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IMAGERAG: DYNAMIC IMAGE RETRIEVAL FOR
REFERENCE-GUIDED IMAGE GENERATION
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Figure 1: Using image references broadens the generation capabilities of image generation models.
Given a text prompt, our method, ImageRAG, dynamically retrieves relevant images and provides
them to a text-to-image model as references (Retrieved Ref.). ImageRAG works with different models,
e.g. FLUX and SDXL (left), and OmniGen (right), and with different controls, e.g. text (left, middle),
and personalization (right).

ABSTRACT

While recent generative models synthesize high-quality visual content, they still
struggle with generating rare or fine-grained concepts. To address this challenge, we
explore the usage of Retrieval-Augmented Generation (RAG) for image generation,
and introduce ImageRAG, a training-free method for rare concept generation. Using
a Vision Language Model (VLM), ImageRAG identifies generation gaps between
an input prompt and a generated image dynamically, retrieves relevant images, and
uses them as context to guide the generation process. Prior approaches that use
retrieved images require training models specifically for retrieval-based generation.
In contrast, ImageRAG leverages existing image conditioning models, and does not
require RAG-specific training. We demonstrate our approach is highly adaptable
through evaluation over different backbones, including models trained to receive
image inputs and models augmented with a post-training image-prompt adapter.
Through extensive quantitative, qualitative, and subjective evaluation, we show that
incorporating retrieved references consistently improves the generation abilities of
rare and fine-grained concepts across three datasets and three generative models.
Our project page is available at: https://rotem-shalev.github.io/
ImageRAG

1 INTRODUCTION

Deep generative models (Ho et al., [2020; [Rombach et al., 2022} [Dhariwal & Nicholl, [2021}; [Labs,
@ have revolutionized image generation, offering high-quality, diverse, and realistic visual content
synthesis. They enable text-to-image generation as well as a wide range of tasks, from layout-based
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synthesis to image editing and style transfer (Avrahami et al., [2022; Hertz et al., 2022} Mokady et al.,
[2023}; [Avrahami et al 2023b} [Zhang et al., 2023}, [Brooks et al., 2023} [Nitzan et al., 2024). These
large models require great amounts of training data, substantial training durations, and extensive
computational resources. As a result, contemporary text-to-image (T2I) models, that are limited to
the data they were trained on, struggle with generating user-specific concepts or updated content.
Specifically, they have difficulty with generating rare concepts, stylized content, or fine-grained
categories (e.g., a specific bird species, as in Fig. 2] left), even if they were trained on images

containing them (Samuel et al[2024b; [Haviv et al.},[2024). In these cases, diffusion models tend to

“hallucinate”, and potentially generate content unrelated to the textual prompt (see Fig.[2] right). To

Prompt Generation Retrieval Prompt Base model +Reference ImageRAG

“A photo of a “Cradle"

rhinoceros auklet” (SDXL)

« . " “Chime"
Electric fan (OmniGen)

Figure 2: Left: generation vs. retrieval. Although some generative models, such as SDXL, use
CLIP as a text encoder, they sometimes fail to generate concepts (‘Generation’ column) that are
retrieved successfully using CLIP (‘Retrieval’ column). Right: Hallucinations. When models do
not know the meaning of a prompt, they may “hallucinate” and generate unrelated images (‘Base
model’ column). By applying our method to retrieve and utilize relevant references (‘+Reference’
column), the base models can generate appropriate images (‘ImageRAG’ column).

tackle these problems, several approaches have been proposed for personalized (Gal et all 2023} [Ruiz

et al| 2023} [Voynov et al., 2023} [Arar et al., [2024), stylized (Hu et al., 2021} [Li et al., 2024a; [Zhang

et al.},[2024), or rare concept (Samuel et al.| 2024b} [Pan et al.,[2025)) generation. Most approaches
however, require training or specialized optimization techniques for each new concept.

We observe that similar problems exist with text generation using Large Language Models (LLMs).
LLMs struggle with generating text based on real-world facts, proprietary or updated data, and tend to
hallucinate when lacking sufficient knowledge (Brownl[2020; Ji et al.}[2023)). To solve these problems
with LLMs, Retrieval Augmented Generation (RAG) (Lewis et al.,[2020) has been proposed. RAG
dynamically retrieves the most relevant information from external data sources given a query, and
supplies it to an LLM as context input, enabling contextually accurate and task-specific responses.
Investigating this idea for images, we note that previous works employing image retrieval for better
image generation (Chen et al., 2022} Sheynin et al.,[2022; Blattmann et al.| 2022} [Hu et al., 2024),
train models specifically for the task, hindering wide applicability. A recent work (Lyu et al.l 2025)
requires training of a specific retrieval module per base generative model. In contrast, we propose
ImageRAG, a method that dynamically retrieves and provides images as references to pretrained
models, to enhance their generation capabilities, and does not require any additional training. Instead,
we use existing generative models in the same vein as the common use of LLMs, and retrieve
reference images during sampling for guided generation, by leveraging existing Vision-Language
Models (VLMs). We note that in the visual domain, the context is more limited compared to the
language case. Hence, to apply RAG for image generation, we cannot simply provide references for
all the concepts in a prompt. Therefore, we need to decide which images to use as context, how to
retrieve them, and how to use the retrieved images, to successfully generate a required prompt.

In this work, we address these questions by offering a novel method that dynamically identifies
relevant and useful examples given a prompt, and uses them as references to guide the model toward
generating the required result. Leveraging the abilities of T2I models to produce many concepts, we
only pass concepts that the models struggle to generate, focusing on generation gaps. To understand
what the challenging concepts are, we propose a novel method that applies a guided multimodal
chain-of-thought (CoT) process using a VLM. By encouraging step-by-step reasoning, CoT
et al, [2022a} [Yang et all 2023) helps VLMs reach more reliable and consistent conclusions by
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decomposing complex tasks into explicit intermediate steps that reduce errors. Specifically, we first
generate an initial image and then iteratively prompt a VLM to assess the alignment between the
image and prompt, identify missing visual components, and suggest complementary concepts. We
then use these concepts to retrieve reference images that guide subsequent generation.

Our approach is not related to a specific T2I model, and can be applied to different base models. To
demonstrate it, we apply ImageRAG to three models: Omnigen (Xiao et al.}2024), SDXL (Podell
et al.| 2024)+IP-adapter (Ye et al.|[2023), and FLUX (Labs| 2023)+OminiControl (Tan et al.,[2024).
We perform quantitative, qualitative, and human evaluations of our method with these models, and
show that ImageRAG enhances their rare and fine-grained concept generation capabilities. These
results indicate that the image generation community could benefit from adopting RAG for class or
task-specific generation during sampling time.

