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Abstract

Improving the quality and size of the training
corpus is known to enhance overall downstream
performance of language models on general
language understanding tasks. However, the
impact of text complexity on downstream per-
formance has been less studied. Text complex-
ity refers to how hard a text is to read, and is
typically estimated from surface cues such as
word choice, sentence length, and vocabulary
diversity while we keep the underlying text con-
tent constant. Our approach reduces surface-
level complexity—shorter sentences, simpler
words, lower vocabulary diversity—while keep-
ing core text content constant. We ask two core
questions: (1) Does text complexity matter in
pretraining? and (2) How does the text com-
plexity of our pretraining corpora affect the
performance of language models on general
language understanding tasks? To answer these
questions, we simplify human-written texts us-
ing a large language model (with the goal of
retaining the core text content) and pretrain
GPT2-small models on both the original and
simplified versions. We show empirical evi-
dence that reducing surface-level complexity
does not significantly affect performance on
general language understanding tasks, indicat-
ing that there are other corpus characteristics
that play a more important role.

1 Introduction

Let’s compare two versions of text:

(A) As the sunset cast its warm orange glow over
Manila Bay, people relaxed on the sideline
benches, enjoying the peaceful view of the
sunset.

(B) The sunset gave Manila Bay a warm, orange
light. People sat on the benches and enjoyed
the view of the sunset.
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Figure 1: Relative performance of gpt2-simp (trained
on simplified texts) vs. gpt2-hw (trained on human-
written texts) across the 8 SuperGLUE tasks shows min-
imal differences, suggesting text complexity has little
impact on general language understanding. Accuracy is
used for all tasks.

The two versions convey the same core mean-
ing, but one uses more nuanced, complex language,
whereas the other is simpler and less nuanced. This
can be likened to lossy compression, where ver-
sion (B) requires fewer bits to represent the in-
formation in (A) but loses some of its nuance. It
compresses by using common words and simpler
sentence structures while retaining the core infor-
mation.

What if our corpus is more like (B)? Can we
still learn useful representations by training solely
on simplified text with a simpler vocabulary and
sentence structure? To answer this, we manipu-
late surface-level complexity—shorter sentences,
simpler words, lower vocabulary diversity—while
holding core content constant, and measure down-
stream performance.

It is well-known that language models acquire
world knowledge during pretraining (Petroni et al.,



2019; Roberts et al., 2020; Zhang et al., 2021; Wei
et al., 2022), and transfer learning is more effective
when the pretraining corpus aligns with the target
task domain (Ruder and Plank, 2017; Gururangan
et al., 2020). For example, pretraining on medical
texts and fine-tuning on medical tasks is more effec-
tive than pretraining on social media texts. In other
words, a model’s knowledge significantly impacts
its downstream performance. Therefore, to isolate
the effect of text complexity, it’s crucial to control
for core text content. In this paper, we ask two core
questions:

(1) Can we learn useful representations in our
base models by training solely on simpler text,
with simpler vocabulary and sentence struc-
ture?

(2) How does the text complexity of our pretrain-
ing corpora impact language model perfor-
mance on general understanding tasks?

To answer these questions, we collect human-
written texts and transform them into simpler lan-
guage using a Large Language Model (LLM) while
preserving the core text content. We pretrain GPT2-
small models (Radford et al., 2019) from scratch
in two controlled setups, one on human-written
(more complex) texts and another on the simplified
version of the same texts. Lastly, we finetune and
evaluate these models on the SuperGLUE bench-
mark (Wang et al., 2019), which is a collection of
general language understanding tasks.

Our empirical evidence shows that reducing
surface-level complexity features does not signif-
icantly impact performance on general language
understanding tasks. This indicates that the form of
the text alone plays a limited role at the pretraining
stage.

2 Related Work

Text complexity (also known as readability).
Text complexity or readability refers to how dif-
ficult a text is to understand (DuBay, 2004), in-
fluenced by linguistic factors such as word choice
(e.g., "utilize" vs. "use"), sentence structure (com-
plex vs. simple), and content type (academic vs.
children’s books) (Dale and Chall, 1948, 1949;
Graesser et al., 2004). Although other factors such
as the reader’s background knowledge also affect
readability (Ozuru et al., 2009), this work focuses
solely on linguistic aspects.

Several metrics have been proposed for readabil-
ity such as Flesch Reading Ease (Flesch, 1948)
(FRE), Dale—Chall (Dale and Chall, 1948), and
SMOG (Mc Laughlin, 1969). These formulas rely
on surface-level features like text length, word
count, and word length. While they’re useful es-
timates, they don’t tell the whole story. This lim-
itation has prompted the use of machine learning
and deep learning approaches (Hancke et al., 2012;
Imperial and Ong, 2021; Chatzipanagiotidis et al.,
2021; Imperial, 2021; Meng et al., 2020) to capture
features beyond the surface-level, such as coher-
ence and writing style. More recently, researchers
have begun exploring the use of Large Language
Models (LLMs) for estimating readability (Trott
and Riviere, 2024; Lee and Lee, 2023; Rooein et al.,
2024). LLMs have shown strong correlations with
human judgments compared to traditional formulas
even without explicit finetuning (Trott and Riviere,
2024). However, using an LLM to score a large
corpus is costly. For this reason, we use FRE to
measure the complexity of our corpus.

