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ABSTRACT

Graph Contrastive Learning (GCL), which fuses graph neural networks with con-
trastive learning, has evolved as a pivotal tool in user-item recommendations.
While promising, existing GCL methods often lack explicit modeling of hierar-
chical item structures, which represent item similarities across varying resolu-
tions. Such hierarchical item structures are ubiquitous in various items (e.g., on-
line products and local businesses), and reflect their inherent organizational prop-
erties that serve as critical signals for enhancing recommendation accuracy. In this
paper, we propose Representation-driven Hierarchical Graph Contrastive Learn-
ing (RHGCL), a novel GCL method that incorporates hierarchical item structures
from learned representations for recommendations. First, RHGCL pre-trains a
GCL module using cross-layer contrastive learning to obtain user and item rep-
resentations. Second, RHGCL employs a representation compression and clus-
tering method to construct a two-hierarchy user-item bipartite graph. Ultimately,
RHGCL fine-tunes user and item representations by learning on the hierarchical
graph, and then provides recommendations based on user-item interaction scores.
Experiments on three widely adopted benchmark datasets ranging from 70K to
382K nodes confirm the superior performance of RHGCL over existing baseline
models, highlighting the contribution of representation-driven hierarchical item
structures in enhancing GCL methods for recommendation tasks.

1 INTRODUCTION

Graph Contrastive Learning (GCL) represents a key branch of methods in recommendation systems,
with notable models such as SGL (Wu et al., 2021a), SimGCL (Yu et al., 2022), and SGRL (He et al.,
2024). GCL integrates graph neural networks (GNNs), which capture collaborative signals within
user-item graphs (He et al., 2020), with contrastive learning (Chen et al., 2020; Grill et al., 2020),
a self-supervised approach that generates representations based on positive and negative sample
pairs (Ju et al., 2024; Lin et al., 2022). Since GCL retains the self-supervised representation learning
capability, it is advantageous for recommendation systems where supervised signals are sometimes
sparse. As examples of GCL, researchers have utilized information bottleneck principles to design
graph contrastive modules (Xu et al., 2021a). Besides, user prompts derived from user profiles have
been used to enhance GCL-based recommendation frameworks (Yang et al., 2023). Following these
methods, various experiments conducted on widely adopted datasets, such as Gowalla (Cai et al.,
2023), MovieLens (Lin et al., 2022), and Yelp (Yu et al., 2023a), have demonstrated the superiority
of GCL for recommendation tasks.

However, existing GCL-based recommendation methods are still limited. Although certain GCL-
based recommendation approaches consider heterogeneous graphs where nodes exhibit various
types (Wang et al., 2021b), they ignore hierarchical structures inherent within items in user-item
graphs. Here, hierarchical item structures refer to organizations of items with analogous properties
at distinct resolutions. For instance, snooker videos and football videos can be categorized under
the broader class of sports videos, while sports videos and music audio can be grouped as general
entertainment products. Effectively mining these hierarchical dependencies among items can extract
valuable item signals for recommendation in two ways. First, the system enables multi-level rec-
ommendations, as it could recommend items that are either directly related in the original user-item

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

graph or exhibit similarity within a broader category (Qin et al., 2023). Second, it effectively mit-
igates data sparsity issues, because it can recommend items with a few interaction records through
the transfer of information from higher-level categories that contain abundant interaction data. Un-
fortunately, there exists a scarcity of generalizable GCL methods that effectively model hierarchical
item structures for user-item recommendation tasks from the following aspects (See Appendix A for
more details).

• Recent seminal models GraphLoG (Xu et al., 2021b) and HIGCL (Yan et al., 2023) have
incorporated hierarchical item structures for general GCL tasks, rather than focusing on
user-item recommendations.

• DiffPool (Ying et al., 2018b) and HiGNN (Li et al., 2020) have highlighted the central role
of hierarchical item structures, but not in the context of GCL for recommendations.

• Knowledge graph-based GCL methods, such as HEK-CL (Yuan et al., 2025a) and
HKGCL (Liang et al., 2018), reply on knowledge relationships between items to perform
recommendation. Despite their effectiveness, a practical barrier to their widespread adop-
tion is the high cost required to construct and maintain up-to-date knowledge graphs.

• Existing representation clustering methods such as NCL (Lin et al., 2022) and
HNECL (Wei et al., 2025) apply contrastive learning between node representations and
their clustered prototype representations. This tends to reduce embedding uniformity,
which is a property shown to be beneficial for prediction performance in graph contrastive
learning (Yu et al., 2023a).