2 RELATED WORK

In-context learning (ICL) has emerged as a powerful paradigm in which large language models
(LLMs) are capable of performing new tasks without additional fine-tuning (Brownl |2020). By
providing a few examples or relevant context directly in the input prompt, ICL enables models to
infer the desired task and generate appropriate outputs. Despite its flexibility, ICL is limited by the
finite context window of the model, making the selection of relevant and concise context critical
for optimal performance. Recently, visual ICL presented promising results (Gu et al.| 2024} [Wang
et al., 2023} X1ao et al.| 2024} |Najdenkoska et al., [2024; Sun et al.,|2024). Visual ICL has mostly
been explored in the context of learning from analogies (Gu et al., [2024} [Wang et al., [2023} |Xiao
et al.} [2024; Nguyen et al., [2024). However, the ability of learning from single examples has also
been researched with multimodal generative models that allow images as input (X1ao et al., [2024;
Sun et al.| [2024; Wang et al., 2024b). Such models allow image prompting and facilitate exploring
RAG for image generation.

Retrieval Augmented Generation (RAG) [Lewis et al| (2020) is a method for improving the
generation abilities of a pretrained model without additional training, by dynamically retrieving and
supplying information as context through text prompts. For each given query, relevant information is
retrieved from an external database, and supplied to the model for improved generation that relies on
it as context. While RAG has been greatly explored for text generation tasks and applied over multiple
pretrained LLMs (Lewis et al., [2020; Gao et al., [2023; [Ram et al., [2023; Borgeaud et al., 2022} |Li
et al.,[2024b; |Zhang et al.| |2025)), it has yet to be explored for enhancing pretrained image generation
models’ capabilities. Some previous work used nearest-neighbor image retrieval to improve image
generation (Sheynin et al., [2022; |Blattmann et al., 2022; |Chen et al., 2022} [Lyu et al.l 2025) or
for editing-guidance (Hu et al., [2024; [Sanguigni et al., |2025), however they either train models
specifically for retrieval-aided generation or require a retrieval-module training per-model. Unlike
them, our method leverages pretrained models and does not require additional training. A recent work,
Yuan et al.|(2025)), utilizes an LLM for prompt decomposition to concepts and retrieves references
representing each of them. Then, they generate a layout with all the concepts to assert all of them are
generated. Unlike our method, they retrieve all the concepts in a prompt, ignoring prior knowledge of
the model. Moreover, while using a layout ensures all concepts are present in the result, this strategy
may constrain the generation abilities to isolated concepts without interaction between them. For
example, their method may struggle to generate a concept in a style or interacting concepts.

Text-to-image generation advanced greatly with the introduction of diffusion models (Ho et al.,
2020), which produce high-quality and diverse images of a wide range of concepts (Dhariwal &
Nichol,|2021;|Rombach et al.,[2022; |Podell et al., 2024} | Xiao et al.,[2024). However, they struggle with
rare concepts and cannot generate user-specific concepts without additional training or optimization.

Personalization works generate images of a user-specific concept. However, they often require an
optimization process for learning each new concept (Nitzan et al., 2022} |Gal et al., 2023 Ruiz et al.,
2023} Arar et al., 20245 |Alaluf et al.| [2023] [Voynov et al.|, |2023} |/Avrahami et al.| [2023a; Kumari et al.
2023). To mitigate this challenge, recent works train image-encoders that allow prompting existing
pretrained generative models with images (Ye et al., 2023} \Wang et al., |2024a)).

Rare Concept Generation focuses on image generation of uncommon concepts. [Samuel et al.
(2024a3b)) explored generating rare concepts using a few examples of each rare concept to optimize
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seeds that produce images similar to the references. However, in addition to the requirement of an
optimization process per new concept, these works do not address the questions of how to find and
choose the reference images. |Pan et al.| (2025)) suggests a parameter-efficient fine-tuning approach
over full datasets.
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Figure 3: Top: a high-level overview of our method. Given a text prompt <p>, we generate an
initial image using a text-to-image (T2I) model. Then, using a guided CoT process, we generate
retrieval-captions <c;>, retrieve images from an external database for each caption <¢;>, and use
them as references to the model for better generation. Bottom: the guided Chain-of-Thought (CoT)
process. We use a VLM to decide if the initial image matches the given prompt. If not, we ask it to
list the missing concepts, and to create a caption that could be used to retrieve appropriate examples
for each of the missing concepts.

Our goal is to increase the robustness of T2I models, particularly with rare concepts and fine-grained
categories, which they struggle to generate. To do so, we investigate a retrieval-augmented generation
(RAG) approach, through which we dynamically select images that can provide the model with
missing visual cues. Importantly, we focus on models that were not trained for RAG, and show
that existing image conditioning tools can be leveraged to support RAG post-hoc. As depicted in
Fig.[3] given a text prompt and a T2I generative model, we start by generating an image with the
given prompt. Then, we employ a guided chain-of-thought (CoT) reasoning process, through which
a VLM decides whether the image aligns with the prompt, and identifies gaps in it if not. If gaps
were identified, we aim to retrieve images representing missing concepts that would help fill these
gaps. These images are then used as context to guide the T2I model toward better alignment with the
prompt. In the following section, we provide a detailed description of our method.

3.1 GUIDED CHAIN-OF-THOUGHT (COT)

To identify missing concepts in an image and retrieve relevant references, we employ a guided CoT
process with a VLM (depicted in Fig.[3] bottom). Since currently the amount of images we can pass
to an image generation model is limited, we cannot pass images representing each of the concepts in
a prompt. However, as T2I models are capable of generating many concepts successfully, an efficient
strategy would be passing only concepts they struggle to generate. To identify challenging concepts,
we generate an initial image with a T2I model. Then, we query a VLM with the initial prompt and
image, asking it to decide if they match. If not, we guide the VLM to generate image captions for
retrieval, by asking it to identify missing concepts in the image, focusing on content and style, since
these are easy to convey through visual cues. We use an example so it knows to only return short
generic concepts as an answer. These concepts are the ones we should retrieve and use as references.
However, as demonstrated in Tab. 3] image retrieval from brief, generic concept descriptions yields
worse results than retrieval from detailed image captions. Therefore, after identifying the missing
concepts, we query the VLM to generate detailed image captions for images describing each of the
identified missing concepts, which will be used to retrieve exemplar images. By constraining the CoT
answers to concise answers, we avoid overthinking and achieve accurate retrievals.
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Beyond performance gains on rare and fine-grained concepts, the guided CoT adds interpretability, as
we can inspect which concepts were identified as missing. The approach does rely on the diagnostic
accuracy of the VLM; therefore, we performed robustness experiments over various VLMs and
explored which ones could be trusted for this task (see Appendix [E.5|for more details). All the used
prompts can be found in Appendix [C]

