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Abstract

Improving the quality and size of the training001
corpus is known to enhance overall downstream002
performance of language models on general003
language understanding tasks. However, the004
impact of text complexity on downstream per-005
formance has been less studied. Text complex-006
ity refers to how hard a text is to read, and is007
typically estimated from surface cues such as008
word choice, sentence length, and vocabulary009
diversity while we keep the underlying text con-010
tent constant. Our approach reduces surface-011
level complexity—shorter sentences, simpler012
words, lower vocabulary diversity—while keep-013
ing core text content constant. We ask two core014
questions: (1) Does text complexity matter in015
pretraining? and (2) How does the text com-016
plexity of our pretraining corpora affect the017
performance of language models on general018
language understanding tasks? To answer these019
questions, we simplify human-written texts us-020
ing a large language model (with the goal of021
retaining the core text content) and pretrain022
GPT2-small models on both the original and023
simplified versions. We show empirical evi-024
dence that reducing surface-level complexity025
does not significantly affect performance on026
general language understanding tasks, indicat-027
ing that there are other corpus characteristics028
that play a more important role.029

1 Introduction030

Let’s compare two versions of text:031

(A) As the sunset cast its warm orange glow over032

Manila Bay, people relaxed on the sideline033

benches, enjoying the peaceful view of the034

sunset.035

(B) The sunset gave Manila Bay a warm, orange036

light. People sat on the benches and enjoyed037

the view of the sunset.038
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Figure 1: Relative performance of gpt2-simp (trained
on simplified texts) vs. gpt2-hw (trained on human-
written texts) across the 8 SuperGLUE tasks shows min-
imal differences, suggesting text complexity has little
impact on general language understanding. Accuracy is
used for all tasks.

The two versions convey the same core mean- 039

ing, but one uses more nuanced, complex language, 040

whereas the other is simpler and less nuanced. This 041

can be likened to lossy compression, where ver- 042

sion (B) requires fewer bits to represent the in- 043

formation in (A) but loses some of its nuance. It 044

compresses by using common words and simpler 045

sentence structures while retaining the core infor- 046

mation. 047

What if our corpus is more like (B)? Can we 048

still learn useful representations by training solely 049

on simplified text with a simpler vocabulary and 050

sentence structure? To answer this, we manipu- 051

late surface-level complexity—shorter sentences, 052

simpler words, lower vocabulary diversity—while 053

holding core content constant, and measure down- 054

stream performance. 055

It is well-known that language models acquire 056

world knowledge during pretraining (Petroni et al., 057
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2019; Roberts et al., 2020; Zhang et al., 2021; Wei058

