2]

]
= 2/3 and

P
[
AGradDrop(J) = [1]

]
= 1/3, i.e. AGradDrop(J) is in the dual cone of the rows of J with probability

0. Therefore, AGradDrop is not non-conflicting. Here, E
[
AGradDrop(J)

]
= [−1]⊤, so AGradDrop is

neither non-conflicting in expectation.

✗ Linear under scaling. If J =

[
1 −1
−1 1

]
, then P = 1

2 · 1 and the aggregation is one of the four

vectors [±1 ±1]⊤ with equal probability. Scaling the first line of J by 2 yields J =

[
2 −2
−1 1

]
and P = [2/3 1/3]

⊤, which cannot lead to a uniform distribution over four elements. Therefore,
AGradDrop is not linear under scaling.

✗ Weighted. With J =

[
1 −1
−1 1

]
, the span of J does not include [1 1]

⊤ nor [−1 −1]⊤.

Therefore, AGradDrop is not weighted.

B.6 IMTL-G

In Liu et al. (2021b), the authors describe a method to impartially balance gradients by weight-
ing them. Let gi be the i’th row of J and let ui = gi

∥gi∥ . They want to find a combina-

tion g =
∑m

i=1 αigi such that g⊤ui is equal for all i. Let U = [u1 − u2 . . . u1 − um]
⊤,

D = [g1 − g2 . . . g1 − gm]
⊤. If α2:m = [α2 . . . αm]

⊤, then α2:m =
(
UD⊤)−1

U · g1 and
α1 = 1 −

∑m
i=2 αi. Notice that this is defined only when the gradients are linearly independent.

Thus, this is not strictly speaking an aggregator since it can only be computed on matrices of rank
m. We thus propose a generalization defined for matrices of any rank that is equivalent when the
matrix has rank m. In the original formulation, requiring g⊤ui to be equal to some c ∈ R for all
i, is equivalent to requiring that for all i, g⊤gi is equal to c ∥gi∥. Writing g = J⊤α and letting
d ∈ Rm be the vector of norms of the rows of J , the objective is thus to find α satisfying JJ⊤α ∝ d.
Besides, to match the original formulation, the elements of α should sum to 1.

Letting
(
JJ⊤)† be the Moore-Penrose pseudo inverse of JJ⊤, we define

AIMTL-G(J) = J⊤ ·w (31)

with w =

{
v

1⊤v
, if 1⊤v ̸= 0

0, otherwise
(32)

and v =
(
JJ⊤)† · d. (33)

✗ Non-conflicting. If J = [1 −1 −1]⊤, then d = [1 1 1]
⊤, JJ⊤ =

[
1 −1 −1
−1 1 1
−1 1 1

]
,

and thus v = 1
9 [−1 1 1]

⊤. Therefore, w = [−1 1 1]
⊤, AIMTL-G(J) = [−3]⊤ and J ·

AIMTL-G(J) = [−3 3 3]
⊤. AIMTL-G is thus not non-conflicting.

It should be noted that when J has rank m, AIMTL-G seems to be non-conflicting. Thus, it would be
possible to make a different non-conflicting generalization, for instance, by deciding 0 when J is not
full rank.

✗ Linear under scaling. With J =

[
a 0
0 1

]
and a ą 0, we have v =

[
1/a2 0
0 1

]
·
[
a
1

]
=

[
1/a
1

]
and AIMTL-G(J) =

[
a 0
0 1

]
·
[
1/a
1

]
· 1

1
a+1

= 1
1
a+1
·
[
1
1

]
. This is not affine in a, so AIMTL-G is not

linear under scaling.