Text simplification. Text simplification (TS)
aims to make text easier to understand while pre-
serving content (Agrawal and Carpuat, 2023; Alva-
Manchego et al., 2019; Truica et al., 2023). While
simplified texts tend to be shorter, that is not al-
ways the case (Shardlow, 2014). This is different
from Text Summarization, where the goal is to
shorten the text even if it changes the organization
and content. Saggion and Hirst (2017); Shardlow
(2014); Kriz et al. (2018) approached TS via word-
substitution by replacing difficult words with easier
synonyms using a lexicon. Other works approached
TS as a translation problem using statistical ma-
chine translation (SMT) (Wubben et al., 2012; Scar-
ton et al., 2018; Specia, 2010; Xu et al., 2016).
Beyond SMT approaches, other works employed
deep learning approaches such as encoder-decoder
models (Zhang and Lapata, 2017; Alva-Manchego
et al., 2019; Agrawal and Carpuat, 2023). Re-
cent works explore LLMs for text simplification
(Trott and Riviere, 2024; Imperial and Tayyar Mad-
abushi, 2023; Farajidizaji et al., 2024; Padovani
et al., 2024). While some works are concerned
with simplifying texts to a specific grade-level, we
are only concerned with making complex texts sim-
pler, similar to Trott and Riviere (2024), which
observes encouraging results on text simplification
just by prompting LLMs. In this work, we use an
LLM for text simplification.



Pretraining language models on simple texts.
In recent years, there has been an increased in-
terest in pretraining language models on simple
texts. Zhao et al. (2023) found that a small lan-
guage model (SLM), called BabyBERTa (Hueb-
ner et al., 2021), trained on child-directed speech,
performs on par with larger models on a set of
probing tasks. Eldan and Li (2023) has shown that
SLMs can learn to generate coherent and fluent text
by training on synthetic texts of short stories that
contain only words that 3- to 4-year-olds usually
understand. Deshpande et al. (2023); Muckatira
et al. (2024) has shown that SLMs pretrained on
simplified language can achieve comparable per-
formance to larger models when the problem is
transformed to simple language. There is also a
research community effort called “The BabyLM
Challenge” (Warstadt et al., 2023; Hu et al., 2024)
that emphasizes training on a fixed budget of 100
million words or less, sourced from texts intended
for children, which are conceptually simpler.

Pretraining dataset design. Pretraining on mas-
sive texts is one of the main drivers of performance
for modern language models (Brown et al., 2020;
Kaplan et al., 2020; Hoffmann et al., 2022). Pre-
training data design choices such as domain com-
position, quality and toxicity filters, and collection
date affect model performance in ways that cannot
be adjusted by finetuning (Longpre et al., 2024).

The study most closely aligned with ours is
Agrawal and Singh (2023), which shows that lan-
guage models pretrained on more complex text
(e.g., Wikipedia) outperform those trained on sim-
pler material (e.g., children’s books), with complex-
ity estimated via Flesch Reading Ease. Because
their comparison relies on entirely different cor-
pora, complexity is inevitably bundled with other
corpus characteristics—topic breadth, register, dis-
course structure, and domain diversity—that may
also benefit pretraining.

We therefore manipulate complexity within the
same source texts, preserving core text content and
semantics while varying only surface-level com-
plexity. This controlled design lets us isolate the
specific contribution of textual complexity, provid-
ing a complementary perspective on the broader
correlation reported by Agrawal and Singh (2023).

Prior works have shown encouraging results for
pretraining on simple texts. However, there is no
work that looks at the direct impact of text complex-
ity, more specifically at the lexical and syntactic
level, on the downstream performance of language

models at a relatively larger data scale i.e. 2.1B
tokens and 5 domains. This calls for controlled
experiments that will give evidence that a useful
model can be learned by just training on simple
texts.

3 Creating the Pretraining Datasets

3.1 Human-Written Corpora

We curated human-written English texts from two
publicly available datasets: Dolma v1.6 (Soldaini
et al., 2024) and Wiki-40B (Guo et al., 2020). Both
have permissive licenses', and our usage complies
with their intended purposes. The final corpus has
around 2.34B tokens? uniformly distributed across
5 domains: web, books, social media, academic,
and wiki. All domains are sourced from Dolma,
except for wiki which is from Wiki-40B. We limit
our dataset to 2.34B tokens because processing the
full corpus would be too expensive. This number is
based on Chinchilla Compute-Optimal guideline of
1:20 parameter-tokens ratio (Hoffmann et al., 2022)
as a rough guideline®. According to this, if we’re
using GPT2-small with 124M parameters, 2.48B is
a good dataset size.

Since Dolma and Wiki-40B are too large, we
only process a subset of shards. For Dolma, initial
subset per domain was picked manually (see Ap-
pendix A for more details). For Wiki-40B, we only
use English subset. For each domain subset, we
count the tokens and sample the longest documents
within the 75th-100th percentile for Wiki-40B and
the 50th-75th percentile for Dolma, continuing un-
til we reach 468M tokens per domain. We sample
within a specific percentile because outliers tend
to occur on extreme ends. The sampling strategy
prioritizes longer documents to enhance the mod-
els’ exposure to extended texts, aiming to improve
its ability to capture long-distance relationships
between dispersed pieces of information.

3.2 Text Simplification via Large Language
Model

We prompt Llama 3.1 8B instruction model
(Grattafiori et al., 2024) to transform human-
written texts into simplified texts. For efficient

!ODC-BY license for Dolma, and Creative Commons for
Wikipedia.

2We used GPT2 Tokenizer: https://huggingface.co/
openai-community/gpt2.

3We initially used 117M as parameter count instead of
124M which is why our corpus is 2.34B.
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inference, we use the INT8 quantized version* of
the model and vLLM (Kwon et al., 2023) as our
LLM serving system. We discuss more about the
prompt engineering and include the final prompt in
Appendix B.

We split the documents from the human-written
corpora into paragraphs, resulting in a total of
28.5M paragraphs. We apply the transformation
paragraph-wise because the model tends to sum-
marize rather than simplify multi-paragraph docu-
ments. This approach preserves the original con-
tent and structure. However, not all paragraphs are
transformed. This can happen under three condi-
tions: (1) when a paragraph is too short relative
to its full document; (2) when a paragraph is too
long; or (3) when the transformation is significantly
shorter or longer than the original text. In the case
of (3), we revert to the original text in the final
corpus. We include a more detailed breakdown of
these conditions in Appendix C.