et al., 2022), and transfer learning is more effective059

when the pretraining corpus aligns with the target060

task domain (Ruder and Plank, 2017; Gururangan061

et al., 2020). For example, pretraining on medical062

texts and fine-tuning on medical tasks is more effec-063

tive than pretraining on social media texts. In other064

words, a model’s knowledge significantly impacts065

its downstream performance. Therefore, to isolate066

the effect of text complexity, it’s crucial to control067

for core text content. In this paper, we ask two core068

questions:069

(1) Can we learn useful representations in our070

base models by training solely on simpler text,071

with simpler vocabulary and sentence struc-072

ture?073

(2) How does the text complexity of our pretrain-074

ing corpora impact language model perfor-075

mance on general understanding tasks?076

To answer these questions, we collect human-077

written texts and transform them into simpler lan-078

guage using a Large Language Model (LLM) while079

preserving the core text content. We pretrain GPT2-080

small models (Radford et al., 2019) from scratch081

in two controlled setups, one on human-written082

(more complex) texts and another on the simplified083

version of the same texts. Lastly, we finetune and084

evaluate these models on the SuperGLUE bench-085

mark (Wang et al., 2019), which is a collection of086

general language understanding tasks.087

Our empirical evidence shows that reducing088

surface-level complexity features does not signif-089

icantly impact performance on general language090

understanding tasks. This indicates that the form of091

the text alone plays a limited role at the pretraining092

stage.093

2 Related Work094

Text complexity (also known as readability).095

Text complexity or readability refers to how dif-096

ficult a text is to understand (DuBay, 2004), in-097

fluenced by linguistic factors such as word choice098

(e.g., "utilize" vs. "use"), sentence structure (com-099

plex vs. simple), and content type (academic vs.100

children’s books) (Dale and Chall, 1948, 1949;101

Graesser et al., 2004). Although other factors such102

as the reader’s background knowledge also affect103

readability (Ozuru et al., 2009), this work focuses104

solely on linguistic aspects.105

Several metrics have been proposed for readabil- 106

ity such as Flesch Reading Ease (Flesch, 1948) 107

(FRE), Dale–Chall (Dale and Chall, 1948), and 108

SMOG (Mc Laughlin, 1969). These formulas rely 109

on surface-level features like text length, word 110

count, and word length. While they’re useful es- 111

timates, they don’t tell the whole story. This lim- 112

itation has prompted the use of machine learning 113

and deep learning approaches (Hancke et al., 2012; 114

Imperial and Ong, 2021; Chatzipanagiotidis et al., 115

2021; Imperial, 2021; Meng et al., 2020) to capture 116

features beyond the surface-level, such as coher- 117

ence and writing style. More recently, researchers 118

have begun exploring the use of Large Language 119

Models (LLMs) for estimating readability (Trott 120

and Rivière, 2024; Lee and Lee, 2023; Rooein et al., 121

2024). LLMs have shown strong correlations with 122

human judgments compared to traditional formulas 123

even without explicit finetuning (Trott and Rivière, 124

2024). However, using an LLM to score a large 125

corpus is costly. For this reason, we use FRE to 126

measure the complexity of our corpus. 127

Text simplification. Text simplification (TS) 128

aims to make text easier to understand while pre- 129

serving content (Agrawal and Carpuat, 2023; Alva- 130

Manchego et al., 2019; Truică et al., 2023). While 131

simplified texts tend to be shorter, that is not al- 132

ways the case (Shardlow, 2014). This is different 133

from Text Summarization, where the goal is to 134

shorten the text even if it changes the organization 135

and content. Saggion and Hirst (2017); Shardlow 136

(2014); Kriz et al. (2018) approached TS via word- 137

substitution by replacing difficult words with easier 138

synonyms using a lexicon. Other works approached 139

TS as a translation problem using statistical ma- 140

chine translation (SMT) (Wubben et al., 2012; Scar- 141

ton et al., 2018; Specia, 2010; Xu et al., 2016). 142

Beyond SMT approaches, other works employed 143

deep learning approaches such as encoder-decoder 144

models (Zhang and Lapata, 2017; Alva-Manchego 145

et al., 2019; Agrawal and Carpuat, 2023). Re- 146

cent works explore LLMs for text simplification 147

(Trott and Rivière, 2024; Imperial and Tayyar Mad- 148

abushi, 2023; Farajidizaji et al., 2024; Padovani 149

et al., 2024). While some works are concerned 150

with simplifying texts to a specific grade-level, we 151

are only concerned with making complex texts sim- 152

pler, similar to Trott and Rivière (2024), which 153

observes encouraging results on text simplification 154

just by prompting LLMs. In this work, we use an 155

LLM for text simplification. 156
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Pretraining language models on simple texts.157

In recent years, there has been an increased in-158

terest in pretraining language models on simple159

texts. Zhao et al. (2023) found that a small lan-160

guage model (SLM), called BabyBERTa (Hueb-161

ner et al., 2021), trained on child-directed speech,162

performs on par with larger models on a set of163

probing tasks. Eldan and Li (2023) has shown that164

SLMs can learn to generate coherent and fluent text165

by training on synthetic texts of short stories that166

contain only words that 3- to 4-year-olds usually167

understand. Deshpande et al. (2023); Muckatira168

et al. (2024) has shown that SLMs pretrained on169

simplified language can achieve comparable per-170

formance to larger models when the problem is171

transformed to simple language. There is also a172

research community effort called “The BabyLM173

Challenge” (Warstadt et al., 2023; Hu et al., 2024)174

that emphasizes training on a fixed budget of 100175

million words or less, sourced from texts intended176

for children, which are conceptually simpler.177

Pretraining dataset design. Pretraining on mas-178

sive texts is one of the main drivers of performance179

for modern language models (Brown et al., 2020;180

Kaplan et al., 2020; Hoffmann et al., 2022). Pre-181

training data design choices such as domain com-182

position, quality and toxicity filters, and collection183

date affect model performance in ways that cannot184

be adjusted by finetuning (Longpre et al., 2024).185

The study most closely aligned with ours is186

Agrawal and Singh (2023), which shows that lan-187

guage models pretrained on more complex text188

(e.g., Wikipedia) outperform those trained on sim-189

pler material (e.g., children’s books), with complex-190

ity estimated via Flesch Reading Ease. Because191

their comparison relies on entirely different cor-192

pora, complexity is inevitably bundled with other193

corpus characteristics—topic breadth, register, dis-194

course structure, and domain diversity—that may195

also benefit pretraining.196

We therefore manipulate complexity within the197

same source texts, preserving core text content and198

semantics while varying only surface-level com-199

plexity. This controlled design lets us isolate the200

specific contribution of textual complexity, provid-201

ing a complementary perspective on the broader202

correlation reported by Agrawal and Singh (2023).203

Prior works have shown encouraging results for204

pretraining on simple texts. However, there is no205

work that looks at the direct impact of text complex-206

ity, more specifically at the lexical and syntactic207

level, on the downstream performance of language208

models at a relatively larger data scale i.e. 2.1B 209

tokens and 5 domains. This calls for controlled 210

experiments that will give evidence that a useful 211

model can be learned by just training on simple 212

texts. 213

3 Creating the Pretraining Datasets 214

3.1 Human-Written Corpora 215

We curated human-written English texts from two 216

publicly available datasets: Dolma v1.6 (Soldaini 217

et al., 2024) and Wiki-40B (Guo et al., 2020). Both 218

have permissive licenses1, and our usage complies 219

with their intended purposes. The final corpus has 220

around 2.34B tokens2 uniformly distributed across 221

5 domains: web, books, social media, academic, 222

and wiki. All domains are sourced from Dolma, 223

except for wiki which is from Wiki-40B. We limit 224

our dataset to 2.34B tokens because processing the 225

full corpus would be too expensive. This number is 226

based on Chinchilla Compute-Optimal guideline of 227

1:20 parameter-tokens ratio (Hoffmann et al., 2022) 228

as a rough guideline3. According to this, if we’re 229

using GPT2-small with 124M parameters, 2.48B is 230

a good dataset size. 231

Since Dolma and Wiki-40B are too large, we 232

only process a subset of shards. For Dolma, initial 233

subset per domain was picked manually (see Ap- 234

pendix A for more details). For Wiki-40B, we only 235

use English subset. For each domain subset, we 236

count the tokens and sample the longest documents 237

within the 75th-100th percentile for Wiki-40B and 238

the 50th-75th percentile for Dolma, continuing un- 239

til we reach 468M tokens per domain. We sample 240

within a specific percentile because outliers tend 241

to occur on extreme ends. The sampling strategy 242

prioritizes longer documents to enhance the mod- 243

els’ exposure to extended texts, aiming to improve 244

its ability to capture long-distance relationships 245

between dispersed pieces of information. 246

3.2 Text Simplification via Large Language 247

Model 248

We prompt Llama 3.1 8B instruction model 249

(Grattafiori et al., 2024) to transform human- 250

written texts into simplified texts. For efficient 251

1ODC-BY license for Dolma, and Creative Commons for
Wikipedia.

2We used GPT2 Tokenizer: https://huggingface.co/
openai-community/gpt2.