✓ Weighted. By (31), AIMTL-G is weighted.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

B.7 CAGRAD

ACAGrad is described in Liu et al. (2021a). It is parameterized by c ∈ [0, 1[. If c = 0, this is equivalent
to AMean. Therefore, we restrict our analysis to the case c ą 0. For any J ∈ Rm×n, let ḡ be the
average gradient 1

mJ⊤ · 1, and let ei⊤J denote the i’th row of J . The aggregation is then defined as

ACAGrad(J) ∈ argmax
d∈Rn:

∥d−g∥ĺc∥g∥

min
i∈[m]

ei
⊤Jd (34)

✗ Non-conflicting. Let J =

[
2 0

−2a− 2 2

]
, with a satisfying −a + c

√
a2 + 1 ă 0. We have

g = [−a 1]
⊤ and ∥g∥ =

√
a2 + 1. Observe that any d ∈ Rn satisfying the constraint ∥d− g∥ ĺ

c∥g∥ has first coordinate at most −a + c
√
a2 + 1. Because −a + c

√
a2 + 1 ă 0, any feasible

d has a negative first coordinate, making d conflict with the first row of J . For any c ∈ [0, 1[,

−a + c
√
a2 + 1 ă 0 is equivalent to

√
c2

1−c2 ă a. Thus, this provides a counter-example to the
non-conflicting property for any c ∈ [0, 1[, i.e. ACAGrad is not non-conflicting.

If we generalize to the case c ľ 1, as suggested in the original paper, then d = 0 becomes feasible,
which yields mini∈[m] ei

⊤Jd = 0. Therefore the optimal d satisfies 0 ĺ mini∈[m] ei
⊤Jd, i.e.

0 ĺ Jd. With c ľ 1, ACAGrad would thus be non-conflicting.

✗ Linear under scaling (sketch of proof). Let J =

[
2 0
0 2a

]
, then g = [1 a]

⊤ and ∥g∥ =
√
1 + a2. One can show that the constraint ∥d− g∥ ĺ c∥g∥ needs to be satisfied with equality since,

otherwise, we can scale d to make the objective larger. Substituting J in mini∈[m] ei
⊤Jd yields

2min(d1, ad2). For any a satisfying c
√
1 + a2 + 1 ă a2, it can be shown that the optimal d satisfies

d1 ă ad2. In that case the inner minimum over i is 2d1 and, to satisfy ∥d− g∥ = c∥g∥, the KKT

conditions over the Lagrangian yield d− g ∝ ∇dd1 = [1 0]
⊤. This yields d =

[
c · ∥g∥+ 1

a

]
=[

c
√
1 + a2 + 1

a

]
. This is not affine in a; therefore, ACAGrad is not linear under scaling.

✓ Weighted. In Liu et al. (2021a), ACAGrad is formulated via its dual: ACAGrad(J) =
1
mJ⊤

(
1+ c∥J⊤1∥

∥J⊤w∥w
)

, with w ∈ argminw∈∆(m) 1
⊤JJ⊤w+ c · ∥J⊤1∥ · ∥J⊤w∥, where is ∆(m)

the probability simplex of dimension m. Therefore, ACAGrad is weighted.

B.8 RGW

ARGW is defined in Lin et al. (2021) as the weighted sum of the rows of the input matrix, with a
random weighting. The weighting is obtained by sampling m i.i.d. normally distributed random
variables and applying a softmax. Formally,

ARGW(J) = J⊤ · softmax(w) (35)
with w ∼ N (0, I) (36)

✗ Non-conflicting. When J =

[
1
−2

]
, the only non-conflicting solution is 0. However,

P[ARGW(J) = 0] = 0, i.e. ARGW(J) is in the dual cone of the rows of J with probability 0.
ARGW is thus not non-conflicting. Here,

E[ARGW(J)] = E
[
ew1 − 2ew2

ew1 + ew2

]
(By (35))

= −E
[

ew1

ew1 + ew2

]
(w∼N (0,I))

ă 0 (0ăew)

so ARGW is neither non-conflicting in expectation.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

✓ Linear under scaling. ARGW
(
diag(c) · J

)
=
(
diag(c) · J

)⊤ · softmax(w) = J⊤ · diag(c) ·
softmax(w) = J⊤ · diag

(
softmax(w)

)
· c. We thus have ARGW

(
diag(c) · J

)
= J⊤ · c with

J⊤ = J⊤ · diag
(
softmax(w)

)
. Therefore, ARGW is linear under scaling.