3.2 RETRIEVE AND USE REFERENCE IMAGES

We aim to retrieve images that could be described by the generated image captions from an external
dataset. To retrieve images matching a given caption, we compare the caption to all the images
in the retrieval-dataset using a text-image similarity metric and retrieve the most similar images.
Text-to-image retrieval is an active research field (Radford et al.; 2021} |Zhai et al.| 2023} [Ray et al.,
2024} [Vendrow et al.,[2024), where no single method is perfect. Retrieval is especially hard when
the dataset does not contain an exact match to the query (Biswas & Ramnath, 2024)) or when the
task is fine-grained retrieval, which depends on subtle details (Wei et al., [2022b)). Therefore, we
experimented with multiple retrieval strategies (see Tab. ). First, we tried cosine similarity between
CLIP (Radford et al., |2021) and SigLIP (Zhai et al., [2023)) text and image embeddings. Next,
following a common retrieval workflow, in which first image candidates are being retrieved using
pre-computed embeddings, and then the retrieved candidates are being re-ranked using a different,
often more expensive but accurate, method (Vendrow et al.,[2024), we additionally experimented
with some re-ranking methods of reference candidates. Although re-ranking sometimes yields better
results compared to using cosine similarity between CLIP embeddings (see Tab.[), the difference
was not significant in most of our experiments. Therefore, for simplicity, in our experiments we used
cosine similarity between CLIP embeddings as our similarity metric. The retrieval of good candidates
using CLIP raises a question. Some of the base models, e.g. SDXL (Podell et al.,[2024), use CLIP as
a text-encoder, so how can they benefit from references retrieved by the same model? Our empirical
experiments, exemplified in Fig. 2] show that while SDXL struggles to generate some concepts, they
are retrieved successfully using CLIP. We hypothesize that retrieval is an easier task than generation.
Hence, even though the model cannot generate some concepts, it can still benefit and learn from
images representing them, which can be retrieved using CLIP.

After relevant images are retrieved, we can use image conditioning methods to condition T2I
models using our reference images by augmenting the input prompt to contain the retrieved im-
ages as examples. Formally, given a prompt p, n concepts, and a compatible image for each
concept, we augment the prompt with the following template: “According to these examples of
<ep>i<imgr >, ..., <cp>:<imgy >, generate <p>”, where ¢; is a compatible image caption of the
image <img;>, for ¢ € [1, n|. This prompt allows models to learn missing concepts from the images,
guiding them to generate the required result. We experimented with three models and conditioning
methods (see Sec. ), demonstrating our method is model- and conditioning method-agnostic.

Validation options: The design of our method allows using a threshold as assurance of reference
quality. This way, when retrieving a reference, a threshold could be applied, so only good references,
i.e., ones that pass the threshold, would be used. Additionally, we can optionally iterate the generation
loop until the VLM indicates alignment between the text prompt and the generated image.

4 EXPERIMENTS

To evaluate the effectiveness of our method, we performed automatic and human evaluations. To
assess its adaptability to different models, we experimented with applying ImageRAG to Omni-
Gen (Xiao et al., 2024), SDXL (Podell et al., |2024)) through IP-Adapter (Ye et al., |2023), and
FLUX (Labs, 2023) through OminiControl (Tan et al., [2024)). In most experiments, we used GPT
as our VLM and CLIP as our retrieval method, as they performed best overall, and a 350K images
subset of LAION (Schuhmann et al.| [2022)) as our retrieval-dataset for generic usage. We additionally
tested the abilities of different VLMs to identify rare concepts (see Appendix [E.5)) and experimented
with different retrieval strategies (see Tab.[d), and with specialized datasets instead of a generic one
(see Appendix [E.3). Appendix [A]contains additional implementation details.
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Table 1: GPTScore comparisons of fine-grained image generation with text-to-image models. First-
part columns feature OmniGen-based models, middle-part columns feature FLUX-based models, and
last-part columns feature SDXL-based models. In each part, best results are bolded.

Dataset OmniGen GraPE-O ImageRAG-O FLUX ImageRAG-F SDXL ImageRAG-SD

ImageNet 0.75 0.68 0.88 0.84 0.9 0.86 0.92
iNaturalist 0.07 0.06 0.56 0.07 0.31 0.51 0.70
CUB 0.57 0.45 0.73 0.79 0.85 0.94 0.97

Table 2: Comparisons on fine-grained image generation with T2I models. For each set, we report
mean (= standard error) CLIP, SigLIP text-to-image similarities, and DINO feature similarity between
real and generated images. Second-part rows feature OmniGen-based models, third-part feature
FLUX-based models, and bottom feature SDXL-based models. In each part, best results are bolded.

ImageNet iNaturalist CUB
CLIP T SigLIP 1 DINO 1 CLIP 1 SigLIP 1 DINO 1 CLIP T SigLIP 1 DINO 1
Pixart-Y 0'262:Hl.(lﬂl 0‘1211().0()1 0.691:&“'(]“3 04162i0'002 0,027:&(].(](]2 0‘611:H).U()2 0,232:&(].(](]4 04101i“'“03 0.7361HLUU4

OmniGen 0‘247:&0.002 0122:&0.001 0»692:&0'003 0155:&0.002 0}014:&0.001 0A595:ED.002 0‘231:&0.005 0(109:&0.003 0A747i0.005
GraPE-O 0'251i0.002 0(123i0.00| 0,692i0‘003 O(157i0.002 0,016i0‘002 0(604i0.00l 0'240i0.005 0‘115i0.003 0}747i0.(]05

ImageRAG-O 0. 264i0.001 0. 134i0.001 0. 70810.002 0. 19710.002 0. 09510.“02 0. 701i0.002 0. 25310.003 0. 125i0.002 0. 76010.003
FLUX 0.271+0.001 0_137i0,001 0.698£0-002 0_222i0,002 0.065%0-002 0_654i0v002 0.267+0-003 0_135i0v002 0.746£0-004
ImageRAG-F  0.277+0:001  .140+0:001  ,705£0-002  ,238+0-001  (,083%0-002  0,691%0-002  0,277+0.002 014430002 ¢,767+0.003
SDXL 0.267+0:002  (y 136+0.001 0.700%0-003  .259+0-002  (j )g+0.002  (§ G9g+0-003 () 315+0.001 0.172%+0:003  (y 789+0.002

lmageRAG—SD 0.274i0.001 0'141i0.001 0.709i0.002 0'243i0,002 0.118i0.001 0'724i0.002 0'314i0.001 0'174i0.002 0.784i0.001

