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ABSTRACT

We introduce JQBENCH, a new benchmark for evaluating language models on JSON
querying and transformation tasks, where the intent can be given specified using
natural language and/or examples. Whereas JQBENCH is mainly aimed at using the
jq tool, it can be used to evaluate other programming languages that query and/or
transform JSON. Benchmarks are automatically created from two rich sources of
data: Stack Overflow discussions (751 instances with instructions and examples,
called JQSTACK) and the Spider dataset for SQL generation from natural language
(893 instances with instructions and JSON Schema, called JQSPIDER). We describe
and analyze the automated pipeline for benchmark creation, and perform extensive
baseline experiments on different models to analyze the complexity and failure
modes. Using implicit feedback, the best model (Claude Opus 4.1) scores 77% on
the JQSTACK benchmarks and 81% on the JQSPIDER benchmarks. Additionally,
we show (1) that access to the documentation surprisingly does not help, (2) jq
performs comparable to Python, and (3) that automatic feedback (and therefore
examples) is crucial. Besides the final benchmarks, we release the intermediate
artifacts from each generation step (including failed or invalid conversions) as well
as an LLM-friendly version of the documentation, to facilitate further research on
JSON querying and transformation.

1 INTRODUCTION

JSON has become the de facto standard for structured data exchange—powering web APIs, databases,
event streams, and configuration files—and now underpins modern AI workflows, serving as a
common input and output representation for large-language-model (LLM) inference and agentic
workflows. A common subset of tasks involves queries and transformations of JSON representations,
which can be performed with tools such as jsonpath or jq.

Consider, for example, a jq expression (left) that operates on a social media dataset (right) and selects
all users with more than 100 followers and extracts the titles of their posts:

.users[]
| select(.followers > 100)
| {name, posts: [.posts[].title]}

{"users": [{"name": "A",
"followers": 42,
"posts": [{"title": "X"}]}]}

This short query filters on a numerical attribute and simultaneously traverses nested arrays while
yielding a new structure. When given the simple task to “find all elements that are present in both the
arrays” and three input–output examples like [[1, 2, 3, 4], [2, 4, 6, 8, 10]] → [2, 4], models
struggle to generate correct expressions. GPT-5 arrives at

[[.[0][] as $item | select(.[1] | index($item))]]

which does not come close to the simple solution .[0] - (.[0] - .[1]) .

This illustrates both the expressive power of jq and the challenges of generating such transformations
from natural language, especially as the constraints grow more complex. Surprisingly, there is
no benchmark that jointly captures natural-language prompts and executable JSON queries and
transformations.
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In this paper, we propose JQBENCH, a benchmark for JSON querying, filtering, and transformation
from natural language and/or examples, with a specific focus on the jq query language. The flexible
and potentially complex nature of JSON data, the variety of signals that can be part of the input
specification—like natural language, examples and JSON schemas—and the expressive yet concise
and relatively uncommon nature of jq make JQBENCH an interesting benchmark for different
research directions: (1) prompting and agentic workflows using small and large language models, (2)
fine-tuning of small language models, or even (3) symbolic inductive programming.

To this end, we collected Stack Overflow questions tagged with jq, as well as NL-to-SQL tasks
from an improved version of the Spider dataset, and use automated pipelines to convert them into
JQSTACK and JQSPIDER, respectively. From Stack Overflow, our pipeline distills realistic developer
problems into machine-checkable tasks by extracting natural-language context, compiling candidate
jq expressions and input–output examples, and uses an agent to generate and validate multiple test
cases. From Spider, we automatically transform relational databases into JSON databases with
associated JSON schemas and derive equivalent jq programs, enabling benchmarks that require
reasoning over thousands of nested records. Together these sources yield a diverse corpus of 751
(JQSTACK) and 893 (JQSPIDER) JSON querying and transformation tasks that combine authentic
language, rich structure, and automatically verifiable solutions. Additionally, from the JQSTACK
creation process, we release 3641 easier tasks and their solutions that can be used in fine-tuning
research, both directly and as a seed for synthetic data generation.