In this study, we propose Representation-driven Hierarchical Graph Contrastive Learning (RHGCL),
which incorporates hierarchical item structures into GCL for recommendation systems. Specifically,
we first obtain user and item representations by pre-training a graph contrastive learning model on
user-item graphs, utilizing a weighted combination of prediction loss and contrastive loss. After-
wards, RHGCL compresses item node embeddings and clusters item nodes, thereby constructing
user-cluster item graphs. Finally, we derive ultimate user and item embeddings by fine-tuning the
model on both the original user-item graphs and the newly user-clustered item graphs. To pre-
serve the uniformity of item node embeddings, we do not include clustered item representations in
contrastive learning at this stage. To access the contribution of hierarchical item structures, we con-
duct experiments comparing RHGCL with state-of-the-art GCL methods, including SGL (Wu et al.,
2021a), SimGCL (Yu et al., 2022), and XSimGCL (Yu et al., 2023a), on three publicly available rec-
ommendation datasets comprising 70K, 237K, and 382K nodes. The recommendation performance,
as indicated by Recall and NDCG scores, demonstrates the superior performance of our RHGCL
model.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS FOR RECOMMENDATION

Recommendation systems provide personalized recommendations to web users based on their pref-
erences (Davidson et al., 2010; Kang & McAuley, 2018). Such systems require robust capabilities
for learning from complicated user-item interactions (Feng et al., 2025; Lin et al., 2025). These
interactions can be seamlessly modeled by GNN methods (Kipf, 2016; Hamilton et al., 2017; Gao
et al., 2023), including GCNs (Ying et al., 2018a), NGCF (Wang et al., 2019), and RDL (Robinson
et al., 2024). Subsequently, LightGCN simplified NGCF by discarding redundant linear transfor-
mation and nonlinear activation functions in NGCF (He et al., 2020). As a pioneering practice,
PinSage integrates GNNs with customized random walk-based information fusion for recommen-
dations on Pinterest (Ying et al., 2018a). Recently, OmniSage extended PinSage by combining
graph-based relation modeling, sequence-based evolution modeling, and content-based information
fusion (Badrinath et al., 2025). In addition to efficient information propagation, node compression
emerges as another viable solution in GNNs for recommendation. Notably, LiGNN, developed by
LinkedIn, models various entities including members, posts, and jobs as a giant graph (Borisyuk
et al., 2024). The used techniques include adaptive multi-hop neighborhood sampling, training data
grouping and slicing, and shared-memory queues. Besides, MacGNN aggregates user and item
nodes with analogous behavior into macro nodes and learns their representations, supporting online
product recommendations on Taobao’s homepage (Chen et al., 2024a).
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2.2 GRAPH CONTRASTIVE LEARNING FOR RECOMMENDATION

GCL constitutes an unsupervised learning approach that constructs representations from graph
data (Veličković et al., 2018). The general process involves creating multiple graph views through
graph perturbations (e.g., node deletion, edge modifications, and subgraph sampling), with the strat-
egy of maximizing node representation consistency across these views (You et al., 2020). It facili-
tates the learning of intrinsic graph structure properties that remain invariant under these perturba-
tions (Zhu et al., 2020). While initial GCL models contain graph perturbation operations, GraphACL
discards graph perturbations and leverages one-hop and two-hop neighborhood nodes to develop
node representations (Xiao et al., 2023). Recently, GCFormer enhances graph Transformers (Wu
et al., 2021b) by incorporating contrastive signals from positive and negative node tokens relative to
a target node, exhibiting its superiority over conventional graph Transformers in node classification
applications (Chen et al., 2024b).

The self-supervision capability of GCL is well-suited to mine user-item interactions in user-item
recommendation systems (Yu et al., 2023b). Specifically, SGL refines supervised user-item graph
learning with the contrastive loss (e.g., the InfoNCE loss (Oord et al., 2018)), to improve recom-
mendation accuracy and robustness (Wu et al., 2021a). This seminal work has inspired subsequent
GCL methods for recommendation. For example, HCCL integrates local and global collaborative
signals within user-item graphs through hypergraphs (Xia et al., 2022). Heterogeneous GCL incor-
porates heterogeneous relational semantics within graphs (Chen et al., 2023). Another approach,
LightGCL, optimizes graph augmentations by applying singular value decomposition to facilitate
local and global contrastive learning (Cai et al., 2023). Additionally, industrial researchers have
addressed the challenge posed by the long-tail distribution of node degrees by creating pseudo-tail
nodes in GCL for recommendation (Zhao et al., 2023).

It is worth mentioning that graph augmentations are not invariably indispensable in GCL for recom-
mendation. Empirical studies have revealed that the uniformity of learned representations plays a
central factor in GCL for recommendation (Yu et al., 2022). They proposed SimGCL, incorporating
additive uniform noise vectors into node representations to enhance representation uniformity. Fur-
thermore, recommendation researchers refined SimGCL into XSimGCL, which reduces the number
of forward and backward information propagation steps from three to one (Yu et al., 2023a). This is
achieved by unifying recommendation prediction and contrastive learning together, and contrasting
node representations across distinct layers within a single neural network.

3 PRELIMINARIES

Following existing studies (Wang et al., 2021a; Yuan et al., 2025b), the user-item recommendation
problem is formulated as a link prediction task on a user-item bipartite graph, denoted as G = (V, E).
Here, the node set V = U∪I comprises the user set U and the item set I, where m = |U| and n = |I|
represent the cardinalities of U and I, respectively. The edge set E captures user-item interactions
that denote ratings, searches, purchases, and etc. The objective of user-item recommendation is to
suggest separate items for each user given observed user-item engagements.

