
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

EFFICIENT PRIVACY-PRESERVING FEDERATED LEARNING WITH
SELECTIVE PARAMETER ENCRYPTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated learning trains machine learning models on distributed devices by aggregating local model
updates instead of local data. However, privacy concerns arise as aggregating local model updates on
the server may reveal sensitive personal information by inversion attacks. Privacy-preserving methods,
such as homomorphic encryption (HE), then become necessary for FL training. Despite HE’s privacy
advantages, its applications suffer from impractical overheads, especially for foundation models.
In this paper, we present an efficient privacy-preserving federated learning framework by selective
parameter encryption with theoretical guarantees. Our approach proposes to selectively encrypt
sensitive parameters, significantly reducing both computation and communication overheads during
training while providing a quantifiable privacy guarantee. Our optimization shows considerable
overhead reduction, particularly for large foundation models (e.g. ∼100x reduction for GPT-2),
demonstrating the potential for scalable HE-based FL deployment.

1 INTRODUCTION

Federated learning allows distributed clients to collectively train a global model without directly sharing data. Instead
of uploading raw data to a central server for training, clients train models locally and share their model updates with
the server, where the model updates are then averaged based on the aggregation functions (McMahan et al., 2017) to
obtain a global model. While federated learning ensures that local raw data does not leave their original locations, it
remains vulnerable to eavesdroppers and malicious servers that might exploit plaintext model updates to reconstruct
sensitive training data (Fig. 1 (left)), i.e., gradient inversion attacks (Zhu et al., 2019; Criswell et al., 2014; Bhowmick
et al., 2018; Hitaj et al., 2017; Han et al., 2023; Hatamizadeh et al., 2022; Fowl et al., 2022). This poses a privacy
vulnerability especially when local models are trained on small local datasets (e.g., smartphone text data for large
language models). Local models derived from these small datasets inherently contain fine-grained information, making
it easier for adversaries to extract sensitive information from local model updates.

Existing defense methods that reduce privacy leakage include differential privacy (DP) (Truex et al., 2019; Byrd &
Polychroniadou, 2020) and secure aggregation (Bonawitz et al., 2017; So et al., 2022). DP adds noise to original
model updates but may result in model performance degradation due to the privacy noises introduced. On the other
hand, secure aggregation employs zero-sum masks to shield local model updates, ensuring that individual updates
remain private. However, secure aggregation demands additional interactive synchronization steps and is sensitive to
client dropout, making it less practical in real-world FL applications, where the unstable environments of clients face
challenges such as unreliable internet connections, and software crashes. Compared to the methods above, homomorphic
encryption (HE) (Paillier, 1999; Gentry, 2009; Fan & Vercauteren, 2012; Brakerski et al., 2014; Cheon et al., 2017)
offers a robust post-quantum secure solution that protects local models against attacks and provides privacy guarantee
while introducing minimal model performance degradation. As shown in Fig. 1 (middle), HE-based federated learning
(FedHE) encrypts local models on clients and performs model aggregation over ciphertexts on the server to protect
against privacy attacks, which has been adopted by several FL systems (Roth et al., 2022; IBM, 2022; Zhang et al.,
2020; Du et al., 2023) and domain-specific applications (Stripelis et al., 2021; Yao et al., 2023).

Despite the advantages, homomorphic encryption remains a powerful but complex cryptographic foundation with
impractical federated aggregation overheads (as shown in Fig. 1 (right)) for most real-world applications. Prior
FedHE solutions mainly employ existing generic HE methods without sufficient optimization for large-scale FL
deployment (Roth et al., 2022; IBM, 2022; Zhang et al., 2020; Du et al., 2023). The scalability of encrypted computation
and communication during federated training then becomes a bottleneck, restricting its feasibility for real-world
scenarios. This HE overhead limitation is particularly noticeable (commonly ∼15x increase in both computation and
communication), where both grow linearly w.r.t. the size of models (Cheon et al., 2017; Gouert et al., 2022). Especially

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

across resource-constrained devices, encrypted computing and communication of large models might take considerably
longer than the actual model training.

To address these challenges, we propose an efficient homomorphic-encryption-based privacy-preserving FL solution
with Selective Parameter Encryption for practical deployment1. Our method significantly reduces communication
and computation overheads, enabling efficient HE-based federated learning. We further provide the first theoretical
framework to quantify the privacy guarantee of selective encryption, which indicates a significant improvement over
random encryption and differential privacy, with the important observation that most existing models follow Log-Normal
Mixture distributions. Extensive experiments validate our privacy quantification framework.

③ Distribute
Encrypted
Global Model

① Submit
Encrypted
Local Model

① Submit
Encrypted
Local Model

① Submit
Encrypted
Local Model

② Perform
Encrypted

Aggregation

Recovered DataLocal Clients

Compromised Server Adversary

Local model updates

Recover local data
Di ← (∆WiW)∆W1 ∆Wi ∆Wn

Bob: Did you get
the Ibuprofen?

Global
Model
W

④ Decrypt
Global Model

0.0 0.2 0.4 0.6 0.8 1.0
Model Sizes

80

60

40

20

0

140

120

100

Ex
ec

ut
io

n
Ti

m
e

(s
)

RNN
ResNet-18

ResNet-34
ResNet-50

GViT

ViT

BERTNaive FedHE
Nvidia FLARE

Plaintext

!"!

0.0 0.2 0.4 0.6 0.8 1.0
Model Sizes

7

6

5

4

3

2

1

0

Fi
le

 S
iz

e
(B

yt
es

)

!"!

RNN ResNet-18
ResNet-34

ResNet-50

GViT

ViT

BERT
Naive FedHE
Nvidia FLARE
Plaintext

!""

Figure 1: (left) Data Reconstruction Attacks: an adversarial server can recover local training data from local model updates and
global model at last round; (middle) HE-based Federated Aggregation: models are encrypted and the server acts as a computing
service without access to models; (right) Computation and Communication Overhead for Aggregating Fully Encrypted Models:
compared with Nvidia Flare (Nvidia, 2021) (which does not have provable selective parameter encryption), overheads include
encryption/decryption and encrypted aggregation.

Key contributions:

• We propose Selective Parameter Encryption in §3 that selectively encrypts the most privacy-sensitive
parameters to minimize encrypted model updates and reduce overheads while providing a privacy guarantee
quantified by our proposed privacy analysis framework.

• We provide the first theoretical framework for quantifying the privacy guarantee of selective homomorphic
encryption in §4. Selective Parameter Encryption requires significantly less encryption over random selection
with provable guarantee validated empirically.

• Extensive experiments in §5 show that the optimized system achieves significant overhead reduction while
preserving privacy against state-of-the-art ML privacy attacks, particularly for large models (e.g., ∼1000x
reduction for ResNet, and∼100x reduction for GPT-2), demonstrating the potential for real-world deployments.

2 RELATED WORK

Privacy Attacks On FL. Threats and attacks on privacy in the domain of Federated Learning have been studied in
recent years (Mothukuri et al., 2021). Data reconstruction attacks (Criswell et al., 2014; Bhowmick et al., 2018; Hitaj
et al., 2017) are usually carried out on the models to retrieve certain properties of data providers or even reconstruct the
data in the training datasets. With direct access to more fine-grained local models trained on a smaller dataset (Wang
et al., 2019), the adversary can have a higher chance of a successful attack. Moreover, further attacks can be performed
using GAN-based attacks to even fully recover the original data (Hitaj et al., 2017). The majority of the privacy attacks
can be traced back to the direct exposure of plaintext accesses to local models to other parties.

Non-HE Defense Mechanisms. Local differential privacy has been adopted to protect local model updates by adding
differential noise on the client side before the server-side aggregation (Truex et al., 2019; Byrd & Polychroniadou,
2020) where privacy guarantee requires large-scale statistical noise on fine-grained local updates that generally degrades

1We integrate our work with an open-source federated learning platform. Core codes of our HE-enable platform are available in
Supplementary Material.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

model performance (Truex et al., 2020). On the other hand, other work proposes to apply zero-sum masks (usually
pair-wise) to mask local model updates such that any individual local update is indistinguishable to the server (Bonawitz
et al., 2017; So et al., 2022). However, such a strategy introduces several challenges including key/mask synchronization
requirements and federated learner dropouts. Compared to these solutions providing privacy protection in FL, HE is
non-interactive and dropout-resilient (vs. general secure aggregation protocols (Bonawitz et al., 2017; So et al., 2022))
and it introduces negligible model performance degradation (vs. noise-based differential privacy solutions (Truex et al.,
2019; Byrd & Polychroniadou, 2020)).

Existing HE-based FL Work. Existing HE-based FL work either apply restricted HE schemes (e.g., additive scheme
Paillier) (Zhang et al., 2020; Fang & Qian, 2021; Jiang et al., 2021) without extensibility to further FL aggregation
functions or provide a generic but impractical HE implementation on FL aggregation (Jiang et al., 2021; Du et al.,
2023; Ma et al., 2022), including industrial platforms such as IBM FL (IBM, 2022), while leaving the key issue with
impractical HE overheads as an unresolved question. In our work, we propose a novel Selective Parameter Encryption
optimization scheme that largely reduces the overheads as well as provide the first theoretical framework to quantify the
privacy guarantee of selective encryption, which makes HE-based FL viable and provable in practical deployments.

Parameter Selection in ML. Selective encryption of models has been explored in prior work, particularly in single-
client-server machine learning setups for training and inference. For instance, Sphinx (Tian et al., 2022) employs a
hybrid approach, utilizing HE for bias parameters while applying DP to the remaining parameters. However, unlike our
privacy sensitivity-based method, Sphinx does not easily satisfy the challenges in model and dataset diversity in FL.
Similarly, other approaches (Tian et al., 2021) face limitations in FL due to their reliance on specific model architectures,
overly coarse layer-wise selection strategies, and the absence of robust privacy quantification.

3 FEDERATED LEARNING WITH SELECTIVE PARAMETER ENCRYPTION

In this section, we first provide the overview of FL with Selective Parameter Encryption in §3.1, define the threat
model in §3.2, describe the general algorithmic design of HE-based FL in §3.3 and explain how Selective Parameter
Encryption optimizes the overheads in §3.4.

3.1 METHODOLOGY OVERVIEW

Option 1:
Threshold Key

Option 2:
Single Key

Encryption Mask CalculationEncryption Key Agreement Encrypted Federated Learning

Figure 2: Federated Learning Pipeline With Selective Parameter Encryption: in the Encryption Key Agreement stage, clients can
either use distributed threshold key agreement protocol or outsource a trusted key authority. We simplify the illustration here by
abstracting the key pair of the public key and secret key (partial secret keys if using threshold protocol) as one key; in the Encryption
Mask Calculation stage, clients use local datasets to calculate local model sensitivity maps which are homomorphically aggregated
at the server to generate an encryption mask; in the Encrypted Federated Learning stage, clients use homomorphic encryption with
encryption mask to protect local model updates where the server aggregates them but does not have access to sensitive local models.

As shown in Fig. 2, our efficient HE-based federated training process at a high level goes through three major stages:
(1) Encryption key agreement: the clients either use threshold HE key agreement protocol or trusted key authority to
generate HE keys; (2) Encryption mask calculation: the clients and the server apply Selective Parameter Encryption
to agree on a selective encryption mask; (3) Encrypted federated learning: at each round, the clients selectively encrypt
local model updates using the HE key and the encryption mask for efficient encrypted aggregation at the server.