Experiments on different models reveals that JQBENCH is sufficiently challenging: Highest baseline
of 77% for Claude 4.1 on JQSTACK and 81% on JQSPIDER. Furthermore, the novelty of jq and the
unique JSON-processing setting challenge weaker models, while complex JSON operations remain
difficult even for stronger ones. We show interesting lessons learned from JQBENCH, including the
potential of jq, the importance of implicit feedback based on examples, the “documentation trap” for
capable models in agentic loops, and feasibility of JQBENCH as an interesting PBE benchmark.

In summary, we make the following contributions:

1. We present JQBENCH = JQSTACK ∪ JQSPIDER, a benchmark for generating jq expressions
that query, filter and transform from natural language and/or examples that covers complex
JSON operations over diverse real-world scenarios.

2. We develop an automated pipeline that extracts authentic tasks from Stack Overflow and
Spider, synthesizes and executes jq programs and input examples, and verifies correctness
through execution feedback.

3. We perform thorough baseline evaluations on different large and smaller models, to under-
stand and analyze properties of both JQBENCH and the current state of language models
on jq. Among other experiments, we compare implicit feedback versus explicit feedback
(tools), we compare the uncommon jq language versus the very common Python language,
and we study the importance of the natural language instruction.

2 JQBENCH

This section describes the two collections of problems that make up JQBENCH: JQSTACK (diverse
problems from Stack Overflow with input and output examples) and JQSPIDER (problems adapted
from the Spider dataset with large inputs and a schema). For a primer on jq, we recommend reviewing
the manual (jq, 2025) and formal specification (Färber, 2024).

All prompts and agent tool signatures used in this section are shown in Appendix A. We use OpenAI’s
GPT-4.1 (henceforth called the model) for all data generation. Besides the final dataset, we release
the generation pipeline and all intermediate artifacts, including candidates without a successful
conversion and cached model responses, to facilitate further research and development on JQBENCH.

2.1 JQSTACK

Each data point (u, I, E) in JQSTACK consists of an instruction u, two or more inputs I and one or
more jq expressions E.
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Conversation

Q

A

"Output each element of the
top-level array, in compact
format, as a separate line."

".[]" "-c .[]"

Extract

[[1, 2], 3, {"4": 5}]

[1,2]
3
{"4":5}

(1) instruction, (2) candidates and
(3) examples.
1 2
3

1

2

3

Convert

add_test('test2',
   {"4": 5}', '{"4":5}')

run_code(".[]")

test1 [[1, 2], 3]

name input output

['[1,2]',
 '3']

test2 {"4": 5}
['{"4": 5}',

test3 [1, "test"] ['1',
 'test']

 '{"4":5}']

"Update success!"

[[1, 2], 3]

{"4": 5}

[1, "test"]

run_code(
  ".[] | @json")

['[1, 2]', '3']

['{"4":5}']

['1', 'test']

"Failures: ..." "Success!"

"Using add_test and run_test, find all jq expressions that achieve the
intended goal."

Figure 1: Overview of extraction and conversion of Stack Overflow conversations to JQSTACK tasks.
Components tagged with a star (⋆) are part of the benchmark.

2.1.1 CREATION

We create JQSTACK from all Stack Overflow posts tagged with jq in four steps: (1) information
extraction, (2) annotation, (3) conversion to test cases and (4) filtering. An overview of the extraction
and conversion steps—the core creation process—is shown in Figure 1.

Extraction From each Stack Overflow discussion (question + answers) we instruct the model to
generate a jq task by extracting (1) direct quotes from the discussion that capture the key problem and
solutions, (2) a concise and precise description of the user’s intent, (3) all candidate jq expressions
that satisfy this intent, and (4) optionally, any provided input and output examples.