3We initially used 117M as parameter count instead of
124M which is why our corpus is 2.34B.
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inference, we use the INT8 quantized version4 of252

the model and vLLM (Kwon et al., 2023) as our253

LLM serving system. We discuss more about the254

prompt engineering and include the final prompt in255

Appendix B.256

We split the documents from the human-written257

corpora into paragraphs, resulting in a total of258

28.5M paragraphs. We apply the transformation259

paragraph-wise because the model tends to sum-260

marize rather than simplify multi-paragraph docu-261

ments. This approach preserves the original con-262

tent and structure. However, not all paragraphs are263

transformed. This can happen under three condi-264

tions: (1) when a paragraph is too short relative265

to its full document; (2) when a paragraph is too266

long; or (3) when the transformation is significantly267

shorter or longer than the original text. In the case268

of (3), we revert to the original text in the final269

corpus. We include a more detailed breakdown of270

these conditions in Appendix C.271

3.3 Resulting Simplified Texts272

The final simplified corpus has around 2.12B to-273

kens. There is a total of 28.5M paragraphs, of274

which 34.9% are not transformed (i.e., 22.21% are275

skipped and 12.69% are transformed but reverted276

back to the original). The domain distribution of277

the paragraphs that are not transformed are as fol-278

lows: web (26.85%), books (25.49%), social media279

(21.90%), academic (6.97%), and wiki (18.80%).280

Overall, this accounts for 36.69% of total tokens of281

the final simplified corpus. Note that most of these282

texts are very short or very long inputs that are283

not informative (e.g., author names, table of con-284

tents, etc.), or already concise enough to require no285

further simplification.286

To get a rough idea of what the simplified texts287

look like, see the following example:288

Original: Your comment really helped289

me feel better the most. I was sitting in290

my office, feeling so bad that I didn’t291

say how inappropriate and out of line his292

comments were, and this helped.293

Simplified: Your comment really helped294

me feel better. I was feeling bad because295

I didn’t speak up when someone made296

inappropriate comments.297

4https://huggingface.co/neuralmagic/
Meta-Llama-3.1-8B-Instruct-quantized.w8a8

4 Experimental Setup 298

In our study, we investigate the effect of text com- 299

plexity on both the pretraining dynamics and down- 300

stream performance of language models. To do 301

this, we compare models trained on human-written 302

texts with those trained on simplified texts and also 303

conduct domain-ablation experiments to gain some 304

insight on the effect of text complexity on different 305

domains. 306

4.1 Model Architecture and Training Details 307

We train GPT2-small models from scratch. Our 308

configuration follows the standard GPT2-small 309

setup: 124M parameter models with 12 transformer 310

layers, 12 attention heads, and a hidden dimension 311

of 768. These specifications are consistent with the 312

original GPT2 publication (Radford et al., 2019) as 313

implemented by HuggingFace5. All experiments 314

are conducted using 8x P100 GPUs. 315

4.2 Pretraining Configurations 316

4.2.1 Human-Written vs. Simplified 317

We investigate how text complexity influences the 318

model’s ability to learn adaptable representations. 319

Our primary motivation is to assess whether re- 320

ducing lexical and syntactic complexity—while 321

preserving semantic content—affects pretraining. 322

By comparing a model trained on original human- 323

written texts with one trained on simplified ver- 324

sions, we aim to isolate the specific role of text 325

complexity. 326

In our experiments, both models train for a sin- 327

gle epoch. The baseline model, gpt2-hw, pro- 328

cesses about 2.34B tokens from human-written 329

texts, while the simplified text model, gpt2-simp, 330

is exposed to around 2.12B tokens. Additionally, 331

human-written, domain-specific validation sets of 332

roughly 23.4M tokens (about 5% of each domain) 333

are evaluated every 300M tokens for regular check- 334

points. Details on hyperparameter selection are 335

provided in Appendix D. Pretraining for both mod- 336

els requires approximately 16 hours. 337

4.2.2 Domain-Ablation Studies 338

A key aspect of our research examines whether 339

text complexity’s impact varies across content do- 340

mains. The domain-ablation experiments address 341

this by systematically omitting one domain at a 342

time and observing the effect on model perfor- 343

mance. This approach is based on the idea that 344

5https://huggingface.co/gpt2
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certain domains—such as legal or academic texts,345

which require a high degree of nuance—may rely346

more on complex linguistic structures, while other347

domains can effectively communicate core infor-348

mation even when simplified.349

To investigate, we train 10 models—five on350

human-written texts and five on simplified texts. In351

each ablation run, one of the five domains is omit-352

ted, removing approximately 468M tokens from353

the training data. Pretraining for these ablation354

experiments takes around 13 hours per run, and355

the resulting models are fine-tuned on the Super-356

GLUE benchmark. This evaluation aims to deter-357

mine whether omitting complex linguistic struc-358

tures in specific domains differentially affects the359

model’s general language understanding.360

4.3 Downstream Tasks361

To assess whether pretraining differences influ-362

enced by text complexity impact downstream per-363

formance, we fine-tune our pretrained models on364

the SuperGLUE benchmark (Wang et al., 2019),365

which offers a comprehensive suite for evaluating366

general language understanding. Our evaluation367

covers eight core tasks: BoolQ, CB, COPA, Mul-368

tiRC, ReCoRD, RTE, WiC, and WSC.369

For each task, we reformat the data into prompt-370

based inputs by appending the correct label and371

computing loss only on these label tokens. This372

ensures the model aligns its predictions with the373

desired output without being distracted by other374

tokens. During inference, candidate label tokens375

are appended to the prompt, and the candidate with376

the highest total log probability is selected (see377

Appendix E for examples).378

The fine-tuning phase involves a per-task grid379

search for the best hyperparameters with a total380

combined runtime of approximately 26 hours per381

model. More details on hyperparameter selection,382

grid search, and final model selection are provided383

in Appendix D.384

For evaluation, we use accuracy for 5 tasks385

(BoolQ, COPA, RTE, WiC, and WSC). For CB,386

MultiRC, and ReCoRD, we deviate from the offi-387

cial metrics since they do not reliably reflect per-388

formance in our setup. In CB, we report only ac-389

curacy—omitting F1, as predicting a single neutral390

label can boost F1 by over 11 points on a small,391

imbalanced dataset (16/250 in train, 5/56 in valida-392

tion). For MultiRC, we report only micro F1 (equiv-393

alent to accuracy) and omit Exact Match (EM),394

which measures perfect passage-wise recall. For395
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Figure 2: Flesch Reading Ease (FRE) scores of the
human-written and simplified texts on each domain.
Some documents fall outside the 0-100 range, so we
clip them to 0 and 100 respectively.