3.1 GRAPH NEURAL NETWORKS

GNNs serve as critical approaches in user-item recommendation systems by learning representations
for m users and n items: E ∈ R(m+n)×d, where d denotes the embedding dimension. The matrix
E is derived as the final representation matrix within a sequence of representations E(k) where
0 ≤ k ≤ K. Here, K signifies the number of layers in the GNN. The information propagation
mechanism of a seminal GNN model, LightGCN (He et al., 2020), is expressed as follows:

E(k+1) = D− 1
2 AD− 1

2 E(k), (1)

where 0 ≤ k ≤ (K − 1). A is the adjacency matrix of G. Besides, D denotes the degree matrix of
G, where Dll represents the sum of the entries in the l-th row of A (1 ≤ l ≤ m+n). To recommend
items to a user i, we compute the final connecting strength ŷij between user i and an arbitrary item
j as ŷij = (ei)⊤ej , where 1 ≤ i ≤ m, 1 ≤ j ≤ n, and ei, ej ∈ Rd are embeddings extracted from
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E. We then recommend items to user i by ranking ŷij , 1 ≤ j ≤ n in descending order. To train
the model, we typically adopt the Bayesian Personalized Ranking loss (Rendle et al., 2012) as the
recommendation loss:

Lrec =
∑

(i,j+,j−)

−log
(
σ(ŷi,j+ − ŷi,j−)

)
, (2)

where σ(·) is the sigmoid function, positive edges (i, j+) ∈ E , and negative edges (i, j−) /∈ E . This
loss facilitates the updating of learnable node representations (i.e., E(0)) to increase or decrease the
inner products of endpoint representations associated with positive or negative edges, respectively.

3.2 GRAPH CONTRASTIVE LEARNING

The intuition behind GCL for recommendation systems is to learn robust and intrinsic user and item
representations that are invariant under graph perturbations where graph structures change (Hassani
& Khasahmadi, 2020). This process entails augmenting the original graph G to generate two views:
G̃1 and G̃2, through operations such as removing nodes or edges given predefined probabilities. The
goal of node representation updates is to maximize representation similarity for the same nodes
across the two views while minimizing representation similarity of distinct nodes. To achieve this,
the InfoNCE loss (Oord et al., 2018) is introduced:

Lcl =
∑
i∈B

−log

(
exp(sim(ei1, ei2)/τ)∑

j∈B exp(sim(ei1, ej2)/τ)

)
. (3)

Here, B is a mini-batch. eik and ejk (k = 1, 2) denote the representations of nodes i and j from
G̃1 and G̃2, respectively. sim(·, ·) is a similarity function like the cosine similarity function. τ
refers to temperature parameter. Practically, the GCL module can be fused with GNN module via
a hybrid loss L = Lrec + λLcl (λ > 0). Learning guided by loss L enables the generation of
robust self-supervised node representations that align effectively with supervised signals derived
from interactions labels. While Eq. 3 represents the complete formulation of GCL, it is noteworthy
that some exponents (e.g., positive pairs, and graph augmentations) could be omitted to enhance
performance for specific recommendation tasks (Guo et al., 2023; Yu et al., 2022).

4 REPRESENTATION-DRIVEN HIERARCHICAL GRAPH CONTRASTIVE
LEARNING

In this section, we present RHGCL, which performs graph learning on user-item graphs and user-
clustered item graphs. The underlying intuition is to capture hierarchical structures of item nodes
while ensuring uniformity of representations.

4.1 PRE-TRAINING REPRESENTATIONS ON USER-ITEM BIPARTITE GRAPHS

During the pre-training stage (Fig. 1, left), RHGCL obtains user and item representations using
historical user-item interaction records. The objective is to model user and item characteristics
without considering hierarchical item structures. To achieve this, we resort to XSimGCL (Yu et al.,
2023a), a state-of-the-art GCL approach in user-item recommendation systems.

The model consists of three primary components: (1) graph convolution operator, (2) random noise
incorporation, and (3) cross-layer contrastive learning. First, the model passes node representations
using light graph convolution operation (i.e., Eq. 1), which captures collaborative filtering signals
from user-item interactions. Note that the initial embedding matrix E(0) serves as the collection
of learnable representations of users and items. Second, for layer 0 ≤ k ≤ (K − 1), the model
introduces a random noise vector ∆k

i into the node representations eki on the node i:

(eki )
′ = eki +∆k

i , (4)
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Figure 1: The framework of RHGCL. Initially, RHGCL generates user and item representations
using XSimGCL (Yu et al., 2023a), which comprises graph convolution operators with cross-layer
contrastive learning (Sec. 4.1). Afterwards, the learned high-dimensional item representations are
projected into a two-dimensional latent space using the t-SNE algorithm, forming distinct clusters
of item nodes (Sec. 4.2). Building upon these item clusters, RHGCL constructs user-clustered item
graphs with clustered items (Sec. 4.3). We then jointly optimize representations of users, items, and
clustered items under recommendation and contrastive losses. Finally, RHGCL leverages optimized
representations of users, items, and clustered items to infer personalized item rankings for each user.

and propagates (eki )′ rather than eki to the next layer of graph convolution. Here, the length of ∆k
i

is set as a predefined hyperparameter ϵ: ∥∆k
i ∥ = ϵ > 0. The rationale for adding the random

noise vector term lies in its capacity to enhance representation uniformity, which improves recom-
mendation performance (Yu et al., 2022). Third, different from Eq. 3, the contrastive learning loss
Lcl is constructed by contrasting node representations across different layers within the same graph
convolution network.