Annotation Some tasks are not valid, for example, because the instruction involves shell variables
or streaming data (which we currently do not support). Intents and candidate expressions are annotated
with four properties: (1) if the expression expected additional environment inputs, (2) if it expects
streaming input, (3) if it expects multiple input files, and (4) if any information is missing from the
task description to map i to o. Additionally, the model is allowed to mention other problems with the
task and/or the environment that cause it to not be a valid task. This retains 5060 tasks.

Conversion Given the intent, the candidate expressions and the candidate examples, we then
instruct a model in an agentic loop to write a jq expression that satisfies the intent. The agent is given
two tools: add test(n, i, o) adds a named test n where input i is expected to produce output o
and run tests(e) runs jq expression e on all tests, providing compilation and execution results.
Running add test tool twice with the same name will update the test, which the agent can use to
correct test outputs after reflecting on their results. All candidate jq expressions are executed on the
final tests to determine successes. This yields 4392 valid conversions.

Filtering Many tasks are too trivial to challenge large and capable models, for example, a question
to print the value of a field named “text” with a target expression .text . We therefore use a simple
filter to remove tasks solvable by a jq generation prompt without interaction with three models
(GPT-4.1, GPT-4.1 mini and Phi-4 14B) at temperature 0. All 3793 candidates that are solved by at
least one of these models are filtered, leaving 751 challenging tasks that we call JQSTACK.

2.1.2 ANALYSIS

Figure 2 shows the distribution of number of expressions and tests over tasks. Multiple expressions
can be generated, as we (1) instruct the model to generate different expressions based on the candidates
extracted from the post and (2) re-evaluate all expressions that are suggested on the final tests. During
the extraction step, most tasks only have a single (83.9%) or no (10%) example input. The model still
suggests multiple tests, often to evaluate specific (edge) cases (like empty lists or objects).

Each task can be classified based on properties of the input and output JSON. The output can be a
subset (removing values) or superset (adding values) of the input, it can be a new JSON object using
only leaf values extracted from the input or using all leaf nodes and some augmented values, it can

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00
Similarity

2 3 4 5 6 7 8 10 11
Tests

220
125

241222

26 6 1 1 1

Figure 2: Distributions of (top)
similarity to SO solutions and
(bottom) # of tests.

Extr
act

Com
ple

x
Sub

set

Tran
sfo

rm

Sup
ers

et

Aug
men

t
Key

s
0

100

200

300

400

500

600

289 316

50 37 19 23 17

1539
1105

482

233

129
77 76

Kept
False
True

Figure 3: Distribution of failed,
filtered or kept per type of task.

Gpt41
Gpt41Mini

Phi4

02500

Total

0
400
800

1200
1600

In
te

rs
ec

tio
n

Figure 4: Contribution of each
model to task filtering.

have the same structure but with some transformed leaf nodes, or it can be a complex transformation
that fits into none of these boxes. Complex transformations typically extract nodes, transform them,
and then build a new JSON object. Based on the suggested tests, Figure 3 shows the number of failed
conversions, number of filtered and number of kept tasks. Most tasks involve extracting or filtering
(subset) the input JSON. Tasks that involve changing the structure (extract and complex) are notably
harder, as more of them are kept.

Figure 4 shows the number of tasks filtered by each model, as well as their intersections. Even the
smaller models uniquely solve at least some problems. Notably, the performance between GPT-4.1
and it’s smaller variant is surprisingly small (-2%).

2.2 JQSPIDER

Each data point (u, s, e, d) in JQSPIDER consists of an instruction u, the JSON Schema s, a jq
expression e, and the dataset d.

2.2.1 CREATION

We create JQSPIDER in three steps from the repaired Spider dataset (Yang et al., 2025): (1) converting
each database schema to a JSON Schema, (2) converting SQL databases to JSON databases that
adhere to the generated JSON schema, (3) converting SQL queries to jq expressions.