3.3 Resulting Simplified Texts

The final simplified corpus has around 2.12B to-
kens. There is a total of 28.5M paragraphs, of
which 34.9% are not transformed (i.e., 22.21% are
skipped and 12.69% are transformed but reverted
back to the original). The domain distribution of
the paragraphs that are not transformed are as fol-
lows: web (26.85%), books (25.49%), social media
(21.90%), academic (6.97%), and wiki (18.80%).
Overall, this accounts for 36.69% of total tokens of
the final simplified corpus. Note that most of these
texts are very short or very long inputs that are
not informative (e.g., author names, table of con-
tents, etc.), or already concise enough to require no
further simplification.

To get a rough idea of what the simplified texts
look like, see the following example:

Original: Your comment really helped
me feel better the most. I was sitting in
my office, feeling so bad that I didn’t
say how inappropriate and out of line his
comments were, and this helped.

Simplified: Your comment really helped
me feel better. I was feeling bad because
I didn’t speak up when someone made
inappropriate comments.

4https://huggingface.co/neuralmagic/
Meta-Llama-3.1-8B-Instruct-quantized.w8a8

4 Experimental Setup

In our study, we investigate the effect of text com-
plexity on both the pretraining dynamics and down-
stream performance of language models. To do
this, we compare models trained on human-written
texts with those trained on simplified texts and also
conduct domain-ablation experiments to gain some
insight on the effect of text complexity on different
domains.

4.1 Model Architecture and Training Details

We train GPT2-small models from scratch. Our
configuration follows the standard GPT2-small
setup: 124M parameter models with 12 transformer
layers, 12 attention heads, and a hidden dimension
of 768. These specifications are consistent with the
original GPT2 publication (Radford et al., 2019) as
implemented by HuggingFace>. All experiments
are conducted using 8x P100 GPUs.

4.2 Pretraining Configurations
4.2.1 Human-Written vs. Simplified

We investigate how text complexity influences the
model’s ability to learn adaptable representations.
Our primary motivation is to assess whether re-
ducing lexical and syntactic complexity—while
preserving semantic content—affects pretraining.
By comparing a model trained on original human-
written texts with one trained on simplified ver-
sions, we aim to isolate the specific role of text
complexity.

In our experiments, both models train for a sin-
gle epoch. The baseline model, gpt2-hw, pro-
cesses about 2.34B tokens from human-written
texts, while the simplified text model, gpt2-simp,
is exposed to around 2.12B tokens. Additionally,
human-written, domain-specific validation sets of
roughly 23.4M tokens (about 5% of each domain)
are evaluated every 300M tokens for regular check-
points. Details on hyperparameter selection are
provided in Appendix D. Pretraining for both mod-
els requires approximately 16 hours.

4.2.2 Domain-Ablation Studies

A key aspect of our research examines whether
text complexity’s impact varies across content do-
mains. The domain-ablation experiments address
this by systematically omitting one domain at a
time and observing the effect on model perfor-
mance. This approach is based on the idea that

Shttps://huggingface.co/gpt2
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certain domains—such as legal or academic texts,
which require a high degree of nuance—may rely
more on complex linguistic structures, while other
domains can effectively communicate core infor-
mation even when simplified.

To investigate, we train 10 models—five on
human-written texts and five on simplified texts. In
each ablation run, one of the five domains is omit-
ted, removing approximately 468M tokens from
the training data. Pretraining for these ablation
experiments takes around 13 hours per run, and
the resulting models are fine-tuned on the Super-
GLUE benchmark. This evaluation aims to deter-
mine whether omitting complex linguistic struc-
tures in specific domains differentially affects the
model’s general language understanding.

4.3 Downstream Tasks

To assess whether pretraining differences influ-
enced by text complexity impact downstream per-
formance, we fine-tune our pretrained models on
the SuperGLUE benchmark (Wang et al., 2019),
which offers a comprehensive suite for evaluating
general language understanding. Our evaluation
covers eight core tasks: BoolQ, CB, COPA, Mul-
tiRC, ReCoRD, RTE, WiC, and WSC.

For each task, we reformat the data into prompt-
based inputs by appending the correct label and
computing loss only on these label tokens. This
ensures the model aligns its predictions with the
desired output without being distracted by other
tokens. During inference, candidate label tokens
are appended to the prompt, and the candidate with
the highest total log probability is selected (see
Appendix E for examples).

The fine-tuning phase involves a per-task grid
search for the best hyperparameters with a total
combined runtime of approximately 26 hours per
model. More details on hyperparameter selection,
grid search, and final model selection are provided
in Appendix D.

For evaluation, we use accuracy for 5 tasks
(BoolQ, COPA, RTE, WiC, and WSC). For CB,
MultiRC, and ReCoRD, we deviate from the offi-
cial metrics since they do not reliably reflect per-
formance in our setup. In CB, we report only ac-
curacy—omitting F1, as predicting a single neutral
label can boost F1 by over 11 points on a small,
imbalanced dataset (16/250 in train, 5/56 in valida-
tion). For MultiRC, we report only micro F1 (equiv-
alent to accuracy) and omit Exact Match (EM),
which measures perfect passage-wise recall. For

I human-written [ simplified

100 - -

80

60

40

Flesch Reading Ease (FRE)

20

Web Books Socmed Academic Wiki

Domain

Figure 2: Flesch Reading Ease (FRE) scores of the
human-written and simplified texts on each domain.
Some documents fall outside the 0-100 range, so we
clip them to 0 and 100 respectively.