3.2 THREAT MODEL

We define a semi-honest adversary A that can corrupt the aggregation server or any subset of local clients. A follows
the protocol but tries to learn as much information as possible. Loosely speaking, under such an adversary, the security

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

definition requires that only the private information in local models from the corrupted clients will be learned when A
corrupts a subset of clients.

When A corrupts both the aggregation server and a number of clients, the default setup where the private key is shared
with all clients (also with corrupted clients) will allow A to decrypt local models from benign clients (by combining
encrypted local models received by the corrupted server and the private key received by any corrupted client). This
issue can be mitigated by adopting the threshold or multi-key variant of HE where decryption must be collaboratively
performed by a certain number of clients (Aloufi et al., 2021; Ma et al., 2022; Du et al., 2023). Since the multi-key
homomorphic encryption issue is not the focus of this work, in the rest of the paper we default to a single-key setup, but
details on threshold homomorphic encryption federated learning and microbenchmarks are provided in Appendix §A.4.

3.3 ALGORITHM FOR HE-BASED FEDERATED AGGREGATION

Privacy-preserving federated learning systems utilize homomorphic encryption to enable the aggregation server to
combine local model parameters without viewing them in their unencrypted form by designing homomorphically
encrypted aggregation functions. We primarily focus on FedAvg (McMahan et al., 2017), which has been proved as still
one of the best-performing federated aggregation strategies while maintaining computational simplicity (Wang et al.,
2022).

Our HE-based secure aggregation algorithm can be summarized as: given an aggregation server and N clients, each
client i ∈ [N] owns a local dataset Di and initializes a local model Wi with the aggregation weighing factor αi; the
key authority or the distributed threshold key agreement protocol generates a key pair (pk, sk) and the crypto context,
then distributes the key pair and crypto context to clients and only the crypto context, which is public, to the server. The
clients and the server then collectively calculate a global encryption mask M for Selective Parameter Encryption
also using homomorphic encryption. At each round t ∈ [T], the server performs the aggregation

[Wglob] =

N∑
i=1

αi[[M⊙Wi]] +

N∑
i=1

αi((1−M)⊙Wi), (1)

where [Wglob] is the partially-encrypted global model, Wi is the i-th plaintext local model where [[]] indicates the portion
of the model that is fully encrypted, αi is the aggregation weight for client i, and M is the global model encryption
mask (details in Appendix Algorithm 1, note that optional differential privacy is supported in our framework).

We only need one HE multiplicative depth in our algorithm for weighting, which is preferred to reduce HE multiplication
operations. Our method can also be easily extended to support more FL aggregation functions with HE by encrypting
and computing the new parameters in these algorithms (e.g. FedProx (Li et al., 2020)). We explain next in detail how
the encryption mask M is formalized.

3.4 EFFICIENT OPTIMIZATION BY SELECTIVE PARAMETER ENCRYPTION

Apply EM

Set selective
encryption ratio.

.

.

.

.

.

Encryption Mask Partially-Encrypted ModelPrivacy Leakage Analysis

Aggregated Model
Privacy Map

Sensitivity
Calculation

Local Datasets Local Model
Privacy Map

Figure 3: Selective Parameter Encryption: in the initialization stage, clients first calculate privacy sensitivities on the model using
its own dataset and local sensitivities will be securely aggregated to a global model privacy map. The encryption mask will be
then determined by the privacy map and a set selection value p per overhead requirements and privacy guarantee. Only the masked
parameters will be aggregated in the encrypted form.

Fully encrypted models can guarantee no access to plaintext local models from the adversary, but they have high
overheads. However, previous work on privacy leakage analysis shows that “partial transparency”, e.g. hiding parts of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

the models (Hatamizadeh et al., 2022; Mo et al., 2020), can limit an adversary’s ability to perform attacks like gradient
inversion attacks (Lu et al., 2022). Combined with the observation that HE overheads are directly related to the size of
encrypted model parameters Ma et al. (2022), we propose Selective Parameter Encryption to selectively encrypt the
most privacy-sensitive parameters to reduce impractical overheads while providing quantifiable privacy; see Figure 3.

Step 1: Privacy Leakage Analysis on Clients. We adopt sensitivity Novak et al. (2018); Sokolić et al. (2017); Mo
et al. (2020) for measuring the general privacy risk on model gradients with respect to the input data. Formally, given
model W and K data samples with input matrix X and ground truth label vector y, we compute the sensitivity for
each parameter wm as 1

K

∑K
k=1 ∥Jk,m∥ , where Jk,m can be approximate by the gradient ∂2ℓ(X,y,W)

∂xk∂wm
, ℓ(·) is the loss

function given X, y and W, and ∥·∥ calculates the absolute value. The intuition is to calculate how much the gradient
of the parameter will change for each data point k. Each client i then sends the encrypted sensitivity [[Si]] to the server.

Different parts of a model contribute to attacks by revealing uneven amounts of information. Using this insight, we
propose to only select and encrypt parts of the model that are more important and susceptible to attacks to reduce HE
overheads while preserving adequate privacy.

Step 2: Encryption Mask Agreement across Clients. The sensitivity map is dependent on the model and also the
data. With potentially heterogeneous data distributions, the server aggregates local sensitivity maps to a global privacy
map

∑N
i=1 αi[[Si]]. The global encryption mask M is then configured using a privacy-overhead ratio p ∈ [0, 1] which is

the ratio of selecting the most sensitive parameters for encryption. The global encryption mask is then shared among
clients as part of the federated learning configuration.

4 QUANTIFYING PRIVACY OF SELECTIVE PARAMETER ENCRYPTION

Although sensitivity calculation provides guidance on selecting important model parameters, to the best of our knowledge
there is no existing work that successfully quantifies the privacy guarantee from the model parameter sensitivity. In this
section, we, for the first time, provide proof to analyze the privacy guarantee of Selective Parameter Encryption using
the theoretical framework of privacy budget analysis (Dwork, 2006).

4.1 ENCRYPTED AGGREGATION QUANTIFIED IN PRIVACY BUDGET

Definition 4.1 (ϵ-Privacy (Dwork et al., 2006)). A randomized algorithmM satisfies ϵ-privacy if for any two adjacent
datasets D1 and D2 that vary by one data point, and for any possible output O ⊆ Range(F), the following inequality
holds:

Pr [M (D1) ∈ O]

Pr [M (D2) ∈ O]
≤ eϵ. (2)

ϵ-privacy can be achieved by adding Laplace noises on model updates. Note that we can also use Gaussian to quantify
the privacy here with conversion between mechanisms (Bun & Steinke, 2016).

Lemma 4.2 (Achieving ϵ-Privacy by Laplace Mechanism (Dwork et al., 2006)). A scale parameter b can be chosen as
b = ∆f

ϵ , such that the Laplace Mechanism satisfies ϵ-privacy, where ∆f is the DP sensitivity defined as the maximum
difference in the output of a function f .

Theorem 4.3 (Achieving ϵ0-Privacy by Full Homomorphic Encryption). For any two adjacent datasets D1 and D2,
sinceM(D) is computationally indistinguishable, we have

Pr [M (D1) ∈ O]

Pr [M (D2) ∈ O]
≤ eϵ. (3)

We then have ϵ = ϵ0 if O is encrypted, where ϵ0 is some negligible value.

In other words, A cannot retrieve any useful sensitive information from encrypted parameters. The simulation-based
proof of the basic protocol with fully encrypted federated learning can be found in Appendix §A.11 and approximating
the negligible value of ϵ0 can be found in Appendix §A.12.

4.2 SELECTIVE PARAMETER ENCRYPTION BY PRIVACY THEORY

Lemma 4.4 (Sequential Composition (Dwork et al., 2006),). If M1(x) satisfies ϵ1-privacy and M2(x) satisfies
ϵ2-privacy, then the mechanism G(x) = (M1(x),M2(x)) that releases both results satisfies (ϵ1 + ϵ2)-privacy.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Based on Lemmas 4.2 and 4.4 and Theorem 4.3, letting J =
∑N

i=1
∆fi
b , we can quantify the privacy of Full DP, random

parameter encryption, and Selective Parameter Encryption.
Remark 4.5 (Achieving J-Privacy by Laplace Mechanism on All Model Parameters). If we add Laplace noise on all
parameters with fixed noise scale b, it satisfies J-privacy.
Remark 4.6 (Achieving (1− p)J-Privacy by Random Encryption). If we randomly select model parameters with ratio
p for homomorphic encryption and add Laplace noise on the remaining parameters, it satisfies (1− p)J-privacy.

Theorem 4.7 (rJ-Privacy by Selective Parameter Encryption). Suppose the sensitivity data follows a distribution with
density function p(x), x ∈ [0, xmax]. Applying homomorphic encryption on partial model parameters S and Laplace
Mechanism on the remaining parameters [N]/S with fixed noise scale b satisfies rJ-privacy with the budget ratio

r =
1

µ

∫ Q1−p

0

xp(x)dx, (4)

where p is the fraction of homomorphically encrypted parameters, and µ and Q1−p are the mean and (1− p)th quantile
of p(x) respectively.

The proof of Theorem 4.7 can be found in Appendix §A.13.
Remark 4.8. Let b0, b1, and b2 respectively be the scales of Laplace noises necessary for no encryption, (uniform)
random encryption, and selective encryption to reach the desired protection level (approximating using J0 = J1 = J2).
We will have the relation: b0 = 1

1−pb1 = 1
r b2.

Letting ∆f ∼ D, it is clear that the quantification of privacy guarantee from our Selective Parameter Encryption
depends on the distribution of the actual parameter distribution D of a given model.

10
11

10
9 10

7
10

5
10

3
10

1
10

1

Sensitivity

0

2

4

6

8

10

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 4: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3t): calculated
parameter sensitivity follows a Log-Normal Mixture distribution, allowing a smaller privacy budget to achieve the same privacy.

Key Observation. Our extensive experiments indicate that a noticeable collection of popular models’ parameters
can be closely modeled by the Log-Normal Mixture distribution (as shown by the Transformer-3t example in Fig. 4a
and Fig. 4b, with more models in Appendix §A.17). Assuming the sensitivity distribution of a given model follows a
Log-normal Mixture distribution D′ (µi as log mean and σi as log variance), Selective Parameter Encryption requires
only r portion of the privacy budget of complete privacy with the same privacy guarantee, where

r =

∑
i
λi

σi

∫ F−1(1−p)

0
exp

(
− (ln x−µi)

2

2σi
2

)
dx

√
2π

∑
i λi exp

(
µi +

σ2
i

2

) . (5)

Compared with random encryption, Selective Parameter Encryption provides much stronger privacy preservation with
the same encryption ratio (validated in §5.4). Such a framework can also fit any sensitivity distributions (Uniform and
Exponential in Appendix §A.15 and §A.16).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

5 EVALUATION

In this section, we focus on the evaluation results to show how our proposed Selective Parameter Encryption largely
mitigates these overheads for real-world deployment but still guarantees adequate defense against privacy attacks. We
also provide the validation of our proposed theoretical privacy quantification. Note that additional experimental results
regarding other FL system aspects are included in Appendix §A.20.