Lcl =
∑
i∈B

−log

(
exp(sim(eKi , eK

∗

i )/τ)∑
j∈B exp(sim(eKi , eK∗

j )/τ)

)
. (5)

Here, 0 ≤ K∗ ≤ K is a hyperparameter, representing the layer used for contrastive learning with
the K-th layer. This ingenious design is theoretically supported by spectral graph analysis for con-
trastive learning (Yu et al., 2023a). Finally, Lcl is integrated with the recommendation loss Lrec

to form the hybrid loss L (Sec. 3.2). Together, after training the model using information passing
(Eq. 1) with added noises (Eq. 4), as well as L, we obtain stable pre-trained representations of users
as Ept

U ∈ Rm×d and items as Ept
I ∈ Rn×d.

4.2 CLUSTERING ITEM NODES

After reaching node representations (i.e., Ept
U and Ept

I ) from the pre-training stage, the next step of
RHGCL is to explicitly model hierarchical item structures. We build these structures by delving
into the item similarity (Brovman et al., 2016; Giahi et al., 2023). These item similarity signals
play crucial roles in facilitating effective item recommendations for users. For example, a user who
has interacted with a basketball video is more likely to prefer a football video over a music audio
file. Practically, there are two approaches to evaluate item similarity. First, there exists similarity
between two items when they share common attributes (e.g., geolocations, item types). Second,
two items are considered similar if they are accessed by similar groups of users and maintain similar
node representations (Baltescu et al., 2022). Note that the first approach requires domain-specific at-
tribute information for each user-item recommendation problem, exhibiting weaker generalizability
than the second approach. To promote model generalizability, we customize our hierarchical item
structures based on the second approach.

Representation Dimension Reduction. We first perform the t-distributed Stochastic Neighbor Em-
bedding (t-SNE) algorithm (Van der Maaten & Hinton, 2008) to summarize representations from the
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pre-training stage (Fig. 1, middle). The reason for employing the t-SNE algorithm is that it projects
high-dimensional vectors to the low-dimensional latent space, while persevering local neighbor rela-
tionships1. This local neighbor persevering characteristic aligns with representations in recommen-
dation tasks, wherein interacted user and item nodes have similar representations. It is worth noting
that Principal Component Analysis is not appropriate here, as it is a linear dimensionality reduction
method capturing global data variance. In the t-SNE algorithm (Van der Maaten & Hinton, 2008),
for two vectors x, y ∈ Rd1 , the projected vectors x′, y′ ∈ Rd2 should satisfy the two conditions:
(1) d2 < d1, (2) pxy is close to qx′y′ . Here, pxy (or qx′y′ ) quantifies the probability of neighborhood
relationship of the two vectors x, y (or x′, y′) in the original space (or the new space). pxy (or qx′y′)
is calculated based on the distance of x and y (or x′ and y′) relative to the neighborhoods using a
Student t distribution:

pxy =
1/(1 + distance(x, y)2)∑

k,l(1/(1 + distance(k, l)2))
. (6)

Here, distance(·, ·) denotes a distance metric, such as the squared Euclidean distance. k, l ∈ Rd1

are within the neighborhood of x, y. The number of selected neighborhood is measured by a model
hyperparameter: perplexity. By optimizing x′, y′ in the two-dimensional space, we are able to con-
vert item node representations from Ept

I ∈ Rn×d to Etsne
I ∈ Rn×2. Note that the time complexity

of the t-SNE algorithm is O(n2). This can be optimized to O(nlog(n)) from the Barnes-Hut SNE
algorithm (Van Der Maaten, 2013) for large graphs.

Clustering Item Nodes in the Two-Dimensional Space. Based on Etsne
I , we now cluster item

nodes in the two-dimensional space. The goal is to form simple and interpretable item node clusters
for hierarchical item structures. Given the connection difference between distinct user-item graphs,
we introduce task-specific hyperparameter ρ ≥ 1 and θ ≥ 1 to perform item node clustering. Here,
ρ and θ represent the number of divisions along the radial and angular directions, respectively. The
item nodes whose two-dimensional representations are located within the same sector are clustered
into a group. This setting leads to the total number of clusters as ρ ∗ θ. For example, in Fig. 1,
middle panel, there are one radial division (ρ = 1) and four angular divisions (θ = 4), leading
to total 1 ∗ 4 = 4 clusters of item nodes. Different from the seminal hierarchical GNN study
DiffPool (Ying et al., 2018a) with soft clustering, our approach utilizes deterministic clustering for
item nodes to ensure simplicity and enhance interpretability.

4.3 FINE-TUNING REPRESENTATIONS ON TWO-HIERARCHY USER-ITEM BIPARTITE
GRAPHS

After representation compressions and item node clustering, we now build user-clustered item
graphs (Fig. 1, right). We create the clustered item set C, which contains the derived clusters from
item node clustering. Hence, |C| = ρ ∗ θ. In this way, we have extended our original node set
V = U ∪I to Vc = U ∪C. We now delineate edges between nodes in U and C. Particularly, the user
node u ∈ U is linked to the clustered item node c ∈ C if and only if the user node u is connected
to at least one item node within the cluster represented by c. For instance, node u2 is connected to
c1 in the user-clustered item graph (Fig. 1, right), because u2 is linked to i2 in the user-item graph
(Fig. 1, left), and i2 is a member of cluster c1 (Fig. 1, middle).