ReCoRD, we rely solely on EM, as token-overlap
F1 can be inflated by partial matches. For trans-
parency, we include additional results and analysis
on the official metrics in Appendix H.

Zero-shot syntactic probe (BLiMP). To probe
grammar learning without further supervision, we
also evaluate both models on the BLiMP suite
(Warstadt et al., 2020). BLiMP contains 67,000
minimal sentence pairs for 12 syntactic and mor-
phological phenomena (e.g. subject—verb agree-
ment, reflexive binding). Following Warstadt et al.
(2020), we score a model correct when it assigns
higher (log) probability to the grammatical member
of each pair. No fine-tuning is performed; this is a
strict zero-shot test.

5 Results and Discussion

We performed three independent runs with differ-
ent random seeds. For each run, we selected the
best result over our fixed hyperparameter grid, and
report the average of those three best scores. Ran-
dom seeds were fixed for full reproducibility.

5.1 Dataset Complexity Verification

Is our simplified text really simpler? To answer that
question, we compute corpus-level complexity met-
rics presented in Table 3 and document-level text
complexity using the Flesch Reading Ease or FRE
(Flesch, 1948). The simplified corpus has fewer
words, lower Type-Token Ratio (TTR), and lower
Unigram Entropy than its human-written counter-
part which are all indicators of reduced complexity



Avg. BoolQ CB COPA MultiRC  ReCoRD RTE WiC WSC
Most Frequent  47.7 62.2 222 55.0 59.9 31.5 52.7 50.0 63.5
gpt2-hw 577  6777£05 702+1.0 565+23 68.1£04 19.0+0.6 61.4+2.0 642+09 548+1.7
gpt2-simp 569 66703 70.8+2.7 542+21 681£00 1794+02 59.7£1.0 63.1£14 545+3.4

(-0.9) (-1.0) (0.6) (-2.3) (0.0) (-1.2) (-1.7) (-1.0) (-0.3)

Table 1: Comparison of gpt2-hw and gpt2-simp average accuracy scores across 3 runs on the validation sets of
eight SuperGLUE tasks. The scores are averaged from the best scores of the grid search for each seed. The Avg.
column is the average of the eight task scores across 3 runs. The Most Frequent baseline scores are from the official
SuperGLUE paper. The last row shows the difference between gpt2-simp and gpt2-hw (green if higher, red if

lower, gray if equal).

Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Most Frequent  47.1 62.3 48.4 50.0 61.1 32.5 50.3 50.0 65.1
gpt2-hw 56.5 68.5 74.0 46.6 64.0 17.8 58.4 62.4 60.3
gpt2-simp 54.7 66.9 69.6 47.8 63.9 17.9 54.4 61.4 55.5
-1.8)  (-1.6) (44 ( ) (-0.1) ( ) (-4.0) (-1.0) (-4.8)

Table 2: Comparison of gpt2-hw and gpt2-simp accuracy scores from a single run submitted to the official test sets
of eight SuperGLUE tasks. The Avg. column is the average of the eight task scores. The Most Frequent baseline
scores are from the official SuperGLUE paper. The last row shows the difference between gpt2-simp and gpt2-hw

(green if higher, red if lower, gray if equal).

Corpus Words Types TTR  Entropy
human-written  1.98B  7.98M  0.40% 10.75
simplified 1.83B  6.04M 0.33% 10.38

Table 3: Corpus statistics. Words are space-separated
words, Types are unique word count, TTR is Type-
Token Ratio, and Entropy refers to Unigram Entropy.
Lower TTR means lower lexical diversity. Lower En-
tropy means lower complexity.

of simplified corpus.
For computing FRE, we use
py-readability-metrics®. FRE considers

text length, word count, and syllables per word,
offering a rough complexity measure. A higher
FRE implies simpler text (e.g., scores of 60 and
above are considered easy; scores between 50 and
60 are fairly difficult; and scores below 50 are
considered hard). Although it does not capture
phenomena such as rare words or intricate syntax,
we use it for its practicality and simplicity. We
use FRE to confirm that our manipulation changed
surface cues correlated with complexity, not as a
full measure of syntactic or lexical complexity.
Figure 2 shows that the FRE distribution of our
simplified corpus is consistently higher than that
of the human-written corpus across all domains.
Some documents fall outside the 0-100 range, so

6https://github.com/cdimascio/
py-readability-metrics
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Figure 3: Perplexity vs. tokens seen graphs on the
human-written validation set for both gpt2-hw and
gpt2-simp. Perplexity is the exponentiation of loss
and quantifies the model’s "uncertainty."

we clip negative values to 0 and values above 100
to 100 (e.g., very long documents or texts with no
punctuations). Notably, the academic, and wiki
domains are more complex than others.

5.2 Main Comparison: Human-Written vs.
Simplified

5.2.1 Language-Modeling Performance

To compare the relative language-modeling perfor-
mance of gpt2-simp with gpt2-hw in modeling
human-written text, we compute the perplexity of
both models on held-out human-written texts. Fig-
ure 3 shows that gpt2-simp exhibits comparable


https://github.com/cdimascio/py-readability-metrics
https://github.com/cdimascio/py-readability-metrics

Human-Written Texts

Full Dataset ~ 58.3 68.2 71.4 58.0

No Academic (-20%)  -1.5 +0.1 -1.8 -3.0
No Books (-20%)  -1.8 -1.1 0.0 -5.0
No Socmed (-20%)  -1.7 -1.8 -1.8
No Web (-20%)  -2.7 -1.2 -3.6 -5.0

No Wiki (-20%) +0.5 +0.2

+3.6 +1.0

Avg. BoolQ CB

68.3 18.4

o
Q

2

©

©

=]