✓ Weighted. By (35), ARGW is weighted.

B.9 NASH-MTL

Nash-MTL is described in Navon et al. (2022). Unfortunately, we were not able to verify the proof of
Claim 3.1, and we believe that the official implementation of Nash-MTL may mismatch the desired
objective by which it is defined. Therefore, we only analyze the initial objective even though our
experiments for this aggregator are conducted with the official implementation.

Let J ∈ Rm×n and ε ą 0. Let also Bε =
{
d ∈ Rn : ∥d∥ ĺ ε,0 ĺ Jd

}
. With ei

⊤J denoting the
i’th row of J , ANash-MTL is then defined as

ANash-MTL(J) = argmax
d∈Bε

∑
i∈[m]

log
(
ei

⊤Jd
)

(37)

✓ Non-conflicting. By the constraint, ANash-MTL is non-conflicting.

✗ Linear under scaling. If an aggregator A is linear under scaling, it should be the case that
A(aJ) = aA(J) for any scalar a ą 0 and any J ∈ Rm×n. However, log(aei⊤Jd) = log(ei

⊤Jd)+
log(a). This means that scaling by a scalar does not impact aggregation. Since this is not the trivial 0
aggregator, ANash-MTL is not linear under scaling.

✓ Weighted. Suppose towards contradiction that d is both optimal for (37) and not in the span of
J⊤. Let d′ be the projection of d onto the span of J⊤. Since ∥d′∥ ă ∥d∥ ă ε and Jd = Jd′, we
have Jd ă J

(
∥d∥
∥d′∥d

′
)

, contradicting the optimality of d. Therefore, ANash-MTL is weighted.

B.10 ALIGNED-MTL

The Aligned-MTL method for balancing the Jacobian is described in Senushkin et al. (2023). For
simplicity, we fix the vector of preferences to 1

m1, but the proofs can be adapted for any non-trivial
vector. Given J ∈ Rm×n, let V Σ2V ⊤ be the eigen-decomposition of JJ⊤, let Σ† be the diagonal
matrix whose non-zero elements are the inverse of corresponding non-zero diagonal elements of Σ
and let σmin = mini∈[m],Σii ̸=0 Σii. The aggregation is then defined as

AAligned-MTL(J) =
1

m
J⊤ ·w (38)

with w = σmin · V Σ†V ⊤ · 1 (39)

✗ Non-conflicting. If the SVD of J is V ΣU⊤, then J⊤w = σminUPV ⊤1 with P = Σ†Σ a
diagonal projection matrix with 1s corresponding to non zero elements of Σ and 0s everywhere else.

Further, J · AAligned-MTL(J) = σmin

m · V ΣV ⊤1. If V = 1
2

[√
3 1
−1

√
3

]
and Σ =

[
1 0
0 0

]
, we have

J ·AAligned-MTL(J) =
1
2 ·V ΣV ⊤1 = 1

8

[
3−
√
3 1−

√
3
]⊤

which is not non-negative. AAligned-MTL
is thus not non-conflicting.

✗ Linear under scaling. If J =

[
1 0
0 a

]
, then U = V = I , Σ = J . For 0 ă a ĺ 1, σmin = a,

thereforeAAligned-MTL(J) =
a
2 ·1. For 1 ă a, σmin = 1 and thereforeAAligned-MTL(J) =

1
2 ·1, which

makes AAligned-MTL not linear under scaling.

✓ Weighted. By (38), AAligned-MTL is weighted.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

C EXPERIMENTAL SETTINGS

For all of our experiments, we used PyTorch (Paszke et al., 2019). We have developed an open-
source library4 on top of it to enable Jacobian descent easily. This library is designed to be reusable for
many other use cases than the experiments presented in our work. To separate them from the library,
the experiments have been conducted with a different code repository5 mainly using PyTorch and
our library.

