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ABSTRACT

Federated learning trains machine learning models on distributed devices by aggregating local model
updates instead of local data. However, privacy concerns arise as aggregating local model updates on
the server may reveal sensitive personal information by inversion attacks. Privacy-preserving methods,
such as homomorphic encryption (HE), then become necessary for FL training. Despite HE’s privacy
advantages, its applications suffer from impractical overheads, especially for foundation models.
In this paper, we present an efficient privacy-preserving federated learning framework by selective
parameter encryption with theoretical guarantees. Our approach proposes to selectively encrypt
sensitive parameters, significantly reducing both computation and communication overheads during
training while providing a quantifiable privacy guarantee. Our optimization shows considerable
overhead reduction, particularly for large foundation models (e.g. ∼100x reduction for GPT-2),
demonstrating the potential for scalable HE-based FL deployment.

1 INTRODUCTION

Federated learning allows distributed clients to collectively train a global model without directly sharing data. Instead
of uploading raw data to a central server for training, clients train models locally and share their model updates with
the server, where the model updates are then averaged based on the aggregation functions (McMahan et al., 2017) to
obtain a global model. While federated learning ensures that local raw data does not leave their original locations, it
remains vulnerable to eavesdroppers and malicious servers that might exploit plaintext model updates to reconstruct
sensitive training data (Fig. 1 (left)), i.e., gradient inversion attacks (Zhu et al., 2019; Criswell et al., 2014; Bhowmick
et al., 2018; Hitaj et al., 2017; Han et al., 2023; Hatamizadeh et al., 2022; Fowl et al., 2022). This poses a privacy
vulnerability especially when local models are trained on small local datasets (e.g., smartphone text data for large
language models). Local models derived from these small datasets inherently contain fine-grained information, making
it easier for adversaries to extract sensitive information from local model updates.

Existing defense methods that reduce privacy leakage include differential privacy (DP) (Truex et al., 2019; Byrd &
Polychroniadou, 2020) and secure aggregation (Bonawitz et al., 2017; So et al., 2022). DP adds noise to original
model updates but may result in model performance degradation due to the privacy noises introduced. On the other
hand, secure aggregation employs zero-sum masks to shield local model updates, ensuring that individual updates
remain private. However, secure aggregation demands additional interactive synchronization steps and is sensitive to
client dropout, making it less practical in real-world FL applications, where the unstable environments of clients face
challenges such as unreliable internet connections, and software crashes. Compared to the methods above, homomorphic
encryption (HE) (Paillier, 1999; Gentry, 2009; Fan & Vercauteren, 2012; Brakerski et al., 2014; Cheon et al., 2017)
offers a robust post-quantum secure solution that protects local models against attacks and provides privacy guarantee
while introducing minimal model performance degradation. As shown in Fig. 1 (middle), HE-based federated learning
(FedHE) encrypts local models on clients and performs model aggregation over ciphertexts on the server to protect
against privacy attacks, which has been adopted by several FL systems (Roth et al., 2022; IBM, 2022; Zhang et al.,
2020; Du et al., 2023) and domain-specific applications (Stripelis et al., 2021; Yao et al., 2023).

Despite the advantages, homomorphic encryption remains a powerful but complex cryptographic foundation with
impractical federated aggregation overheads (as shown in Fig. 1 (right)) for most real-world applications. Prior
FedHE solutions mainly employ existing generic HE methods without sufficient optimization for large-scale FL
deployment (Roth et al., 2022; IBM, 2022; Zhang et al., 2020; Du et al., 2023). The scalability of encrypted computation
and communication during federated training then becomes a bottleneck, restricting its feasibility for real-world
scenarios. This HE overhead limitation is particularly noticeable (commonly ∼15x increase in both computation and
communication), where both grow linearly w.r.t. the size of models (Cheon et al., 2017; Gouert et al., 2022). Especially
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across resource-constrained devices, encrypted computing and communication of large models might take considerably
longer than the actual model training.

To address these challenges, we propose an efficient homomorphic-encryption-based privacy-preserving FL solution
with Selective Parameter Encryption for practical deployment1. Our method significantly reduces communication
and computation overheads, enabling efficient HE-based federated learning. We further provide the first theoretical
framework to quantify the privacy guarantee of selective encryption, which indicates a significant improvement over
random encryption and differential privacy, with the important observation that most existing models follow Log-Normal
Mixture distributions. Extensive experiments validate our privacy quantification framework.
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Figure 1: (left) Data Reconstruction Attacks: an adversarial server can recover local training data from local model updates and
global model at last round; (middle) HE-based Federated Aggregation: models are encrypted and the server acts as a computing
service without access to models; (right) Computation and Communication Overhead for Aggregating Fully Encrypted Models:
compared with Nvidia Flare (Nvidia, 2021) (which does not have provable selective parameter encryption), overheads include
encryption/decryption and encrypted aggregation.

Key contributions:

• We propose Selective Parameter Encryption in §3 that selectively encrypts the most privacy-sensitive
parameters to minimize encrypted model updates and reduce overheads while providing a privacy guarantee
quantified by our proposed privacy analysis framework.

• We provide the first theoretical framework for quantifying the privacy guarantee of selective homomorphic
encryption in §4. Selective Parameter Encryption requires significantly less encryption over random selection
with provable guarantee validated empirically.

• Extensive experiments in §5 show that the optimized system achieves significant overhead reduction while
preserving privacy against state-of-the-art ML privacy attacks, particularly for large models (e.g., ∼1000x
reduction for ResNet, and∼100x reduction for GPT-2), demonstrating the potential for real-world deployments.

2 RELATED WORK

Privacy Attacks On FL. Threats and attacks on privacy in the domain of Federated Learning have been studied in
recent years (Mothukuri et al., 2021). Data reconstruction attacks (Criswell et al., 2014; Bhowmick et al., 2018; Hitaj
et al., 2017) are usually carried out on the models to retrieve certain properties of data providers or even reconstruct the
data in the training datasets. With direct access to more fine-grained local models trained on a smaller dataset (Wang
et al., 2019), the adversary can have a higher chance of a successful attack. Moreover, further attacks can be performed
using GAN-based attacks to even fully recover the original data (Hitaj et al., 2017). The majority of the privacy attacks
can be traced back to the direct exposure of plaintext accesses to local models to other parties.

Non-HE Defense Mechanisms. Local differential privacy has been adopted to protect local model updates by adding
differential noise on the client side before the server-side aggregation (Truex et al., 2019; Byrd & Polychroniadou,
2020) where privacy guarantee requires large-scale statistical noise on fine-grained local updates that generally degrades

1We integrate our work with an open-source federated learning platform. Core codes of our HE-enable platform are available in
Supplementary Material.
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model performance (Truex et al., 2020). On the other hand, other work proposes to apply zero-sum masks (usually
pair-wise) to mask local model updates such that any individual local update is indistinguishable to the server (Bonawitz
et al., 2017; So et al., 2022). However, such a strategy introduces several challenges including key/mask synchronization
requirements and federated learner dropouts. Compared to these solutions providing privacy protection in FL, HE is
non-interactive and dropout-resilient (vs. general secure aggregation protocols (Bonawitz et al., 2017; So et al., 2022))
and it introduces negligible model performance degradation (vs. noise-based differential privacy solutions (Truex et al.,
2019; Byrd & Polychroniadou, 2020)).

Existing HE-based FL Work. Existing HE-based FL work either apply restricted HE schemes (e.g., additive scheme
Paillier) (Zhang et al., 2020; Fang & Qian, 2021; Jiang et al., 2021) without extensibility to further FL aggregation
functions or provide a generic but impractical HE implementation on FL aggregation (Jiang et al., 2021; Du et al.,
2023; Ma et al., 2022), including industrial platforms such as IBM FL (IBM, 2022), while leaving the key issue with
impractical HE overheads as an unresolved question. In our work, we propose a novel Selective Parameter Encryption
optimization scheme that largely reduces the overheads as well as provide the first theoretical framework to quantify the
privacy guarantee of selective encryption, which makes HE-based FL viable and provable in practical deployments.

Parameter Selection in ML. Selective encryption of models has been explored in prior work, particularly in single-
client-server machine learning setups for training and inference. For instance, Sphinx (Tian et al., 2022) employs a
hybrid approach, utilizing HE for bias parameters while applying DP to the remaining parameters. However, unlike our
privacy sensitivity-based method, Sphinx does not easily satisfy the challenges in model and dataset diversity in FL.
Similarly, other approaches (Tian et al., 2021) face limitations in FL due to their reliance on specific model architectures,
overly coarse layer-wise selection strategies, and the absence of robust privacy quantification.