1.0 01 -04 24 -38 -5.0 =
2

- <

22 <10 | 43 | 53 +438 23 £
-00 ¢

05 11 14  -31 +1.9 5
--25 9

=

=)

15 -16 | -43 - +1.9 - 50 o
El

S

2

Qo

<

-0.2 -2.6 -0.4 -0.5

COPA  MultiRC ReCoRD  RTE WiC

61.7 64.9 55.8

-10.0
I 7.5

+2.9 I =75
- _10.0

WSsC

Task Performance

Simplified Texts

Full Dataset  57.4 66.7 71.4 56.0

No Academic (-20%) -0.8 +1.3 0.0 -5.0
No Books (-20%) -1.3 2.1 -1.8 +2.0
No Socmed (-20%) -1.1 -0.2 -1.8 -4.0

No Web (-20%) -1.3 -1.0 0.0 +3.0

No Wiki (-20%)  -0.6 -1.2 -5.4 +1.0

Avg.  BoolQ CB

-10.0
682 17.9 603 64.0 54.8 g
75§

©

[a}

07 03 422 -05 -38 -5.0 =
z

-25 £

31 16 29 3.6 +2.9 E
-00 9

=4

05 08 422 25 -1.0 o
--25 g

[a}

11 08 -25 -36 & -48 --50 o
E

- o

1.9 <18 411 -2.2 - 7'5§
- _10.0

COPA MultiRC ReCoRD  RTE WiC

WsC

Task Performance

Figure 4: A heatmap of the differences on SuperGLUE task scores when removing one domain at a time from
both the human-written and simplified datasets. Blue represents an increase in performance while red represents a

decrease.

perplexity with gpt2-hw. The results are not sur-
prising since a slight difference in the distribution
between human-written and simplified texts is ex-
pected (e.g., stylistic differences and word choices).
However, it is interesting to note that despite train-
ing solely on simplified texts, gpt2-simp was able
to learn representations that can model human-
written texts, comparable to gpt2-hw. These re-
sults suggest that the learned representations on
simplified texts may be suitable for adaptation to
human-written texts. For a detailed discussion on
the spike in perplexity for gpt2-simp and domain-
level perplexity, see Appendix F.

5.2.2 SuperGLUE Performance

Table 1 summarizes performance on the valida-
tion sets for eight SuperGLUE tasks. gpt2-simp
achieves an average score of 57.4, just below the
58.3 of gpt2-hw. Most tasks show only slight dif-
ferences between the models. Similarly, Table 2
shows that on the test set, gpt2-simp reaches an
average of 54.7 compared to 56.5 for gpt2-hw, re-
flecting a very modest overall gap. While a few
tasks even register small improvements, most dif-
ferences remain minimal. These observations in-
dicate that reducing linguistic complexity while
keeping the core meaning intact has a limited ef-
fect on downstream performance.

5.2.3 Grammatical Generalization (BLiMP)

Model BLiMP accuracy
gpt2-hw 0.7470
gpt2-simp 0.7459

Table 4: Zero-shot grammaticality accuracy on BLiMP
(Warstadt et al., 2020). Each of the 67,000 sentence
pairs in the benchmark contains a grammatical sentence
and a minimally different ungrammatical counterpart; a
model is correct when it assigns higher log-probability
to the grammatical sentence. Chance performance is
50%. The slight gap between gpt2-hw (74.70%) and
gpt2-simp (74.59%) is negligible compared with the
sampling error of BLiMP. Thus, simplifying the pre-
training corpus does not seem to diminish the models’
ability to learn core syntactic regularities.

Both models are essentially tied (A ~ 0.1 per-
centage points), far above chance (50%) but be-
low the 83% reported for GPT-2 Large (774M
parameters). Interestingly, gpt2-simp does not
lose grammatical competence despite having seen
fewer word types. A plausible explanation is that
by shrinking the vocabulary and shortening sen-
tences, we reduce the number of “surface facts”
the network must memorize, freeing capacity to in-
ternalize abstract syntactic regularities faster—an
idea also suggested by Eldan and Li (2023). Fu-



ture work could quantify this learning-efficiency
hypothesis by tracking BLiMP accuracy over train-
ing steps.

5.3 Domain-Ablation Results

Our domain-ablation experiments (see Figure 4)
systematically omit each domain from the train-
ing corpus in both human-written and simplified
datasets, one at a time, to assess each domain’s
importance for downstream tasks under different
linguistic conditions.

On the average SuperGLUE scores, omitting
almost any domain slightly reduces performance.
The primary exception is the wiki domain: re-
moving it from the human-written dataset yields
a modest improvement, while excluding it from
the simplified dataset causes a small drop. In
contrast, the other four domains incur greater
losses when removed from human-written data
compared to when they are removed from simpli-
fied data—seemingly more so for the academic and
web domains—suggesting that complex, human-
written text in these domains captures nuanced style
and content better, whereas wiki text may be more
effective in simplified form.

A detailed discussion on individual task effects
is provided in Appendix I.

6 Conclusion

In this work, we investigated the role of text
complexity in the pretraining of language mod-
els, specifically examining whether simplified lan-
guage, while preserving core text content, can yield
representations that are as effective as those learned
from more complex, human-written texts. Our ex-
periments, which compared GPT2-small models
pretrained on human-written versus simplified cor-
pora, reveal that reducing lexical and syntactic com-
plexity does not significantly impair downstream
performance on a broad set of language under-
standing tasks such as those in the SuperGLUE
benchmark. Zero-shot BLiMP results show that
grammatical generalization is preserved—and may
even be easier to acquire—when lexical diversity
is reduced, reinforcing our claim that surface form
plays a limited role in core representation learn-
ing. These findings suggest that reducing surface-
level complexity does not substantially affect down-
stream performance, indicating that the form of the
text alone plays a limited role at the pretraining
stage.