C.1 LEARNING RATE SELECTION

The learning rate has a very important impact on the speed of optimization. To make the comparisons
as fair as possible, we always show the results corresponding to the best learning rate. We have
selected the area under the loss curve as the criterion to compare the learning rates. This choice is
arbitrary but seems to work well in practice: a lower area under the loss curve means the optimization
is fast (quick loss decrease) and stable (few bumps in the loss curve). Concretely, for each random
rerun and each aggregator, we first try 22 learning rates from 10−5 to 102, increasing by a factor 10

1
3

every time. The two best learning rates from this range then define a refined range of plausible good
learning rates, going from the smallest of those two multiplied by 10−

1
3 to the largest of those two

multiplied by 10
1
3 . This margin makes it unlikely for the best learning rate to lie out of the refined

range. After this, 50 learning rates from the refined range are tried. These learning rates are evenly
spaced in the exponent domain. The one with the best area under the loss curve is then selected and
presented in the plots. For simplicity, we have always used a constant learning rate, i.e. no learning
rate scheduler was used.

This approach has the advantage of being simple and precise, thus giving trustworthy results. However,
it requires 72 trainings for each aggregator, random rerun, and dataset, i.e. a total of 43776 trainings
for all of our experiments. For this reason, we have opted to work on small subsets of the original
datasets.

C.2 RANDOM RERUNS AND STANDARD ERROR OF THE MEAN

To get an idea of confidence in our results, every experiment is performed 8 times on a different seed
and a different subset, of size 1024, of the training dataset. The seed used for run i ∈ [8] is always
simply set to i. Because each random rerun includes the full learning rate selection method described
in Appendix C.1, it is sensible to consider the 8 sets of results as i.i.d. For each point of both the loss
curves and the cosine similarity curves, we thus compute the estimated standard error of the mean

with the usual formula 1√
8

√∑
i∈[8](vi−v̄)2

8−1 , where vi is the value of a point of the curve for random
rerun i, and v̄ is the average value of this point over the 8 runs.

C.3 MODEL ARCHITECTURES

In all experiments, the models are simple convolutional neural networks. All convolutions always
have a stride of 1×1, a kernel size of 3×3, a learnable bias, and no padding. All linear layers always
have a learnable bias. The activation function is the exponential linear unit (Clevert et al., 2015).
The full architectures are given in Tables 2, 3, 4 and 5. Note that these architectures have been fixed
arbitrarily, i.e. they were not optimized through some hyper-parameter selection. The weights of the
model have been initialized with the default initialization scheme of PyTorch.

C.4 OPTIMIZER

For all experiments except those described in Appendix D.3, we always use the basic SGD optimizer
of PyTorch, without any regularization or momentum. Here, SGD refers to the PyTorch optimizer
that updates the parameters of the model in the opposite direction of the gradient, which, in our case,
is replaced by the aggregation of the Jacobian matrix. In the rest of this paper, SGD refers to the

4Available at https://github.com/***/***
5Available at https://github.com/***/***

26

https://github.com/***/***
https://github.com/***/***

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 2: Architecture used for SVHN

Conv2d (3 input channels, 16 output channels, 1 group), ELU
Conv2d (16 input channels, 32 output channels, 16 groups)
MaxPool2d (stride of 2×2, kernel size of 2×2), ELU
Conv2d (32 input channels, 32 output channels, 32 groups)
MaxPool2d (stride of 3×3, kernel size of 3×3), ELU, Flatten
Linear (512 input features, 64 output features), ELU
Linear (64 input features, 10 outputs)

Table 3: Architecture used for CIFAR-10

Conv2d (3 input channels, 32 output channels, 1 group), ELU
Conv2d (32 input channels, 64 output channels, 32 groups)
MaxPool2d (stride of 2×2, kernel size of 2× 2), ELU
Conv2d (64 input channels, 64 output channels, 64 groups)
MaxPool2d (stride of 3×3, kernel size of 3×3), ELU, Flatten
Linear (1024 input features, 128 output features), ELU
Linear (128 input features, 10 outputs)