ReCoRD, we rely solely on EM, as token-overlap 396

F1 can be inflated by partial matches. For trans- 397

parency, we include additional results and analysis 398

on the official metrics in Appendix H. 399

Zero-shot syntactic probe (BLiMP). To probe 400

grammar learning without further supervision, we 401

also evaluate both models on the BLiMP suite 402

(Warstadt et al., 2020). BLiMP contains 67,000 403

minimal sentence pairs for 12 syntactic and mor- 404

phological phenomena (e.g. subject–verb agree- 405

ment, reflexive binding). Following Warstadt et al. 406

(2020), we score a model correct when it assigns 407

higher (log) probability to the grammatical member 408

of each pair. No fine-tuning is performed; this is a 409

strict zero-shot test. 410

5 Results and Discussion 411

We performed three independent runs with differ- 412

ent random seeds. For each run, we selected the 413

best result over our fixed hyperparameter grid, and 414

report the average of those three best scores. Ran- 415

dom seeds were fixed for full reproducibility. 416

5.1 Dataset Complexity Verification 417

Is our simplified text really simpler? To answer that 418

question, we compute corpus-level complexity met- 419

rics presented in Table 3 and document-level text 420

complexity using the Flesch Reading Ease or FRE 421

(Flesch, 1948). The simplified corpus has fewer 422

words, lower Type-Token Ratio (TTR), and lower 423

Unigram Entropy than its human-written counter- 424

part which are all indicators of reduced complexity 425
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Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC

Most Frequent 47.7 62.2 22.2 55.0 59.9 31.5 52.7 50.0 63.5

gpt2-hw 57.7 67.7± 0.5 70.2± 1.0 56.5± 2.3 68.1± 0.4 19.0± 0.6 61.4± 2.0 64.2± 0.9 54.8± 1.7
gpt2-simp 56.9 66.7± 0.3 70.8± 2.7 54.2± 2.1 68.1± 0.0 17.9± 0.2 59.7± 1.0 63.1± 1.4 54.5± 3.4

(-0.9) (-1.0) (0.6) (-2.3) (0.0) (-1.2) (-1.7) (-1.0) (-0.3)

Table 1: Comparison of gpt2-hw and gpt2-simp average accuracy scores across 3 runs on the validation sets of
eight SuperGLUE tasks. The scores are averaged from the best scores of the grid search for each seed. The Avg.
column is the average of the eight task scores across 3 runs. The Most Frequent baseline scores are from the official
SuperGLUE paper. The last row shows the difference between gpt2-simp and gpt2-hw (green if higher, red if
lower, gray if equal).

Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC

Most Frequent 47.1 62.3 48.4 50.0 61.1 32.5 50.3 50.0 65.1

gpt2-hw 56.5 68.5 74.0 46.6 64.0 17.8 58.4 62.4 60.3
gpt2-simp 54.7 66.9 69.6 47.8 63.9 17.9 54.4 61.4 55.5

(-1.8) (-1.6) (-4.4) (+1.2) (-0.1) (+0.1) (-4.0) (-1.0) (-4.8)

Table 2: Comparison of gpt2-hw and gpt2-simp accuracy scores from a single run submitted to the official test sets
of eight SuperGLUE tasks. The Avg. column is the average of the eight task scores. The Most Frequent baseline
scores are from the official SuperGLUE paper. The last row shows the difference between gpt2-simp and gpt2-hw
(green if higher, red if lower, gray if equal).

Corpus Words Types TTR Entropy

human-written 1.98B 7.98M 0.40% 10.75
simplified 1.83B 6.04M 0.33% 10.38

Table 3: Corpus statistics. Words are space-separated
words, Types are unique word count, TTR is Type-
Token Ratio, and Entropy refers to Unigram Entropy.
Lower TTR means lower lexical diversity. Lower En-
tropy means lower complexity.

of simplified corpus.426

For computing FRE, we use427

py-readability-metrics6. FRE considers428

text length, word count, and syllables per word,429

offering a rough complexity measure. A higher430

FRE implies simpler text (e.g., scores of 60 and431

above are considered easy; scores between 50 and432

60 are fairly difficult; and scores below 50 are433

considered hard). Although it does not capture434

phenomena such as rare words or intricate syntax,435

we use it for its practicality and simplicity. We436

use FRE to confirm that our manipulation changed437

surface cues correlated with complexity, not as a438

full measure of syntactic or lexical complexity.439

Figure 2 shows that the FRE distribution of our440

simplified corpus is consistently higher than that441

of the human-written corpus across all domains.442

Some documents fall outside the 0–100 range, so443

6https://github.com/cdimascio/
py-readability-metrics

Figure 3: Perplexity vs. tokens seen graphs on the
human-written validation set for both gpt2-hw and
gpt2-simp. Perplexity is the exponentiation of loss
and quantifies the model’s "uncertainty."

we clip negative values to 0 and values above 100 444

to 100 (e.g., very long documents or texts with no 445

punctuations). Notably, the academic, and wiki 446

domains are more complex than others. 447

5.2 Main Comparison: Human-Written vs. 448

Simplified 449

5.2.1 Language-Modeling Performance 450

To compare the relative language-modeling perfor- 451

mance of gpt2-simp with gpt2-hw in modeling 452

human-written text, we compute the perplexity of 453

both models on held-out human-written texts. Fig- 454

ure 3 shows that gpt2-simp exhibits comparable 455

6
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Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Task Performance

Full Dataset

No Academic (-20%)

No Books (-20%)

No Socmed (-20%)

No Web (-20%)

No Wiki (-20%)