Until now, we have obtained two graphs: the user-item graph (i.e., V), and the user-clustered item
graph (i.e., Vc), which are collectively called the two-hierarchy user-item bipartite graph. We per-
form graph convolution operators (i.e., Eq. 1) on the two graphs separately, and finally obtain three
fine-tuned representation matrices: Eft

U ∈ Rm×d, Eft
I ∈ Rn×d, and Eft

C ∈ R(ρ∗θ)×d. The final
connecting strength yij between user i and item j is defined as:

ŷij = (eftU,i)
⊤(eftI,j +

∑
1≤k≤ρ∗θ

wjkeftC,k). (7)

1https://distill.pub/2016/misread-tsne/
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Here, eftU,i ∈ Rd denotes the i-th row of Eft
U , which corresponds to the user representation. Similarly,

eftI,j ∈ Rd represents the j-th row of Eft
I , representing the item representation, and eftC,k ∈ Rd

denotes the k-th row of Eft
C , indicating the clustered item representation. The term wjk denotes

the clustering membership, where wjk = 1 if the item node j belongs to cluster k, and wjk = 0
otherwise. To train the model, we set the hybrid loss:

L = Lui
rec + Luc

rec + λLui
cl . (8)

Here, Lui
rec and Luc

rec represent the recommendation loss on the user-item graph and the user-clustered
item graph, respectively, while Lui

cl is the cross-layer contrastive learning loss on the user-item graph.
Notably, we do not include the contrastive learning term between item representations and clustered
item representations (i.e., Lic

cl), as it may compromise embedding uniformity. Furthermore, we
provide that the time complexity of RHGCL is slightly higher than that of XSimGCL, due to the
incorporation of edges in the user-clustered item graph Vc (Appendix E).

5 EXPERIMENTS

To evaluate the performance of RHGCL, we conduct a series of experiments utilizing three publicly
available datasets. The target of our experiments is to answer the following questions:

• Q1. What is the performance of RHGCL in various user-item recommendation tasks?
• Q2. Do our hierarchical item structures enhance model performance?
• Q3. How does the number of cluster divisions (i.e., ρ and θ) affect prediction accuracy?

5.1 EXPERIMENT SETTINGS

5.1.1 DATASETS AND BASELINE MODELS

We employ three classical user-item datasets2: Yelp2018, Amazon-Kindle, and Alibaba-iFashion
to perform recommendation tasks. These datasets haven been extensively used in previous user-item
recommendation studies (Wang et al., 2019; Yu et al., 2023a; 2022) (See Appendix B for statistics).
Given that existing model comparisons (He et al., 2020; Yu et al., 2023a) have demonstrated that
the models Mult-VAE (Liang et al., 2018), NGCF (Wang et al., 2019), and MixGCF (Huang et al.,
2021) exhibit relatively inferior performance compared to state-of-the-art methods, we select the
following eight models as baselines: BUIR (Lee et al., 2021), DNN+SSL (Yao et al., 2021), Light-
GCN (He et al., 2020), NCL (Lin et al., 2022), SGL (Wu et al., 2021a), SimGCL (Yu et al., 2022),
XSimGCL (Yu et al., 2023a), and HNECL (Wei et al., 2025) (See Appendix C for details).

5.1.2 PARAMETERS

For BUIR and DDN+SSL, we resort to implementation outcomes in the existing study (Yu et al.,
2023a). The hyperparameters for LightGCN, SGL, NCL, SimGCL, XSimGCL, and HNECL in-
clude the hidden dimension d, the number of layers K, the temperature parameter τ , and the learning
weight associated with the contrastive learning loss λ. To ensure a fair comparison, the hyperpa-
rameters for the Yelp2018 dataset were configured in accordance with the SELFRec repository3.
The hyperparameters for the Amazon-Kindle and Alibaba-iFashion datasets were set to align with
those used in the study XSimGCL (Yu et al., 2023a). For HNECL, we set the configuration of hi-
erarchical prototypes as (2000, 1000, 100). Since our RHGCL method is built upon XSimGCL,
we keep consistent hyperparameters betwen XSimGCL and RHGCL (Table 1). Finally, the embed-
ding dimension d is set to 64, the batch size to 2048, and the learning rate to 0.0001. To train the
model, we use the Xavier initialization method (Glorot & Bengio, 2010) and refer to the Adam op-
timizer (Kingma & Ba, 2014). The maximum number of training epochs is set to 50 for Yelp2018,
100 for Amazon-Kindle, and 50 for Alibaba-iFashion, respectively. The training and testing time
of RHGCL on a single CPU is around 20, 40, and 60 hours for Yelp2018, Amazon-Kindle, and
Alibaba-iFashion, respectively.