Table 4: Architecture used for EuroSAT

Conv2d (3 input channels, 32 output channels, 1 group)
MaxPool2d (stride of 2×2, kernel size of 2×2), ELU
Conv2d (32 input channels, 64 output channels, 32 groups)
MaxPool2d (stride of 2×2, kernel size of 2×2), ELU
Conv2d (64 input channels, 64 output channels, 64 groups)
MaxPool2d (stride of 3×3, kernel size of 3×3), ELU, Flatten
Linear (1024 input features, 128 output features), ELU
Linear (128 input features, 10 outputs)

Table 5: Architecture used for MNIST, Fashion-MNIST and Kuzushiji-MNIST

Conv2d (1 input channel, 32 output channels, 1 group), ELU
Conv2d (32 input channels, 64 output channels, 1 group)
MaxPool2d (stride of 2×2, kernel size of 2×2), ELU
Conv2d (64 input channels, 64 output channels, 1 group)
MaxPool2d (stride of 3×3, kernel size of 3×3), ELU, Flatten
Linear (576 input features, 128 output features), ELU
Linear (128 input features, 10 outputs)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

whole stochastic gradient descent algorithm. In the experiments of Appendix D.3, we instead use
Adam to study its interactions with JD.

C.5 LOSS FUNCTION

The loss function is always the usual cross-entropy, with the default parameters of PyTorch.

C.6 PREPROCESSING

The inputs are always normalized per channel based on the mean and standard deviation computed
on the entire training split of the dataset.

C.7 ITERATIONS AND COMPUTATIONAL BUDGET

The numbers of epochs and the corresponding numbers of iterations for all datasets are provided in
Table 6, along with the required number of NVIDIA L4 GPU-hours, to run all 72 learning rates for
the 11 aggregators on a single seed. The total computational budget to run the main experiments on 8
seeds was thus around 760 GPU-hours. Additionally, we used a total of about 100 GPU hours for the
experiments varying the batch size and using Adam, and about 200 more GPU hours were used for
early investigations.

Table 6: Numbers of epochs, iterations, and GPU-hours for each dataset

Dataset Epochs Iterations GPU-Hours

SVHN 25 800 17
CIFAR-10 20 640 15
EuroSAT 30 960 32
MNIST 8 256 6
Fashion-MNIST 25 800 17
Kuzushiji-MNIST 10 320 8

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D ADDITIONAL EXPERIMENTAL RESULTS

In this appendix, we provide additional experimental results about IWRM.

D.1 ALL DATASETS AND ALL AGGREGATORS

Figures 3, 4, 5, 6, 7 and 8 show the full results of the experiments described in Section 5 on SVHN,
CIFAR-10, EuroSAT, MNIST, Fashion-MNIST and Kuzushiji-MNIST, respectively. For readability,
the results are displayed on three different plots for each dataset. We always show AUPGrad and AMean
for reference. The exact experimental settings are described in Appendix C.

It should be noted that some of these aggregators were not developed as general-purpose aggregators,
but mainly for the use case of multi-task learning, with one gradient per task. Our experiments present
a more challenging setting than multi-task learning optimization because conflict between rows of
the Jacobian is typically higher. Besides, for some aggregators, e.g. AGradDrop and AIMTL-G, it was
advised to make the aggregation of gradients w.r.t. an internal activation (such as the last shared
representation), rather than w.r.t. the parameters of the model (Chen et al., 2020; Liu et al., 2021b).
To enable comparison, we instead always aggregated the Jacobian w.r.t. all parameters.

We can see thatAUPGrad provides a significant improvement overAMean on all datasets. Moreover, the
performance gaps seem to be linked to the difficulty of the dataset, which suggests that experimenting
with harder tasks is a promising future direction. The intrinsic randomness of ARGW and AGradDrop
reduces the train set performance, but it could positively impact the generalization, which we do not
study here. We suspect the disappointing results of ANash-MTL to be caused by issues in the official
implementation that we used, leading to instability.