While our study is limited to the GPT2-small
architecture and a specific experimental setting, the
evidence presented here motivates future research
into the interplay between text complexity, core text
content, and model performance across different
architectures and larger-scale datasets.

Limitations

Our study has several limitations. First, the LLM-
based simplification process can introduce incon-
sistencies in the core text content due to the tenden-
cies of LLMs to hallucinate. Second, the Flesch
Reading Ease score only measures surface-level
features and may not fully reflect deeper linguis-
tic nuances. Third, our experiments are restricted
to the GPT2-small architecture, so it is unclear
how these findings extend to larger models with
more parameters or different architectures. Fourth,
our evaluation relies solely on the SuperGLUE
benchmark, which might not capture all facets of
language understanding, especially for more com-
plex or generative tasks. Fifth, we did not run
per-phenomenon BLiMP analysis; some specific
constructions might still be affected by pretraining
on simplified corpora. Lastly, our domain-ablation
experiments cover only a subset of domains, limit-
ing broader domain-specific insights.
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A Manual selection of Dolma shards

For Dolma’, We manually selected shards to re-
duce the total dataset size before we do any of our
subsequent subsetting. We list below the specific
shards (all are .json.gz) we used from Dolma:

books-0000, books-0001,

c4-0000, c4-0001,

pes20_v2-0012,
reddit-v5-dedupe-pii-nsfw-toxic-0000,
reddit-v5-dedupe-pii-nsfw-toxic-0001,
reddit-v5-dedupe-pii-nsfw-toxic-0002

B Text Simplification Prompt

The prompt engineering is done through trial-and-
error and judged by the authors according to the
following qualitative criteria:

* Does it use simpler words? By "simpler
words," we mean commonly used words.

* Does it convert compound or complex sen-
tences into simple sentences?

* Does it preserve the original content and orga-
nization of thoughts?

Once we found a prompt that can reliably do
all those things on a small sample, we used that
prompt to transform the whole corpus.

The final prompt is shown below:

Role Description: You are an experi-
enced educator and linguist specializing
in simplifying complex texts without los-
ing any key information or changing the
content. Your focus is to make texts
more accessible and readable for primary
and secondary school students, ensur-
ing that the essential information is pre-
served while the language and structure
are adapted for easier comprehension.

Task Instructions: 1. Read the Following
Text Carefully: - Thoroughly understand
the content, context, and purpose of the
text to ensure all key information is re-
tained in the simplified version.

2. Simplify the Text for Pri-
mary/Secondary  School  Students:

"https://huggingface.co/datasets/allenai/dolma
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- Rewrite the text to make it more
accessible and easier to understand.
- Use age-appropriate language and
simpler sentence structures. - Maintain
all key information and do not omit
any essential details. - Ensure that the
original meaning and intent of the text
remain unchanged.

3. Preserve Key Information: - Identify
all essential points, facts, and ideas in
the original text. - Ensure these elements
are clearly presented in the simplified
version.

4. Avoid Adding Personal Opinions or
Interpretations: - Do not introduce new
information or personal views. - Focus
solely on simplifying the original con-
tent.

Simplification Guidelines:

Sentence Structure: - Use simple or com-
pound sentences. - Break down long or
complex sentences into shorter ones. -
Ensure each sentence conveys a clear
idea.

Vocabulary: - Use common words famil-
iar to primary and secondary school stu-
dents. - Replace advanced or technical
terms with simpler synonyms or provide
brief explanations. - Avoid jargon unless
it is essential, and explain it if used.

Clarity and Coherence: - Organize the
text logically with clear paragraphs. -
Use transitional words to connect ideas
smoothly. - Ensure pronouns clearly re-
fer to the correct nouns to avoid confu-
sion. - Eliminate redundancies and un-
necessary repetitions.

Tone and Style: - Maintain a neutral and
informative tone. - Avoid overly formal
language. - Write in the third person
unless the text requires otherwise.

Output Format: Provide the simplified
text in clear, well-organized paragraphs.
Do not include the original text in your
output. Do not add any additional com-
mentary or notes. Ensure the final output
is free of grammatical errors and is easy


https://huggingface.co/datasets/allenai/dolma

to read. Output < |eot;d| > right after
the simplified text.

Example Simplifications:
Example 1:

Original Text: "Photosynthesis is the pro-
cess by which green plants and some
other organisms use sunlight to synthe-
size foods from carbon dioxide and wa-
ter. Photosynthesis in plants generally
involves the green pigment chlorophyll
and generates oxygen as a byproduct."”

Simplified Text: "Photosynthesis is how
green plants make food using sunlight,
carbon dioxide, and water. They use
a green substance called chlorophyll,
and the process produces oxygen.<
leot;d| >"

Example 2:

Original Text: "Global warming refers to
the long-term rise in the average temper-
ature of the Earth’s climate system, an
aspect of climate change shown by tem-
perature measurements and by multiple
effects of the warming."

Simplified Text: "Global warming means
the Earth’s average temperature is in-
creasing over a long time. This is part
of climate change and is shown by tem-
perature records and various effects.<
leot;d| >"

Example 3:

Original Text: "The mitochondrion, of-
ten referred to as the powerhouse of the
cell, is a double-membrane-bound or-
ganelle found in most eukaryotic organ-
isms, responsible for the biochemical
processes of respiration and energy pro-
duction through the generation of adeno-
sine triphosphate (ATP)."

Simplified Text: "A mitochondrion is a
part of most cells that acts like a power-
house. It has two membranes and makes
energy for the cell by producing some-
thing called ATP.< |eot;d| >"

Text to Simplify: <Insert Text Here>
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Your Output:
C Skipping or Rejecting Simplification

We choose to skip or reject the simplification step
under the following conditions: (1) the paragraph
is too short relative to its full document; (2) the
paragraph is too long; or (3) the transformation is
significantly shorter or longer than the original text.