4.1 QUANTITATIVE COMPARISONS

We evaluate the ability of ImageRAG to improve T2I generation of rare and fine-grained concepts by
comparing the results of different base models with their results when applying ImageRAG to them.
As additional baselines, we compare with Pixart-3 (Chen et al., 2025)), and the OmniGen-based
version of GraPE (Goswami et al., 2024). The last is an iterative LLM-based image generation
method which employs editing tools to insert missing objects. Following rare concept generation
works (Samuel et al.| 2024b} [Pan et al.| [2025)), we use the fine-grained datasets ImageNet (Deng
et al.,2009), iNaturalist (Van Horn et al.,[2018)), and CUB (Wah et al., 2011} for evaluation. [Samuel
et al.| (2024b) reported that 25% of ImageNet classes are in the tail of LAION (Schuhmann et al.|
2022), and most of the classes in CUB and iNaturalist are in its tail. For iNaturalist, we use the
first 1000 classes. Additional experimental results over the Flowers (Nilsback & Zisserman, 2008)),
Dogs (Khosla et al., [2011)), and Cars (Krause et al., 2013)) datasets are reported in Appendix
Following prior work (Pang et al.l 2024} Ruiz et al., [2023; Zhang et al.| 2023)), we evaluate all
methods with the commonly used similarity metrics CLIP (Radford et al.,|2021)) and DINO (Zhang
et al.,[2022), in Tab. @ For fairness, we use open-CLIP for evaluation, and OpenAl CLIP for retrieval.
We additionally report SigL.IP (Zhai et al.| 2023) embedding similarity, which outperforms CLIP
on several classification and retrieval tasks. When examining these scores alone, improvement
seems mild. However, these metrics gauge only coarse semantic similarity: for instance, two bird
species appear similar in the embedding space despite possessing meaningful distinctions required for
concept-specific generation. Therefore, we additionally report GPTScores (Peng et al., 2025)), which
has been shown to correlate with human judgment for personalized image generation evaluation,
where concepts are inherently unknown to the model. Moreover, we conduct user studies (see
Sec.[.1.1)) and supply visual examples (Fig.[5|and Appendix [B)), where improvements are much
clearer, as they capture the intended evaluation signal more faithfully. As Tabs.[T]and 2]demonstrate,
all base models results improve when using ImageRAG for rare concept and fine-grained generation.

4.1.1 USER STUDIES

To evaluate our results further, we conducted a user study with 67 participants, including two types of
comparative studies (977 comparisons) and an absolute study (231 answers).

Comparative studies: 1) comparing OmniGen, SDXL, and FLUX with and without our method,
and 2) comparing our results to retrieval-based models trained for the task of image generation
using retrieved images: RDM (Blattmann et al., 2022), knn-diffusion (Sheynin et al.| [2022), and
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Figure 4: User study results. Left: Users preference percentage of our method compared to other
methods in terms of text alignment, visual quality, and overall preference. Right: Percentage of rare
concept generation per model by users’ rating of whether concepts are contained in generated images.

Table 3: Ablation studies over OmniGen. ‘“Rephrased prompt”: only prompt rephrasing without
image references. ‘“Retrieve concepts”: using the missing concepts for retrieval instead of using
detailed image captions, “Retrieve prompt”: using the prompt for retrieval. Best results are bolded.

ImageNet CUB
CLIP SigLIP 1 DINO CLIP 1 SigLIP 1 DINO
OmniGen 0.247+£0.002 0.1224+0.001  0.692+0.003 0.231 £0.005 0.109 £ 0.003 0.747 & 0.005
Rephrased prompt-O  0.248 £0.002 0.124 £0.042 0.696 &+ 0.003  0.230 +0.005 0.107 £0.004 0.750 £ 0.005
Retrieve concepts-O  0.258 £0.002 0.130 £0.001  0.694 £0.003 0.240 £0.004 0.113+£0.003 0.719 = 0.006
Retrieve prompt-O  0.258 £0.002 0.130 £0.001  0.691 £0.003 0.246 +0.004 0.120 + 0.003  0.736 £ 0.005
ImageRAG-O 0.264 £ 0.001  0.134 + 0.001  0.708 £ 0.002 0.253 £ 0.003  0.125 + 0.002 0.760 + 0.003

Relmagen (Chen et al.,2022). Since these are largely proprietary models with no API, we compared
to images and prompts published in their papers. In each comparison, participants chose between an
ImageRAG result and a baseline image based on text alignment, visual quality, and overall preference.
Since some prompts contain uncommon concepts, we supply a real image of the least familiar concept
in each prompt (not taken from our dataset). As demonstrated in Fig. @] (left), participants favored
ImageRAG over all other methods in all three criteria of text alignment, visual quality, and overall
preference.

Absolute study: to assert our method not only improves the current results but also generates the
rare concepts, we performed an absolute study. We asked participants which of the results of all
baseline models with and without our method contain a reference object. Note: we only used images
where our method ran, meaning where the VLM decided the initial images did not match the prompt.
As shown in Fig. E} indeed our results contain the reference object in most cases; 92% (OmniGen),
90% (SDXL), and 84% (FLUX), while the baseline models originally did not contain it in most
cases (indicating that the VLM was able to identify the missing concepts accurately). Appendix [F]
supplies more information about the studies, including questions and visual examples of comparisons
presented in it for each retrieval-based generation model (Fig.[6), OmniGen (Fig.[7), SDXL (Fig.[8),
and FLUX (Fig.[9), with and without ImageRAG.

4.2 QUALITATIVE EXAMPLES

Fig. [5] shows rare concept generation examples by OmniGen, FLUX, and SDXL, with and without
ImageRAG. In all examples, the base models did not generate the required concepts and guessed an
animal based on the prompt. Moreover, even if they were able to deduce the required animal from the
context, e.g., a bird in the left-most prompt, they did not generate the exact bird species requested.
When supplied with relevant references using ImageRAG, all methods succeeded in the generation
tasks. Fig. [I0] presents additional visual results with more complex and creative prompts, and Fig. [T4]
shows personalized generation examples with rare concepts. In Appendix [E.6] we discuss diversity
and present diverse generation results using each model with different seeds.



Published as a conference paper at ICLR 2026

A Zalophus An Anas A photo of
californianus on  platyrhynchos a boston bull
rocks by the sea. in a river. in a field.

A Cyanocitta A Geococcyx
cristata on a tree. in the desert.

Prompt

Retrieved
Reference

OmniGen

ImageRAG
(OmniGen)

SDXL

ImageRAG
(SDXL + IPA)

FLUX

ImageRAG
(FLUX +
OminiControl) g

Figure 5: Qualitative comparisons: rare concept generation. Examples from ImageNet, CUB,
and iNaturalist. The top image column is the retrieved reference using /mageRAG for each prompt.
OmniGen, SDXL, and FLUX all struggle to generate the uncommon concepts, however when using
ImageRAG, all models successfully generate the required prompts.
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Table 4: Similarity metric ablation study over OmniGen. Results of our method using different
similarity metrics for image retrieval. Best results are bolded.