D.2 VARYING THE BATCH SIZE

Figure 9 shows the results on CIFAR-10 with AUPGrad when varying the batch size from 4 to 64.
Concretely, because we are using SSJD, this makes the number of rows of the sub-Jacobian aggregated
at each step vary from 4 to 64. Recall that IWRM with SSJD and AMean is equivalent to ERM with
SGD. We observe that with a small batch size, AUPGrad becomes very similar to AMean. This is not
surprising since both would be equivalent with a batch size of 1. Conversely, a larger batch size
increases the gap betweenAUPGrad andAMean. Since the projections ofAUPGrad are onto the dual cone
of more rows, each step becomes non-conflicting with respect to more of the original 1024 objectives,
pushing even further the benefits of the non-conflicting property. In other words, increasing the batch
size refines the dual cone, thereby improving the quality of the projections. It would be interesting to
theoretically analyze the impact of the batch size in this setting.

D.3 COMPATIBILITY WITH ADAM

Figure 10 gives the results on CIFAR-10 and SVHN when using Adam rather than the SGD optimizer.
Concretely, this corresponds to the Adam algorithm in which the gradient is replaced by the aggre-
gation of the Jacobian. The learning rate is still tuned as described in Appendix C.1, but the other
hyperparameters of Adam are fixed to the default values of PyTorch, i.e. β1 = 0.9, β2 = 0.999 and
ϵ = 10−8. Because optimization with Adam is faster, the number of epochs for SVHN and CIFAR-10
is reduced to 20 and 15, respectively. While the performance gap is smaller with this optimizer, it is
still significant and suggests that our methods are beneficial with other optimizers than the simple
SGD. Note that this analysis is fairly superficial. The thorough investigation of the interplay between
aggregators and momentum-based optimizers is a compelling future research direction.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) Training loss

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
MGDA

Aligned-MTL

PCGrad
DualProj

(b) Update similarity to the SGD update

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y
(c) Training loss

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)

RGW
GradDrop

(d) Update similarity to the SGD update

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(e) Training loss

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
CAGrad(c=0.5)

IMTL-G
Nash-MTL

(f) Update similarity to the SGD update

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 3: SVHN results.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

(a) Training loss

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
MGDA

Aligned-MTL

PCGrad
DualProj

(b) Update similarity to the SGD update

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y
(c) Training loss

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)

RGW
GradDrop

(d) Update similarity to the SGD update

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(e) Training loss

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
CAGrad(c=0.5)

IMTL-G
Nash-MTL

(f) Update similarity to the SGD update

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 4: CIFAR-10 results.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

(a) Training loss

0 200 400 600 800
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
MGDA

Aligned-MTL

PCGrad
DualProj

(b) Update similarity to the SGD update

0 200 400 600 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y
(c) Training loss

0 200 400 600 800
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)

RGW
GradDrop

(d) Update similarity to the SGD update

0 200 400 600 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(e) Training loss

0 200 400 600 800
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
CAGrad(c=0.5)

IMTL-G
Nash-MTL

(f) Update similarity to the SGD update

0 200 400 600 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 5: EuroSAT results.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

(a) Training loss

0 50 100 150 200 250
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
MGDA

Aligned-MTL

PCGrad
DualProj

(b) Update similarity to the SGD update

0 50 100 150 200 250
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y
(c) Training loss

0 50 100 150 200 250
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)

RGW
GradDrop

(d) Update similarity to the SGD update

0 50 100 150 200 250
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(e) Training loss

0 50 100 150 200 250
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
CAGrad(c=0.5)

IMTL-G
Nash-MTL

(f) Update similarity to the SGD update

0 50 100 150 200 250
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 6: MNIST results.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) Training loss

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
MGDA

Aligned-MTL

PCGrad
DualProj

(b) Update similarity to the SGD update

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y
(c) Training loss

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)

RGW
GradDrop

(d) Update similarity to the SGD update

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(e) Training loss

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
CAGrad(c=0.5)

IMTL-G
Nash-MTL

(f) Update similarity to the SGD update

0 100 200 300 400 500 600 700 800
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 7: Fashion-MNIST results.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