58.3 68.2 71.4 58.0 68.3 18.4 61.7 64.9 55.8

-1.5 +0.1 -1.8 -3.0 -1.0 -0.1 -0.4 -2.4 -3.8

-1.8 -1.1 0.0 -5.0 -2.2 -1.0 -4.3 -5.3 +4.8

-1.7 -1.8 -1.8 -6.0 -0.5 -1.1 -1.4 -3.1 +1.9

-2.7 -1.2 -3.6 -5.0 -1.5 -1.6 -4.3 -6.1 +1.9

+0.5 +0.2 +3.6 +1.0 -0.2 -2.6 -0.4 -0.5 +2.9

Human-Written Texts

Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Task Performance

Full Dataset

No Academic (-20%)

No Books (-20%)

No Socmed (-20%)

No Web (-20%)

No Wiki (-20%)

57.4 66.7 71.4 56.0 68.2 17.9 60.3 64.0 54.8

-0.8 +1.3 0.0 -5.0 -0.7 -0.3 +2.2 -0.5 -3.8

-1.3 -2.1 -1.8 +2.0 -3.1 -1.6 -2.9 -3.6 +2.9

-1.1 -0.2 -1.8 -4.0 -0.5 -0.8 +2.2 -2.5 -1.0

-1.3 -1.0 0.0 +3.0 -1.1 -0.8 -2.5 -3.6 -4.8
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Figure 4: A heatmap of the differences on SuperGLUE task scores when removing one domain at a time from
both the human-written and simplified datasets. Blue represents an increase in performance while red represents a
decrease.

perplexity with gpt2-hw. The results are not sur-456

prising since a slight difference in the distribution457

between human-written and simplified texts is ex-458

pected (e.g., stylistic differences and word choices).459

However, it is interesting to note that despite train-460

ing solely on simplified texts, gpt2-simp was able461

to learn representations that can model human-462

written texts, comparable to gpt2-hw. These re-463

sults suggest that the learned representations on464

simplified texts may be suitable for adaptation to465

human-written texts. For a detailed discussion on466

the spike in perplexity for gpt2-simp and domain-467

level perplexity, see Appendix F.468

5.2.2 SuperGLUE Performance469

Table 1 summarizes performance on the valida-470

tion sets for eight SuperGLUE tasks. gpt2-simp471

achieves an average score of 57.4, just below the472

58.3 of gpt2-hw. Most tasks show only slight dif-473

ferences between the models. Similarly, Table 2474

shows that on the test set, gpt2-simp reaches an475

average of 54.7 compared to 56.5 for gpt2-hw, re-476

flecting a very modest overall gap. While a few477

tasks even register small improvements, most dif-478

ferences remain minimal. These observations in-479

dicate that reducing linguistic complexity while480

keeping the core meaning intact has a limited ef-481

fect on downstream performance.482

5.2.3 Grammatical Generalization (BLiMP) 483

Model BLiMP accuracy

gpt2-hw 0.7470
gpt2-simp 0.7459

Table 4: Zero-shot grammaticality accuracy on BLiMP
(Warstadt et al., 2020). Each of the 67,000 sentence
pairs in the benchmark contains a grammatical sentence
and a minimally different ungrammatical counterpart; a
model is correct when it assigns higher log-probability
to the grammatical sentence. Chance performance is
50%. The slight gap between gpt2-hw (74.70%) and
gpt2-simp (74.59%) is negligible compared with the
sampling error of BLiMP. Thus, simplifying the pre-
training corpus does not seem to diminish the models’
ability to learn core syntactic regularities.

Both models are essentially tied (∆ ≈ 0.1 per- 484

centage points), far above chance (50%) but be- 485

low the 83% reported for GPT-2 Large (774M 486

parameters). Interestingly, gpt2-simp does not 487

lose grammatical competence despite having seen 488

fewer word types. A plausible explanation is that 489

by shrinking the vocabulary and shortening sen- 490

tences, we reduce the number of “surface facts” 491

the network must memorize, freeing capacity to in- 492

ternalize abstract syntactic regularities faster—an 493

idea also suggested by Eldan and Li (2023). Fu- 494
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ture work could quantify this learning-efficiency495

hypothesis by tracking BLiMP accuracy over train-496

ing steps.497

5.3 Domain-Ablation Results498

Our domain-ablation experiments (see Figure 4)499

systematically omit each domain from the train-500

ing corpus in both human-written and simplified501

datasets, one at a time, to assess each domain’s502

importance for downstream tasks under different503

linguistic conditions.504

On the average SuperGLUE scores, omitting505

almost any domain slightly reduces performance.506

The primary exception is the wiki domain: re-507

moving it from the human-written dataset yields508

a modest improvement, while excluding it from509

the simplified dataset causes a small drop. In510

contrast, the other four domains incur greater511

losses when removed from human-written data512

compared to when they are removed from simpli-513

fied data—seemingly more so for the academic and514

web domains—suggesting that complex, human-515

written text in these domains captures nuanced style516

and content better, whereas wiki text may be more517

effective in simplified form.518

A detailed discussion on individual task effects519

is provided in Appendix I.520

6 Conclusion521

In this work, we investigated the role of text522

complexity in the pretraining of language mod-523

els, specifically examining whether simplified lan-524

guage, while preserving core text content, can yield525

representations that are as effective as those learned526

from more complex, human-written texts. Our ex-527

periments, which compared GPT2-small models528

pretrained on human-written versus simplified cor-529

pora, reveal that reducing lexical and syntactic com-530

plexity does not significantly impair downstream531

performance on a broad set of language under-532

standing tasks such as those in the SuperGLUE533

benchmark. Zero-shot BLiMP results show that534

grammatical generalization is preserved—and may535

even be easier to acquire—when lexical diversity536

is reduced, reinforcing our claim that surface form537

plays a limited role in core representation learn-538

ing. These findings suggest that reducing surface-539

level complexity does not substantially affect down-540

stream performance, indicating that the form of the541

text alone plays a limited role at the pretraining542

stage.543

While our study is limited to the GPT2-small 544

architecture and a specific experimental setting, the 545

evidence presented here motivates future research 546

into the interplay between text complexity, core text 547

content, and model performance across different 548

architectures and larger-scale datasets. 549

Limitations 550

Our study has several limitations. First, the LLM- 551

based simplification process can introduce incon- 552

sistencies in the core text content due to the tenden- 553

cies of LLMs to hallucinate. Second, the Flesch 554

Reading Ease score only measures surface-level 555

features and may not fully reflect deeper linguis- 556

tic nuances. Third, our experiments are restricted 557

to the GPT2-small architecture, so it is unclear 558

how these findings extend to larger models with 559

more parameters or different architectures. Fourth, 560

our evaluation relies solely on the SuperGLUE 561

benchmark, which might not capture all facets of 562

language understanding, especially for more com- 563

plex or generative tasks. Fifth, we did not run 564

per-phenomenon BLiMP analysis; some specific 565

constructions might still be affected by pretraining 566

on simplified corpora. Lastly, our domain-ablation 567

experiments cover only a subset of domains, limit- 568

ing broader domain-specific insights. 569
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A Manual selection of Dolma shards1062