3 FEDERATED LEARNING WITH SELECTIVE PARAMETER ENCRYPTION

In this section, we first provide the overview of FL with Selective Parameter Encryption in §3.1, define the threat
model in §3.2, describe the general algorithmic design of HE-based FL in §3.3 and explain how Selective Parameter
Encryption optimizes the overheads in §3.4.

3.1 METHODOLOGY OVERVIEW

Option 1:
Threshold Key

Option 2: 
Single Key

Encryption Mask CalculationEncryption Key Agreement Encrypted Federated Learning

Figure 2: Federated Learning Pipeline With Selective Parameter Encryption: in the Encryption Key Agreement stage, clients can
either use distributed threshold key agreement protocol or outsource a trusted key authority. We simplify the illustration here by
abstracting the key pair of the public key and secret key (partial secret keys if using threshold protocol) as one key; in the Encryption
Mask Calculation stage, clients use local datasets to calculate local model sensitivity maps which are homomorphically aggregated
at the server to generate an encryption mask; in the Encrypted Federated Learning stage, clients use homomorphic encryption with
encryption mask to protect local model updates where the server aggregates them but does not have access to sensitive local models.

As shown in Fig. 2, our efficient HE-based federated training process at a high level goes through three major stages:
(1) Encryption key agreement: the clients either use threshold HE key agreement protocol or trusted key authority to
generate HE keys; (2) Encryption mask calculation: the clients and the server apply Selective Parameter Encryption
to agree on a selective encryption mask; (3) Encrypted federated learning: at each round, the clients selectively encrypt
local model updates using the HE key and the encryption mask for efficient encrypted aggregation at the server.

3.2 THREAT MODEL

We define a semi-honest adversary A that can corrupt the aggregation server or any subset of local clients. A follows
the protocol but tries to learn as much information as possible. Loosely speaking, under such an adversary, the security
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definition requires that only the private information in local models from the corrupted clients will be learned when A
corrupts a subset of clients.

When A corrupts both the aggregation server and a number of clients, the default setup where the private key is shared
with all clients (also with corrupted clients) will allow A to decrypt local models from benign clients (by combining
encrypted local models received by the corrupted server and the private key received by any corrupted client). This
issue can be mitigated by adopting the threshold or multi-key variant of HE where decryption must be collaboratively
performed by a certain number of clients (Aloufi et al., 2021; Ma et al., 2022; Du et al., 2023). Since the multi-key
homomorphic encryption issue is not the focus of this work, in the rest of the paper we default to a single-key setup, but
details on threshold homomorphic encryption federated learning and microbenchmarks are provided in Appendix §A.4.

3.3 ALGORITHM FOR HE-BASED FEDERATED AGGREGATION

Privacy-preserving federated learning systems utilize homomorphic encryption to enable the aggregation server to
combine local model parameters without viewing them in their unencrypted form by designing homomorphically
encrypted aggregation functions. We primarily focus on FedAvg (McMahan et al., 2017), which has been proved as still
one of the best-performing federated aggregation strategies while maintaining computational simplicity (Wang et al.,
2022).

Our HE-based secure aggregation algorithm can be summarized as: given an aggregation server and N clients, each
client i ∈ [N ] owns a local dataset Di and initializes a local model Wi with the aggregation weighing factor αi; the
key authority or the distributed threshold key agreement protocol generates a key pair (pk, sk) and the crypto context,
then distributes the key pair and crypto context to clients and only the crypto context, which is public, to the server. The
clients and the server then collectively calculate a global encryption mask M for Selective Parameter Encryption
also using homomorphic encryption. At each round t ∈ [T ], the server performs the aggregation

[Wglob] =

N∑
i=1

αi[[M⊙Wi]] +

N∑
i=1

αi((1−M)⊙Wi), (1)

where [Wglob] is the partially-encrypted global model, Wi is the i-th plaintext local model where [[]] indicates the portion
of the model that is fully encrypted, αi is the aggregation weight for client i, and M is the global model encryption
mask (details in Appendix Algorithm 1, note that optional differential privacy is supported in our framework).

We only need one HE multiplicative depth in our algorithm for weighting, which is preferred to reduce HE multiplication
operations. Our method can also be easily extended to support more FL aggregation functions with HE by encrypting
and computing the new parameters in these algorithms (e.g. FedProx (Li et al., 2020)). We explain next in detail how
the encryption mask M is formalized.

3.4 EFFICIENT OPTIMIZATION BY SELECTIVE PARAMETER ENCRYPTION

Apply EM 

Set selective 
encryption ratio.

.

.

.

.

.

Encryption Mask Partially-Encrypted ModelPrivacy Leakage Analysis

Aggregated Model 
Privacy Map

Sensitivity 
Calculation

Local Datasets Local Model
Privacy Map

Figure 3: Selective Parameter Encryption: in the initialization stage, clients first calculate privacy sensitivities on the model using
its own dataset and local sensitivities will be securely aggregated to a global model privacy map. The encryption mask will be
then determined by the privacy map and a set selection value p per overhead requirements and privacy guarantee. Only the masked
parameters will be aggregated in the encrypted form.

Fully encrypted models can guarantee no access to plaintext local models from the adversary, but they have high
overheads. However, previous work on privacy leakage analysis shows that “partial transparency”, e.g. hiding parts of
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the models (Hatamizadeh et al., 2022; Mo et al., 2020), can limit an adversary’s ability to perform attacks like gradient
inversion attacks (Lu et al., 2022). Combined with the observation that HE overheads are directly related to the size of
encrypted model parameters Ma et al. (2022), we propose Selective Parameter Encryption to selectively encrypt the
most privacy-sensitive parameters to reduce impractical overheads while providing quantifiable privacy; see Figure 3.

Step 1: Privacy Leakage Analysis on Clients. We adopt sensitivity Novak et al. (2018); Sokolić et al. (2017); Mo
et al. (2020) for measuring the general privacy risk on model gradients with respect to the input data. Formally, given
model W and K data samples with input matrix X and ground truth label vector y, we compute the sensitivity for
each parameter wm as 1

K

∑K
k=1 ∥Jk,m∥ , where Jk,m can be approximate by the gradient ∂2ℓ(X,y,W)

∂xk∂wm
, ℓ(·) is the loss

function given X, y and W, and ∥·∥ calculates the absolute value. The intuition is to calculate how much the gradient
of the parameter will change for each data point k. Each client i then sends the encrypted sensitivity [[Si]] to the server.

Different parts of a model contribute to attacks by revealing uneven amounts of information. Using this insight, we
propose to only select and encrypt parts of the model that are more important and susceptible to attacks to reduce HE
overheads while preserving adequate privacy.

Step 2: Encryption Mask Agreement across Clients. The sensitivity map is dependent on the model and also the
data. With potentially heterogeneous data distributions, the server aggregates local sensitivity maps to a global privacy
map

∑N
i=1 αi[[Si]]. The global encryption mask M is then configured using a privacy-overhead ratio p ∈ [0, 1] which is

the ratio of selecting the most sensitive parameters for encryption. The global encryption mask is then shared among
clients as part of the federated learning configuration.

4 QUANTIFYING PRIVACY OF SELECTIVE PARAMETER ENCRYPTION

Although sensitivity calculation provides guidance on selecting important model parameters, to the best of our knowledge
there is no existing work that successfully quantifies the privacy guarantee from the model parameter sensitivity. In this
section, we, for the first time, provide proof to analyze the privacy guarantee of Selective Parameter Encryption using
the theoretical framework of privacy budget analysis (Dwork, 2006).

4.1 ENCRYPTED AGGREGATION QUANTIFIED IN PRIVACY BUDGET

Definition 4.1 (ϵ-Privacy (Dwork et al., 2006)). A randomized algorithmM satisfies ϵ-privacy if for any two adjacent
datasets D1 and D2 that vary by one data point, and for any possible output O ⊆ Range(F), the following inequality
holds:

Pr [M (D1) ∈ O]

Pr [M (D2) ∈ O]
≤ eϵ. (2)

ϵ-privacy can be achieved by adding Laplace noises on model updates. Note that we can also use Gaussian to quantify
the privacy here with conversion between mechanisms (Bun & Steinke, 2016).