5.1 EXPERIMENT SETUP

Models. We test our framework on models in different ML domains with different sizes including LLMs (more details
in Appendix §A.20).

Attack Dataset. MNIST dataset (70k images), the CIFAR-100 dataset (50k images), and the WIKITEXT dataset
(100m tokens).

HE Libraries. We implement our HE core using both PALISADE and TenSEAL. Unless otherwise specified, our
results show the evaluation of the PALISADE version.

Default Crypto Parameters. Unless otherwise specified, we choose the multiplicative depth of 1, the scaling factor bit
digit of 52, an HE packing batch size of 4096, and a security level of 128 as our default HE cryptographic parameters
during the evaluation.

Machines. (1) For microbenchmarking HE overheads, we use an Intel 8-core 3.60GHz i7-7700 CPU with 32 GB
memory and an NVIDIA Tesla T4 GPU; (2) For real MLOps system experiments: we use machines with Intel 6-core
3.70GHz i7-8700K CPU, 64GB memory and NVIDIA GeForce GTX 1080 Ti as clients and an M3 Pro 11-core CPU
with 18 GB memory as the aggregation server; (3) For attacking experiments, we use 6 NVIDIA DGX H100 GPUs
with 720 GPU hours.

5.2 OPTIMIZED OVERHEADS

Llama 2 (7B)

BERT

LeNet

ResNet-18

Linear

Llama 2 (7B)

BERT

LeNet

ResNet-18

Linear

Figure 5: Computation (left) and Communication (right) Overhead Comparison For Models of Different Sizes (logarithmic scale):
10% Encryption is based on our selection strategy and 50% encryption is based on random.

We first examine the overhead optimization gains from Selective Parameter Encryption. Fig. 5 microbenchmarks the
overhead reduction from only encrypting certain parts of models, where both overheads are nearly proportional to the
size of encrypted model parameters, which is coherent with the general relationship between HE overheads and input
sizes. Note that after 10% encryption per our Selective Parameter Encryption, the overheads are close to the ones of
plaintext aggregation.

Fig. 6 dissects the training cycle overhead distribution for the HE framework (both with and without optimizations) and
the plaintext framework respectively. Note that here we only consider the cost distribution of a single round instead of
the entire federated training. This is because, with proper CKKS crypto parameter setup, the model training accuracy of
encrypted training has a marginal difference compared to the one of plaintext training even considering the fact that
encrypted training has approximate computation under the hood (experimental results regarding this part can be found

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Train - 88.64 %
Comm:C-S - 5.08 %
Comm:S-C - 5.08 %
PlainAgg - 1.21 %

Train - 33.40 %
Comm:C-S - 30.90 %
Comm:S-C - 30.90 %
FHEAgg - 2.34 %
Dec - 1.77 %
Enc - 0.69 %
Init - 0.01 %

Train - 87.17 %
Comm:C-S - 5.75 %
Comm:S-C - 5.75 %
FHEAgg - 1.24 %
Dec - 0.05 %
Init - 0.02 %
Enc - 0.02 %

Figure 6: Time Distribution of A Training Cycle on ResNet-50 on our industrial deployment platform: plaintext FL (left), HE with
full encryption (middle), and HE with selective encryption (right). MLOps test env has a bandwidth of 20 MB/s (Multiple AWS
Region). The optimization setup uses an encryption mask with an encrypted ratio s = 0.01. Detailed training configuration can be
found in Appendix §A.29.

in Table 5 in Appendix). For a medium-sized model, the majority of overheads (both computation and communication)
are shifted to HE-related steps in the full HE mode (w/o optimization) compared to the plaintext mode. However, when
optimized by Selective Parameter Encryption, the overheads from HE dramatically drop such that the local training step
becomes the majority again.

5.3 EFFECTIVENESS OF SELECTIVE ENCRYPTION DEFENSE

To evaluate the defense effectiveness of Selective Parameter Encryption, we encrypt model parameters per parameter
sensitivity and perform inversion attacks (CV: DLG (Zhu et al., 2019); NLP: TAG (Deng et al., 2021)).

Figure 7: Selection Protection Against Gradient Inversion Attack (Zhu et al., 2019) On LeNet with the CIFAR-100 Dataset: attack
results when protecting random parameters (left) vs protecting top-s sensitive parameters (right). Each configuration is attacked 10
times and the best-recovered image is selected.

Defense effectiveness on CV tasks. We use image samples from CIFAR-100 to calculate the parameter sensitivities
of the model. In the DLG attack experiments, we use Multi-scale Structural Similarity Index (MSSSIM), Visual
Information Fidelity (VIF), and Universal Quality Image Index (UQI) as metrics to measure the similarity between
recovered images and original training images to measure the attack quality hence the privacy leakage. In Fig. 7,
compared to random encryption selection where encrypting 42.5% of the parameters can start to protect against attacks,
our top-5% encryption selection according to the model privacy map only alone can defend against the attacks, meaning
lower overall overhead with the same amount of privacy protection.

Defense effectiveness on NLP tasks. We use language samples from wikitext dataset in our experiment. As shown in
Fig. 8, with our sensitivity map indicating the top 1% privacy-sensitive parameters, our encryption mask can prevent
inversion attacks that yield better defense results than randomly encrypting 10% of the model parameters.

Empirical Selection Recipe. In Table 1, we show that empirically, encrypting the top-10% most sensitive parameters
tends to be adequate to defend against inversion attacks (Hatamizadeh et al., 2022), but up to 90% are needed for
random encryption.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

The Tower Building of the Little Rock Arsenal,
also known as U.S. Arsenal Building, is a building
located in MacArthur Park in downtown Little
Rock, Arkansas

The Tower Building of Little Rock the the Arsenal
, also as of and the in Arsenal building in in
MacArthur for an Some Park a in downtown
Rock , It public

As It Robert of one One December My students
an gave ---
----------- as as a for historical it 83
<|endoftext|> stating ignore far suggested That
What It undeniably pseud make persuaded bi

Original Text Privacy Attack on 10% Random Encryption
Accuracy: 0.2500|S-BLEU: 0.16|ROUGE-L: 0.61

Privacy Attack on 1% Selective Encryption
Accuracy: 0.0312|S-BLEU: 0.02|ROUGE-L: 0.11

Figure 8: Language Model Inversion Attacks (Deng et al., 2021) on GPT-2 with the wikitext Dataset: Red indicates falsely-inverted
words and Yellow indicates correctly-inverted words.

Model Size
Selective Encryption Random Encryption

Minimum
Encryption

Ratio
Attack Score

Minimum
Encryption

Ratio
Attack Score

LeNet 88,648 0.05 0.1411 ± 0.0487 0.11 0.1835 ± 0.0720
CNN 2202,660 0.001 0.1640 ± 0.0530 0.007 0.1861 ± 0.0494

ResNet-18 11,220,132 0.001 0.1792 ± 0.1234 0.05 0.1458 ± 0.0732
Transformer-3f 10,702,129 0.1 0.0000 ± 0.0000 0.9 0.2000 ± 0.1672
Transformer-3 10,800,433 0.1 0.0000 ± 0.0000 0.9 0.9750 ± 0.0415
Transformer-S 53,091,409 0.1 0.0000 ± 0.0000 0.6 0.0875 ± 0.0573

GPT-2 124,439,808 0.01 0.0875 ± 0.0935 0.4 0.0644 ± 0.0720

Table 1: Defense Effectiveness on CV and NLP Models: each configuration is attacked 10 times and the best attack score is
recorded (VIF for CV tasks and Reconstruction Accuracy for NLP tasks). The minimum encryption ratios are selected as the smallest
encryption ratio observed that reduces the attack score to below a certain level (0.2 for VIF of images and 0.1 for Reconstruction
Accuracy of texts). The largest encryption ratio used will be recorded if the method fails to provide the desired protection level.

5.4 PRIVACY GUARANTEE QUANTIFICATION

Model Enc
Ratio

Minimum Laplace Scale r1 r2
Full
DP

Random
+ DP

Selective
+ DP Exp. Theo. Exp. Theo.

LeNet 0.005 0.11 0.09 0.09 0.8182 0.9950 0.8182 0.8094
TF-3 0.01 0.013 0.013 0.003 1.0000 0.9995 0.2308 0.8850
TF-3f 0.01 0.0125 0.0125 0.0025 1.0000 0.9999 0.2000 0.9587
TF-3t 0.01 0.013 0.012 0.004 0.9231 0.9990 0.3077 0.9214

Table 2: Quantifying Privacy of Selective Parameter Encryption: r1 and r2 represent the ratio of sum induced by the random
encryption and selective encryption respectively. The minimum Laplace scales are taken based on the smallest scale of the Laplace
noises that reduces the attack score to a desired level. The theoretical value of r1 is one minus the encryption ratio and that of r2 is
calculated based on the corresponding sensitivity data.

To validate Remark 4.8, we fix the encryption ratio for both random and selective encryption on each selected model
and gradually increase the noise scales. When all the encryption methods reach a predefined protection level, we record
the minimum noise scale needed and calculate the experimental ratios to make comparison with the theoretical values.
The encryption ratio is chosen to be small so that we can observe the influence of the Laplace noises by ensuring
the attack score not to be too low at first. As in Table 2, the four cases show with acceptable errors that our theorem
provides an upper bound for differential privacy budget of the random and selective encryption methods.

6 CONCLUSION

In this paper, we propose the first practical homomorphic-encryption-based privacy-preserving FL solution with
Selective Parameter Encryption which is designed to support efficient foundation model federated training. Selective
Parameter Encryption selectively encrypts the most privacy-sensitive parameters to minimize the size of encrypted
model updates to reduce overheads while providing privacy guarantee quantifiable by our proposed theoretical privacy
analysis framework. Future work includes further improving the performance of threshold HE in the less trusted FL
setting as well as investigating the impact of client data heterogeneity Mendieta et al. (2022); Guleria et al. (2024) and
the potential relationship between explainable ML techniques and our privacy sensitivity calculation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Ehud Aharoni, Allon Adir, Moran Baruch, Nir Drucker, Gilad Ezov, Ariel Farkash, Lev Greenberg, Ramy Masalha,
Guy Moshkowich, Dov Murik, et al. Helayers: A tile tensors framework for large neural networks on encrypted data,
2011.

Asma Aloufi, Peizhao Hu, Yongsoo Song, and Kristin Lauter. Computing blindfolded on data homomorphically
encrypted under multiple keys: A survey. ACM Computing Surveys (CSUR), 54(9):1–37, 2021.

Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikuntanathan, and Daniel Wichs. Multiparty
computation with low communication, computation and interaction via threshold fhe. In Advances in Cryptology–
EUROCRYPT 2012: 31st Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Cambridge, UK, April 15-19, 2012. Proceedings 31, pp. 483–501. Springer, 2012.

Giuseppe Ateniese, Kevin Fu, Matthew Green, and Susan Hohenberger. Improved proxy re-encryption schemes with
applications to secure distributed storage. ACM Transactions on Information and System Security (TISSEC), 9(1):
1–30, 2006.

Abhishek Bhowmick, John Duchi, Julien Freudiger, Gaurav Kapoor, and Ryan Rogers. Protection against reconstruction
and its applications in private federated learning. arXiv preprint arXiv:1812.00984, 2018.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar Patel, Daniel
Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine learning. In
proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191,
2017.