ImageNet CUB
CLIP 1 SigLIP 1 DINO 1 CLIP 1 SigLIP 1 DINO 1

GPT Re-rank ~ 0.265 £+ 0.001  0.135+0.001 0.707 £ 0.002 0.255 + 0.004 0.125 £ 0.003 0.762 % 0.004
BM25 Re-rank  0.264 £0.001 0.134 4+ 0.001 0.707 £0.002 0.253 4+ 0.003 0.123 £0.003  0.763 £ 0.004
SigLIP 0.259+0.006 0.133 £0.001 0.704 +£0.002 0.243 +£0.004 0.116 £0.003 0.761 & 0.004
CLIP 0.264+£0.001 0.134 £0.001  0.708 + 0.002 0.253 +0.003 0.125 £ 0.002 0.760 £ 0.003

4.3 ABLATION STUDIES

To evaluate the contribution of each part of our method, we conducted ablation studies and reported
our results in Tabs. [3]and[8] First, to ensure the performance gap is not based on an LLM interpreting
rare words, we evaluated the base models over rephrased text prompts, without providing reference
images. To do so, we asked GPT to rephrase the prompts, to make them easier for a T2I generative
model, explicitly asking it to change rare words to their description if necessary. Full prompt can be
found in Appendix [C} As shown, rephrasing was not enough for a meaningful improvement in the
results (“Rephrased prompt” in Tabs. [3|and [§). Next, we investigate the importance of using detailed
image captions for retrieval, rather than using the original prompt or the missing concepts. We do so
by evaluating ImageRAG when retrieving images similar to the prompt directly (‘“Retrieve prompt”
in the tables), as done by previous works (Blattmann et al.| 2022} [Sheynin et al., 2022} |Chen et al.,
2022)), or images similar to missing concepts, without generating compatible image captions for each
concept (“Retrieve concepts” in Tabs. [3]and [8). While retrieval with each of them improves the initial
results, retrieving detailed captions improves the results even further. Fig.|15|presents examples.

We additionally investigate the effect of different similarity metrics for retrieval (Tab. f). We
tried CLIP (Radford et al.| 2021)), SigL.IP (Zhai et al.| 2023)), re-ranking of retrieved candidates by
BM25 (Robertson et al., [2009) over image captions generated by GPT, and by GPT (Hurst et al.|
2024). Re-ranking was performed over the top 3 candidates retrieved from each of CLIP and SigLIP.
Although re-ranking with GPT produced slightly better results, the improvement was not significant
enough to justify the cost of applying this complex strategy vs. a more straightforward CLIP metric.
Hence, our other experiments use CLIP. Nevertheless, all retrieval strategies improved the generation
abilities of the base model by providing helpful references. Next, as we rely on a VLM to identify
rare concepts in images, we performed a VLM robustness experiment explained in Appendix [E.3)
with various VLMs. GPT performed best and can successfully identify rare concepts, hence we can
rely on it for our method. However, Gemini and Qwen also performed well, and could be potentially
used instead of GPT. We further investigate the effect of the retrieval-dataset size (discussed in
Appendix [E.4). Typically, the larger the dataset, the better the results. However, even a relatively
small dataset can improve results. Moreover, we experiment with using a specific proprietary retrieval
dataset and show that the more relevant the dataset is, the better the results are (Appendix [E.3)).

5 LIMITATIONS

The capabilities of ImageRAG depend on the retrieval data and method, and on the base model.
Retrieval data: our ability to aid generation depends on the retrieval dataset. E.g., our method will
not help when generating a specific dog breed from a dataset of birds, as in Fig.[I2] left. Specifically,
we noticed that if the retrieved image is completely unrelated to the text (as in a bird and a dog),
the models tend to rely almost exclusively on the text. This is likely because semantically unrelated
concepts do not attend to each other. As presented in Tab. [6] the more relevant the retrieval dataset is,
the more accurate the generation will be.

Retrieval method: performance is tied to the quality of the retriever. CLIP-based retrieval inherits
its weaknesses, such as poor counting (Paiss et al.,|2023). Additionally, we rely on the used VLM
to decide whether we should apply our method and identify gaps. Although VLMs are powerful
and usually answer correctly, even for rare concepts, as evaluated in Appendix [E.3] sometimes they
misidentify an initial image as a match to the original prompt, leading to not applying our method.
This happens especially if the prompt could be interpreted in multiple ways. For example, for the



Published as a conference paper at ICLR 2026

prompt “A photo of a love in the mist”, OmniGen generated an initial image of a couple in the mist.
This does match the prompt, hence the VLM identified it as correct; however, our intention was the
flower “love in the mist”. In that case, we can either add “the flower” to the prompt or explicitly
indicate the mismatch in the query so the VLM knows it should refer to the other meaning.

Underlying model: some concepts remain difficult for the generator itself; e.g., both OmniGen and
SDXL struggle to reproduce text even when provided with text references. Fig. [12]shows visual
limitations examples.

6 CONCLUSION

In this work, we propose a simple yet effective approach for applying RAG to pretrained T2I models.
We demonstrate that incorporating relevant image references improves the rare concept generation
abilities of T2I models. By leveraging a VLM, we enable dynamic retrieval of suitable reference
images. Our experiments span three distinct models, illustrating the adaptability of our method across
different model types. Our findings highlight that image references can enhance image generation
with minimal modifications to existing models, thereby broadening their practical applicability.

7 ETHICS STATEMENT

The development of ImageRAG introduces enhancement possibilities for image generation models,
enabling rare or fine-grained concept generation. While these advancements hold promise for creative
industries, personalized content creation, and visualization, they also raise ethical concerns, including
potential misuse for harmful content such as deepfakes and the use of private data. Therefore,
transparency in data usage and adherence to privacy regulations are essential. We condemn any
misuse of the proposed technology, and actively research tools to identify and prevent malicious
usage of generative models. Moreover, unlike pre-trained models, which encode all knowledge in
their weights, our method uses an external dataset. This allows the users to filter out unwanted images.
This way, a possible solution to avoid copyright issues is to only use images with appropriate licenses
in the retrieval dataset, while following relevant restrictions if they apply. In the retrieval scenario, it
is also easier to directly attribute the source of the image. This should allow users to, e.g., credit the
original creators, or ensure new images follow any license restrictions required by the publishers of
the original image.