"sailors": [{
  "sid": int,
  "name": string,
  "rating": int,
  "age": int,
  "reserves": [{
    "day": string,
    "boat": {
      "bid": int,
      "name": string,
      "color": string
    }
  }]
}]

4 levels of nesting
Sailors

sid

name

rating

age
Boats

bid

name

color

SQL Database  JSON Schema

Reserves
sid

bid

day

+ syntax
feedback

JSON Database

def f(db):
  ...

"sailors": [{
  "sid": 1,
  "name": "Eugene",
  ...
  "reserves": {
    "day": "9/12",
    "boat": { ... }
  }
}]

schema
feedback

Figure 5: Overview of SQL Database to JSON Database conversion. Components tagged with a star
(⋆) are part of the benchmark.

JSON Schemas We use the model to convert a SQL schema (columns, column types and foreign
keys for each table) to a JSON schema. We instruct the model to choose an appropriate root table
and to leverage nested objects and arrays to represent one-to-one and one-to-many relations. The
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jsonschema Python package1 is used to provide validation feedback. During small-scale empirical
testing, we found that LLMs are able to generate more interesting schemas than symbolic heuristics.

JSON Databases We then use the model to convert the SQL database to a JSON file that adheres to
the generated schema. First, we symbolically generate a trivial JSON format that encodes each table
separately. Second, we iteratively instruct the model to generate a Python function that converts this
JSON file into a new JSON file that adheres to the given schema, using compilation and execution
feedback in each iteration. Figure 5 shows an overview of this conversion. Out of 202 databases, this
process succeeds for 197 of them.

Queries Finally, given the natural language instruction, SQL query, JSON Schema and expected
output of the SQL query on the original database, we iteratively instruct the model to write a jq
expression, again using compilation and execution feedback in each iteration. This process is very
similar to the conversion step in Figure 1 without the add test tool—the tests are provided by the
original SQL queries. This yields 893 benchmark tasks.

2.2.2 ANALYSIS

Figure 6 shows that SQL databases with more tables yield more deeply nested JSON, generally
requiring chained jq expressions. Figure 7 shows that the output types are quite diverse. List outputs
tend to be lists of records. Integers are often COUNT queries. Figure 8 shows that more SQL JOINs
correspond to more pipe characters in jq, confirming the need for long chains.

3 EXPERIMENTS

We perform extensive experiments to evaluate both our dataset(s) and the current performance of
LLMs on writing jq expressions.

3.1 IMPLEMENTATION DETAILS AND METRICS

We use the jq Python binding2 to execute expressions as jq.all(e, i) . This causes all results to
be wrapped in a list, for example, jq.all(".foo", {"foo": 1}) == [1] . We therefore provide four
simple examples in the prompt (including the one above) and also consider a successful evaluation if
each prediction jq.all(e, i) == [o] (or vice versa) for the expected output o.

On JQSPIDER, the keys of record-style outputs are ignored, meaning that [{"a": 1, "b": 2}] == [{
"x": 1, "y": 2}]. Unless the original query mentions ORDER BY, we also ignore order.

We use all but one of the tests as input–output examples. This strategy is common in programming-
by-example (Li & Ellis, 2024).

1https://pypi.org/project/jsonschema/
2https://pypi.org/project/jq/
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3.2 BASELINES

We evaluate different models on JQBENCH in different (agentic) settings that leverage possible reward
signals for feedback. The default setting (✓) is based on SELF-DEBUG (Chen et al., 2023) and simply
provides feedback based on the available information. Compilation feedback is always provided,
execution feedback is provided when inputs are available, and test results are provided when outputs
are available. Additionally, we use the following tools in baseline experiments:

Ð run code(e: str, i: str) runs expression e on serialized JSON object i and prints the
output. This tool can be used even when inputs are not available, as the agent can synthesize
its own inputs that it (thinks it) knows the output to. On JQSPIDER, for example, when only
a JSON schema is provided because the whole file is too large and there is therefore no way
to validate some outputs, it can synthesize smaller examples to test hypotheses.

Û search docs(k: str[]) searches a (parsed) version of the documentation for keywords k
and returns the name of all documentation sections that matches any of the keywords.