Condition (1) is based on two key observations.
First, some textual artifacts, like titles and author
names, don’t require simplification. Second, very
short inputs often trigger text completion instead
of simplification. For example, the input ""'MA-
HATMA GANDHI'" generates a passage about the
person rather than a simplified version. To handle
such cases, we use heuristics to determine whether
a document or paragraph should be skipped. First,
we apply a hard rule: a document is skipped if
there is only one paragraph or the minimum para-
graph length is greater than or equal to the standard
deviation of paragraph token counts within a docu-
ment. Otherwise, each paragraph in the document
is evaluated based on two criteria: it is skipped if
it contains 10 or fewer space-separated words or
if its GPT-2 token count falls below the quan-
tile threshold. The quantile threshold varies by
domain (e.g., 0.25 for books, 0.15 for others). For
example, for the books domain, the quantile thresh-
old is 0.25 (25th percentile), meaning paragraphs
with token counts below the 25th percentile will be
skipped.

Condition (2) is based on the observation that
paragraphs exceeding 1,500 tokens tend to be struc-
tured texts like tables, name lists, or tables of con-
tents, which do not need simplification. To handle
such cases, we simply skip the paragraph if it ex-
ceeds 1,500 tokens. While quantile heuristics could
be used, we chose the simpler heuristic.

Condition (3) is motivated by two observations.
First, we observed that when asked to simplify a
long input, the model tends to summarize it, signif-
icantly shortening the text and losing its original
structure. Second, the model sometimes appends
extra text, such as explanations after the answer.
To detect cases where the output is too short or too
long relative to the source, we compute the doc-
ument length ratio (output_length/source_length)
and reject outputs with a ratio below 0.5 or above
1.5 (i.e. a change of more than 50%), reverting to
the original paragraph.



D Training Hyperparameters

For pretraining all of our models, to ensure smooth
convergence, we employ a warmup ratio of 5%
alongside a linear learning rate scheduler. The ef-
fective batch size is set to 384, achieved by running
a batch size of 4 per GPU across 8 GPUs with 12
gradient accumulation steps. A preliminary two-
stage learning rate sweep on 10% of the human-
written corpus helped us determine a final learning
rate of 6e-4.

The experimental configuration for finetuning
on SuperGLUE tasks varies per task, depending on
dataset size: for smaller tasks such as CB, COPA,
RTE, WiC, and WSC, we use an effective batch
size of 8 (distributed as one per GPU on 8 GPUs),
whereas for larger datasets like BoolQ, MultiRC,
and ReCoRD, an effective batch size of 32 (4 per
GPU on 8 GPUs) is utilized. For all tasks, we
perform a grid search over 1-2 epochs, exploring
learning rates ranging from 2e-6 to le-4, and select
the optimal hyperparameters for each pretrained
model based on their highest macro F1 score on the
validation sets. The use of macro F1 is particularly
crucial as it offers a more balanced evaluation in
scenarios where class imbalance might otherwise
skew accuracy metrics; in the worst case, we found
models collapsing to only predicting a single label
for the entire dataset, indicating too much bias to-
wards the tokens for one of the labels. We therefore
avoid selecting a model that exhibits such imbal-
anced prediction strategies. We include the final
macro F1 scores for gpt2-hw and gpt2-simp in
Table 6.

E SuperGLUE Prompts

The following illustrate our prompt structures for
each of the 8 SuperGLUE tasks:
For BoolQ, a question is paired with a passage,
and the binary answer is appended:
Question: Is water wet?
Passage: Water is a liquid at room tem-
perature with cohesive properties.
Answer: Yes

For CB, a premise and a hypothesis are provided,
followed by a label indicating their relationship:

Premise: The new policy will reduce
emissions.

Hypothesis: The policy is effective in
reducing emissions.
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Label: Contradiction

For COPA, a premise, a question, and two
choices are presented; the answer indicates the
most plausible outcome:

Premise: Sarah forgot her umbrella.

Question: What is the most likely out-
come?

Choice 1: She got wet in the rain.
Choice 2: She stayed dry. Answer: 2
For MultiRC, each candidate answer is treated

as a separate entry, and the model classifies its
correctness:

Passage: The experiment showed a sig-
nificant increase in reaction times.

Question: Did the reaction times in-
crease?

Candidate Answer: Yes, they did.
Is this answer correct? Yes
For ReCoRD, the passage is first cleaned by re-
moving any @highlight tokens. The query is then
truncated at the @placeholder (removing it and all
subsequent text), and concatenated with the cleaned
passage. The gold answer is appended so that the

model learns next-token prediction for the missing
entity:

In the heart of the desert, ancient ruins
spoke of a lost civilization. A recent dis-
covery suggests that Remnants

For RTE, a premise and a hypothesis are pro-
vided with a label indicating entailment:
Premise: The cat sat on the mat.
Hypothesis: A cat is resting on a mat.
Label: Entailment
For WiC, a target word is given along with two
sentences, and the task is to determine if the word’s
meaning is the same in both:
Word: bank
Sentence 1: I sat on the river bank.

Sentence 2: I deposited money at the
bank.

Same meaning? No



For WSC, a sentence is provided that requires
resolving a pronoun reference:

Text: The trophy didn’t fit in the brown
suitcase because it was too large.

Is the reference correct? Yes

F Perplexity Spike and Domain-wise
Perplexity

G Train Loss

The spikes in the validation perplexity of
gpt2-simp are due to instabilities during pretrain-
ing. Figure 6 shows the training loss for both mod-
els. Note that in both setups, the spikes occurred
at around the same time. However, it didn’t show
a spike for gpt2-hw because the checkpoint vali-
dation occurred before the spike, and by the time
the next checkpoint was reached, gpt2-hw had al-
ready recovered. Our hypothesis is that there must
have been very bad batches of data at those steps
which caused the model to diverge. However, we
continued the training since the model ended up
recovering in later steps.