For Dolma7, We manually selected shards to re-1063

duce the total dataset size before we do any of our1064

subsequent subsetting. We list below the specific1065

shards (all are .json.gz) we used from Dolma:1066

books-0000, books-0001,1067

c4-0000, c4-0001,1068

pes2o_v2-0012,1069

reddit-v5-dedupe-pii-nsfw-toxic-0000,1070

reddit-v5-dedupe-pii-nsfw-toxic-0001,1071

reddit-v5-dedupe-pii-nsfw-toxic-00021072

B Text Simplification Prompt1073

The prompt engineering is done through trial-and-1074

error and judged by the authors according to the1075

following qualitative criteria:1076

• Does it use simpler words? By "simpler1077

words," we mean commonly used words.1078

• Does it convert compound or complex sen-1079

tences into simple sentences?1080

• Does it preserve the original content and orga-1081

nization of thoughts?1082

Once we found a prompt that can reliably do1083

all those things on a small sample, we used that1084

prompt to transform the whole corpus.1085

The final prompt is shown below:1086

—1087

Role Description: You are an experi-1088

enced educator and linguist specializing1089

in simplifying complex texts without los-1090

ing any key information or changing the1091

content. Your focus is to make texts1092

more accessible and readable for primary1093

and secondary school students, ensur-1094

ing that the essential information is pre-1095

served while the language and structure1096

are adapted for easier comprehension.1097

—1098

Task Instructions: 1. Read the Following1099

Text Carefully: - Thoroughly understand1100

the content, context, and purpose of the1101

text to ensure all key information is re-1102

tained in the simplified version.1103

2. Simplify the Text for Pri-1104

mary/Secondary School Students:1105

7https://huggingface.co/datasets/allenai/dolma

- Rewrite the text to make it more 1106

accessible and easier to understand. 1107

- Use age-appropriate language and 1108

simpler sentence structures. - Maintain 1109

all key information and do not omit 1110

any essential details. - Ensure that the 1111

original meaning and intent of the text 1112

remain unchanged. 1113

3. Preserve Key Information: - Identify 1114

all essential points, facts, and ideas in 1115

the original text. - Ensure these elements 1116

are clearly presented in the simplified 1117

version. 1118

4. Avoid Adding Personal Opinions or 1119

Interpretations: - Do not introduce new 1120

information or personal views. - Focus 1121

solely on simplifying the original con- 1122

tent. 1123

— 1124

Simplification Guidelines: 1125

Sentence Structure: - Use simple or com- 1126

pound sentences. - Break down long or 1127

complex sentences into shorter ones. - 1128

Ensure each sentence conveys a clear 1129

idea. 1130

Vocabulary: - Use common words famil- 1131

iar to primary and secondary school stu- 1132

dents. - Replace advanced or technical 1133

terms with simpler synonyms or provide 1134

brief explanations. - Avoid jargon unless 1135

it is essential, and explain it if used. 1136

Clarity and Coherence: - Organize the 1137

text logically with clear paragraphs. - 1138

Use transitional words to connect ideas 1139

smoothly. - Ensure pronouns clearly re- 1140

fer to the correct nouns to avoid confu- 1141

sion. - Eliminate redundancies and un- 1142

necessary repetitions. 1143

Tone and Style: - Maintain a neutral and 1144

informative tone. - Avoid overly formal 1145

language. - Write in the third person 1146

unless the text requires otherwise. 1147

— 1148

Output Format: Provide the simplified 1149

text in clear, well-organized paragraphs. 1150

Do not include the original text in your 1151

output. Do not add any additional com- 1152

mentary or notes. Ensure the final output 1153

is free of grammatical errors and is easy 1154
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to read. Output < |eotid| > right after1155