Dan Boneh, Xavier Boyen, and Shai Halevi. Chosen ciphertext secure public key threshold encryption without random
oracles. In Cryptographers’ Track at the RSA Conference, pp. 226–243. Springer, 2006.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without bootstrap-
ping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds. In
Theory of cryptography conference, pp. 635–658. Springer, 2016.

David Byrd and Antigoni Polychroniadou. Differentially private secure multi-party computation for federated learning
in financial applications. In Proceedings of the First ACM International Conference on AI in Finance, pp. 1–9, 2020.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of approximate
numbers. In Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part I 23, pp. 409–437. Springer, 2017.

John Criswell, Nathan Dautenhahn, and Vikram Adve. Kcofi: Complete control-flow integrity for commodity operating
system kernels. In 2014 IEEE symposium on security and privacy, pp. 292–307. IEEE, 2014.

Jieren Deng, Yijue Wang, Ji Li, Chenghong Wang, Chao Shang, Hang Liu, Sanguthevar Rajasekaran, and Caiwen Ding.
TAG: Gradient attack on transformer-based language models. In Marie-Francine Moens, Xuanjing Huang, Lucia
Specia, and Scott Wen-tau Yih (eds.), Findings of the Association for Computational Linguistics: EMNLP 2021, pp.
3600–3610, Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.findings-emnlp.305. URL https://aclanthology.org/2021.findings-emnlp.305.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Weidong Du, Min Li, Liqiang Wu, Yiliang Han, Tanping Zhou, and Xiaoyuan Yang. A efficient and robust privacy-
preserving framework for cross-device federated learning. Complex & Intelligent Systems, pp. 1–15, 2023.

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and programming, pp. 1–12.
Springer, 2006.

10

https://aclanthology.org/2021.findings-emnlp.305

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity in private data
analysis. In Theory of Cryptography: Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,
March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In 2010 IEEE 51st annual
symposium on foundations of computer science, pp. 51–60. IEEE, 2010.

Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive,
Paper 2012/144, 2012. URL https://eprint.iacr.org/2012/144. https://eprint.iacr.org/
2012/144.

Haokun Fang and Quan Qian. Privacy preserving machine learning with homomorphic encryption and federated
learning. Future Internet, 13(4):94, 2021.

Liam Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojtek Czaja, Micah Goldblum, and Tom Goldstein. Decepticons:
Corrupted transformers breach privacy in federated learning for language models. arXiv preprint arXiv:2201.12675,
2022.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the forty-first annual ACM
symposium on Theory of computing, pp. 169–178, 2009.

Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. New insights into fully homomorphic encryption
libraries via standardized benchmarks. Cryptology ePrint Archive, 2022.

Arpit Guleria, J Harshan, Ranjitha Prasad, and BN Bharath. On homomorphic encryption based strategies for class
imbalance in federated learning. arXiv preprint arXiv:2410.21192, 2024.

Shanshan Han, Baturalp Buyukates, Zijian Hu, Han Jin, Weizhao Jin, Lichao Sun, Xiaoyang Wang, Chulin Xie, Kai
Zhang, Qifan Zhang, et al. Fedmlsecurity: A benchmark for attacks and defenses in federated learning and llms.
arXiv preprint arXiv:2306.04959, 2023.

Ali Hatamizadeh, Hongxu Yin, Holger R Roth, Wenqi Li, Jan Kautz, Daguang Xu, and Pavlo Molchanov. Gradvit:
Gradient inversion of vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10021–10030, 2022.

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models under the gan: information leakage from
collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC conference on computer and communications
security, pp. 603–618, 2017.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

IBM. Ibmfl crypto. https://github.com/IBM/federated-learning-lib/blob/main/
Notebooks/crypto_fhe_pytorch/pytorch_classifier_aggregator.ipynb, 2022. Accessed:
2023-1-25.

Zhifeng Jiang, Wei Wang, and Yang Liu. Flashe: Additively symmetric homomorphic encryption for cross-silo federated
learning. arXiv preprint arXiv:2109.00675, 2021.

Weizhao Jin, Bhaskar Krishnamachari, Muhammad Naveed, Srivatsan Ravi, Eduard Sanou, and Kwame-Lante Wright.
Secure publish-process-subscribe system for dispersed computing. In 2022 41st International Symposium on Reliable
Distributed Systems (SRDS), pp. 58–68. IEEE, 2022.

Peeter Laud and Long Ngo. Threshold homomorphic encryption in the universally composable cryptographic library.
In International Conference on Provable Security, pp. 298–312. Springer, 2008.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization
in heterogeneous networks. Proceedings of Machine learning and systems, 2:429–450, 2020.

Jiahao Lu, Xi Sheryl Zhang, Tianli Zhao, Xiangyu He, and Jian Cheng. April: Finding the achilles’ heel on privacy for
vision transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10051–10060, 2022.

11

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://github.com/IBM/federated-learning-lib/blob/main/Notebooks/crypto_fhe_pytorch/pytorch_classifier_aggregator.ipynb
https://github.com/IBM/federated-learning-lib/blob/main/Notebooks/crypto_fhe_pytorch/pytorch_classifier_aggregator.ipynb

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang Lyu. Privacy-preserving federated learning based on multi-key
homomorphic encryption. International Journal of Intelligent Systems, 37(9):5880–5901, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp. 1273–1282. PMLR,
2017.

Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, Zhengming Ding, and Chen Chen. Local learning matters:
Rethinking data heterogeneity in federated learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8397–8406, 2022.

Fan Mo, Anastasia Borovykh, Mohammad Malekzadeh, Hamed Haddadi, and Soteris Demetriou. Layer-wise charac-
terization of latent information leakage in federated learning. In ICLR Distributed and Private Machine Learning
workshop, 2020.

Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali Dehghantanha, and Gautam Srivastava. A
survey on security and privacy of federated learning. Future Generation Computer Systems, 115:619–640, 2021.

Roman Novak, Yasaman Bahri, Daniel A Abolafia, Jeffrey Pennington, and Jascha Sohl-Dickstein. Sensitivity and
generalization in neural networks: an empirical study. In International Conference on Learning Representations,
2018.

Nvidia. Nvidia flare federated learning with homomorphic encryption. https://developer.nvidia.com/
blog/federated-learning-with-homomorphic-encryption, 2021. Accessed: 2023-1-25.

Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryptol-
ogy—EUROCRYPT’99: International Conference on the Theory and Application of Cryptographic Techniques
Prague, Czech Republic, May 2–6, 1999 Proceedings 18, pp. 223–238. Springer, 1999.

Holger R Roth, Yan Cheng, Yuhong Wen, Isaac Yang, Ziyue Xu, Yuan-Ting Hsieh, Kristopher Kersten, Ahmed
Harouni, Can Zhao, Kevin Lu, et al. Nvidia flare: Federated learning from simulation to real-world. arXiv preprint
arXiv:2210.13291, 2022.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

Jinhyun So, Corey J Nolet, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E Ali, Basak Guler, and Salman Avestimehr.
Lightsecagg: a lightweight and versatile design for secure aggregation in federated learning. Proceedings of Machine
Learning and Systems, 4:694–720, 2022.

Jure Sokolić, Raja Giryes, Guillermo Sapiro, and Miguel RD Rodrigues. Robust large margin deep neural networks.
IEEE Transactions on Signal Processing, 65(16):4265–4280, 2017.

Dimitris Stripelis, Hamza Saleem, Tanmay Ghai, Nikhil Dhinagar, Umang Gupta, Chrysovalantis Anastasiou, Greg
Ver Steeg, Srivatsan Ravi, Muhammad Naveed, Paul M Thompson, et al. Secure neuroimaging analysis using
federated learning with homomorphic encryption. In 17th International Symposium on Medical Information
Processing and Analysis, volume 12088, pp. 351–359. SPIE, 2021.

Hanlin Tang, Chen Yu, Xiangru Lian, Tong Zhang, and Ji Liu. Doublesqueeze: Parallel stochastic gradient descent with
double-pass error-compensated compression. In International Conference on Machine Learning, pp. 6155–6165.
PMLR, 2019.

Han Tian, Chaoliang Zeng, Zhenghang Ren, Di Chai, Junxue Zhang, Kai Chen, and Qiang Yang. Sphinx: Enabling
privacy-preserving online learning over the cloud. In 2022 IEEE Symposium on Security and Privacy (SP), pp.
2487–2501. IEEE, 2022.

Jinyu Tian, Jiantao Zhou, and Jia Duan. Probabilistic selective encryption of convolutional neural networks for
hierarchical services. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
2205–2214, 2021.

Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A hybrid
approach to privacy-preserving federated learning. In Proceedings of the 12th ACM workshop on artificial intelligence
and security, pp. 1–11, 2019.

12

https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption
https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Stacey Truex, Ling Liu, Ka-Ho Chow, Mehmet Emre Gursoy, and Wenqi Wei. Ldp-fed: Federated learning with
local differential privacy. In Proceedings of the third ACM international workshop on edge systems, analytics and
networking, pp. 61–66, 2020.

Jianyu Wang, Rudrajit Das, Gauri Joshi, Satyen Kale, Zheng Xu, and Tong Zhang. On the unreasonable effectiveness
of federated averaging with heterogeneous data. arXiv preprint arXiv:2206.04723, 2022.

Zhibo Wang, Mengkai Song, Zhifei Zhang, Yang Song, Qian Wang, and Hairong Qi. Beyond inferring class representa-
tives: User-level privacy leakage from federated learning. In IEEE INFOCOM 2019-IEEE conference on computer
communications, pp. 2512–2520. IEEE, 2019.

Yuhang Yao, Weizhao Jin, Srivatsan Ravi, and Carlee Joe-Wong. Fedgcn: Convergence and communication tradeoffs in
federated training of graph convolutional networks. Advances in neural information processing systems, 2023.

Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng Yan, and Yang Liu. Batchcrypt: Efficient homomorphic
encryption for cross-silo federated learning. In Proceedings of the 2020 USENIX Annual Technical Conference
(USENIX ATC 2020), 2020.

Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage from gradients. Advances in neural information processing
systems, 32, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX

PRELIMINARIES

A.1 HOMOMORPHIC ENCRYPTION

• HE.KeyGen(λ): given the security parameter λ, the key generation algorithm outputs a key pair (pk, sk)
and the related cryptographic context.

• HE.Enc(pk,m):the encryption algorithm takes in pk and a plaintext message m, then outputs the
ciphertext c.

• HE.Eval(c, f):the encrypted evaluation algorithm takes in a ciphertext message c and a function f , then
outputs the computation result c′.

• HE.Dec(sk, c′):the encryption algorithm takes in sk and a ciphertext message c′, then outputs the plaintext
m′.

Figure 9: General Scheme of Homomorphic Encryption

Homomorphic Encryption is a cryptographic primitive that allows computation to be performed on encrypted data
without revealing the underlying plaintext. It usually serves as a foundation for privacy-preserving outsourcing
computing models. HE has generally four algorithms (KeyGen, Enc, Eval, Dec) as defined in Figure 9. The fundamental
concept is to encrypt data prior to computation, perform the computation on the encrypted data without decryption, and
then decrypt the resulting ciphertext to obtain the final plaintext.