Lemma 4.2 (Achieving ϵ-Privacy by Laplace Mechanism (Dwork et al., 2006)). A scale parameter b can be chosen as
b = ∆f

ϵ , such that the Laplace Mechanism satisfies ϵ-privacy, where ∆f is the DP sensitivity defined as the maximum
difference in the output of a function f .

Theorem 4.3 (Achieving ϵ0-Privacy by Full Homomorphic Encryption). For any two adjacent datasets D1 and D2,
sinceM(D) is computationally indistinguishable, we have

Pr [M (D1) ∈ O]

Pr [M (D2) ∈ O]
≤ eϵ. (3)

We then have ϵ = ϵ0 if O is encrypted, where ϵ0 is some negligible value.

In other words, A cannot retrieve any useful sensitive information from encrypted parameters. The simulation-based
proof of the basic protocol with fully encrypted federated learning can be found in Appendix §A.11 and approximating
the negligible value of ϵ0 can be found in Appendix §A.12.

4.2 SELECTIVE PARAMETER ENCRYPTION BY PRIVACY THEORY

Lemma 4.4 (Sequential Composition (Dwork et al., 2006),). If M1(x) satisfies ϵ1-privacy and M2(x) satisfies
ϵ2-privacy, then the mechanism G(x) = (M1(x),M2(x)) that releases both results satisfies (ϵ1 + ϵ2)-privacy.
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Based on Lemmas 4.2 and 4.4 and Theorem 4.3, letting J =
∑N

i=1
∆fi
b , we can quantify the privacy of Full DP, random

parameter encryption, and Selective Parameter Encryption.
Remark 4.5 (Achieving J-Privacy by Laplace Mechanism on All Model Parameters). If we add Laplace noise on all
parameters with fixed noise scale b, it satisfies J-privacy.
Remark 4.6 (Achieving (1− p)J-Privacy by Random Encryption). If we randomly select model parameters with ratio
p for homomorphic encryption and add Laplace noise on the remaining parameters, it satisfies (1− p)J-privacy.

Theorem 4.7 (rJ-Privacy by Selective Parameter Encryption). Suppose the sensitivity data follows a distribution with
density function p(x), x ∈ [0, xmax]. Applying homomorphic encryption on partial model parameters S and Laplace
Mechanism on the remaining parameters [N ]/S with fixed noise scale b satisfies rJ-privacy with the budget ratio

r =
1

µ

∫ Q1−p

0

xp(x)dx, (4)

where p is the fraction of homomorphically encrypted parameters, and µ and Q1−p are the mean and (1− p)th quantile
of p(x) respectively.

The proof of Theorem 4.7 can be found in Appendix §A.13.
Remark 4.8. Let b0, b1, and b2 respectively be the scales of Laplace noises necessary for no encryption, (uniform)
random encryption, and selective encryption to reach the desired protection level (approximating using J0 = J1 = J2).
We will have the relation: b0 = 1

1−pb1 = 1
r b2.

Letting ∆f ∼ D, it is clear that the quantification of privacy guarantee from our Selective Parameter Encryption
depends on the distribution of the actual parameter distribution D of a given model.
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Figure 4: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3t): calculated
parameter sensitivity follows a Log-Normal Mixture distribution, allowing a smaller privacy budget to achieve the same privacy.

Key Observation. Our extensive experiments indicate that a noticeable collection of popular models’ parameters
can be closely modeled by the Log-Normal Mixture distribution (as shown by the Transformer-3t example in Fig. 4a
and Fig. 4b, with more models in Appendix §A.17). Assuming the sensitivity distribution of a given model follows a
Log-normal Mixture distribution D′ (µi as log mean and σi as log variance), Selective Parameter Encryption requires
only r portion of the privacy budget of complete privacy with the same privacy guarantee, where

r =

∑
i
λi

σi

∫ F−1(1−p)

0
exp

(
− (ln x−µi)

2

2σi
2

)
dx

√
2π

∑
i λi exp

(
µi +

σ2
i

2

) . (5)

Compared with random encryption, Selective Parameter Encryption provides much stronger privacy preservation with
the same encryption ratio (validated in §5.4). Such a framework can also fit any sensitivity distributions (Uniform and
Exponential in Appendix §A.15 and §A.16).
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5 EVALUATION

In this section, we focus on the evaluation results to show how our proposed Selective Parameter Encryption largely
mitigates these overheads for real-world deployment but still guarantees adequate defense against privacy attacks. We
also provide the validation of our proposed theoretical privacy quantification. Note that additional experimental results
regarding other FL system aspects are included in Appendix §A.20.

5.1 EXPERIMENT SETUP

Models. We test our framework on models in different ML domains with different sizes including LLMs (more details
in Appendix §A.20).

Attack Dataset. MNIST dataset (70k images), the CIFAR-100 dataset (50k images), and the WIKITEXT dataset
(100m tokens).

HE Libraries. We implement our HE core using both PALISADE and TenSEAL. Unless otherwise specified, our
results show the evaluation of the PALISADE version.

Default Crypto Parameters. Unless otherwise specified, we choose the multiplicative depth of 1, the scaling factor bit
digit of 52, an HE packing batch size of 4096, and a security level of 128 as our default HE cryptographic parameters
during the evaluation.

Machines. (1) For microbenchmarking HE overheads, we use an Intel 8-core 3.60GHz i7-7700 CPU with 32 GB
memory and an NVIDIA Tesla T4 GPU; (2) For real MLOps system experiments: we use machines with Intel 6-core
3.70GHz i7-8700K CPU, 64GB memory and NVIDIA GeForce GTX 1080 Ti as clients and an M3 Pro 11-core CPU
with 18 GB memory as the aggregation server; (3) For attacking experiments, we use 6 NVIDIA DGX H100 GPUs
with 720 GPU hours.

5.2 OPTIMIZED OVERHEADS

Llama 2 (7B)

BERT

LeNet

ResNet-18

Linear

Llama 2 (7B)

BERT

LeNet

ResNet-18

Linear

Figure 5: Computation (left) and Communication (right) Overhead Comparison For Models of Different Sizes (logarithmic scale):
10% Encryption is based on our selection strategy and 50% encryption is based on random.

We first examine the overhead optimization gains from Selective Parameter Encryption. Fig. 5 microbenchmarks the
overhead reduction from only encrypting certain parts of models, where both overheads are nearly proportional to the
size of encrypted model parameters, which is coherent with the general relationship between HE overheads and input
sizes. Note that after 10% encryption per our Selective Parameter Encryption, the overheads are close to the ones of
plaintext aggregation.

Fig. 6 dissects the training cycle overhead distribution for the HE framework (both with and without optimizations) and
the plaintext framework respectively. Note that here we only consider the cost distribution of a single round instead of
the entire federated training. This is because, with proper CKKS crypto parameter setup, the model training accuracy of
encrypted training has a marginal difference compared to the one of plaintext training even considering the fact that
encrypted training has approximate computation under the hood (experimental results regarding this part can be found

7
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Figure 6: Time Distribution of A Training Cycle on ResNet-50 on our industrial deployment platform: plaintext FL (left), HE with
full encryption (middle), and HE with selective encryption (right). MLOps test env has a bandwidth of 20 MB/s (Multiple AWS
Region). The optimization setup uses an encryption mask with an encrypted ratio s = 0.01. Detailed training configuration can be
found in Appendix §A.29.

in Table 5 in Appendix). For a medium-sized model, the majority of overheads (both computation and communication)
are shifted to HE-related steps in the full HE mode (w/o optimization) compared to the plaintext mode. However, when
optimized by Selective Parameter Encryption, the overheads from HE dramatically drop such that the local training step
becomes the majority again.

5.3 EFFECTIVENESS OF SELECTIVE ENCRYPTION DEFENSE

To evaluate the defense effectiveness of Selective Parameter Encryption, we encrypt model parameters per parameter
sensitivity and perform inversion attacks (CV: DLG (Zhu et al., 2019); NLP: TAG (Deng et al., 2021)).

Figure 7: Selection Protection Against Gradient Inversion Attack (Zhu et al., 2019) On LeNet with the CIFAR-100 Dataset: attack
results when protecting random parameters (left) vs protecting top-s sensitive parameters (right). Each configuration is attacked 10
times and the best-recovered image is selected.