2https://github.com/Coder-Yu/SELFRec/tree/main/dataset/
3https://github.com/Coder-Yu/SELFRec
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Table 1: Hyperparameters in RHGCL. K: the number of layers; K⋆: the layer selected for con-
trastive learning; λ: the weight for contrastive loss; ϵ: the length of added noise vectors; τ : temper-
ature parameter; ρ: the number of representation divisions along the radial direction; θ: the number
of representation divisions along the angular direction.

Dataset K K⋆ λ ϵ τ ρ θ

Yelp2018 3 1 0.20 0.20 0.15 8 2
Amazon-Kindle 3 1 0.20 0.10 0.20 1 2
Alibaba-iFashion 4 4 0.05 0.05 0.20 4 8

5.2 OVERALL PERFORMANCE

Table 2: Performance comparison. Note that the performance metrics of BUIR and DNN+SSL
are sourced from the existing study (Yu et al., 2023a). For the remaining four baseline methods,
we conduct the experiments using our own computational resources. We use underlining to denote
the second-best performance. The reported improvement is calculated based on RHGCL and the
second-best outcome.

Yelp2018 Amazon-Kindle Alibaba-iFashion
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BUIR (Lee et al., 2021) 0.0487 0.0404 0.0922 0.0528 0.0830 0.0384
DNN+SSL (Yao et al., 2021) 0.0483 0.0382 0.1520 0.0989 0.0818 0.0375
LightGCN (He et al., 2020) 0.0595 0.0487 0.1900 0.1208 0.0885 0.0410
SGL (Wu et al., 2021a) 0.0677 0.0555 0.2098 0.1324 0.1138 0.0541
NCL (Lin et al., 2022) 0.0674 0.0553 0.1857 0.1147 0.0897 0.0417
SimGCL (Yu et al., 2022) 0.0727 0.0598 0.2031 0.1264 0.1176 0.0561
XSimGCL (Yu et al., 2023a) 0.0726 0.0597 0.2061 0.1324 0.1189 0.0569
HNECL (Wei et al., 2025) 0.0674 0.0554 0.1823 0.1096 0.0976 0.0454
RHGCL 0.0736 0.0605 0.2117 0.1354 0.1194 0.0572
Improvement +1.2% +1.2% +2.7% +2.3% +0.4% +0.5%

To examine the recommendation performance of RHGCL, we present recommendation metrics, Re-
call@20 and NDCG@20 scores on the testing sets of the three datasets in Table 2. Among the
nine models, BUIR and DNN+SSL yield the lowest Recall@20 and NDCG@20 scores across all
three datasets. This is because these models have limited capability to capture multi-hop user-item
similarity within historical interactions. In contrast, LightGCN brings improved prediction perfor-
mance, as this model retains essential graph convolution operations while eliminating redundant
linear transformations and nonlinear activations in recommendation tasks. As one of the pioneer-
ing self-supervised models in graph learning, SGL significantly enhances prediction accuracy. This
improvement can be attributed to the InfoNCE loss function, which pulls node representations asso-
ciated with positive samples while pushing those linked to negative samples. NCL has considered
both the structural and semantic neighbors in contrastive learning, leading to competitive predic-
tion performance. Compared to NCL, HNECL yields similar model performance. This observation
aligns with the findings reported in the HNECL paper which shows that increasing the number of
hierarchical layers provides little additional improvement (Wei et al., 2025). Furthermore, SimGCL
and XSimGCL exhibit the overall highest Recall@20 and NDCG@20 scores among baseline mod-
els. This achievement is supported by their ability to promote representation uniformity through
added noise vectors.

Notably, our proposed RHGCL model attains the highest Recall@20 and NDCG@20 scores among
the nine models, highlighting its superior capability in modeling user-item relationships in recom-
mendation tasks (Answer Q1). Recall that RHGCL is an extension of XSimGCL, incorporating
hierarchical item structures. Hence, the performance comparison between RHGCL and XSimGCL
further substantiates the beneficial contribution of hierarchical item structures in user-item recom-
mendation (Answer Q2). This conclusion is further confirmed in Appendix D, where we reveal
that positive user-item pairs exhibit greater distinguishability from negative user-item pairs after
fine-tuning compared to the distinguishability observed after pre-training.
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Figure 2: Learning curves of different models on the three datasets.

To analyze the training dynamics of different models, we visualize the evolution of Recall@20
scores in Fig. 2. We see that the learning curves of RHGCL exhibit a trend similar to that of SimGCL
and XSimGCL. On the Yelp2018 dataset, the Recall@20 score of RHGCL first declines before sub-
sequently increasing. For the Amazon-Kindle dataset, the score of RHGCL exhibits steady upward
trend. Finally, there is an increasing-then-decreasing pattern on the Alibaba-iFashion dataset. No-
tably, RHGCL consistently achieves highest prediction accuracy. This can be reflected by its ability
to (1) reach larger Recall@20 scores; and (2) sustain larger scores over a longer span of training
epochs, particularly on the Yelp2018 dataset.