Since FL model parameters are usually not integers, our method is built on the Cheon-Kim-Kim-Song (CKKS)
scheme (Cheon et al., 2017), a (leveled) HE variant that can work with approximate numbers. The comparison of HE vs
other privacy-preserving primitives can be found in Table 3.

Model
Degradation Overheads Client Dropout Interactive

Sync
Model Visible

To Server
Differential Privacy With noise Light Robust No Yes
Secure Aggregation Exact Medium Susceptible Yes Yes
Homomorphic Encryption Exact Heavy Robust No No

Table 3: Comparison of Differential Privacy, Secure Aggregation, and Homomorphic Encryption

A.2 FEDERATED LEARNING

Federated learning is first proposed in (McMahan et al., 2017), which builds distributed machine learning models while
keeping personal data on clients. Instead of uploading data to the server for centralized training, clients process their
local data and share updated local models with the server. Model parameters from a large population of clients are
aggregated by the server and combined to create an improved global model.

The FedAvg (McMahan et al., 2017) is commonly used on the server to combine client updates and produce a new
global model. At each round, a global model Wglob is sent to N client devices. Each client i performs gradient descent
on its local data with E local iterations to update the model Wi. The server then does a weighted aggregation of the
local models to obtain a new global model, Wglob =

∑N
i=1 αiWi, where αi is the weighting factor for client i.

Typically, the aggregation runs using plaintext model parameters through a central server (in some cases, via a
decentralized protocol), giving the server visibility of each local client’s model in plaintext.

KEY MANAGEMENT AND THRESHOLD HE

A.3 HE KEY MANAGEMENT

Our general system structure assumes the existence of a potentially compromised aggregation server, which performs
the HE-based secure aggregation. Alongside this aggregation server, there also exists a trusted key authority server that
generates and distributes HE keys and related crypto context files to authenticated parties (as described previously in
Algorithm 1 in the main paper. We assume there is no collusion between these two servers.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Moreover, secure computation protocols for more decentralized settings without an aggregation server are also available
using cryptographic primitives such as Threshold HE (Aloufi et al., 2021), Multi-Key HE (Aloufi et al., 2021), and
Proxy Re-Encryption (Ateniese et al., 2006; Jin et al., 2022). In such settings, secure computation and decryption can be
collaboratively performed across multiple parties without the need for a centralized point. We plan to introduce a more
decentralized version in the future. Due to the collaborative nature of such secure computation, the key management
will act more as a coordination point instead of a trusted source for key generation.

A.4 FL WITH THRESHOLD HE

102 103 104 105 106

103

104

105

106

107

Co
m

m
un

ica
tio

n
Co

st
 (k

B)
Single-Key HE
Threshold HE
Single-Key HE
Threshold HE

102

103

104

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Figure 10: Microbenchmark of Threshold-HE-Based FedAvg Implementation: with the x-axis showing the sizes of vectors being
aggregated, we use a two-party threshold setup. Both the single-key variant and the threshold variant are configured with an estimated
precision of 36 for a fair comparison. Note that bars represent communication overheads and lines represent computation overheads.

The threshold variant of HE schemes is generally based on Shamir’s secret sharing (Shamir, 1979) (which is also
implemented in PALISADE). Key generation/agreement and decryption processes are in an interactive fashion where
each party shares partial responsibility for the task. Threshold key generation results in each party holding a share of the
secret key and threshold decryption requires each party to partially decrypt the final ciphertext result and merge to get
the final plaintext result. We provide benchmarkings of the threshold-HE-based FedAvg implementation in Figure 10.

FRAMEWORK AND PLATFORM DEPLOYMENT

A.5 SOFTWARE FRAMEWORK: HOMOMORPHIC ENCRYPTION IN FEDERATED LEARNING

In this part, we will illustrate how we design our HE-based aggregation from a software framework perspective.

Model Reshape

Ciphertext Packing

HE Libraries

Enc/Dec KeyGen HE Agg Functions

Serialization Crypto Foundation

Model Flattening

Selective Parameter Encryption

Optimization

ML Processing

Server Manager

Server Aggregator Client Trainer

Client Manager

Homomorphic Encryption Key Agreement FL Orchestration

ML Bridge

OtherX

Figure 11: Framework Structure: our framework consists of a three-layer structure including Crypto Foundation to support basic HE
building blocks, ML Bridge to connect crypto tools with ML functions, and FL Orchestration to coordinate different parties during a
task.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Figure 11 provides a high-level design of our framework, which consists of three major layers:

• Crypto Foundation. The foundation layer is where Python wrappers are built to realize HE functions including
key generation, encryption/decryption, secure aggregation, and ciphertext serialization using open-sourced HE
libraries;

• ML Bridge. The bridging layer connects the FL system orchestration and cryptographic functions. Specifically,
we have ML processing APIs to process inputs to HE functions from local training processes and outputs vice
versa. Additionally, we realize the optimization module here to mitigate the HE overheads;

• FL Orchestration. The FL system layer is where the key authority server manages the key distribution and
the (server/client) managers and task executors orchestrate participants.

Our layered design makes the HE crypto foundation and the optimization module semi-independent, allowing different
HE libraries to be easily switched in our system and further FL optimization techniques to be easily added to the system.

A.6 FRAMEWORK APIS

Table 4 shows the framework APIs in our system related to HE.

API Name Description

pk, sk = key_gen(params) Generate a pair of HE keys
(public key and private key)

1d_local_model = flatten(local_model) Flatten local trained model
tensors into a 1D local model

enc_local_model = enc(pk, 1d_model) Encrypt the 1D model
enc_global_model = he_aggregate(
enc_models[n], weight_factors[n])

Homomorphically aggregate
a list of 1D local models

dec_global_model = dec(sk, enc_global_model) Decrypt the 1D global model
global_model = reshape(

dec_global_model, model_shape)
Reshape the 1D global model

back to the original shape
Table 4: HE Framework APIs

A.7 DEPLOY ANYWHERE: A DEPLOYMENT PLATFORM MLOPS FOR EDGES/CLOUD

We implement our deployment-friendly platform such that our system can be easily deployed across cloud and edge
devices. Before the training starts, a user uploads the configured server package and the local client package to the
web platform. The server package defines the operations on the FL server, such as the aggregation function and client
sampling function; the local client package defines the customized model architecture to be trained (model files will be
distributed to edge devices in the first round of the training). Both packages are written in Python. The platform then
builds and runs the docker image with the uploaded server package to operate as the server for the training with edge
devices configured using the client package.

As shown in Figure 12, during the training, users can also keep tracking the learning procedure including device status,
training progress/model performance, and system overheads (e.g., training time, communication time, CPU/GPU
utilization, and memory utilization) via the web interface. Our platform keeps close track of overheads, which allows
users to in real-time pinpoint HE overhead bottlenecks if any.

FEDERATED LEARNING WITH SELECTIVE PARAMETER ENCRYPTION

Algorithm 1 shows in detail how Selective Parameter Encryption is integrated with federated learning.

ADDITIONAL DEFINITIONS AND PROOFS

A.8 ADJACENT DATASETS

Definition A.1 (Adjacent Datasets). Two datasets D1 and D2 are said to be adjacent if they differ in the data of exactly
one individual. Formally, they are adjacent if:

|D1∆D2| = 1

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 12: Deployment Interface Example: Overhead distribution monitoring on each edge device (e.g. Desktop (Ubuntu), Laptop
(MacBook), and Raspberry Pi 4), which can be used to pinpoint HE overhead bottlenecks and guide optimization.

A.9 LAPLACE MECHANISM

Definition A.2 (Laplace mechanism). Given a function f : D → R,

where D is the domain of the dataset and d is the dimension of the output, the Laplace mechanism adds Laplace noise
to the output of f .

Let b be the scale parameter of the Laplace distribution, which is given by:

Lap(x | b) = 1

2b
e−

|x|
b

Given a dataset D, the Laplace mechanism F is defined as:

M(D) = f(D) + Lap(0 | b)d

A.10 DIFFERENTIAL PRIVACY SENSITIVITY

Definition A.3 (Differential Privacy Sensitivity). To ensure ϵ-privacy, we need to determine the appropriate scale
parameter b. The DP sensitivity ∆f of a function f is the maximum difference in the output of f when applied to any
two adjacent datasets:

∆f = max
D1,D2:|D1∆D2|=1

∥f (D1)− f (D2)∥1 .

Definition A.4 (Gradient-Based Sensitivity). For a function f : Rn 7→ R, its gradient-based sensitivity ∆f ∈ Rn can
be evaluated as its gradient

∆f =
∂f(D)

∂D
.

As mentioned by Section 3.4, we adopt the gradient of f as sensitivity (see Definition A.4) which appears to be different
from the form in Definition A.3. However, we argue that this notion is loosely compatible with the use of differential
privacy if we view it as an extension to the continuous case, i.e., |D1 −D2| = 1 is replaced with |D1 −D2| ≤ ε for
some small ε.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Algorithm 1 HE-Based Federated Aggregation

• [[W]]: the fully encrypted model | [W]: the partially encrypted model;
• p: the ratio of parameters for selective encryption;
• b: (optional) differential privacy parameter.

// Key Authority Generate Key
(pk, sk)← HE.KeyGen(λ);
// Local Sensitivity Map Calculation
for each client i ∈ [N] do in parallel

Wi ← Init(W);
Si ← Sensitivity(W, Di);
[[Si]]← Enc(pk,Si);
Send [[Si]] to server;

end
// Server Encryption Mask Aggregation

[[M]]← Select(
∑N

i=1 αi[[Si]], p);
// Training
for t = 1, 2, . . . , T do

for each client i ∈ [N] do in parallel
if t = 1 then

Receive [[M]] from server;
M← HE.Dec(sk, [[M]]);

end
if t > 1 then

Receive [Wglob] from server;
Wi ← HE.Dec(sk,M⊙ [Wglob]) + (1−M)⊙ [Wglob];

end
Wi ← Train(Wi, Di);
// Additional Differential Privacy
if Add DP then

Wi ←Wi +Noise(b);
end
[Wi]← HE.Enc(pk,M⊙Wi) + (1−M)⊙Wi;
Send [Wi] to server S;

end
// Server Model Aggregation

[Wglob]←
∑N

i=1 αi[[M⊙Wi]] +
∑N

i=1 αi((1−M)⊙Wi);
end

A.11 PROOF OF BASE FULL ENCRYPTION PROTOCOL

In this subsection, we prove the privacy of base protocol where homomorphic-encryption-based federated learning
utilizes the full model parameter encryption (i.e., the selective parameter encryption rate is set to be 1). We define the
adversary in Definition A.5 and privacy in Definition A.7.

Definition A.5 (Single-Key Adversary). A semi-honest adversary A can corrupt (at the same time) any subset of n
learners and the aggregation server, but not at the same time.

Note that the ref of the proof assumes the single-key setup and the privacy of the threshold variant of HE-FL (as shown
in Definition A.6) can be easily proved by extending the proofs of threshold homomorphic encryption (Boneh et al.,
2006; Laud & Ngo, 2008; Asharov et al., 2012).

Definition A.6 (Threshold Adversary). A semi-honest adversary AT ⟨ can corrupt (at the same time) any subset of
n− k learners and the aggregation server.