Defense effectiveness on CV tasks. We use image samples from CIFAR-100 to calculate the parameter sensitivities
of the model. In the DLG attack experiments, we use Multi-scale Structural Similarity Index (MSSSIM), Visual
Information Fidelity (VIF), and Universal Quality Image Index (UQI) as metrics to measure the similarity between
recovered images and original training images to measure the attack quality hence the privacy leakage. In Fig. 7,
compared to random encryption selection where encrypting 42.5% of the parameters can start to protect against attacks,
our top-5% encryption selection according to the model privacy map only alone can defend against the attacks, meaning
lower overall overhead with the same amount of privacy protection.

Defense effectiveness on NLP tasks. We use language samples from wikitext dataset in our experiment. As shown in
Fig. 8, with our sensitivity map indicating the top 1% privacy-sensitive parameters, our encryption mask can prevent
inversion attacks that yield better defense results than randomly encrypting 10% of the model parameters.

Empirical Selection Recipe. In Table 1, we show that empirically, encrypting the top-10% most sensitive parameters
tends to be adequate to defend against inversion attacks (Hatamizadeh et al., 2022), but up to 90% are needed for
random encryption.
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Figure 8: Language Model Inversion Attacks (Deng et al., 2021) on GPT-2 with the wikitext Dataset: Red indicates falsely-inverted
words and Yellow indicates correctly-inverted words.

Model Size
Selective Encryption Random Encryption

Minimum
Encryption

Ratio
Attack Score

Minimum
Encryption

Ratio
Attack Score

LeNet 88,648 0.05 0.1411 ± 0.0487 0.11 0.1835 ± 0.0720
CNN 2202,660 0.001 0.1640 ± 0.0530 0.007 0.1861 ± 0.0494

ResNet-18 11,220,132 0.001 0.1792 ± 0.1234 0.05 0.1458 ± 0.0732
Transformer-3f 10,702,129 0.1 0.0000 ± 0.0000 0.9 0.2000 ± 0.1672
Transformer-3 10,800,433 0.1 0.0000 ± 0.0000 0.9 0.9750 ± 0.0415
Transformer-S 53,091,409 0.1 0.0000 ± 0.0000 0.6 0.0875 ± 0.0573

GPT-2 124,439,808 0.01 0.0875 ± 0.0935 0.4 0.0644 ± 0.0720

Table 1: Defense Effectiveness on CV and NLP Models: each configuration is attacked 10 times and the best attack score is
recorded (VIF for CV tasks and Reconstruction Accuracy for NLP tasks). The minimum encryption ratios are selected as the smallest
encryption ratio observed that reduces the attack score to below a certain level (0.2 for VIF of images and 0.1 for Reconstruction
Accuracy of texts). The largest encryption ratio used will be recorded if the method fails to provide the desired protection level.

5.4 PRIVACY GUARANTEE QUANTIFICATION

Model Enc
Ratio

Minimum Laplace Scale r1 r2
Full
DP

Random
+ DP

Selective
+ DP Exp. Theo. Exp. Theo.

LeNet 0.005 0.11 0.09 0.09 0.8182 0.9950 0.8182 0.8094
TF-3 0.01 0.013 0.013 0.003 1.0000 0.9995 0.2308 0.8850
TF-3f 0.01 0.0125 0.0125 0.0025 1.0000 0.9999 0.2000 0.9587
TF-3t 0.01 0.013 0.012 0.004 0.9231 0.9990 0.3077 0.9214

Table 2: Quantifying Privacy of Selective Parameter Encryption: r1 and r2 represent the ratio of sum induced by the random
encryption and selective encryption respectively. The minimum Laplace scales are taken based on the smallest scale of the Laplace
noises that reduces the attack score to a desired level. The theoretical value of r1 is one minus the encryption ratio and that of r2 is
calculated based on the corresponding sensitivity data.

To validate Remark 4.8, we fix the encryption ratio for both random and selective encryption on each selected model
and gradually increase the noise scales. When all the encryption methods reach a predefined protection level, we record
the minimum noise scale needed and calculate the experimental ratios to make comparison with the theoretical values.
The encryption ratio is chosen to be small so that we can observe the influence of the Laplace noises by ensuring
the attack score not to be too low at first. As in Table 2, the four cases show with acceptable errors that our theorem
provides an upper bound for differential privacy budget of the random and selective encryption methods.

6 CONCLUSION

In this paper, we propose the first practical homomorphic-encryption-based privacy-preserving FL solution with
Selective Parameter Encryption which is designed to support efficient foundation model federated training. Selective
Parameter Encryption selectively encrypts the most privacy-sensitive parameters to minimize the size of encrypted
model updates to reduce overheads while providing privacy guarantee quantifiable by our proposed theoretical privacy
analysis framework. Future work includes further improving the performance of threshold HE in the less trusted FL
setting as well as investigating the impact of client data heterogeneity Mendieta et al. (2022); Guleria et al. (2024) and
the potential relationship between explainable ML techniques and our privacy sensitivity calculation.
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A APPENDIX

PRELIMINARIES

A.1 HOMOMORPHIC ENCRYPTION

• HE.KeyGen(λ): given the security parameter λ, the key generation algorithm outputs a key pair (pk, sk)
and the related cryptographic context.

• HE.Enc(pk,m):the encryption algorithm takes in pk and a plaintext message m, then outputs the
ciphertext c.

• HE.Eval(c, f ):the encrypted evaluation algorithm takes in a ciphertext message c and a function f , then
outputs the computation result c′.

• HE.Dec(sk, c′):the encryption algorithm takes in sk and a ciphertext message c′, then outputs the plaintext
m′.

Figure 9: General Scheme of Homomorphic Encryption

Homomorphic Encryption is a cryptographic primitive that allows computation to be performed on encrypted data
without revealing the underlying plaintext. It usually serves as a foundation for privacy-preserving outsourcing
computing models. HE has generally four algorithms (KeyGen, Enc, Eval, Dec) as defined in Figure 9. The fundamental
concept is to encrypt data prior to computation, perform the computation on the encrypted data without decryption, and
then decrypt the resulting ciphertext to obtain the final plaintext.

Since FL model parameters are usually not integers, our method is built on the Cheon-Kim-Kim-Song (CKKS)
scheme (Cheon et al., 2017), a (leveled) HE variant that can work with approximate numbers. The comparison of HE vs
other privacy-preserving primitives can be found in Table 3.

Model
Degradation Overheads Client Dropout Interactive

Sync
Model Visible

To Server
Differential Privacy With noise Light Robust No Yes
Secure Aggregation Exact Medium Susceptible Yes Yes
Homomorphic Encryption Exact Heavy Robust No No

Table 3: Comparison of Differential Privacy, Secure Aggregation, and Homomorphic Encryption

A.2 FEDERATED LEARNING

Federated learning is first proposed in (McMahan et al., 2017), which builds distributed machine learning models while
keeping personal data on clients. Instead of uploading data to the server for centralized training, clients process their
local data and share updated local models with the server. Model parameters from a large population of clients are
aggregated by the server and combined to create an improved global model.

The FedAvg (McMahan et al., 2017) is commonly used on the server to combine client updates and produce a new
global model. At each round, a global model Wglob is sent to N client devices. Each client i performs gradient descent
on its local data with E local iterations to update the model Wi. The server then does a weighted aggregation of the
local models to obtain a new global model, Wglob =

∑N
i=1 αiWi, where αi is the weighting factor for client i.

Typically, the aggregation runs using plaintext model parameters through a central server (in some cases, via a
decentralized protocol), giving the server visibility of each local client’s model in plaintext.

KEY MANAGEMENT AND THRESHOLD HE

A.3 HE KEY MANAGEMENT

Our general system structure assumes the existence of a potentially compromised aggregation server, which performs
the HE-based secure aggregation. Alongside this aggregation server, there also exists a trusted key authority server that
generates and distributes HE keys and related crypto context files to authenticated parties (as described previously in
Algorithm 1 in the main paper. We assume there is no collusion between these two servers.
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Moreover, secure computation protocols for more decentralized settings without an aggregation server are also available
using cryptographic primitives such as Threshold HE (Aloufi et al., 2021), Multi-Key HE (Aloufi et al., 2021), and
Proxy Re-Encryption (Ateniese et al., 2006; Jin et al., 2022). In such settings, secure computation and decryption can be
collaboratively performed across multiple parties without the need for a centralized point. We plan to introduce a more
decentralized version in the future. Due to the collaborative nature of such secure computation, the key management
will act more as a coordination point instead of a trusted source for key generation.