8 REPRODUCIBILITY STATEMENT

We provide detailed implementation details in Sec.[d]and Appendix [A] including retrieval-dataset
details, models used, hyperparameters, etc. The used prompts are also provided in Appendix [C]

To further facilitate reproducibility, we will release full code for applying ImageRAG over FLUX,
SDXL, and OmniGen upon publication.
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A IMPLEMENTATION DETAILS

We use a random subset of LATON (Schuhmann et al 2022) containing 350K images as the dataset
from which we retrieve images. As a retrieval similarity metric, we use CLIP “ViT-B/32”. We do
not use a retrieval threshold; however, we notice that all retrieved images in our experiments have
a similarity greater than 0.26. For a VLM we use GPT-40-2024-08-06 (Hurst et al, [2024) with a
temperature of 0 for higher consistency (unless GPT fails to find concepts, see Appendix |D)). Full
GPT prompts are supplied in Appendix[C| As our T2I generation base models we use SDXL
2024) with the ViT-H IP-adapter [2023) plus version (“ip-adapter-plus_sdxl_vit-h”),

using 0.5 for the ip_adapter_scale, FLUX (Labs|, 2023)) schnell with OminiControl (Tan et al,[2024),
using 50 steps, and OmniGen [2024) with the default parameters (2.5 guidance scale, 1.6

image guidance scale). As OmniGen only supports 3 images as context, we use up to n = 3 concepts
for each prompt and 1 image per concept. For SDXL and FLUX, as the encoders we used are limited
to 1 image, we use 1 concept and 1 image.

The time and resources required to run our method depend on the used baseline model and the used
retrieval-dataset. However, CLIP embeddings for the retrieval-dataset are pre-computed once, so
at inference finding compatible reference images operates in sub-second time. Our experiments
show that adding reference images to the base generation models does not meaningfully increase the
latency of the models. Therefore, the only additional time our method requires is the time required
to perform the iterative chain-of-thought with the VLM through 3 API calls with an image, for the
decision, identification, and image caption-generation parts, and generating the second image, which
depends on the base generative model and could be optimized per model, as described in Sec. 3] With
GPT-40 and Qwen-2.5, the CoT process takes 10-30 seconds in total, where for GPT it depends on
network latency and API queue delays. If using GPT, the cost of the 3 calls together is approximately
0.01-0.05$.

B VISUAL EXAMPLES
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Figure 6: Comparisons between ImageRAG and different methods using retrieval for generation.
Prompts and results of all other methods are taken from their papers. The methods we compared to

are RDM [Blattmann et al.|(2022), Re-Imagen (2022), and KNN-Diffusion

Pair examples of rare and fine-grained concept generation with and without ImageRAG are presented
in Fig.[7] (OmniGen examples), Fig.[§] (SDXL examples), and Fig. [9] (FLUX examples).
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OmniGen
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Figure 7: Examples of rare concept generation using ImageRAG with OmniGen.
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SOXL [mageRAG  Real example

113
Vanessa
kecshawt
smeldang o

flower.”

“A Procyon
Lotor on o

”
tree,

“A close=up image
of Drodon
hoLoconthus.”

“A whip poor

- ”
WLL on o tree.

“An Steutihvio

conmelus 1n the

U

?
SAVONNA.

Figure 8: Examples of rare concept generation using ImageRAG with SDXL.
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Figure 9: Examples of rare concept generation using ImageRAG with FLUX.
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Figure 10: More creative generation examples.

“A tager n a Lob “Photo of an
coot with a (980 athlete cat
Miarmn vabe, turmng — explotmng 1t's
o weld orded scrence Latest scandal at

content machane, o press conference

“A taccoon weartng formal clothes,

Toxt weartng a tophat and holodng a cane.

prompt  The raccoon 1s holdang a gacbage bag.
Ol paanting in the stule of..”

abstract cubtem powntalism digital art.” to Journaliste.”

OmniGen

Figure 11: More long and complex generation examples.
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More creative examples are presented in Fig.[I0} Longer and more complex results are presented in

Fig. [T}

Retrieval data Retrieval method Underlying model

“The New Yok “A neon sgn

w A 0\/ t « e~ “F
photo of a “A photo of a| “Fave dogs MOLE ] hsline with  with the

Prompt  boston bull  pembroke dog on the on the

- < » g ) R ‘Deep Learning’ text
wn a fredd.”  on a gacden. street. street. Tn fireworks.”  “NeurIPS'."
No ‘
ImageRAG
ImageRAG &% Yy Bt o i ol =

LeARNING

Figure 12: Limitations of our method. Left: retrieval data. If the retrieval data does not contain
relevant examples, our method cannot help. In the examples above we used CUB as the retrieval
dataset, which only contains images of birds, thus it does not help for generation of other concepts
such as dog breeds. Middle: retrieval method. Our method relies on the quality of the retrieval
method. e.g. when using CLIP — we cannot help with counting Paiss et al. (2023). Right: underlying
model. Some concepts are not well learned from images by the base models, such as text. In these
cases, our ability to help is limited.

Visual examples of limitations of our method are presented in Fig.

C RETRIEVAL-CAPTION GENERATION PROMPTS

Full prompts used for querying GPT in the retrieval-caption generation part of our method:

Decision: ‘Does this image match the prompt “{prompt}”? Consider both content and style aspects.
Only answer yes or no.’

Missing Concepts Identification: “What are the differences between this image and the required
prompt? In your answer only provide missing concepts in terms of content and style, each in a
separate line. For example, if the prompt is “An oil painting of a sheep and a car” and the image is a
painting of a car but not an oil painting, the missing concepts will be:

oil painting style

a sheep’

Caption Generation: ‘For each concept you suggested above, please suggest an image caption
describing an image that explains this concept only. The captions should be stand-alone description
of the images, assuming no knowledge of the given images and prompt, that I can use to lookup
images with automatically. In your answer only provide the image captions, each in a new line with
nothing else other than the caption.’

Rephrase request prompt: prompt used for the rephrasing ablation experiment: ‘Please rephrase the
following prompt to make it easier and clearer for the text-to-image generation model that generated
the above image for this prompt. The goal is to generate an image that matches the given text prompt.
If the prompt is already clear, return it as it is. Simplify and shorten long descriptions of known
objects/entities but DO NOT change the original meaning of the text prompt. If the prompt contains
rare words, change those words to a description of their meaning. In your answer only provide the

39 9

prompt and nothing else. The prompt to be rephrased: “{prompt}”.
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Table 5: Comparisons on fine-grained image generation with T2I models. For each set, we report
CLIP-T and CLIP-I similarity scores. First-part rows feature OmniGen-based models, second-part
feature FLUX-based models, and bottom feature SDXL-based models. In each part, best results are
bolded.

Dogs Flowers Cars

CLIP-T 1 CLIP-ItT CLIP-TtT CLIP-I1T CLIP-TT CLIP-I1
OmniGen 0.27 0.52 0.28 0.58 0.24 0.47
ImageRAG-O 0.30 0.57 0.31 0.66 0.29 0.55
FLUX 0.30 0.62 0.30 0.66 0.31 0.60
ImageRAG-F 0.31 0.63 0.31 0.68 0.31 0.60
SDXL 0.34 0.61 0.34 0.68 0.34 0.62
ImageRAG-SD 0.34 0.62 0.34 0.69 0.34 0.62

D VLM ERROR HANDLING

The VLM may sometimes fail to identify the missing concepts in an image, and will respond that it
is “unable to respond”. In these rare cases, we allow up to 3 query repetitions, while increasing the
query temperature in each repetition. Increasing the temperature allows for more diverse responses by
encouraging the model to sample less probable words. In most cases, using our suggested step-by-step
method yields better results than retrieving images directly from the given prompt (see Tabs. [3]and [g).
However, if the VLM still fails to identify the missing concepts after multiple attempts, we fall back
to retrieving images directly from the prompt, as it usually means the VLM does not know what is
the meaning of the prompt.