the simplified text.1156

—1157

Example Simplifications:1158

Example 1:1159

Original Text: "Photosynthesis is the pro-1160

cess by which green plants and some1161

other organisms use sunlight to synthe-1162

size foods from carbon dioxide and wa-1163

ter. Photosynthesis in plants generally1164

involves the green pigment chlorophyll1165

and generates oxygen as a byproduct."1166

Simplified Text: "Photosynthesis is how1167

green plants make food using sunlight,1168

carbon dioxide, and water. They use1169

a green substance called chlorophyll,1170

and the process produces oxygen.<1171

|eotid| >"1172

Example 2:1173

Original Text: "Global warming refers to1174

the long-term rise in the average temper-1175

ature of the Earth’s climate system, an1176

aspect of climate change shown by tem-1177

perature measurements and by multiple1178

effects of the warming."1179

Simplified Text: "Global warming means1180

the Earth’s average temperature is in-1181

creasing over a long time. This is part1182

of climate change and is shown by tem-1183

perature records and various effects.<1184

|eotid| >"1185

Example 3:1186

Original Text: "The mitochondrion, of-1187

ten referred to as the powerhouse of the1188

cell, is a double-membrane-bound or-1189

ganelle found in most eukaryotic organ-1190

isms, responsible for the biochemical1191

processes of respiration and energy pro-1192

duction through the generation of adeno-1193

sine triphosphate (ATP)."1194

Simplified Text: "A mitochondrion is a1195

part of most cells that acts like a power-1196

house. It has two membranes and makes1197

energy for the cell by producing some-1198

thing called ATP.< |eotid| >"1199

—1200

Text to Simplify: <Insert Text Here>1201

— 1202

Your Output: 1203

C Skipping or Rejecting Simplification 1204

We choose to skip or reject the simplification step 1205

under the following conditions: (1) the paragraph 1206

is too short relative to its full document; (2) the 1207

paragraph is too long; or (3) the transformation is 1208

significantly shorter or longer than the original text. 1209

Condition (1) is based on two key observations. 1210

First, some textual artifacts, like titles and author 1211

names, don’t require simplification. Second, very 1212

short inputs often trigger text completion instead 1213

of simplification. For example, the input "MA- 1214

HATMA GANDHI" generates a passage about the 1215

person rather than a simplified version. To handle 1216

such cases, we use heuristics to determine whether 1217

a document or paragraph should be skipped. First, 1218

we apply a hard rule: a document is skipped if 1219

there is only one paragraph or the minimum para- 1220

graph length is greater than or equal to the standard 1221

deviation of paragraph token counts within a docu- 1222

ment. Otherwise, each paragraph in the document 1223

is evaluated based on two criteria: it is skipped if 1224

it contains 10 or fewer space-separated words or 1225

if its GPT-2 token count falls below the quan- 1226

tile threshold. The quantile threshold varies by 1227

domain (e.g., 0.25 for books, 0.15 for others). For 1228

example, for the books domain, the quantile thresh- 1229

old is 0.25 (25th percentile), meaning paragraphs 1230

with token counts below the 25th percentile will be 1231

skipped. 1232

Condition (2) is based on the observation that 1233

paragraphs exceeding 1,500 tokens tend to be struc- 1234

tured texts like tables, name lists, or tables of con- 1235

tents, which do not need simplification. To handle 1236

such cases, we simply skip the paragraph if it ex- 1237

ceeds 1,500 tokens. While quantile heuristics could 1238

be used, we chose the simpler heuristic. 1239

Condition (3) is motivated by two observations. 1240

First, we observed that when asked to simplify a 1241

long input, the model tends to summarize it, signif- 1242

icantly shortening the text and losing its original 1243

structure. Second, the model sometimes appends 1244

extra text, such as explanations after the answer. 1245

To detect cases where the output is too short or too 1246

long relative to the source, we compute the doc- 1247

ument length ratio (output_length/source_length) 1248

and reject outputs with a ratio below 0.5 or above 1249

1.5 (i.e. a change of more than 50%), reverting to 1250

the original paragraph. 1251
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D Training Hyperparameters1252

For pretraining all of our models, to ensure smooth1253

convergence, we employ a warmup ratio of 5%1254

alongside a linear learning rate scheduler. The ef-1255

fective batch size is set to 384, achieved by running1256

a batch size of 4 per GPU across 8 GPUs with 121257

gradient accumulation steps. A preliminary two-1258

stage learning rate sweep on 10% of the human-1259

written corpus helped us determine a final learning1260

rate of 6e-4.1261

The experimental configuration for finetuning1262

on SuperGLUE tasks varies per task, depending on1263

dataset size: for smaller tasks such as CB, COPA,1264

RTE, WiC, and WSC, we use an effective batch1265

size of 8 (distributed as one per GPU on 8 GPUs),1266

whereas for larger datasets like BoolQ, MultiRC,1267

and ReCoRD, an effective batch size of 32 (4 per1268

GPU on 8 GPUs) is utilized. For all tasks, we1269

perform a grid search over 1–2 epochs, exploring1270

learning rates ranging from 2e-6 to 1e-4, and select1271

the optimal hyperparameters for each pretrained1272

model based on their highest macro F1 score on the1273

validation sets. The use of macro F1 is particularly1274

crucial as it offers a more balanced evaluation in1275

scenarios where class imbalance might otherwise1276

skew accuracy metrics; in the worst case, we found1277

models collapsing to only predicting a single label1278

for the entire dataset, indicating too much bias to-1279

wards the tokens for one of the labels. We therefore1280

avoid selecting a model that exhibits such imbal-1281

anced prediction strategies. We include the final1282

macro F1 scores for gpt2-hw and gpt2-simp in1283

Table 6.1284

E SuperGLUE Prompts1285

The following illustrate our prompt structures for1286

each of the 8 SuperGLUE tasks:1287

For BoolQ, a question is paired with a passage,1288

and the binary answer is appended:1289

Question: Is water wet?1290

Passage: Water is a liquid at room tem-1291

perature with cohesive properties.1292

Answer: Yes1293

For CB, a premise and a hypothesis are provided,1294

followed by a label indicating their relationship:1295

Premise: The new policy will reduce1296

emissions.1297

Hypothesis: The policy is effective in1298

reducing emissions.1299

Label: Contradiction 1300

For COPA, a premise, a question, and two 1301

choices are presented; the answer indicates the 1302

most plausible outcome: 1303

Premise: Sarah forgot her umbrella. 1304

Question: What is the most likely out- 1305

come? 1306

Choice 1: She got wet in the rain. 1307

Choice 2: She stayed dry. Answer: 2 1308

For MultiRC, each candidate answer is treated 1309

as a separate entry, and the model classifies its 1310

correctness: 1311

Passage: The experiment showed a sig- 1312

nificant increase in reaction times. 1313

Question: Did the reaction times in- 1314

crease? 1315

Candidate Answer: Yes, they did. 1316

Is this answer correct? Yes 1317

For ReCoRD, the passage is first cleaned by re- 1318

moving any @highlight tokens. The query is then 1319

truncated at the @placeholder (removing it and all 1320

subsequent text), and concatenated with the cleaned 1321

passage. The gold answer is appended so that the 1322

model learns next-token prediction for the missing 1323

entity: 1324

In the heart of the desert, ancient ruins 1325

spoke of a lost civilization. A recent dis- 1326

covery suggests that Remnants 1327

For RTE, a premise and a hypothesis are pro- 1328

vided with a label indicating entailment: 1329

Premise: The cat sat on the mat. 1330

Hypothesis: A cat is resting on a mat. 1331

Label: Entailment 1332

For WiC, a target word is given along with two 1333

sentences, and the task is to determine if the word’s 1334

meaning is the same in both: 1335

Word: bank 1336

Sentence 1: I sat on the river bank. 1337

Sentence 2: I deposited money at the 1338

bank. 1339

Same meaning? No 1340
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For WSC, a sentence is provided that requires1341