¦ print docs(s: str[]) prints the sections s of the documentation in a Markdown format.
Examples of documentation sections are shown in Appendix B, and we release the parsed
documentation.

In addition to the jq solvers, we compare its performance against using Python to solve JQBENCH.
The model is instructed to return a Python function that accepts a single argument (the JSON object).
On JQSPIDER, we instruct to return a value or a list of records to match the output format of the
expected jq expression. The structure of the Python prompt mimics that of the jq prompt as close as
possible (see Appendix A).

We run all setups over a maximum of eight iterations at temperature 0.

3.3 RESULTS

Table 1 and Table 2 show performance and configuration statistics of different configurations on
JQSTACK and JQSPIDER, respectively. The following paragraphs describe these results in more detail.

Contrasting JQSTACK and JQSPIDER. The two jq benchmarks reveal notably different behavior
and therefore facilitate different areas of research. JQSTACK, which draws from real Stack Overflow
questions, exhibits a wider spread of model performance: value-match scores range from roughly 11%
(Phi 4) to 77% (Claude 4.1). In contrast, JQSPIDER—derived from Spider database queries—shows
strikingly low variability: all models except for Phi 4 are in the 72%–81% range, and even Phi 4
achieves 44%. JQSTACK relies more on deep knowledge of jq, including many built-in functions (116
versus 56 different operators and functions in solutions) and the ability to define custom operators (99
versus 2 tasks where a solution defines a custom function). JQSPIDER relies less on deep knowledge
of different jq operations and more on longer chains of piping map and select operations together
(median of 4 pipes per task versus 3 for JQSTACK).

Language novelty as a performance bottleneck. The difference in performance between Python
and jq on JQSTACK highlights that models often understand the task, but some do not know how to
express a solution using jq. This is especially visible for smaller models (57% → 11% on Phi 4) but
even GPT-5 suffers from the language bottleneck (76% → 68%). Phi 4 getting lower value feedback
rates (v?) compared to GPT models is due to the fact that it does not obtain an executable expression
within 8 iterations. Only Claude, which is known for its strong coding performance, suffers barely
any performance loss (-2%). This is reinforced by its low feedback rates: only 5% of jq expressions
failed to compile and only 11% failed to execute. These results highlight how JQBENCH is a useful
testbed for studying how models learn unfamiliar grammars (Cassano et al., 2024; Zhang et al., 2025).

Language structure as a potential performance booster. On JQSPIDER, Claude (+3%), GPT 4.1
(=) and GPT 4.1 mini (+1%) achieve better performance using jq. Inspection of the results highlight,
among other properties, (1) that filtering of jq expressions tends to return all data points that satisfy
some criterion whereas Python code is more inclined to greedily return a single result, and (2) that jq
biases the model towards selecting exactly the required properties instead of returning superfluous

6
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MODEL CONFIGURATION 1 # FEEDBACK # TOOLS PERFORMANCE

� Û¦ ✓ c? e? v? Û ¦ Ð c? e? v?

Claude 4.1 Jq – – – – – 3.62 1.00 0.96 0.74
GPT 4.1 Jq – – – – – 2.29 0.89 0.71 0.28
GPT 4.1
mini

Jq – – – – – 4.40 0.92 0.77 0.38

GPT 5 Jq – – – – – 0.51 0.91 0.66 0.26
Claude 4.1 Jq ✓ – – – 1.95 1.42 3.63 0.92 0.86 0.57
GPT 4.1 Jq ✓ – – – 0.19 0.04 1.52 0.87 0.65 0.26
GPT 4.1
mini

Jq ✓ 0.56 1.51 1.31 – – – 0.95 0.80 0.47

GPT 4.1 Jq ✓ 0.60 1.15 1.26 – – – 0.97 0.84 0.52
Claude 4.1 Jq ✓ 0.05 0.11 0.19 – – – 1.00 0.96 0.772