(a) Training loss

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
MGDA

Aligned-MTL

PCGrad
DualProj

(b) Update similarity to the SGD update

0 50 100 150 200 250 300
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y
(c) Training loss

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)

RGW
GradDrop

(d) Update similarity to the SGD update

0 50 100 150 200 250 300
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(e) Training loss

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD)
UPGrad (ours)
CAGrad(c=0.5)

IMTL-G
Nash-MTL

(f) Update similarity to the SGD update

0 50 100 150 200 250 300
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 8: Kuzushiji-MNIST results.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

(a) BS = 4: Training loss

0 1000 2000 3000 4000 5000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD) UPGrad (ours)

(b) BS = 4: Update similarity to the SGD update

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y
(c) BS = 16: Training loss

0 200 400 600 800 1000 1200
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD) UPGrad (ours)

(d) BS = 16: Update similarity to the SGD update

0 200 400 600 800 1000 1200
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(e) BS = 64: Training loss

0 50 100 150 200 250 300
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean (SGD) UPGrad (ours)

(f) BS = 64: Update similarity to the SGD update

0 50 100 150 200 250 300
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 9: CIFAR-10 results with different batch sizes (BS). The number of epochs is always 20, so
the number of iterations varies.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

(a) SVHN: Training loss

0 100 200 300 400 500 600
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean UPGrad (ours)

(b) SVHN: Update similarity to the SGD update

0 100 200 300 400 500 600
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

(c) CIFAR-10: Training loss

0 100 200 300 400
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ca
te

go
ric

al
 c

ro
ss

-e
nt

ro
py

Mean UPGrad (ours)

(d) CIFAR-10: Update similarity to the SGD update

0 100 200 300 400
Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

ila
rit

y

Figure 10: Results with the Adam optimizer.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

(a) AMGDA

5 0 5
x

6

4

2

0

2

4

6
y

(b) AIMTL-G

5 0 5
x

6

4

2

0

2

4

6

y

(c) ACAGrad

5 0 5
x

6

4

2

0

2

4

6

y

(d) ARGW

5 0 5
x

6

4

2

0

2

4

6

y

(e) ANash-MTL

5 0 5
x

6

4

2

0

2

4

6
y

(f) AAligned-MTL

5 0 5
x

6

4

2

0

2

4

6

y
(g) AUPGrad, AMean, ADualProj, APCGrad, and AGradDrop

5 0 5
x

6

4

2

0

2

4

6

y

Figure 11: Optimization trajectories in the parameter space for various aggregators when optimizing
f : [x y]

⊤ 7→
[
x2 y2

]⊤
with JD. Black dots represent initial parameter values, the black star is

the Pareto set, the trajectories start in red and evolve towards yellow. The dashed lines are contour
lines of the mean objective.

D.4 OPTIMIZATION TRAJECTORIES

Figure 11 illustrates the optimization trajectories of various aggregators from Table 1 for the function
f : [x y]

⊤ 7→
[
x2 y2

]⊤
, with several initializations. Notably, the Pareto set only contains the

origin, while the set of Pareto stationary points is the union of the two axes. The Jacobian of f at

[x y]
⊤ is

[
2x 0
0 2y

]
, indicating that the rows do not conflict, which makes this function relatively

simple to optimize. Nevertheless, several aggregators, including AMGDA, ACAGrad, ANash-MTL and
AAligned-MTL, fail to converge to the Pareto front for some initializations.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

E COMPUTATION TIME AND MEMORY USAGE

E.1 MEMORY CONSIDERATIONS OF SSJD FOR IWRM

The main overhead of SSJD on the IWRM objective comes from having to store the full Jacobian
in memory. Remarkably, when we use SGD with ERM, every activation is a tensor whose first
dimension is the batch size. Automatic differentiation engines thus have to compute the Jacobian
anyway. Since the gradients can be averaged at each layer as soon as they are obtained, the full
Jacobian does not have to be stored. In the naive implementation of SSJD, however, storing the
full Jacobian costs memory, which given the high parallelization ability of GPUs, increases the
computational time. With the Gramian-based method proposed in Section 6, only the Gramian, which
is typically small, has to be stored: the memory requirement would then be similar to that of SGD.