5.3 SENSITIVITY STUDY

In this subsection, we investigate the influence of the spatial division parameters ρ and θ on predic-
tion performance in Fig. 3. Recall that ρ and θ denote the number of radial and angular divisions,
respectively. The results show that setting θ = 2 on the Yelp2018 and Amazon-Kindle datasets
yield optimal performance, whereas θ = 8, ρ = 4 leads to highest accuracy on the Alibaba-iFashion
dataset. These findings suggest that the best hyperparameter settings are task-specific, depending
on user-item interaction properties (Answer Q3). On one hand, increasing ρ and θ results in a
greater number of divisions and item clusters, enabling finer-grained item cluster modeling. On the
other hand, a larger number of divisions may lead to more boundary-adjacent items and cut off item
interactions across division sector boundaries.

Figure 3: Recall@20 scores from RHGCL with different values of hyperparameters ρ and θ.

We also investigate the influence of perplexity, which measures the number of selected neighbor-
hoods in the t-SNE algorithm, on recommendation performance. A higher value of perplexity im-
plies that the algorithm considers a wider range of neighborhoods when projecting representations.
As illustrated in Fig. 4, the perplexity setting of 30 yields the highest Recall@20 and NDCG@20
scores among the five tested values on the Yelp2018 and Alibaba-iFashion datasets. In contrast, the
Recall@20 and NDCG@20 scores on the Amazon-Kindle dataset exhibit only moderate sensitivity
to changes in perplexity. These findings suggest that tuning the perplexity parameter can be a viable
strategy for enhancing recommendation when applying RHGCL to other datasets.
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Figure 4: Recall@20 and NDCG@20 scores from RHGCL with different values of perplexity in
t-SNE.

6 CONCLUSION

This study proposes a generalizable graph contrastive learning approach, called RHGCL, for user-
item recommendation tasks. RHGCL performs contrastive learning on node representations during
both the pre-training phase, utilizing the original user-item graph, and the fine-tuning phase, em-
ploying a two-hierarchy user-item bipartite graph. Note that our method functions as an extension
of existing GCL methods, thereby ensuring high generalizability. Experimental results on three
open user-item datasets confirm the positive contribution of hierarchical item structures and overall
superior performance of RHGCL. One limitation of this study is that the superiority of our proposed
RHGCL method has not been demonstrated on large-scale industrial recommendation datasets that
contain over millions of user and item nodes. Future studies can explore the role of hierarchical item
structures in such scenarios. Moreover, the semantic interpretability of the clustered items is lim-
ited, due to the scarcity of item category information in the three datasets. This gap can be mitigated
when datasets with richer categorical annotations are available.
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A COMPARISON WITH EXISTING STUDIES

Table 3: Comparison between our model and recent studies on hierarchical graph contrastive learn-
ing for recommendation systems. U-I: User-Item. KGs: Knowledge Graphs. U-U: User-User. I-I:
Item-Item.
Study Target Graph learning Contrastive learning Hierarchy

HKGCL (Li et al., 2023) U-I ratings Along KGs Cross domains From domains
HGCL (Shui et al., 2024) U-I ratings Along subgraphs Cross subgraphs From node neighbors
ReHCL (Wang et al., 2024) U-I ratings Along topic&semantic graphs Cross-views&cross-modal From review text data
HEK-CL (Yuan et al., 2025a) U-I interactions Along KGs Cross graphs and KGs From KGs
HNECL (Wei et al., 2025) U-I interactions Along U-I, U-U, I-I graphs Cross layers From two-hop neighbors

RHGCL U-I interactions Along U-I graphs Cross layers From entire graphs

We summarize recent hierarchical GCL approaches for recommendation systems in Table 3 to clarify
the distinctions between our proposed RHGCL models and recent methods. In particular, recent
models can be categorized into three types.

• Incorporating KGs. HKGCL (Li et al., 2023) conducts graph learning based on edges
within KGs, whereas HEK-CL (Yuan et al., 2025a) develops its contrastive learning module
by leveraging the structural properties of KGs. The two models are effective when the
external item-relationship data is available to construct KGs. In contrast, our approach
relies on only U-I interactions, which are generally more accessible.

• Utilizing review data. ReHCL (Wang et al., 2024) employs review data—which contains
rich semantic information from users regarding items—to conduct hierarchical GCL on U-I
ratings. While useful, the availability of user review data is sometimes limited, often due
to issues such as privacy considerations.

• Relying on node neighbors. The models HGCL (Shui et al., 2024) and HNECL (Wei
et al., 2025) establish hierarchical structures for contrastive learning by exploiting node
neighborhood relationships. Different from the two models, our proposed RHGCL model
derives hierarchical structures by clustering node representations across the entire set of
items, thereby enabling a more comprehensive capture of global item-level information.

B DATASETS

We use the following three datasets to examine the performance of RHGCL.

• Yelp2018. training set: 31,668 users; 38,048 items (i.e., local business); 1,237,259 user-
item interactions. testing set: 31,668 users; 36,073 items; 324,147 user-item interactions.

• Amazon-Kindle. training set: 138,333 users; 98,572 items (i.e., books); 1,527,913 inter-
actions. testing set: 107,593 users; 82,935 items; 382,052 interactions.

• Alibaba-iFashion. training set: 300,000 users; 81,614 items (i.e., garments); 1,255,447
interactions; testing set: 268,847 users; 48,483 items; 352,366 interactions.

C BASELINE MODELS

The eight baseline models are listed below.