Phi 4 Jq ✓ 4.71 1.52 0.70 – – – 0.45 0.26 0.11
GPT 5 Jq ✓ 0.31 0.62 0.83 – – – 0.99 0.94 0.68
Claude 4.1 Jq ✓ ✓ 0.38 0.08 0.11 3.40 2.68 – 0.63 0.59 0.45
GPT 4.1 Jq ✓ ✓ 0.44 0.87 0.94 1.05 0.55 – 0.95 0.84 0.52
GPT 4.1
mini

Jq ✓ ✓ 0.29 0.74 0.73 1.54 0.31 – 0.96 0.85 0.59

GPT 5 Jq ✓ ✓ 0.25 0.50 0.71 0.60 0.26 – 0.98 0.94 0.70
Claude 4.1 Python ✓ – 0.02 0.08 – – – 0.99 0.97 0.79
GPT 4.1 Python ✓ – 0.11 0.21 – – – 1.00 0.98 0.76
GPT 5 Python ✓ – 0.05 0.21 – – – 1.00 0.98 0.76
Phi 4 Python ✓ 0.01 0.45 1.24 – – – 0.94 0.87 0.57

1 � language, Û¦ documentation mode, ✓ implicit mode, (c?) compile, (e?) execution, (v?) value, Ð test
expression. 2 Best overall jq performance.

Table 1: Results for JQSTACK under different configurations.

MODEL CONFIG1 FEEDBACK TOOLS PERFORMANCE

� ✓ c? e? Ð c? e? v?

Claude 4.1 Jq – – 1.72 1.00 0.96 0.77
GPT 4.1 Jq – – 0.83 0.99 0.94 0.75
GPT 5 Jq – – 0.00 0.98 0.91 0.72
Claude 4.1 Jq ✓ 0.03 0.08 – 1.00 1.00 0.812

GPT 4.1 Jq ✓ 0.06 0.12 – 1.00 1.00 0.79
GPT 4.1 mini Jq ✓ 0.01 0.20 – 1.00 1.00 0.77
GPT 5 Jq ✓ 0.01 0.11 – 1.00 1.00 0.78
Phi 4 Jq ✓ 2.00 1.28 – 0.84 0.74 0.43
Claude 4.1 Python ✓ 0.00 – – 1.00 0.99 0.78
GPT 4.1 Python ✓ – – – 1.00 0.99 0.79
GPT 4.1 mini Python ✓ – – – 1.00 0.99 0.76
GPT 5 Python ✓ – – – 1.00 0.99 0.80

1 � language, ✓ implicit mode, (c?) compile, (e?) execution, (v?) value, Ð test
expression. 2 Best overall performance.

Table 2: Results on JQSPIDER.

record elements. In general, the concatenative nature of jq presents an interesting property of more
advanced code generating methods, such as using code execution as a feedback signal between
generating different parts of the code (Ellis et al., 2019; Verbruggen et al., 2025) where the program
before each pipe character ( | ) provides all context for the next step to be added.

jq as a safe JSON processor. On JQSTACK, Claude almost matches the Python performance using
jq (-2%) and exceeds Python (+3%) in JQSPIDER. This highlights that, given a powerful enough
model, jq offers competitive expressive power, standing on essentially equal footing with Python
for complex JSON processing tasks, while offering some significant advantages: jq has no runtime
dependencies, it can operate on streaming data, and it acts as a domain-specific language (DSL) that
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can be safely executed without requiring a complicated sandbox. For example, during our Python
experiments, models wrote code that wrote to standard output (despite that not being part of the tool
specification) and that created new files.