E.2 TIME COMPLEXITY OF THE UNCONFLICTING PROJECTION OF GRADIENTS

Let J ∈ Rm×n be the matrix to aggregate. Apart from computing the Gramian JJ⊤, applying
AUPGrad to J requires solving m instances of the quadratic program (5) of Proposition 1. Solvers for
such problems of dimension m typically have a computational complexity upper bounded by O(m4)
or less in recent implementations (e.g. O(m3.67 logm)). This induces a O(m5) time complexity for
extracting the weights of AUPGrad. Note that solving these m problems in parallel would reduce this
complexity to O(m4).

E.3 EMPIRICAL COMPUTATIONAL TIMES

In Table 7, we compare the computation time of SGD with that of SSJD for all the aggregators
that we experimented with. Since we used the same architecture for MNIST, Fashion-MNIST and
Kuzushiji-MNIST, we only report the results for one of them. Several factors affect this computation
time. First, the batch size affects the number of rows in the Jacobian to aggregate. Increasing the batch
size thus requires more GPU memory and the aggregation of a taller matrix. Then, some aggregators,
e.g. ANash-MTL and AMGDA, seem to greatly increase the run time. When the aggregation is the
bottleneck, a faster implementation will be necessary to make them usable in practice. Lastly, the
current implementation of JD in our library is still fairly inefficient in terms of memory management,
which in turn limits how well the GPU can parallelize. Also, our implementation of AUPGrad does not
solve the m quadratic programs in parallel. Therefore, these results just give a rough indication of the
current computation times.

Table 7: Time required in seconds for one epoch of training on the ERM objective with SGD and on
the IWRM objective with SSJD and different aggregators, on an NVIDIA L4 GPU. The batch size is
always 32.

Objective Method SVHN CIFAR-10 EuroSAT MNIST

ERM SGD 0.79 0.50 0.81 0.47
IWRM SSJD–AMean 1.41 1.76 2.93 1.64
IWRM SSJD–AMGDA 5.50 5.22 6.91 5.22
IWRM SSJD–ADualProj 1.51 1.88 3.02 1.76
IWRM SSJD–APCGrad 2.78 3.13 4.18 3.01
IWRM SSJD–AGradDrop 1.57 1.90 3.06 1.78
IWRM SSJD–AIMTL-G 1.48 1.79 2.94 1.69
IWRM SSJD–ACAGrad 1.93 2.26 3.42 2.17
IWRM SSJD–ARGW 1.42 1.76 2.89 1.73
IWRM SSJD–ANash-MTL 7.88 8.12 9.33 7.91
IWRM SSJD–AAligned-MTL 1.53 1.98 2.97 1.71
IWRM SSJD–AUPGrad 1.80 2.01 3.21 1.90

39

	Introduction
	Theoretical foundation
	Jacobian descent
	Desirable properties for aggregators
	Unconflicting projection of gradients
	Convergence to the Pareto front

	Applications
	Existing aggregators
	Experiments
	Gramian-based Jacobian descent
	Conclusion
	Proofs
	Supplementary theoretical results
	Proposition 1
	Theorem 1

	Properties of existing aggregators
	Mean
	MGDA
	DualProj
	PCGrad
	GradDrop
	IMTL-G
	CAGrad
	RGW
	Nash-MTL
	Aligned-MTL

	Experimental settings
	Learning rate selection
	Random reruns and standard error of the mean
	Model architectures
	Optimizer
	Loss function
	Preprocessing
	Iterations and computational budget

	Additional experimental results
	All datasets and all aggregators
	Varying the batch size
	Compatibility with Adam
	Optimization trajectories

	Computation time and memory usage
	Memory considerations of SSJD for IWRM
	Time complexity of the unconflicting projection of gradients
	Empirical computational times