A.4 FL WITH THRESHOLD HE
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Figure 10: Microbenchmark of Threshold-HE-Based FedAvg Implementation: with the x-axis showing the sizes of vectors being
aggregated, we use a two-party threshold setup. Both the single-key variant and the threshold variant are configured with an estimated
precision of 36 for a fair comparison. Note that bars represent communication overheads and lines represent computation overheads.

The threshold variant of HE schemes is generally based on Shamir’s secret sharing (Shamir, 1979) (which is also
implemented in PALISADE). Key generation/agreement and decryption processes are in an interactive fashion where
each party shares partial responsibility for the task. Threshold key generation results in each party holding a share of the
secret key and threshold decryption requires each party to partially decrypt the final ciphertext result and merge to get
the final plaintext result. We provide benchmarkings of the threshold-HE-based FedAvg implementation in Figure 10.

FRAMEWORK AND PLATFORM DEPLOYMENT

A.5 SOFTWARE FRAMEWORK: HOMOMORPHIC ENCRYPTION IN FEDERATED LEARNING

In this part, we will illustrate how we design our HE-based aggregation from a software framework perspective.

Model Reshape

Ciphertext Packing

HE Libraries

Enc/Dec KeyGen HE Agg Functions 

Serialization Crypto Foundation

Model Flattening

Selective Parameter Encryption

Optimization

ML Processing

Server Manager

Server Aggregator Client Trainer

Client Manager

Homomorphic Encryption Key Agreement FL Orchestration

ML Bridge

OtherX

Figure 11: Framework Structure: our framework consists of a three-layer structure including Crypto Foundation to support basic HE
building blocks, ML Bridge to connect crypto tools with ML functions, and FL Orchestration to coordinate different parties during a
task.
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Figure 11 provides a high-level design of our framework, which consists of three major layers:

• Crypto Foundation. The foundation layer is where Python wrappers are built to realize HE functions including
key generation, encryption/decryption, secure aggregation, and ciphertext serialization using open-sourced HE
libraries;

• ML Bridge. The bridging layer connects the FL system orchestration and cryptographic functions. Specifically,
we have ML processing APIs to process inputs to HE functions from local training processes and outputs vice
versa. Additionally, we realize the optimization module here to mitigate the HE overheads;

• FL Orchestration. The FL system layer is where the key authority server manages the key distribution and
the (server/client) managers and task executors orchestrate participants.

Our layered design makes the HE crypto foundation and the optimization module semi-independent, allowing different
HE libraries to be easily switched in our system and further FL optimization techniques to be easily added to the system.

A.6 FRAMEWORK APIS

Table 4 shows the framework APIs in our system related to HE.

API Name Description

pk, sk = key_gen(params) Generate a pair of HE keys
(public key and private key)

1d_local_model = flatten(local_model) Flatten local trained model
tensors into a 1D local model

enc_local_model = enc(pk, 1d_model) Encrypt the 1D model
enc_global_model = he_aggregate(
enc_models[n], weight_factors[n])

Homomorphically aggregate
a list of 1D local models

dec_global_model = dec(sk, enc_global_model) Decrypt the 1D global model
global_model = reshape(

dec_global_model, model_shape)
Reshape the 1D global model

back to the original shape
Table 4: HE Framework APIs

A.7 DEPLOY ANYWHERE: A DEPLOYMENT PLATFORM MLOPS FOR EDGES/CLOUD

We implement our deployment-friendly platform such that our system can be easily deployed across cloud and edge
devices. Before the training starts, a user uploads the configured server package and the local client package to the
web platform. The server package defines the operations on the FL server, such as the aggregation function and client
sampling function; the local client package defines the customized model architecture to be trained (model files will be
distributed to edge devices in the first round of the training). Both packages are written in Python. The platform then
builds and runs the docker image with the uploaded server package to operate as the server for the training with edge
devices configured using the client package.

As shown in Figure 12, during the training, users can also keep tracking the learning procedure including device status,
training progress/model performance, and system overheads (e.g., training time, communication time, CPU/GPU
utilization, and memory utilization) via the web interface. Our platform keeps close track of overheads, which allows
users to in real-time pinpoint HE overhead bottlenecks if any.

FEDERATED LEARNING WITH SELECTIVE PARAMETER ENCRYPTION

Algorithm 1 shows in detail how Selective Parameter Encryption is integrated with federated learning.

ADDITIONAL DEFINITIONS AND PROOFS

A.8 ADJACENT DATASETS

Definition A.1 (Adjacent Datasets). Two datasets D1 and D2 are said to be adjacent if they differ in the data of exactly
one individual. Formally, they are adjacent if:

|D1∆D2| = 1
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Figure 12: Deployment Interface Example: Overhead distribution monitoring on each edge device (e.g. Desktop (Ubuntu), Laptop
(MacBook), and Raspberry Pi 4), which can be used to pinpoint HE overhead bottlenecks and guide optimization.

A.9 LAPLACE MECHANISM

Definition A.2 (Laplace mechanism). Given a function f : D → R,

where D is the domain of the dataset and d is the dimension of the output, the Laplace mechanism adds Laplace noise
to the output of f .

Let b be the scale parameter of the Laplace distribution, which is given by:

Lap(x | b) = 1

2b
e−

|x|
b

Given a dataset D, the Laplace mechanism F is defined as:

M(D) = f(D) + Lap(0 | b)d

A.10 DIFFERENTIAL PRIVACY SENSITIVITY

Definition A.3 (Differential Privacy Sensitivity). To ensure ϵ-privacy, we need to determine the appropriate scale
parameter b. The DP sensitivity ∆f of a function f is the maximum difference in the output of f when applied to any
two adjacent datasets:

∆f = max
D1,D2:|D1∆D2|=1

∥f (D1)− f (D2)∥1 .

Definition A.4 (Gradient-Based Sensitivity). For a function f : Rn 7→ R, its gradient-based sensitivity ∆f ∈ Rn can
be evaluated as its gradient

∆f =
∂f(D)

∂D
.

As mentioned by Section 3.4, we adopt the gradient of f as sensitivity (see Definition A.4) which appears to be different
from the form in Definition A.3. However, we argue that this notion is loosely compatible with the use of differential
privacy if we view it as an extension to the continuous case, i.e., |D1 −D2| = 1 is replaced with |D1 −D2| ≤ ε for
some small ε.
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Algorithm 1 HE-Based Federated Aggregation

• [[W]]: the fully encrypted model | [W]: the partially encrypted model;
• p: the ratio of parameters for selective encryption;
• b: (optional) differential privacy parameter.

// Key Authority Generate Key
(pk, sk)← HE.KeyGen(λ);
// Local Sensitivity Map Calculation
for each client i ∈ [N ] do in parallel

Wi ← Init(W);
Si ← Sensitivity(W, Di);
[[Si]]← Enc(pk,Si);
Send [[Si]] to server;

end
// Server Encryption Mask Aggregation

[[M]]← Select(
∑N

i=1 αi[[Si]], p);
// Training
for t = 1, 2, . . . , T do

for each client i ∈ [N ] do in parallel
if t = 1 then

Receive [[M]] from server;
M← HE.Dec(sk, [[M]]);

end
if t > 1 then

Receive [Wglob] from server;
Wi ← HE.Dec(sk,M⊙ [Wglob]) + (1−M)⊙ [Wglob];

end
Wi ← Train(Wi, Di);
// Additional Differential Privacy
if Add DP then

Wi ←Wi +Noise(b);
end
[Wi]← HE.Enc(pk,M⊙Wi) + (1−M)⊙Wi;
Send [Wi] to server S;

end
// Server Model Aggregation

[Wglob]←
∑N

i=1 αi[[M⊙Wi]] +
∑N

i=1 αi((1−M)⊙Wi);
end

A.11 PROOF OF BASE FULL ENCRYPTION PROTOCOL

In this subsection, we prove the privacy of base protocol where homomorphic-encryption-based federated learning
utilizes the full model parameter encryption (i.e., the selective parameter encryption rate is set to be 1). We define the
adversary in Definition A.5 and privacy in Definition A.7.

Definition A.5 (Single-Key Adversary). A semi-honest adversary A can corrupt (at the same time) any subset of n
learners and the aggregation server, but not at the same time.

Note that the ref of the proof assumes the single-key setup and the privacy of the threshold variant of HE-FL (as shown
in Definition A.6) can be easily proved by extending the proofs of threshold homomorphic encryption (Boneh et al.,
2006; Laud & Ngo, 2008; Asharov et al., 2012).

Definition A.6 (Threshold Adversary). A semi-honest adversary AT ⟨ can corrupt (at the same time) any subset of
n− k learners and the aggregation server.