The domain-wise perplexity of gpt2-hw and
gpt2-simp is presented at Figure 5. gpt2-simp
exhibits perplexity comparable to gpt2-hw, differ-
ing by 6 to 9 points across all domains.

H Official SuperGLUE Results

Table 5 showcases the official results obtained
from the online submission portal of SuperGLUE.
gpt2-simp scores 50.3, only 2.2 lower than
gpt2-hw, which scores 52.5.

I Domain-Ablation Results

Examining the results for each individual task in
our domain-ablations (see Figure 4) reveals further
subtleties. COPA and RTE show particularly strong
sensitivity to domain removal, and in opposite ways
for human-written vs. simplified datasets. For
COPA, excluding books or web from the human-
written corpus reduces accuracy by up to 5 points,
but excluding these same domains from the sim-
plified corpus actually improves accuracy by 2-3
points. A likely explanation is that COPA scenarios
are often grounded in nuanced, real-world contexts
that the human-written books domain captures bet-
ter than its simplified counterpart. For example:

Premise: “The host cancelled the party.”
Choice 1: “She was certain she had the
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Choice 2: “She worried she would catch
the flu.”

Label: “Choice 1”

By contrast, RTE also suffers large losses from
excluding the books and web domains in the
human-written corpus, yet still sees small drops
when those domains are removed from the simpli-
fied corpus. Meanwhile, removing the academic,
social media, or wiki domains from the human-
written dataset causes only minor performance de-
creases, whereas omitting them from the simplified
dataset actually produces moderate gains. This
pattern suggests that, for tasks like RTE requiring
more complex reading comprehension, the simpli-
fied versions of certain domains (e.g., academic or
wiki) may not convey the linguistic subtleties well
enough. For example:

Premise: “It rewrites the rules of global
trade, established by the General Agree-
ment on Tariffs and Trade, or GATT, in
1947, and modified in multiple rounds of
negotiations since then.”

Hypothesis: “GATT was formed in

1947
Label: “Not Entailment”

Overall, these findings show that even seem-
ingly small shifts in domain coverage can have
task-specific consequences, and that the linguistic
complexity of the text in a domain may be criti-
cal, not only for accurately capturing the nuances
in the content, but also for developing the linguis-
tic foundations appropriate for certain downstream
tasks. Maintaining diversity in pretraining data,
while also aligning text complexity to the needs of
each target task, appears to be key in optimizing
performance.
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Figure 5: Domain-wise perplexity vs. tokens seen graphs on the human-written validation set for both gpt2-hw and
gpt2-simp.

Avg.  BoolQ CB COPA  MultiRC ReCoRD RTE WiC WSC
Acc. F1/ Acc. Acc. F1,/EM F1/EM Acc. Acc. Acc.

gpt2-hw 525 685  59.8/740 466 64.0/147 18.1/17.8 584 624 603
gpt2-simp 503 669  47.9/69.6 478 639/147 182/179 544 614 555
(22)  (-1.6)  (-11.97-44)  (+12)  (-0.1/0.0) (+0.1/7+0.1) (-4.0) (-1.0) (-4.8)

Table 5: Comparison of gpt2-hw vs. gpt2-simp scores on the official test set metrics on the eight SuperGLUE
tasks. For BoolQ, COPA, RTE, WiC, and WSC the metric is Accuracy; for CB the metrics are F1 / Accuracy; for
MultiRC the metrics are F1, / EM; for ReCoRD the metrics are F1 / Accuracy. The Avg. column indicates the
overall score. The row below the Simplified scores shows the difference from Baseline (green if higher, red if lower,
gray if equal).

— gpt2-hw gpt2-simp
10
9
|
|
8 \
a7
o
—
£
©
= 6
5
4 WWMWWW
3
0.0 0.5 1.0 1.5 2.0
Tokens Seen (in billions) 1e9

Figure 6: Train loss vs. tokens seen graphs for both
gpt2-hw and gpt2-simp.
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Avg. BoolQ CB COPA MultiRC  ReCoRD RTE
gpt2-hw 59.8 64605 589+12 522+£23 679+04
gpt2-simp 583 63.1+£0.6 55.1£11.6 51.1£1.7 68.0+£0.0

(-1.5) (-1.5) (-3.8) (-1.1) (+0.1)

WiC WSC

- 599425 63.6=1.1 51.3+£04
- 56.741.1 62.5+1.5 512405
- (-3.2) (-1.2) -0.1)

Table 6: Comparison of gpt2-hw vs. gpt2-simp macro F1 scores on 7 out of 8 SuperGLUE task validation sets.
No values are included for ReCoRD since it is not a fixed-choice task.

18



	Introduction
	Related Work
	Creating the Pretraining Datasets
	Human-Written Corpora
	Text Simplification via Large Language Model
	Resulting Simplified Texts

	Experimental Setup
	Model Architecture and Training Details
	Pretraining Configurations
	Human-Written vs. Simplified
	Domain-Ablation Studies

	Downstream Tasks

	Results and Discussion
	Dataset Complexity Verification
	Main Comparison: Human-Written vs. Simplified
	Language-Modeling Performance
	SuperGLUE Performance
	Grammatical Generalization (BLiMP)

	Domain-Ablation Results

	Conclusion
	Manual selection of Dolma shards
	Text Simplification Prompt
	Skipping or Rejecting Simplification
	Training Hyperparameters
	SuperGLUE Prompts
	Perplexity Spike and Domain-wise Perplexity
	Train Loss
	Official SuperGLUE Results
	Domain-Ablation Results