Definition A.7 (Privacy). A homomorphic-encryption federated learning protocol π is simulation secure in the presence
of a semi-honest adversary A, there exists a simulator S in the ideal world that also corrupts the same set of parties
and produces an output identically distributed to A’s output in the real world.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Ideal World. Our ideal world functionality F interacts with learners and the aggregation server as follows:

• Each learner sends a registration message to F for a federated training model task Wglob. F determines a subset
N ′ ⊂ N of learners whose data can be used to compute the global model Wglob.

• Both honest and corrupted learners upload their local models to F .

• If local models W⃗ of learners in N ′ are enough to compute Wglob, F sends Wglob ←
∑N ′

i=1 αiWi to all learners in
N ′, otherwise F sends empty message ⊥.

Real World. In real world, F is replaced by our protocol described in Algorithm 1 with full model parameter encryption.

We describe a simulator S that simulates the view of the A in the real-world execution of our protocol. Our privacy
definition A.7 and the simulator S prove both confidentiality and correctness. We omit the simulation of the view of
A that corrupts the aggregation server here since the learners will not receive the ciphertexts of other learners’ local
models in the execution of π thus such a simulation is immediate and trivial.

Simulator. In the ideal world, S receives λ and 1n from F and executes the following steps:

1. S chooses a uniformly distributed random tape r.
2. S runs the key generation function to sample pk: (pk, sk)← HE .KeyGen(λ).
3. For a chosen ith learner, S runs the encryption function to sample: (ci)← HE .Enc(pk, r|Wi|).
4. S repeats Step 3 for all other learners to obtain c⃗, and runs the federated aggregation function f to sample:

(cglob)← HE .Eval(⃗c, f).

The execution of S implies that:

{(ci, cglob)}
s≡
{(

HE .Enc(pk,Wi),HE .Eval(W⃗, f)
)}

Thus, we conclude that S’s output in the ideal world is computationally indistinguishable from the view of A in a real
world execution:

{S (1n, (λ))} s≡ {viewπ (λ)},
where view is the view of A in the real execution of π.

A.12 QUANTIFYING NEGLIGIBLE PRIVACY VALUE IN FULL ENCRYPTION

Given a security parameter λ that denotes the desired security level of the scheme, i.e., λ-bit security, we can obtain a
relaxed catastrophic failure probability δ0 = 1

2λ
, which satisfies (ϵapprox, δ0)-DP under approximate DP (Gaussian

mechanism), where ϵapprox = 0. Note that, in general for approximate DP, the Gaussian mechanism will not actually
release the entire dataset under catastrophic failure probability, rather it fails gracefully, thus δ0 is a good approximation
of the catastrophic failure probability under the failure of the security scheme.

With (ϵapprox, δ0)-DP, we can switch the pure DP we used in our paper to approximate DP and use Advanced
Composition (Dwork et al., 2010) (Theorem 3.20) to get a tight composition. On the other hand, to compose the privacy
of (ϵapprox, δ0)-DP under the Gaussian mechanism into our current pure DP composition in the paper, we can also use
Lemma 3.7 (Bun & Steinke, 2016) to obtain a partial converse (up to a loss in parameters) from approximate DP to
pure DP via zCDP:
With

δ0 =
1

2λ
, (6)

ρ = ϵapprox + 2 ln
1

δ0
− 2

√
ln

1

δ0
(ϵapprox + ln

1

δ0
), (7)

ϵ0 =
√
2ρ, (8)

we can have ϵ0 =

√
2ϵapprox + 2 ln 1

1

2λ
− 2

√
ln 1

1

2λ
(ϵapprox + ln 1

1

2λ
).

Let ϵapprox = 10−12 and λ = 128 for 128-bit security, we can have a negligible ϵ0 = 9.97 ∗ 10−07. Note that
ϵapprox = 10−12 is a really conservative value for estimating privacy from encryption, when ϵapprox = 0 we can have
ϵ0 ≃ 0. Thus, we have ϵ0-DP from security of encryption, where ϵ0 ≃ 0.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

A.13 PROOF OF rJ -PRIVACY BY SELECTIVE PARAMETER ENCRYPTION

Proof. The mean value of sensitivity within [0, Q1−p] is calculated by

E[X|X ≤ Q1−p] =
1

1− p

∫ Q1−p

0

xp(x)dx.

Suppose the total number of parameters is n, the ratio is then obtained as

r =
n(1− p) 1

1−p

∫ Q1−p

0
xp(x)dx

nµ
=

1

µ

∫ Q1−p

0

xp(x)dx.

Therefore, the total privacy budget is

J ′ =
∑

i∈[N]/S

∆fi
b

= r

N∑
i=1

∆fi
b

= rJ.

A.14 PROOF OF PRIVACY BUDGET RELATIONSHIP UNDER DIFFERENT PARAMETER ENCRYPTION OPTIONS

Proof. bm induces the privacy budget of ε(m)
i = ∆fi

bm
for the encryption method indicated by m. The total privacy

budgets for all the methods are then given by

J0 =
∑
i

ε
(0)
i =

1

b0

∑
i

∆fi,

J1 = (1− p)
∑
i

ε
(1)
i =

1− p

b1

∑
i

∆fi,

J2 = r
∑
i

ε
(2)
i =

r

b2

∑
i

∆fi.

When the methods reach a similar protection level (approximating using J0 = J1 = J2), we have the relation above by
canceling out the term

∑
i ∆fi.

A.15 SELECTIVE PARAMETER ENCRYPTION PRIVACY PROOF UNDER UNIFORM DISTRIBUTION

Assume ∆f ∼ U(0, 1) where U represents the uniform distribution, we can have the following privacy quantification.
Remark A.8 (Achieving (1− p)2J-Privacy by Sensitive Parameter Selection (Uniformly Distributed Sensitivity)). If
we select the most sensitive parameters with ratio p for homomorphic encryption and add Laplace noise on remaining
parameters, it satisfies (1− p)2J-Privacy.

Proof. For a uniform distribution with density function p(x) = 1
xmax

, x ∈ [0, xmax], mean µ = 1
2xmax, and (1− p)th

quantile Q1−p = (1− p)xmax,

r =
2

xmax

∫ (1−p)xmax

0

x

xmax
dx = (1− p)2.

Uniform distribution is a conservative estimation of the sensitivity distribution. In our experiments, the obtained
sensitivity data is mostly right-skewed and can be well modeled by the mixture of several log-normal distributions
(see the case of Transformer-3 as shown in Figure 13). However, it is hard to analytically depict the conclusion for
log-normal distributions, so we provide Remark A.9 as a demonstration of the right-skewed case with the simpler
exponential distribution.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

A.16 SELECTIVE PARAMETER ENCRYPTION PRIVACY PROOF UNDER EXPONENTIAL DISTRIBUTION

Remark A.9 (Achieving (p ln p − p + 1)J-Privacy by Sensitive Parameter Encryption (Exponentially Distributed
Sensitivity)).

Proof. For an exponential distribution with density function p(x) = λe−λx, mean µ = 1
λ , and (1 − p)th quantile

Q1−p = − ln p
λ . The corresponding ratio is then

r = λ

∫ − ln p
λ

0

λxe−λxdx = p ln p− p+ 1.

Taking Transformer-3t as an example, the estimated privacy budget ratio for sensitivity data under different distributions
is presented in Figure 4b. It is clear from the figure that a better fitting of the sensitivity data distribution yields a better
estimation of the privacy budget ratio. Note that the estimation here is imperfect since finding the best fitting is not the
main concern of our study, but is sufficient to show the correctness of our theorem.

A.17 SENSITIVITY DISTRIBUTION AND PRIVACY BUDGET RATIO OF THE MODELS INCLUDED

Figure 13, 14, 15, 16, 17„ 18, 19 show that the log-normal mixture model is a good fitting on the models we use for our
evaluation experiments.

10
16

10
13

10
10 10

7
10

4
10

1

Sensitivity

0

2

4

6

8

10

12

14

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 13: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

10
11

10
9 10

7
10

5
10

3
10

1
10

1

Sensitivity

0

2

4

6

8

10

Pe
rc

en
ta

ge
True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 14: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-3f).

10
11

10
9 10

7
10

5
10

3
10

1
10

1

Sensitivity

0

2

4

6

8

10

12

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 15: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (Transformer-S).

10
13

10
10 10

7
10

4
10

1
10

2

Sensitivity

0

1

2

3

4

5

6

7

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 16: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (GPT-2).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

10
8

10
6

10
4

10
2

10
0

Sensitivity

0

1

2

3

4

5
Pe

rc
en

ta
ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 17: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (LeNet).

10
7

10
5

10
3

10
1

Sensitivity

0

2

4

6

8

10

12

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 18: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (CNN).

10
10

10
8

10
6

10
4

10
2

10
0

10
2

Sensitivity

0

2

4

6

8

10

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

(a) Estimation of the Sensitivity Distribution

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
iv

ac
y

B
ud

ge
t R

at
io

Random Encryption
Uniform Distribution
Exponential Distribution
Log-normal Mixture Distribution
True Distribution

(b) Estimation of the Privacy Budget Ratio

Figure 19: Sensitivity Distribution and Privacy Budget Ratio from Selective Parameter Encryption (ResNet-18).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

SUPPORTING MATERIALS FOR DEFENSE EFFECTIVENESS EXPERIMENTS

A.18 PARAMETER SENSITIVITY MAP FOR LENET

Figure 20 visualizes the parameter sensitivity map of LeNet.

Conv_Layer1 Conv_Layer3Conv_Layer2 Conv_Layer4 Linear_Classifier
Figure 20: Model Privacy Map Calculated by Sensitivity on LeNet: darker color indicates higher sensitivity. Each subfigure shows
the sensitivity of parameters of the current layer. The sensitivity of parameters is imbalanced and many parameters have very little
sensitivity (its gradient is hard to be affected by tuning the data input for attack).

A.19 DEFENSE EFFECTIVENESS ON CV AND NLP MODELS

Figure 21 and 22 are used for the records of Table 1.

0.000 0.025 0.050 0.075 0.100 0.125
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

VI
FP

LeNet
No Encryption
Selective Encryption
Random Encryption

0.000 0.002 0.004 0.006 0.008
Encryption Ratio

0.2

0.4

0.6

0.8

1.0

VI
FP

CNN

No Encryption
Selective Encryption
Random Encryption

0.00 0.02 0.04 0.06 0.08 0.10
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

VI
FP

ResNet-18

No Encryption
Selective Encryption
Random Encryption

Figure 21: Results for Selected CV Models

A.20 EXPERIMENTS ON QUANTIFYING PRIVACY

Figure 23 shows the privacy guarantee of Selective Parameter Encryption using the equivalent privacy budget.

ADDITIONAL EXPERIMENTS

We evaluate the HE-based training overheads (without our optimization in place) across various FL training scenarios
and configurations. This analysis covers diverse model scales, HE cryptographic parameter configurations, client
quantities involved in the task, and communication bandwidths. This helps us to identify bottlenecks in the HE process
throughout the entire training cycle. We also benchmark our framework against other open-source HE solutions to
demonstrate its advantages.

A.21 PARAMETER EFFICIENCY TECHNIQUES IN HE-BASED FL

Table 6 shows the optimization gains by applying model parameter efficiency solutions in HE-Based FL.