Definition A.7 (Privacy). A homomorphic-encryption federated learning protocol π is simulation secure in the presence
of a semi-honest adversary A, there exists a simulator S in the ideal world that also corrupts the same set of parties
and produces an output identically distributed to A’s output in the real world.
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Ideal World. Our ideal world functionality F interacts with learners and the aggregation server as follows:

• Each learner sends a registration message to F for a federated training model task Wglob. F determines a subset
N ′ ⊂ N of learners whose data can be used to compute the global model Wglob.

• Both honest and corrupted learners upload their local models to F .

• If local models W⃗ of learners in N ′ are enough to compute Wglob, F sends Wglob ←
∑N ′

i=1 αiWi to all learners in
N ′, otherwise F sends empty message ⊥.

Real World. In real world, F is replaced by our protocol described in Algorithm 1 with full model parameter encryption.

We describe a simulator S that simulates the view of the A in the real-world execution of our protocol. Our privacy
definition A.7 and the simulator S prove both confidentiality and correctness. We omit the simulation of the view of
A that corrupts the aggregation server here since the learners will not receive the ciphertexts of other learners’ local
models in the execution of π thus such a simulation is immediate and trivial.

Simulator. In the ideal world, S receives λ and 1n from F and executes the following steps:

1. S chooses a uniformly distributed random tape r.
2. S runs the key generation function to sample pk: (pk, sk)← HE .KeyGen(λ).
3. For a chosen ith learner, S runs the encryption function to sample: (ci)← HE .Enc(pk, r|Wi|).
4. S repeats Step 3 for all other learners to obtain c⃗, and runs the federated aggregation function f to sample:

(cglob)← HE .Eval(⃗c, f).

The execution of S implies that:

{(ci, cglob)}
s≡
{(

HE .Enc(pk,Wi),HE .Eval(W⃗, f)
)}

Thus, we conclude that S’s output in the ideal world is computationally indistinguishable from the view of A in a real
world execution:

{S (1n, (λ))} s≡ {viewπ (λ)},
where view is the view of A in the real execution of π.

A.12 QUANTIFYING NEGLIGIBLE PRIVACY VALUE IN FULL ENCRYPTION

Given a security parameter λ that denotes the desired security level of the scheme, i.e., λ-bit security, we can obtain a
relaxed catastrophic failure probability δ0 = 1

2λ
, which satisfies (ϵapprox, δ0)-DP under approximate DP (Gaussian

mechanism), where ϵapprox = 0. Note that, in general for approximate DP, the Gaussian mechanism will not actually
release the entire dataset under catastrophic failure probability, rather it fails gracefully, thus δ0 is a good approximation
of the catastrophic failure probability under the failure of the security scheme.

With (ϵapprox, δ0)-DP, we can switch the pure DP we used in our paper to approximate DP and use Advanced
Composition (Dwork et al., 2010) (Theorem 3.20) to get a tight composition. On the other hand, to compose the privacy
of (ϵapprox, δ0)-DP under the Gaussian mechanism into our current pure DP composition in the paper, we can also use
Lemma 3.7 (Bun & Steinke, 2016) to obtain a partial converse (up to a loss in parameters) from approximate DP to
pure DP via zCDP:
With

δ0 =
1

2λ
, (6)

ρ = ϵapprox + 2 ln
1

δ0
− 2

√
ln

1

δ0
(ϵapprox + ln

1

δ0
), (7)

ϵ0 =
√
2ρ, (8)

we can have ϵ0 =

√
2ϵapprox + 2 ln 1

1

2λ
− 2

√
ln 1

1

2λ
(ϵapprox + ln 1

1

2λ
).

Let ϵapprox = 10−12 and λ = 128 for 128-bit security, we can have a negligible ϵ0 = 9.97 ∗ 10−07. Note that
ϵapprox = 10−12 is a really conservative value for estimating privacy from encryption, when ϵapprox = 0 we can have
ϵ0 ≃ 0. Thus, we have ϵ0-DP from security of encryption, where ϵ0 ≃ 0.
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A.13 PROOF OF rJ -PRIVACY BY SELECTIVE PARAMETER ENCRYPTION

Proof. The mean value of sensitivity within [0, Q1−p] is calculated by

E[X|X ≤ Q1−p] =
1

1− p

∫ Q1−p

0

xp(x)dx.

Suppose the total number of parameters is n, the ratio is then obtained as

r =
n(1− p) 1

1−p

∫ Q1−p

0
xp(x)dx

nµ
=

1

µ

∫ Q1−p

0

xp(x)dx.

Therefore, the total privacy budget is

J ′ =
∑

i∈[N ]/S

∆fi
b

= r

N∑
i=1

∆fi
b

= rJ.

A.14 PROOF OF PRIVACY BUDGET RELATIONSHIP UNDER DIFFERENT PARAMETER ENCRYPTION OPTIONS

Proof. bm induces the privacy budget of ε(m)
i = ∆fi

bm
for the encryption method indicated by m. The total privacy

budgets for all the methods are then given by

J0 =
∑
i

ε
(0)
i =

1

b0

∑
i

∆fi,

J1 = (1− p)
∑
i

ε
(1)
i =

1− p

b1

∑
i

∆fi,

J2 = r
∑
i

ε
(2)
i =

r

b2

∑
i

∆fi.

When the methods reach a similar protection level (approximating using J0 = J1 = J2), we have the relation above by
canceling out the term

∑
i ∆fi.

A.15 SELECTIVE PARAMETER ENCRYPTION PRIVACY PROOF UNDER UNIFORM DISTRIBUTION

Assume ∆f ∼ U(0, 1) where U represents the uniform distribution, we can have the following privacy quantification.
Remark A.8 (Achieving (1− p)2J-Privacy by Sensitive Parameter Selection (Uniformly Distributed Sensitivity)). If
we select the most sensitive parameters with ratio p for homomorphic encryption and add Laplace noise on remaining
parameters, it satisfies (1− p)2J-Privacy.

Proof. For a uniform distribution with density function p(x) = 1
xmax

, x ∈ [0, xmax], mean µ = 1
2xmax, and (1− p)th

quantile Q1−p = (1− p)xmax,

r =
2

xmax

∫ (1−p)xmax

0

x

xmax
dx = (1− p)2.

Uniform distribution is a conservative estimation of the sensitivity distribution. In our experiments, the obtained
sensitivity data is mostly right-skewed and can be well modeled by the mixture of several log-normal distributions
(see the case of Transformer-3 as shown in Figure 13). However, it is hard to analytically depict the conclusion for
log-normal distributions, so we provide Remark A.9 as a demonstration of the right-skewed case with the simpler
exponential distribution.
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A.16 SELECTIVE PARAMETER ENCRYPTION PRIVACY PROOF UNDER EXPONENTIAL DISTRIBUTION

Remark A.9 (Achieving (p ln p − p + 1)J-Privacy by Sensitive Parameter Encryption (Exponentially Distributed
Sensitivity)).

Proof. For an exponential distribution with density function p(x) = λe−λx, mean µ = 1
λ , and (1 − p)th quantile

Q1−p = − ln p
λ . The corresponding ratio is then

r = λ

∫ − ln p
λ

0

λxe−λxdx = p ln p− p+ 1.

Taking Transformer-3t as an example, the estimated privacy budget ratio for sensitivity data under different distributions
is presented in Figure 4b. It is clear from the figure that a better fitting of the sensitivity data distribution yields a better
estimation of the privacy budget ratio. Note that the estimation here is imperfect since finding the best fitting is not the
main concern of our study, but is sufficient to show the correctness of our theorem.

A.17 SENSITIVITY DISTRIBUTION AND PRIVACY BUDGET RATIO OF THE MODELS INCLUDED

Figure 13, 14, 15, 16, 17„ 18, 19 show that the log-normal mixture model is a good fitting on the models we use for our
evaluation experiments.
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Figure 13: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3).
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Figure 14: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3f).
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Figure 15: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-S).
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Figure 16: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (GPT-2).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

10
8

10
6

10
4

10
2

10
0

Sensitivity

0

1

2

3

4

5
Pe

rc
en

ta
ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y 

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 17: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (LeNet).
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Figure 18: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (CNN).
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Figure 19: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (ResNet-18).

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

SUPPORTING MATERIALS FOR DEFENSE EFFECTIVENESS EXPERIMENTS

A.18 PARAMETER SENSITIVITY MAP FOR LENET

Figure 20 visualizes the parameter sensitivity map of LeNet.