• BUIR is a two-encoder representation framework without negative sampling (Lee et al.,
2021).

• DNN+SSL employs data augmentation methods to handle data sparsity problems (Yao
et al., 2021).

• LightGCN represents a streamlined version of GNNs, removing linear transformation and
nonlinear activation operations (He et al., 2020).
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• NCL incorporates the potential neighbors of a node from structural and semantic spaces
into contrastive learning (Lin et al., 2022).

• SGL introduces self-supervision into graph learning by leveraging multiple views derived
from the original user-item graphs (Wu et al., 2021a).

• SimGCL enhances SGL by adding random noises during the model training process (Yu
et al., 2022).

• XSimGCL simplifies SimGCL by unifying graph-based recommendation and contrastive
learning into a single information propagation (Yu et al., 2023a).

• HNECL clusters node embeddings into hierarchical prototypes and conducts contrastive
learning between user and item embeddings across distinct graph convolution layers (Wei
et al., 2025).

D CONNECTING STRENGTH ANALYSIS

Figure 5: The connecting strength of positive and negative user-item pairs after pre-training (a, c)
and fine-tuning (b, d) on the Yelp2018 dataset.

To further validate the contribution of the item clustering and fine-tuning modules in RHGCL, we
track the changes in the connection strength of user-item pairs. As described in Sec. 3.1, the con-
necting strength (i.e., ŷij) is defined as the dot product between the representations of user i and
item j, where a higher value of ŷij corresponds to an increased probability of recommendation.

We visualize the probability density distribution of the connecting strength for positive and negative
user-item pairs on the Yelp2018 dataset in Fig. 5. Here, positive pairs refer to user-item pairs ob-
served in the training or testing sets. Negative pairs are generated by randomly sampling ten items
from the entire item set for each user in the training or testing sets. Note that Fig. 5a and b corre-
spond to the training set, whereas Fig. 5c and d correspond to the testing set. Comparing Fig. 5a
and b, we can see that the average connecting strength increases from 2.746 to 3.021 for the positive
user-item pairs, and decreases from -0.002 to -0.020 for the negative user-item pairs. These changes
indicate that positive pairs are more distinguishable with negative pairs after fine-tuning than af-
ter pre-training. Similarly, on the testing set (Fig. 5c and d), we observe an increase of average
connecting strength for positive edges (from 1.692 to 1.811) and a decrease of average connecting
strength for negative edges (from -0.001 to -0.019). All these results provide strong empirical evi-
dence that our designed item clustering and fine-tuning modules in RHGCL effectively enhance the
recommendation performance.
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E TIME COMPLEXITY ANALYSIS

In this section, we present the time complexity analysis of our proposed RHGCL and contrast it with
XSimGCL. To clarify, we first summarize key notations. Recall from Sec. 3 that |E| represents the
number of edges in the user-item bipartite graph. K is the number of layers in graph convolution op-
erations and d represents the node embedding dimension. We introduce |Euc| to denote the number
of edges between the user set U and the clustered item set C. Hence, we have:

|Euc| ≤ |E|, |Euc| ≤ mρθ. (9)

The first inequality holds since each user-item pair in E is mapped to a user-clustered item pair in
Euc. The second inequality follows from the fact that the number of edges in U ∪C is upper bounded
by the size of U (i.e., m) and the size of C (i.e., ρθ). Further, we use b to represent the batch size and
B to denote the number of nodes within a batch.

Table 4: Time complexity comparison between XSimGCL and RHGCL.
Model Graph convolution Recommendation loss Contrastive loss

XSimGCL O(2|E|Kd) O(2bd) O(bBd)

RHGCL O(2|E|Kd) +O(2|Euc|Kd) O(2bd) O(bBd)

Accordingly, we summarize the time complexity of RHGCL and XSimGCL in Table 4. Recall
from Sec. 4.3 that we perform graph convolution operations on the user-item graph and the user-
clustered item graph separately. This introduces an additional graph convolution time complexity
O(2|Euc|Kd), which is theoretically upper bounded by O(2|E|Kd) and is empirically small given
the small number of clusters (i.e., ρθ). Moreover, the time complexity of the recommendation loss
calculation in RHGCL scales linearly with both b and d, which is the same as those from XSimGCL.
Recall from Sec. 4.3 that the contrastive loss is computed over U and I, leading to the same time
complexity O(bBd) as XSimGCL. Together, RHGCL introduces only a minor increase in time
complexity over XSimGCL.

18


	Introduction
	Related Work
	Graph Neural Networks for Recommendation
	Graph Contrastive Learning for Recommendation

	Preliminaries
	Graph Neural Networks
	Graph Contrastive Learning

	Representation-Driven Hierarchical Graph Contrastive Learning
	Pre-Training Representations on User-Item Bipartite Graphs
	Clustering Item Nodes
	Fine-Tuning Representations on Two-Hierarchy User-Item Bipartite Graphs

	Experiments
	Experiment Settings
	Datasets and baseline models
	Parameters

	Overall Performance
	Sensitivity Study

	Conclusion
	Comparison with Existing Studies
	Datasets
	Baseline Models
	Connecting Strength Analysis
	Time Complexity Analysis