A.22 RESULTS ON DIFFERENT SCALES OF MODELS

We evaluate our framework on models with different size scales and different domains, from small models like the

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

0.0 0.2 0.4 0.6 0.8
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Transformer-3

No Encryption
Selective Encryption
Random Encryption

0.0 0.2 0.4 0.6 0.8
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Transformer3-f

No Encryption
Selective Encryption
Random Encryption

0.0 0.2 0.4 0.6
Encryption Ratio

0.0

0.2

0.4

0.6

0.8

A
cc

ur
ac

y

Transformer-S
No Encryption
Selective Encryption
Random Encryption

0.0 0.2 0.4 0.6
Encryption Ratio

0.0

0.1

0.2

0.3

0.4

0.5

A
cc

ur
ac

y

Gpt-2
No Encryption
Selective Encryption
Random Encryption

Figure 22: Results for Selected NLP Models

linear model to large foundation models such as Vision Transformer (Dosovitskiy et al., 2020) and BERT (Devlin et al.,
2018). As Table 5 show, both computational and communicational overheads are generally proportional to model sizes.

Table 5 illustrates more clearly the overhead increase from the plaintext federated aggregation. The computation fold
ratio is in general 5x ∼ 20x while the communication overhead can jump to a common 15x. Small models tend to have
a higher computational overhead ratio increase. This is mainly due to the standard HE initialization process, which
plays a more significant role when compared to the plaintext cost. The communication cost increase is significant for
models with sizes smaller than 4096 (the packing batch size) numbers. Recall that the way our HE core packs encrypted
numbers makes an array whose size is smaller than the packing batch size still requires a full ciphertext.

A.23 RESULTS ON DIFFERENT CRYPTOGRAPHIC PARAMETERS

We evaluate the impacts of variously-configured cryptographic parameters. We primarily look into the packing batch
size and the scaling bits. The packing batch size determines the number of slots packed in a single ciphertext while the
scaling bit number affects the “accuracy” (i.e., how close the decrypted ciphertext result is to the plaintext result) of
approximate numbers represented from integers.

From Table 7, the large packing batch sizes in general result in faster computation speeds and smaller overall ciphertext
files attributed to the packing mechanism for more efficiency. However, the scaling factor number has an almost
negligible impact on overheads.

Unsurprisingly, it aligns with the intuition that the higher bit scaling number results in higher “accuracy” of the
decrypted ciphertext value, which generally means the encrypted aggregated model would have a close model test
performance to the plaintext aggregated model. However, it is worth mentioning that since CKKS is an approximate

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

0.0025 0.0050 0.0075 0.0100 0.0125
Scale of Laplace Distribution

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Transformer-3
Full DP
Selective Encryption + DP
Random Encryption + DP

0.0025 0.0050 0.0075 0.0100 0.0125
Scale of Laplace Distribution

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Transformer3-t
Full DP
Selective Encryption + DP
Random Encryption + DP

0.00 0.01 0.02 0.03
Scale of Laplace Distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

Transformer3-f
Full DP
Selective Encryption + DP
Random Encryption + DP

(a) Results for Selected NLP Models

0.00 0.05 0.10 0.15 0.20 0.25
Scale of Laplace Distribution

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
SS

SI
M

Full DP
Selective Encryption + DP
Random Encryption + DP

0.00 0.05 0.10 0.15 0.20 0.25
Scale of Laplace Distribution

0.5

0.6

0.7

0.8

0.9
U

Q
I

Full DP
Selective Encryption + DP
Random Encryption + DP

0.00 0.05 0.10 0.15 0.20 0.25
Scale of Laplace Distribution

0.1

0.2

0.3

0.4

0.5

0.6

0.7

VI
FP

Full DP
Selective Encryption + DP
Random Encryption + DP

Lenet

(b) Results for LeNet

Figure 23: Defense Effectiveness of DP Noises of Different Scales Under Three Protection Methods: an encryption ratio is fixed for
each model from the beginning to guarantee a good attack performance at first. Each configuration is attacked 10 times and the best
attack score is recorded. The experiments are repeated for at least three different sets of applied DP noises.

Model Model Size HE
Time (s)

Non-HE
Time (s)

Comp
Ratio Ciphertext Plaintext Comm

Ratio
Linear Model 101 0.216 0.001 150.85 266.00 KB 1.10 KB 240.83
TimeSeries
Transformer 5,609 2.792 0.233 12.00 532.00 KB 52.65 KB 10.10

MLP (2 FC) 79,510 0.586 0.010 60.46 5.20 MB 311.98 KB 17.05
LeNet 88,648 0.619 0.011 57.95 5.97 MB 349.52 KB 17.50

RNN(2 LSTM
+ 1 FC) 822,570 1.195 0.013 91.82 52.47 MB 3.14 MB 16.70

CNN (2 Conv
+ 2 FC) 1,663,370 2.456 0.058 42.23 103.15 MB 6.35 MB 16.66

MobileNet 3,315,428 9.481 1.031 9.20 210.41 MB 12.79 MB 16.45
ResNet-18 12,556,426 19.950 1.100 18.14 796.70 MB 47.98 MB 16.61
ResNet-34 21,797,672 37.555 2.925 12.84 1.35 GB 83.28 MB 16.60
ResNet-50 25,557,032 46.672 5.379 8.68 1.58 GB 97.79 MB 16.58
GroupViT 55,726,609 86.098 19.921 4.32 3.45 GB 212.83 MB 16.61

Vision
Transformer 86,389,248 112.504 17.739 6.34 5.35 GB 329.62 MB 16.62

BERT 109,482,240 136.914 19.674 6.96 6.78 GB 417.72 MB 16.62
Llama 2 6.74 B 13067.154 2423.976 5.39 417.43 GB 13.5 GB 30.92

Table 5: Vanilla Fully-Encrypted Models of Different Sizes: with 3 clients; Comp Ratio is calculated by time costs of HE over time
costs of Non-HE; Comm Ratio is calculated by file sizes of HE over file sizes of Non-HE. CKKS is configured with default crypto
parameters.

scheme with noises, the decrypted aggregated model can yield either positive or negative model test accuracy ∆s, but
usually with a negative or nearly zero ∆.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Models PT (MB) CT Opt
(MB)

ResNet-18
(12 M)

(Tang et al., 2019)
47.98 796.70 MB 19.03

BERT
(110 M)

(Hu et al., 2021)
417.72 6.78 GB 16.66

Table 6: Parameter Efficiency Overhead: PT means plaintext and CT means ciphertext. Communication reductions are 0.60 and
0.96.

HE
Batch
Size

Scaling
Bits

Comp
(s)

Comm
(MB)

Model Test
Accuracy
∆ (%)

1024 14 8.834 407.47 -0.28
1024 20 7.524 407.47 -0.21
1024 33 7.536 407.47 0
1024 40 7.765 407.47 0
1024 52 7.827 407.47 0
2048 14 3.449 204.50 -0.06
2048 20 3.414 204.50 -0.13
2048 33 3.499 204.50 0
2048 40 3.621 204.50 0
2048 52 3.676 204.50 0
4096 14 1.837 103.15 -1.85
4096 20 1.819 103.15 0.32
4096 33 1.886 103.15 0
4096 40 1.998 103.15 0
4096 52 1.926 103.15 0

Table 7: Computational & Communicational Overhead of Different Crypto Parameter Setups: tested with CNN (2 Conv+ 2 FC) and
on 3 clients; model test accuracy ∆s is the difference between the best plaintext global model and the best global encrypted global
models.

A.24 IMPACT FROM NUMBER OF CLIENTS

As real-world systems often experience a dynamic amount of participants within the FL system, we evaluate the
overhead shift over the change in the number of clients. Figure 24a breaks down the cost distribution as the number of
clients increases. With a growing number of clients, it also means proportionally-added ciphertexts as inputs to the
secure aggregation function thus the major impact is cast on the server. When the server is overloaded, our system also
supports client selection to remove certain clients without largely degrading model performance.

A.25 COMMUNICATION COST ON DIFFERENT BANDWIDTHS

FL parties can be allocated in different geo-locations which might result in communication bottlenecks. Typically,
there are two common scenarios: (inter) data centers and (intra) data centers. In this part, we evaluate the impact of the
bandwidths on communication costs and how it affects the FL training cycle. We categorize communication bandwidths
using 3 cases:

• Infiniband (IB): communication between intra-center parties. 5 GB/s as the test bandwidth.

• Single AWS Region (SAR): communication between inter-center parties but within the same geo-region
(within US-WEST). 592 MB/s as the test bandwidth.

• Multiple AWS Region (MAR): communication between inter-center parties but across the different geo-region
(between US-WEST and EU-NORTH). 15.6 MB/s as the test bandwidth.

As shown in Figure 24b, we deploy our system on 3 different geo-distributed environments, which are operated
under different bandwidths. It is obvious that the secure HE functionality has an enormous impact on low-bandwidth

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

0 25 50 75 100 125 150 175 200
Number of Clients

0

10

20

30

40

50
Ex

ec
ut

io
n

Ti
m

e
(s

)
Total
Init
Enc
Secure Agg
Dec

(a) Step Breakdown of HE Computational Cost vs. Number of Clients (Up to
200): tested on fully-encrypted CNN

MAR (HE) SAR (HE) IB (HE) MAR(Non) SAR (Non) IB (Non)
Bandwidths

0

50

100

150

200

250

300

Ti
m

e
El

ap
se

d
(s

)

34.72%

1.38% 0.16%

3.92% 0.11% 0.01%

Others
Communication

(b) Impact of Different Bandwidths on Communication and Training Cycles on
Fully-Encrypted ResNet-50: HE means HE-enabled training and Non means
plaintext. Others include all other procedures except communication during
training. Percentages represent the portion of communication cost in the entire
training cycle.

Figure 24: Results on Different Number of Clients and Communication Setup

environments while medium-to-high-bandwidth environments suffer limited impact from increased communication
overhead during training cycles, compared to Non-HE settings.

A.26 DIFFERENT ENCRYPTION SELECTIONS

Table 8 shows the overhead reductions with different selective encryption rates.

Selection Comp
(s) Comm Comp

Ratio
Comm
Ratio

Enc w/ 0% 17.739 329.62 MB 1.00 1.00
Enc w/ 10% 30.874 844.49 MB 1.74 2.56
Enc w/ 30% 50.284 1.83 GB 2.83 5.69
Enc w/ 50% 70.167 2.83 GB 3.96 8.81
Enc w/ 70% 88.904 3.84 GB 5.01 11.93
Enc w/ All 112.504 5.35 GB 6.34 16.62

Table 8: Overheads With Different Parameter Selection Configs Tested on Vision Transformer: “Enc w/ 10%” means performs
encrypted computation only on 10% of the parameters; all computation and communication results include overheads from plaintext
aggregation for the rest of the parameters.

A.27 COMPARISON WITH OTHER FL-HE FRAMEWORKS

Comparison with other popular HE-based FL work can be found in Table 9.