Conv_Layer1 Conv_Layer3Conv_Layer2 Conv_Layer4 Linear_Classifier
Figure 20: Model Privacy Map Calculated by Sensitivity on LeNet: darker color indicates higher sensitivity. Each subfigure shows
the sensitivity of parameters of the current layer. The sensitivity of parameters is imbalanced and many parameters have very little
sensitivity (its gradient is hard to be affected by tuning the data input for attack).

A.19 DEFENSE EFFECTIVENESS ON CV AND NLP MODELS

Figure 21 and 22 are used for the records of Table 1.
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Figure 21: Results for Selected CV Models

A.20 EXPERIMENTS ON QUANTIFYING PRIVACY

Figure 23 shows the privacy guarantee of Selective Parameter Encryption using the equivalent privacy budget.

ADDITIONAL EXPERIMENTS

We evaluate the HE-based training overheads (without our optimization in place) across various FL training scenarios
and configurations. This analysis covers diverse model scales, HE cryptographic parameter configurations, client
quantities involved in the task, and communication bandwidths. This helps us to identify bottlenecks in the HE process
throughout the entire training cycle. We also benchmark our framework against other open-source HE solutions to
demonstrate its advantages.

A.21 PARAMETER EFFICIENCY TECHNIQUES IN HE-BASED FL

Table 6 shows the optimization gains by applying model parameter efficiency solutions in HE-Based FL.

A.22 RESULTS ON DIFFERENT SCALES OF MODELS

We evaluate our framework on models with different size scales and different domains, from small models like the
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Figure 22: Results for Selected NLP Models

linear model to large foundation models such as Vision Transformer (Dosovitskiy et al., 2020) and BERT (Devlin et al.,
2018). As Table 5 show, both computational and communicational overheads are generally proportional to model sizes.

Table 5 illustrates more clearly the overhead increase from the plaintext federated aggregation. The computation fold
ratio is in general 5x ∼ 20x while the communication overhead can jump to a common 15x. Small models tend to have
a higher computational overhead ratio increase. This is mainly due to the standard HE initialization process, which
plays a more significant role when compared to the plaintext cost. The communication cost increase is significant for
models with sizes smaller than 4096 (the packing batch size) numbers. Recall that the way our HE core packs encrypted
numbers makes an array whose size is smaller than the packing batch size still requires a full ciphertext.

A.23 RESULTS ON DIFFERENT CRYPTOGRAPHIC PARAMETERS

We evaluate the impacts of variously-configured cryptographic parameters. We primarily look into the packing batch
size and the scaling bits. The packing batch size determines the number of slots packed in a single ciphertext while the
scaling bit number affects the “accuracy” (i.e., how close the decrypted ciphertext result is to the plaintext result) of
approximate numbers represented from integers.

From Table 7, the large packing batch sizes in general result in faster computation speeds and smaller overall ciphertext
files attributed to the packing mechanism for more efficiency. However, the scaling factor number has an almost
negligible impact on overheads.

Unsurprisingly, it aligns with the intuition that the higher bit scaling number results in higher “accuracy” of the
decrypted ciphertext value, which generally means the encrypted aggregated model would have a close model test
performance to the plaintext aggregated model. However, it is worth mentioning that since CKKS is an approximate
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Figure 23: Defense Effectiveness of DP Noises of Different Scales Under Three Protection Methods: an encryption ratio is fixed for
each model from the beginning to guarantee a good attack performance at first. Each configuration is attacked 10 times and the best
attack score is recorded. The experiments are repeated for at least three different sets of applied DP noises.

Model Model Size HE
Time (s)

Non-HE
Time (s)

Comp
Ratio Ciphertext Plaintext Comm

Ratio
Linear Model 101 0.216 0.001 150.85 266.00 KB 1.10 KB 240.83
TimeSeries
Transformer 5,609 2.792 0.233 12.00 532.00 KB 52.65 KB 10.10

MLP (2 FC) 79,510 0.586 0.010 60.46 5.20 MB 311.98 KB 17.05
LeNet 88,648 0.619 0.011 57.95 5.97 MB 349.52 KB 17.50

RNN(2 LSTM
+ 1 FC) 822,570 1.195 0.013 91.82 52.47 MB 3.14 MB 16.70

CNN (2 Conv
+ 2 FC) 1,663,370 2.456 0.058 42.23 103.15 MB 6.35 MB 16.66

MobileNet 3,315,428 9.481 1.031 9.20 210.41 MB 12.79 MB 16.45
ResNet-18 12,556,426 19.950 1.100 18.14 796.70 MB 47.98 MB 16.61
ResNet-34 21,797,672 37.555 2.925 12.84 1.35 GB 83.28 MB 16.60
ResNet-50 25,557,032 46.672 5.379 8.68 1.58 GB 97.79 MB 16.58
GroupViT 55,726,609 86.098 19.921 4.32 3.45 GB 212.83 MB 16.61

Vision
Transformer 86,389,248 112.504 17.739 6.34 5.35 GB 329.62 MB 16.62

BERT 109,482,240 136.914 19.674 6.96 6.78 GB 417.72 MB 16.62
Llama 2 6.74 B 13067.154 2423.976 5.39 417.43 GB 13.5 GB 30.92

Table 5: Vanilla Fully-Encrypted Models of Different Sizes: with 3 clients; Comp Ratio is calculated by time costs of HE over time
costs of Non-HE; Comm Ratio is calculated by file sizes of HE over file sizes of Non-HE. CKKS is configured with default crypto
parameters.

scheme with noises, the decrypted aggregated model can yield either positive or negative model test accuracy ∆s, but
usually with a negative or nearly zero ∆.
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Models PT (MB) CT Opt
(MB)

ResNet-18
(12 M)

(Tang et al., 2019)
47.98 796.70 MB 19.03

BERT
(110 M)

(Hu et al., 2021)
417.72 6.78 GB 16.66

Table 6: Parameter Efficiency Overhead: PT means plaintext and CT means ciphertext. Communication reductions are 0.60 and
0.96.

HE
Batch
Size

Scaling
Bits

Comp
(s)

Comm
(MB)

Model Test
Accuracy
∆ (%)

1024 14 8.834 407.47 -0.28
1024 20 7.524 407.47 -0.21
1024 33 7.536 407.47 0
1024 40 7.765 407.47 0
1024 52 7.827 407.47 0
2048 14 3.449 204.50 -0.06
2048 20 3.414 204.50 -0.13
2048 33 3.499 204.50 0
2048 40 3.621 204.50 0
2048 52 3.676 204.50 0
4096 14 1.837 103.15 -1.85
4096 20 1.819 103.15 0.32
4096 33 1.886 103.15 0
4096 40 1.998 103.15 0
4096 52 1.926 103.15 0

Table 7: Computational & Communicational Overhead of Different Crypto Parameter Setups: tested with CNN (2 Conv+ 2 FC) and
on 3 clients; model test accuracy ∆s is the difference between the best plaintext global model and the best global encrypted global
models.

A.24 IMPACT FROM NUMBER OF CLIENTS

As real-world systems often experience a dynamic amount of participants within the FL system, we evaluate the
overhead shift over the change in the number of clients. Figure 24a breaks down the cost distribution as the number of
clients increases. With a growing number of clients, it also means proportionally-added ciphertexts as inputs to the
secure aggregation function thus the major impact is cast on the server. When the server is overloaded, our system also
supports client selection to remove certain clients without largely degrading model performance.

A.25 COMMUNICATION COST ON DIFFERENT BANDWIDTHS

FL parties can be allocated in different geo-locations which might result in communication bottlenecks. Typically,
there are two common scenarios: (inter) data centers and (intra) data centers. In this part, we evaluate the impact of the
bandwidths on communication costs and how it affects the FL training cycle. We categorize communication bandwidths
using 3 cases:

• Infiniband (IB): communication between intra-center parties. 5 GB/s as the test bandwidth.

• Single AWS Region (SAR): communication between inter-center parties but within the same geo-region
(within US-WEST). 592 MB/s as the test bandwidth.

• Multiple AWS Region (MAR): communication between inter-center parties but across the different geo-region
(between US-WEST and EU-NORTH). 15.6 MB/s as the test bandwidth.

As shown in Figure 24b, we deploy our system on 3 different geo-distributed environments, which are operated
under different bandwidths. It is obvious that the secure HE functionality has an enormous impact on low-bandwidth
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Figure 24: Results on Different Number of Clients and Communication Setup

environments while medium-to-high-bandwidth environments suffer limited impact from increased communication
overhead during training cycles, compared to Non-HE settings.