E ADDITIONAL EXPERIMENTS
E.1 ADDITIONAL DATASETS

OmniGen [mageRAG-O SOXL [mageRAG-SD FLUX [mageRAG-F  Retrieved Reference

“Aphoto of o §
Pewbroke.”

‘A photo of a
bluetick.”

“A photo of a
tree poppg.”

“Chevrolet
Monte Coclo
Coupe 2007"

Figure 13: Visual examples from the Dogs, Flowers, and Cars datasets.

Following RealRAG (Lyu et all 2025) we evaluate our method over three additional datasets:
Oxford Flowers (Nilsback & Zisserman), 2008), Stanford Dogs (Khosla et al,2011)), and Stanford
Cars (Krause et al.} 2013) with the metrics CLIP-T (text-image similarity), and CLIP-I (image-image
similarity, between generated and ground-truth images). Similarly to RealRAG, we included the dogs,
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flowers, and cars datasets in the retrieval dataset, as in our “proprietary data generation” experiment
(Appendix [E3). Results are presented in Tab.[5] Visual examples from generations of these sets are
presented in Fig. [I3]

E.2 PERSONALIZED GENERATION

For models that support multiple input images, we can combine our method with personalized
generation, to generate rare concept combinations with personal concepts. In this case, we use one
image for personal content, and 1+ other reference images for missing concepts. For example, given
an image of a specific cat, we can generate diverse images of it, ranging from a mug featuring the cat
to a lego of it or atypical situations like the cat writing code or teaching a classroom of dogs (Fig. [T4).

“<p> My cat s the cat in this tmage: -

. ‘Mycat onacat  “Alegoof mycat My cat writing
food conmmercial.” on o kids room.”  code in a computer.”

i i

« N
My cat n a classroom ,
My cat on a mug.

teaching dogs.”

Figure 14: Personalized generation example. /mageRAG can work in parallel with personalization
methods and enhance their capabilities. For example, although OmniGen can generate images of a
subject based on an image, it struggles to generate some concepts. Using references retrieved by our
method, it can generate the required result.

E.3 PROPRIETARY DATA GENERATION

Table 6: Proprietary data usage experiment. Results for using each dataset as the retrieval-dataset
(“Proprietary-<model>") vs. using our subset from LAION as the retrieval-dataset (“LAION-
<model>"). Here, “O” indicates OmniGen based models, “F” indicates FLUX based models, and
“SD” indicates SDXL based models. Best results for each model are bolded.

ImageNet iNaturalist
CLIP 1 SigLIP 1 DINO 1 CLIP 1 SigLIP 1 DINO 1

LAION-O 0.264+0.001 0.134 £0.001  0.708 +0.002 0.197 £0.002 0.095 £ 0.002 0.701 + 0.002
Proprietary-O  0.266 + 0.001  0.136 & 0.001  0.710 + 0.002 0.212 £ 0.002 0.114 £ 0.001  0.732 + 0.002

LAION-F 0.271+£0.001  0.137 £0.001  0.698 +0.002 0.222 £0.002 0.065 £ 0.002 0.654 + 0.002
Proprietary-F ~ 0.275 £ 0.001  0.140 & 0.001  0.703 = 0.002  0.227 £ 0.002  0.080 & 0.002 0.682 + 0.002

LAION-SD 0.274+0.001  0.141 £0.001  0.709 +0.002 0.243 £0.002 0.118 & 0.001  0.724 + 0.002
Proprietary-SD  0.288 = 0.001  0.142 = 0.001  0.736 = 0.003  0.251 + 0.002 0.118 £ 0.002 0.737 £ 0.002

A common use for RAG in NLP is generation based on proprietary data (Lewis et al [2020), where
the retrieval-dataset is proprietary. A similar application in image generation is generating images
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based on a proprietary gallery of images; e.g., for personalization, where the gallery is of a personal
concept or a company brand, or a private collection of images that could broaden the knowledge of a
model. Our LAION-based experiments explored the scenario where a user has access to a general,
large-scale set. Here, we further evaluate the performance of /mageRAG when we have access to a
potentially smaller, specialized dataset. We repeat the experiments with the datasets used in Tab. 2}
but this time retrieve samples from within each dataset rather than from the LAION subset. Results
are reported in Tabs. [6]and[7] We observe that although applying our method with the generic dataset
of a LAION subset already improves the results, they improve even further when using proprietary
retrieval-datasets.

E.4 ADDITIONAL ABLATIONS

GPT Retrieve Retrieve GpT Retrieve Retrieve
rephrace Concepte Captione rephrage Concepte Captions

OmniGen

“Collukar i | “Colludar
tedephone” T tedephone”
PRl
=
peie] IO g
“Granny X o | “Blectric
Smith” ’ z fan” |
“Chow” “Chow”
Afeicon Tnde”

ey ”

Figure 15: Visual examples of the ablation studies. Left: Omnigen, right: SDXL.

Ablations studies over SDXL, as explained in Sec. @ under ablations, are reported in Tab.[§] Fig.[T3]
presents visual examples of the ablations over Omnigen and SDXL.

Retrieval-dataset size: we investigate the effect of the retrieval-dataset size. We tested our method
over ImageNet (Deng et all,[2009) and Aircraft (Maji et al.}[2013) when using 1000, 10,000, 100,000,
and 350,000 examples from LAION [Schuhmann et al| (2022). Fig. [T shows that increasing the
dataset size typically leads to better results. However, even using a relatively small dataset can already
lead to improvements. For OmniGen, 1000 examples were enough to see an improvement over the
baseline model. SDXL has a stronger baseline, hence more examples were needed for improvement.

Table 7: Additional proprietary data usage experiments. Results for using each dataset as the
retrieval-dataset (“Proprietary-<model>") vs. using our subset from LAION as the retrieval-dataset
(“LAION-<model>"). Here, “O” indicates OmniGen based models, “SD” indicates SDXL based
models. Best results for each model are bolded.