resolving a pronoun reference:1342

Text: The trophy didn’t fit in the brown1343

suitcase because it was too large.1344

Is the reference correct? Yes1345

F Perplexity Spike and Domain-wise1346

Perplexity1347

G Train Loss1348

The spikes in the validation perplexity of1349

gpt2-simp are due to instabilities during pretrain-1350

ing. Figure 6 shows the training loss for both mod-1351

els. Note that in both setups, the spikes occurred1352

at around the same time. However, it didn’t show1353

a spike for gpt2-hw because the checkpoint vali-1354

dation occurred before the spike, and by the time1355

the next checkpoint was reached, gpt2-hw had al-1356

ready recovered. Our hypothesis is that there must1357

have been very bad batches of data at those steps1358

which caused the model to diverge. However, we1359

continued the training since the model ended up1360

recovering in later steps.1361

The domain-wise perplexity of gpt2-hw and1362

gpt2-simp is presented at Figure 5. gpt2-simp1363

exhibits perplexity comparable to gpt2-hw, differ-1364

ing by 6 to 9 points across all domains.1365

H Official SuperGLUE Results1366

Table 5 showcases the official results obtained1367

from the online submission portal of SuperGLUE.1368

gpt2-simp scores 50.3, only 2.2 lower than1369

gpt2-hw, which scores 52.5.1370

I Domain-Ablation Results1371

Examining the results for each individual task in1372

our domain-ablations (see Figure 4) reveals further1373

subtleties. COPA and RTE show particularly strong1374

sensitivity to domain removal, and in opposite ways1375

for human-written vs. simplified datasets. For1376

COPA, excluding books or web from the human-1377

written corpus reduces accuracy by up to 5 points,1378

but excluding these same domains from the sim-1379

plified corpus actually improves accuracy by 2-31380

points. A likely explanation is that COPA scenarios1381

are often grounded in nuanced, real-world contexts1382

that the human-written books domain captures bet-1383

ter than its simplified counterpart. For example:1384

Premise: “The host cancelled the party.”1385

Choice 1: “She was certain she had the1386

flu.” 1387

Choice 2: “She worried she would catch 1388

the flu.” 1389

Label: “Choice 1” 1390

By contrast, RTE also suffers large losses from 1391

excluding the books and web domains in the 1392

human-written corpus, yet still sees small drops 1393

when those domains are removed from the simpli- 1394

fied corpus. Meanwhile, removing the academic, 1395

social media, or wiki domains from the human- 1396

written dataset causes only minor performance de- 1397

creases, whereas omitting them from the simplified 1398

dataset actually produces moderate gains. This 1399

pattern suggests that, for tasks like RTE requiring 1400

more complex reading comprehension, the simpli- 1401

fied versions of certain domains (e.g., academic or 1402

wiki) may not convey the linguistic subtleties well 1403

enough. For example: 1404

Premise: “It rewrites the rules of global 1405

trade, established by the General Agree- 1406

ment on Tariffs and Trade, or GATT, in 1407

1947, and modified in multiple rounds of 1408

negotiations since then.” 1409

Hypothesis: “GATT was formed in 1410

1947.” 1411

Label: “Not Entailment” 1412

Overall, these findings show that even seem- 1413

ingly small shifts in domain coverage can have 1414

task-specific consequences, and that the linguistic 1415

complexity of the text in a domain may be criti- 1416

cal, not only for accurately capturing the nuances 1417

in the content, but also for developing the linguis- 1418

tic foundations appropriate for certain downstream 1419

tasks. Maintaining diversity in pretraining data, 1420

while also aligning text complexity to the needs of 1421

each target task, appears to be key in optimizing 1422

performance. 1423
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Figure 5: Domain-wise perplexity vs. tokens seen graphs on the human-written validation set for both gpt2-hw and
gpt2-simp.

Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Acc. F1 / Acc. Acc. F1a / EM F1 / EM Acc. Acc. Acc.

gpt2-hw 52.5 68.5 59.8 / 74.0 46.6 64.0 / 14.7 18.1 / 17.8 58.4 62.4 60.3
gpt2-simp 50.3 66.9 47.9 / 69.6 47.8 63.9 / 14.7 18.2 / 17.9 54.4 61.4 55.5

(-2.2) (-1.6) (-11.9 / -4.4) (+1.2) (-0.1 / 0.0) (+0.1 / +0.1) (-4.0) (-1.0) (-4.8)

Table 5: Comparison of gpt2-hw vs. gpt2-simp scores on the official test set metrics on the eight SuperGLUE
tasks. For BoolQ, COPA, RTE, WiC, and WSC the metric is Accuracy; for CB the metrics are F1 / Accuracy; for
MultiRC the metrics are F1a / EM; for ReCoRD the metrics are F1 / Accuracy. The Avg. column indicates the
overall score. The row below the Simplified scores shows the difference from Baseline (green if higher, red if lower,
gray if equal).
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Figure 6: Train loss vs. tokens seen graphs for both
gpt2-hw and gpt2-simp.
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Avg. BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC

gpt2-hw 59.8 64.6± 0.5 58.9± 1.2 52.2± 2.3 67.9± 0.4 - 59.9± 2.5 63.6± 1.1 51.3± 0.4
gpt2-simp 58.3 63.1± 0.6 55.1± 11.6 51.1± 1.7 68.0± 0.0 - 56.7± 1.1 62.5± 1.5 51.2± 0.5

(-1.5) (-1.5) (-3.8) (-1.1) (+0.1) - (-3.2) (-1.2) (-0.1)

Table 6: Comparison of gpt2-hw vs. gpt2-simp macro F1 scores on 7 out of 8 SuperGLUE task validation sets.
No values are included for ReCoRD since it is not a fixed-choice task.
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