Implicit feedback is crucial. Moving from implicit feedback to letting the model use the run code
tool sees a stark decline in performance: −24% on GPT 4.1 (which is not very proficient at using
tools), −9% on GPT 4.1 mini, −42% on GPT-5 and even Claude, which is very proficient at using
tools, achieves 3% less. We identify four key reasons why letting models explicitly ask for feedback
(based on the examples it sees in the prompt) is not working as expected. First, the model does not use
any tool calls: GPT 4.1 and GPT 5 did not use any tools in 43.5% and 79.6% of tasks. Second, the
model does not (properly) leverage the provided examples: GPT 4.1 did not use all examples in 100%
of tasks and when it did, it only used 1.7 out of the available 2.8 tools (on average). Third, the model
ignores incorrect outputs: GPT 4.1 used one of the inputs from the examples but ignored the value
feedback on 38.2% of tasks. Fourth, the model fails to generate correctly serialized JSON objects.
Examples are predicting ["foo":"bar"] or repetitively predicting the target string "1,2\n3,4"

instead of the escaped version "\"1,2\n3,4\"" .

The documentation trap. Claude, which the most proficient at jq according to JQBENCH, performs
worse when having access to the documentation. The primary cause is getting stuck in a loop of
requesting documentation, rather than solving the problem. This is can be observed by the almost
triple the documentation request rate by Claude compared to next most eager model (GPT 4.1 mini).
After a certain level of proficiency, using SELF-DEBUG pays off more than doing retrieval-augmented
generation over the documentation (Zhou et al., 2023). This trap does not hold for models that are
less proficient and less eager: GPT 4.1 mini, the model with tool calling that performs worse without
documentation and does the second best with the documentation (47% → 59%).

JSON by example. Omitting the natural language instruction converts each task into a
programming-by-example (PBE) task, where the goal is to learn a program p such that p(i) = o for
all example pairs (i, o). PBE is a popular area of research on both symbolic (Gulwani, 2011; Cropper,
2019) and neural fronts (Chen et al., 2018; Shi et al., 2022) with recent attention to LLMs (Li & Ellis,
2024). When instruction simply states that “the query should match the following (input JSON →
output JSON) examples,” the value match changes as 77.5% → 64% (Claude), 67.9% → 57.9%
(GPT 5) and 52.4% → 44.5% (GPT 4.1). Whereas a significant decrease—the instruction is expected
to provide a strong signal—these results indicate that JQSTACK poses an interesting PBE benchmark.

4 RELATED WORK

4.1 NL-TO-CODE BENCHMARKS

The closest related benchmarks to JQBENCH are DOCSPIDER (Özer et al., 2025) and JSON-
SCHEMABENCH (Geng et al., 2025), which both target natural-language interfaces for document or
schema-centric JSON tasks, but with different emphases.

DOCSPIDER adapts the Spider text-to-SQL dataset to document databases by converting relational
data into MongoDB collections and pairing natural-language questions with MongoDB queries. Like
DOCSPIDER, we also translate SQL to another representation (jq expressions). However, JQBENCH
additionally draws on real-world Stack Overflow questions and a wide variety of organically shaped
JSON inputs paired with jq expressions. This yields tasks that span ad-hoc filtering, restructuring,
and rich transformations across highly diverse and variably nested JSON, going far beyond the
relatively homogeneous datasets that underpin DOCSPIDER.

JSONSCHEMABENCH evaluates constrained decoding methods for reliably generating JSON outputs
that comply with complex schemas. Like JQBENCH, it can be used to assess whether language
models respect schema constraints and reason about schema adherence. However, JQBENCH goes
significantly further: beyond testing conformance, it stresses the generation of complete query and
transformation programs (e.g., jq or Python) that perform rich filtering, aggregation, and editing on
structurally diverse and variably nested data.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Other benchmarks combine natural language with domain-specific expression languages, such as
MONGOSH query expressions (MongoDB Education AI, 2025) or Vega-Lite visualization specifi-
cations (Luo et al., 2021), illustrating the value of NL-to-JSON benchmarks but within narrower
domains. Finally, several benchmarks target NL-to-CLI programs. Terminal-Bench (Team, 2025)
is a benchmark for evaluating the ability of agents to operate in terminal environments, including
tasks such as building an initramfs for a kernel, but targets a small number of complex, multi-step
system-administration tasks, with limited data manipulation tasks. NL2Bash (Lin et al., 2018) con-
tains 12K one-line Linux shell commands—such as top -p \$(pgrep -d',' http) —mined from
Stack Overflow posts. It only contains 2 jq commands, however.