CUB Aircraft
CLIP 1 SigLIP 1 DINO 1 CLIP 1 SigLIP 1 DINO 1

LAION-O 0.253 £0.003 0.125£0.002 0.760 4+ 0.003  0.228 £0.006 0.103 £ 0.005 0.747 £ 0.010
Proprietary-O  0.269 £ 0.003  0.136 & 0.002 0.773 + 0.004 0.244 £ 0.007 0.109 £ 0.005 0.786 + 0.010

LAION-F 0.267 +£0.003 0.135£0.002 0.746 +0.004 0.266 £0.006 0.128 & 0.005 0.738 & 0.002
Proprietary-F ~ 0.291 4 0.002  0.153 £ 0.002  0.770 £ 0.002  0.269 & 0.006  0.137 £ 0.004 0.753 + 0.087

LAION-SD 0.314 +0.001 0.174 £0.002 0.78440.001 0.272£0.005 0.141 +0.005 0.756 £ 0.011
Proprietary-SD  0.314 4+ 0.002  0.175 £ 0.001  0.786 & 0.003  0.280 + 0.005 0.152 £+ 0.003  0.785 + 0.009
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Table 8: Ablation studies over SDXL. “Rephrased prompt” stands for only rephrasing the text prompt
without giving additional images. “Retrieve concepts” stands for using the missing concepts directly
instead of using more detailed image captions for retrieval, and “Retrieve prompt” stands for using
the prompt directly for retrieval. Best results are bolded.

ImageNet CUB
CLIP 1 SigLIP 1 DINO 1 CLIP 1 SigLIP 1 DINO 1
SDXL 0.267 +£0.002 0.136 = 0.001  0.700 £+ 0.003  0.315 + 0.001 0.172 £0.003 0.782 + 0.002
Rephrased prompt-SD  0.266 £0.002 0.136 £0.001  0.705 £+ 0.003  0.309 +0.003 0.170 +0.002 0.781 £ 0.004
Retrieve concepts-SD  0.274 + 0.001  0.141 + 0.001 0.702 +0.003 0.3124+0.002 0.173 +£0.002 0.777 £+ 0.004
Retrieve prompt-SD  0.274 + 0.001  0.140 +0.001 0.702 +£0.003 0.314 +£0.001  0.174 + 0.001 0.778 £+ 0.004
ImageRAG-SD 0.274 £ 0.001  0.141 £+ 0.001  0.709 £+ 0.002 0.314 £0.001 0.174 £ 0.002 0.784 + 0.001
ImageNet Aircraft
0.275 - 0.28 A
w/o RAG
0.270 - 0.26 -
w/o RAG
0.265 A
. /T e
& 0.260 { 6—— @
o o
8 a 0.22 A
0-255 7 —8— OmniGen —8— OmniGen
SDXL+IPA SDXL+IPA
0.250 A 0.20 1
w/o RAG
0.245 A w/o RAG
(R
103 104 10° 103 104 10°
# Samples # Samples

Figure 16: Retrieval dataset size vs. CLIP score on ImageNet (left) and Aircraft (right). Dashed
lines represent the scores of the base models. Even relatively small, unspecialized retrieval sets can
already improve results. More data leads to further increased scores. However, small sets may not
contain relevant retrieval examples, and their use may harm results, particularly for stronger models.
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E.5 VLM ROBUSTNESS

We performed a VLM robustness experiment to choose which VLM we should use and make sure
a VLM can accurately identify missing rare concepts in images. We randomly sampled 20 classes
from the fine-grained dataset iNaturalist (Van Horn et al,2018), and for each class, we generated 3
types of prompts: 1. “A photo of a <class_name>" 2. “A photo of a <class_name> and a <other>"
3. “A photo of a <other>". In total, we obtained 780 prompts; 20 prompts of the first type (1 per
class), and 380 prompts for each of the second and third types (19 for each class, for every class
other than the <class_name>). Finally, for each prompt, we asked the VLM if the prompt matches an
image of that class, and if not, what are the missing concepts, as in our method. Note that each photo
actually contains <class_name> but not <other>. This way, we were able to evaluate the ability of
the VLM to identify missing rare concepts in images. The results of this experiment were a success;
GPT-40 2024), which is the VLM we used in our experiments, achieved 100% correct
answers for the first and third prompt types and 99.7% correct answers for the second prompt type
(1 wrong answer). We repeated this experiment with Gemini (Team et al.}, 2023)) which achieved
95% correct first-type answers (1 wrong), 98.9% correct second-type, and 90% correct third-type,
and with Qwen2.5-VL-7B-Instruct [2025) which achieved 100%, 100%, and 92% correct
answers, respectively. This indicates that while GPT identifies rare concepts best, both Gemini and
Qwen also perform well and could potentially be used instead of GPT in the pipeline. We performed
this experiment with LLaVA [2023) as well, but it did not succeed at all (Simply answered
‘No’ on all queries).

E.6 DIVERSITY

Real example
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colaformanus on
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”
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crastota on a

4
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tree.

“Grreat Pyrences
with mouwntoins
on the
backgrowwf”

Figure 17: ImageRAG-F (FLUX+OminiControl) generations with different seeds. Left-most
column presents a real example of the rare concept in the prompt, other columns present diverse
generations of the same prompt by ImageRAG-F.

Generation examples with different seeds are presented in Fig. [I8](OmniGen), Fig. [I9] (SDXL+IP-
Adapter), and Fig. |L7| (FLUX+OminiControl).

The diversity of generated results varies with the conditioning method, though all models can produce
diverse outputs aligned with the text prompt. We observe some trade-off between diversity and
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Figure 18: ImageRAG-O (OmniGen) generations with different seeds. Left-most column presents a
real example of the rare concept in the prompt, other columns present diverse generations of the same
prompt by ImageRAG-O.

textual faithfulness that depends on the chosen model. Since our approach is compatible with various
architectures, the model can be selected based on the priorities of the user. For instance, SDXL+IP-
Adapter yields outputs that are less diverse but closely match the reference image, OmniGen favors
higher diversity at the cost of slightly reduced faithfulness, and FLUX+OminiControl provide a
trade-off between the two.

F USER STUDY QUESTIONS

In the user study, we asked users to compare pairs of images at a time, by asking which one adheres
better to the prompt and has better visual quality. We supplied real references (not from our dataset)
for rare concepts with each pair. The questions we asked were: For each criteria, choose the better
image out of A and B given the following text prompt: <prompt>. The less familiar concept
“<rare_concept>" is presented on the left of the image options.

* Better text alignment (choose A or B)
 Better visual quality (choose A or B)
* QOverall preference (choose A or B)

Pair examples of using our method vs. other retrieval-based generation approaches can be found in
Fig. |6l Due to lack of access to the models, all prompts and results of the other methods were taken
from their papers.

G LLM USAGE

We have used an LLM (specifically, ChatGPT), for proofreading and rephrasing during paper writing.
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Figure 19: ImageRAG-SD (SDXL+IP-Adapter) generations with different seeds. Left-most column
presents a real example of the rare concept in the prompt, other columns present diverse generations
of the same prompt by ImageRAG-SD.
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