A.26 DIFFERENT ENCRYPTION SELECTIONS

Table 8 shows the overhead reductions with different selective encryption rates.

Selection Comp
(s) Comm Comp

Ratio
Comm
Ratio

Enc w/ 0% 17.739 329.62 MB 1.00 1.00
Enc w/ 10% 30.874 844.49 MB 1.74 2.56
Enc w/ 30% 50.284 1.83 GB 2.83 5.69
Enc w/ 50% 70.167 2.83 GB 3.96 8.81
Enc w/ 70% 88.904 3.84 GB 5.01 11.93
Enc w/ All 112.504 5.35 GB 6.34 16.62

Table 8: Overheads With Different Parameter Selection Configs Tested on Vision Transformer: “Enc w/ 10%” means performs
encrypted computation only on 10% of the parameters; all computation and communication results include overheads from plaintext
aggregation for the rest of the parameters.

A.27 COMPARISON WITH OTHER FL-HE FRAMEWORKS

Comparison with other popular HE-based FL work can be found in Table 9.

Features IBMFL Nvidia FLARE Ours
Homomorphic Encryption ✓ ✓ ✓

Threshold Key Management ✗ ✗ ✓
Selective Parameter Encryption ✗ ⃝ ✓

Encrypted Foundation Model Training ⃝ ⃝ ✓

Table 9: Comparison with Existing HE-Based FL Systems: ⃝ implies limited support. For Selective Parameter Encryption, FLARE
offers the (random) partial encryption option which does not have clear indications of privacy impacts; for Encrypted Foundation
Model Training, the other two platforms require massive resources to train foundation models in encrypted federated learning.

We compare our framework to the other open-sourced FL frameworks with HE capability, namely NVIDIA FLARE
(NVIDIA) and IBMFL.
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Frameworks HE Core Key
Management Comp (s) Comm

(MB)

HE
Multi-Party

Functionalities

Ours PALISADE ✓ 2.456 105.72 PRE,
ThHE

Ours (w/ Opt) PALISADE ✓ 0.874 16.37 PRE,
ThHE

Ours SEAL
(TenSEAL) ✓ 3.989 129.75 —

Nvidia FLARE
(9a1b226)

SEAL
(TenSEAL) ✓ 2.826 129.75 —

IBMFL
(8c8ab11)

SEAL
(HELayers) ⃝ 3.955 86.58 —

Plaintext — — 0.058 6.35 —
Table 10: Different Frameworks: tested with CNN (2 Conv + 2 FC) and on 3 clients; Github commit IDs are specified. For key
management, our work uses a key authority server; FLARE uses a security content manager; IBMFL currently provides a local
simulator.

Both NVIDIA and IBMFL utilize Microsoft SEAL as the underlying HE core, with NVIDIA using OpenMinded’s
python tensor wrapper over SEAL and TenSEAL; IBMFL using IBM’spython wrapper over SEAL and HELayers
(HELayers also has an HElib version). Our HE core module can be replaced with different available HE cores, to give a
more comprehensive comparison, we also implement a TenSEAL version of our framework for evaluation.

Table 10 demonstrates the performance summary of different frameworks using an example of a CNN model with 3
clients. Our PALISADE-powered framework has the smallest computational overhead due to the performance of the
PALISADE library. In terms of communication cost, our system (PALISADE) comes second after IBMFL’s smallest
file serialization results due to the efficient packing of HELayers’ Tile tensors (Aharoni et al., 2011).

Note that NVIDIA’s TenSEAL-based realization is faster than the TenSEAL variant of our system. This is because
NVIDIA scales each learner’s local model parameters locally rather than weighing ciphertexts on the server. This
approach reduces the need for the one multiplication operation usually performed during secure aggregation (recall that
HE multiplications are expensive). However, such a setup would not suit the scenario where the central server does not
want to reveal its weighing mechanism per each individual local model to learners as it reveals partial (even full in some
cases) information about participants in the system.

A.28 CHANGE IN ATTACK PERFORMANCE OVER TRAINING

This experiment is used to study the attack performance at different stages of model training. We use Transformer-3
to illustrate the trend as shown in Figure 25. The encryption ratio for random and selective encryption is selected
as 0.0005 to guarantee the attack performance at the beginning of the training. The results indicate that the attack
performance decreases as the model is trained to be more and more useful, which makes sense since the importance
of information contained in the gradient is expected to drop gradually as the training goes toward convergence. Note
that the experiment is conducted on only one model because this part is not the main concern of our study. A more
comprehensive setup should include multiple CV and NLP models.
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Figure 25: Attack Performance on Transformer-3 over Batch Iterations. Each configuration is attacked 10 times and the best score is
recorded. The experiment is repeated on 10 different data points and their mean is presented.
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A.29 MLOPS RUNNING EXAMPLE CONFIGURATION

1 common_args:
2 training_type: "cross_silo"
3 scenario: "horizontal"
4 random_seed: 0
5

6 data_args:
7 dataset: "cifar100"
8 partition_method: "hetero"
9 partition_alpha: 0.5

10

11 model_args:
12 model: "resnet50"
13

14 train_args:
15 federated_optimizer: "FedAvg"
16 client_num_in_total: 3
17 client_num_per_round: 3
18 comm_round: 5
19 epochs: 1
20 batch_size: 10
21 client_optimizer: sgd
22 learning_rate: 0.03
23 weight_decay: 0.001
24

25 validation_args:
26 frequency_of_the_test: 5
27

28 device_args:
29 worker_num: 2
30 using_gpu: true
31 gpu_mapping_file: config/gpu_mapping.yaml
32

33 comm_args:
34 backend: "MQTT_S3"
35 mqtt_config_path: config/mqtt_config.yaml
36 s3_config_path: config/s3_config.yaml
37

38 fhe_args:
39 enable_fhe: true
40 scheme: ckks
41 batch_size: 8192
42 scaling_factor: 52
43 file_loc: "resources/cryptoparams/"
44

Figure 26: ResNet-50 MLOps Training Configuration

A.30 OVERHEAD ANALYSIS OF PARAMETER SELECTION

Using the same setup on ResNet-50, we conducted experiments on the overhead introduced by parameter selection to
find a selective encryption mask in the initial stage.
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Figure 27: Overhead Analysis of Parameter Selection on ResNet-50.

As shown in Figure 27, the two key steps of parameter selection, namely privacy sensitivity calculation and encrypted
global mask agreement, cost 113.8 s and 273.6 s respectively, while the overhead reduction during the entire training
task from selective parameter encryption results in 25342.4 s (please refer to the updated Figure for more details)
compared to full parameter encryption. This result demonstrates that despite the additional overhead introduced by the
parameter selection steps, our method still improves the encrypted FL overheads by a substantial margin. Additionally,
the global mask can be easily reused in different training tasks for the same model architecture with similar data
distribution, and the overhead of parameter selection can be further amortized in practice.
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A.31 CLIENT DATA DISTRIBUTION IMPACT ON SENSITIVITY

Figure 28 shows the difference in sensitivity distribution of Resnet50 under two different client data distributions. The
two sensitivity distributions still preserve the characteristics of log-normal mixture distribution, but it is noticeable a
slight change in aspects like their mode, range, etc. This observation suggests that alternative global mask aggregation
functions, such as maximum-based aggregation, might outperform our current weighted averaging method in terms of
privacy protection. It is worth future work to investigate this specific aspect of our selective encryption.
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Figure 28: Deviation of Sensitivity Distribution Induced by Different Client Data Distribution: two client data distributions
constructed from the ImageNet dataset with 100 images from distinct classes sampled at equal intervals. Distribution 1 contains data
with labels of [0, 1, 2, 3, 5] while Distribution 2 contains data whose labels span across 0 to 400.

To further investigate this aspect, experimental setups in the previous work Mendieta et al. (2022); Guleria et al. (2024)
for the FL data heterogeneity can be considered in future work on this topic regarding privacy sensitivity calculation.

A.32 ANALYSIS ON NEWER LLMS

Figure 29 and Figure 30 show how our method performs on newer LLMs from the Llama-3.2 collection. The
experimental results indicate that newer LLMs align closely with the findings observed in our experiments on earlier
models.
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Figure 29: Sensitivity Distribution of Llama-3.2-1B
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Figure 30: Sensitivity Distribution of Llama-3.2-3B
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