Crucially, no existing benchmark supports the breadth of JSON queries and transformations enabled
by JQBENCH, which spans filtering, creation, and complex schema-aware reasoning across diverse
real-world data.

4.2 BENCHMARK CONSTRUCTION

Constructing high-quality benchmarks is challenging. For example, Yang et al. (2025) found that
the widely used Spider dataset (Yu et al., 2018) contains over 30% incorrect NL-to-SQL mappings,
highlighting how manual curation can introduce substantial errors. It tempting to avoid these issues
by using purely synthetic data; however, Fürst et al. (2024) finds model robustness can suffer when
datasets omit authentic user queries.

Researchers have drawn on several approaches for mitigating issues in benchmark construction.
Benchmarks, such as ODEX, draw upon natural language queries from Stack Overflow to build a
NL-python benchmark (Wang et al., 2023), but with manual test case construction. BIGCODEBENCH
(Zhuo et al., 2025) used ODEX as a seed, to synthetically generate more (instruction, code) solutions in
an LLM + human annotation loop. Early work like Berant et al. (2013) used weak supervision, learn-
ing logical forms from question–answer pairs without full annotations. More recently, researchers
have leveraged techniques that include program execution–based filtering, self-consistency checks
(Wang et al., 2023), and LLM-driven self-refinement (Madaan et al., 2023).

JQBENCH adopts and extends these ideas by using agentic LLM pipelines that not only synthesize,
execute, and automatically validate jq programs and their input/output examples, but also extract
diverse real-world tasks from sources such as Stack Overflow. This approach lowers the cost of
benchmark creation, improves the reliability of final tasks, and grounds the benchmark in authentic
problem-solving scenarios.

5 LIMITATIONS

JQBENCH has a few limitations. We currently supports only a single JSON input per task, and do not
handle multiple-input or multi-file jq programs, though future extensions could relax this restriction
to better capture real-world multi-source workflows. The automatic nature of JQBENCH construction,
which relies on an LLM to generate a solution from a rich input signal, may have limited the number
of challenging tasks in the dataset. We can expand any remaining failed automatic conversions with
human annotations and stronger models. Based on the English data sources, JQBENCH is available in
English only.

6 CONCLUSION

We present JQBENCH, an automatically constructed benchmark for evaluating language models on
JSON querying and transformation tasks. The benchmark includes diverse and challenging real-world
problems drawn from Stack Overflow (JQSTACK) and Spider (JQSPIDER) datasets, and supports both
NL and PBE tasks in a low-resource language setting. A baseline set of experiments reveal novel
insights into effects of output language used for inference, potentially adverse effects of tools in
agentic workflows, struggles with novel languages in small language models. Finally, our benchmark
will enable future research in execution-guided decoding, exploratory data analysis, language novelty,
and tool proficiency.
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A PROMPTS

(Currently in the supplementary material.)

B DOCUMENTATION

B.1 addpath.md

# `addpath(pathArray)`

Ensures path exists, creating objects/arrays; returns modified input.

## Example 1

**Command**: `jq 'addpath(["a",0,"b"])'`
**Input**: `{}`
**Output**: `{"a":[{"b":null}]}`

B.2 optional-object-identifier-index.md

# `.foo?`

Optional object identifier index. Like `.foo` but suppresses errors when the input is
not an object; produces `null` instead (and when iterated inside arrays, missing
values simply vanish if further filtered).

↪→
↪→

## Example 1

**Command**: `jq '.foo?'`
**Input**: `{"foo": 42}`
**Output**: `42`

## Example 2

**Command**: `jq '.foo?'`
**Input**: `{"bar": 1}`
**Output**: `null`

## Example 3

**Command**: `jq '[.[] | .a?]'`
**Input**: `[{}, {"a":1}]`
**Output**: `[1]`
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