Features IBMFL Nvidia FLARE Ours
Homomorphic Encryption ✓ ✓ ✓

Threshold Key Management ✗ ✗ ✓
Selective Parameter Encryption ✗ ⃝ ✓

Encrypted Foundation Model Training ⃝ ⃝ ✓

Table 9: Comparison with Existing HE-Based FL Systems: ⃝ implies limited support. For Selective Parameter Encryption, FLARE
offers the (random) partial encryption option which does not have clear indications of privacy impacts; for Encrypted Foundation
Model Training, the other two platforms require massive resources to train foundation models in encrypted federated learning.

We compare our framework to the other open-sourced FL frameworks with HE capability, namely NVIDIA FLARE
(NVIDIA) and IBMFL.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Frameworks HE Core Key
Management Comp (s) Comm

(MB)

HE
Multi-Party

Functionalities

Ours PALISADE ✓ 2.456 105.72 PRE,
ThHE

Ours (w/ Opt) PALISADE ✓ 0.874 16.37 PRE,
ThHE

Ours SEAL
(TenSEAL) ✓ 3.989 129.75 —

Nvidia FLARE
(9a1b226)

SEAL
(TenSEAL) ✓ 2.826 129.75 —

IBMFL
(8c8ab11)

SEAL
(HELayers) ⃝ 3.955 86.58 —

Plaintext — — 0.058 6.35 —
Table 10: Different Frameworks: tested with CNN (2 Conv + 2 FC) and on 3 clients; Github commit IDs are specified. For key
management, our work uses a key authority server; FLARE uses a security content manager; IBMFL currently provides a local
simulator.

Both NVIDIA and IBMFL utilize Microsoft SEAL as the underlying HE core, with NVIDIA using OpenMinded’s
python tensor wrapper over SEAL and TenSEAL; IBMFL using IBM’spython wrapper over SEAL and HELayers
(HELayers also has an HElib version). Our HE core module can be replaced with different available HE cores, to give a
more comprehensive comparison, we also implement a TenSEAL version of our framework for evaluation.

Table 10 demonstrates the performance summary of different frameworks using an example of a CNN model with 3
clients. Our PALISADE-powered framework has the smallest computational overhead due to the performance of the
PALISADE library. In terms of communication cost, our system (PALISADE) comes second after IBMFL’s smallest
file serialization results due to the efficient packing of HELayers’ Tile tensors (Aharoni et al., 2011).

Note that NVIDIA’s TenSEAL-based realization is faster than the TenSEAL variant of our system. This is because
NVIDIA scales each learner’s local model parameters locally rather than weighing ciphertexts on the server. This
approach reduces the need for the one multiplication operation usually performed during secure aggregation (recall that
HE multiplications are expensive). However, such a setup would not suit the scenario where the central server does not
want to reveal its weighing mechanism per each individual local model to learners as it reveals partial (even full in some
cases) information about participants in the system.

A.28 CHANGE IN ATTACK PERFORMANCE OVER TRAINING

This experiment is used to study the attack performance at different stages of model training. We use Transformer-3
to illustrate the trend as shown in Figure 25. The encryption ratio for random and selective encryption is selected
as 0.0005 to guarantee the attack performance at the beginning of the training. The results indicate that the attack
performance decreases as the model is trained to be more and more useful, which makes sense since the importance
of information contained in the gradient is expected to drop gradually as the training goes toward convergence. Note
that the experiment is conducted on only one model because this part is not the main concern of our study. A more
comprehensive setup should include multiple CV and NLP models.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

0 200 400 600 800 1000 1200
Batch Iteration

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

No Encryption
Selective Encryption
Random Encryption

0 200 400 600 800 1000 1200
Batch Iteration

0.0

0.2

0.4

0.6

0.8

1.0

Sa
cr

eB
LE

U

No Encryption
Selective Encryption
Random Encryption

0 200 400 600 800 1000 1200
Batch Iteration

0.0

0.2

0.4

0.6

0.8

1.0

G
oo

gl
e

B
LE

U

No Encryption
Selective Encryption
Random Encryption

0 200 400 600 800 1000 1200
Batch Iteration

0.0

0.2

0.4

0.6

0.8

1.0

R
O

U
G

E-
1

No Encryption
Selective Encryption
Random Encryption

0 200 400 600 800 1000 1200
Batch Iteration

0.0

0.2

0.4

0.6

0.8

1.0

R
O

U
G

E-
2

No Encryption
Selective Encryption
Random Encryption

0 200 400 600 800 1000 1200
Batch Iteration

0.0

0.2

0.4

0.6

0.8

1.0

R
O

U
G

E-
L

No Encryption
Selective Encryption
Random Encryption

Transformer-3

Figure 25: Attack Performance on Transformer-3 over Batch Iterations. Each configuration is attacked 10 times and the best score is
recorded. The experiment is repeated on 10 different data points and their mean is presented.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

A.29 MLOPS RUNNING EXAMPLE CONFIGURATION

1 common_args:
2 training_type: "cross_silo"
3 scenario: "horizontal"
4 random_seed: 0
5

6 data_args:
7 dataset: "cifar100"
8 partition_method: "hetero"
9 partition_alpha: 0.5

10

11 model_args:
12 model: "resnet50"
13

14 train_args:
15 federated_optimizer: "FedAvg"
16 client_num_in_total: 3
17 client_num_per_round: 3
18 comm_round: 5
19 epochs: 1
20 batch_size: 10
21 client_optimizer: sgd
22 learning_rate: 0.03
23 weight_decay: 0.001
24

25 validation_args:
26 frequency_of_the_test: 5
27

28 device_args:
29 worker_num: 2
30 using_gpu: true
31 gpu_mapping_file: config/gpu_mapping.yaml
32

33 comm_args:
34 backend: "MQTT_S3"
35 mqtt_config_path: config/mqtt_config.yaml
36 s3_config_path: config/s3_config.yaml
37

38 fhe_args:
39 enable_fhe: true
40 scheme: ckks
41 batch_size: 8192
42 scaling_factor: 52
43 file_loc: "resources/cryptoparams/"
44

Figure 26: ResNet-50 MLOps Training Configuration

A.30 OVERHEAD ANALYSIS OF PARAMETER SELECTION

Using the same setup on ResNet-50, we conducted experiments on the overhead introduced by parameter selection to
find a selective encryption mask in the initial stage.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Sen
sit

ivi
ty

Calc
ula

tio
n

Sec
ure

 M
as

k A
gg

reg
ati

on

Tim
e S

av
ed

 w
/ S

ele
cti

ve
 E

nc
ryp

tio
n

0

10000

20000

30000

40000

50000

60000

70000

80000
O

ve
rh

ea
d

(s
)

(a) Overhead of Initial Parameter Selection Compared to Overhead Reduced by Selective Parameter Encryption on ResNet-50.

0 100 200 300 400 500
Communication Round

10

20

30

40

50

Ac
cu

ra
cy

 (
%

)

Test Accuracy

(b) Test Accuracy of Training ResNet-50

Figure 27: Overhead Analysis of Parameter Selection on ResNet-50.

As shown in Figure 27, the two key steps of parameter selection, namely privacy sensitivity calculation and encrypted
global mask agreement, cost 113.8 s and 273.6 s respectively, while the overhead reduction during the entire training
task from selective parameter encryption results in 25342.4 s (please refer to the updated Figure for more details)
compared to full parameter encryption. This result demonstrates that despite the additional overhead introduced by the
parameter selection steps, our method still improves the encrypted FL overheads by a substantial margin. Additionally,
the global mask can be easily reused in different training tasks for the same model architecture with similar data
distribution, and the overhead of parameter selection can be further amortized in practice.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

A.31 CLIENT DATA DISTRIBUTION IMPACT ON SENSITIVITY

Figure 28 shows the difference in sensitivity distribution of Resnet50 under two different client data distributions. The
two sensitivity distributions still preserve the characteristics of log-normal mixture distribution, but it is noticeable a
slight change in aspects like their mode, range, etc. This observation suggests that alternative global mask aggregation
functions, such as maximum-based aggregation, might outperform our current weighted averaging method in terms of
privacy protection. It is worth future work to investigate this specific aspect of our selective encryption.

10
16

10
12

10
8

10
4

10
0

Sensitivity

0.0

2.5

5.0

7.5

10.0

Pe
rc

en
ta

ge
 (%

)

Data Distribution 1
Data Distribution 2

Figure 28: Deviation of Sensitivity Distribution Induced by Different Client Data Distribution: two client data distributions
constructed from the ImageNet dataset with 100 images from distinct classes sampled at equal intervals. Distribution 1 contains data
with labels of [0, 1, 2, 3, 5] while Distribution 2 contains data whose labels span across 0 to 400.

To further investigate this aspect, experimental setups in the previous work Mendieta et al. (2022); Guleria et al. (2024)
for the FL data heterogeneity can be considered in future work on this topic regarding privacy sensitivity calculation.

A.32 ANALYSIS ON NEWER LLMS

Figure 29 and Figure 30 show how our method performs on newer LLMs from the Llama-3.2 collection. The
experimental results indicate that newer LLMs align closely with the findings observed in our experiments on earlier
models.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

10
12

10
9

10
6

10
3

10
0

Sensitivity

0

1

2

3

4

5

6

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

Figure 29: Sensitivity Distribution of Llama-3.2-1B

10 19 10 15 10 11 10 7 10 3 101

Sensitivity

0

2

4

6

8

10

12

14

Pe
rc

en
ta

ge

True Distribution
Log-normal Mixture Model

Figure 30: Sensitivity Distribution of Llama-3.2-3B

34

	Introduction
	Related Work
	Federated Learning With Selective Parameter Encryption
	Methodology Overview
	Threat Model
	Algorithm for HE-Based Federated Aggregation
	Efficient Optimization by Selective Parameter Encryption

	Quantifying Privacy Of Selective Parameter Encryption
	Encrypted Aggregation Quantified in Privacy Budget
	Selective Parameter Encryption by Privacy Theory

	Evaluation
	Experiment Setup
	Optimized Overheads
	Effectiveness of Selective Encryption Defense
	Privacy Guarantee Quantification

	Conclusion
	Appendix
	Homomorphic Encryption
	Federated Learning
	HE Key Management
	FL With Threshold HE
	Software Framework: Homomorphic Encryption In Federated Learning
	Framework APIs
	Deploy Anywhere: A Deployment Platform MLOps For Edges/Cloud
	Adjacent Datasets
	Laplace Mechanism
	Differential Privacy Sensitivity
	Proof of Base Full Encryption Protocol
	Quantifying negligible privacy value in full encryption
	Proof of rJ-Privacy by Selective Parameter Encryption
	Proof of Privacy Budget Relationship Under Different Parameter Encryption Options
	Selective Parameter Encryption Privacy Proof Under Uniform Distribution
	Selective Parameter Encryption Privacy Proof Under Exponential Distribution
	Sensitivity Distribution and Privacy Budget Ratio of the Models Included
	Parameter Sensitivity Map for LeNet
	Defense Effectiveness on CV and NLP Models
	Experiments on Quantifying Privacy
	Parameter Efficiency Techniques in HE-Based FL
	Results on Different Scales of Models
	Results on Different Cryptographic Parameters
	Impact from Number of Clients
	Communication Cost on Different Bandwidths
	Different Encryption Selections
	Comparison with Other FL-HE Frameworks
	Change in Attack Performance over Training
	MLOps Running Example Configuration
	Overhead Analysis of Parameter Selection
	Client Data Distribution Impact on Sensitivity
	Analysis on Newer LLMs

