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ABSTRACT

From common-sense reasoning to domain-specific tasks, parameter-efficient fine
tuning (PEFT) methods for large language models (LLMs) have showcased sig-
nificant performance improvements on downstream tasks. However, fine-tuned
LLMs often struggle with overconfidence in uncertain predictions, particularly
due to sparse training data. This overconfidence reflects poor epistemic uncer-
tainty calibration, which arises from limitations in the model’s ability to general-
ize with limited data. Existing PEFT uncertainty quantification methods for LLMs
focus on the post fine-tuning stage and thus have limited capability in calibrating
epistemic uncertainty. To address these limitations, we propose Functional-Level
Uncertainty Quantification for Calibrated Fine-Tuning (UQ4CT), which captures
and calibrates functional-level epistemic uncertainty during the fine-tuning stage
via a mixture-of-expert framework. We show that UQ4CT reduces Expected Cal-
ibration Error (ECE) by more than 25% while maintaining high accuracy across
5 benchmarks. Furthermore, UQ4CT maintains superior ECE performance with
high accuracy under distribution shift, showcasing improved generalizability.

1 INTRODUCTION

Large Language Models (LLMs) have revolutionized various domains as general task solvers (Chang
et al., 2024). To adapt LLMs for specific downstream tasks or create instruction-following models,
fine-tuning have become increasingly important (Houlsby et al., 2019; Hu et al., 2021a; Liu et al.,
2022; Ding et al., 2022; 2023). This involves additional training on pre-trained LLMs using a smaller
dataset (Zhong et al., 2021; Ren et al., 2022). Through fine-tuning, the model parameters are updated
to better adapt to the domain-specific knowledge (Peng et al., 2023). To reduce the computational
cost for fine-tuning, Hu et al. (2021a) proposed Low-Rank Adaptation (LoRA), which effectively
reduces the parameters required for fine-tuning by introducing low-rank trainable matrices at each
layer of the transformer architecture instead of fine-tuning the full model parameters. Li et al.
(2024); Wu et al. (2024b) proposed LoRA Mixture-of-Experts (MoE) models which grants better
performance while maintaining parameter efficiency.

However, previous studies have shown that fine-tuned LLMs are often overconfident with their pre-
dictions (Xiao et al., 2022c; He et al., 2023; Tian et al., 2023; OpenAI, 2023). This resembles poorly
calibrated uncertainty (Zhou et al., 2022) due to the sparsity of fine-tuning data. Overconfidence is
a crucial problem in safety-related decision making or in fields where data is very limited, such as
experimental design, climate science and medical diagnosis (Singhal et al., 2022; Wu et al., 2023a;
Lampinen et al., 2023; Li et al., 2022). Thus, methods that enhance uncertainty quantification of
fine-tuned LLMs is urgently needed to assure trustworthy predictions for better application.

Established uncertainty quantification methods have been studied in conjunction with the LoRA
structure. Monte-Carlo dropout (Gal & Ghahramani, 2016b) interprets dropout in neural networks
as approximate Bayesian inference in deep Gaussian processes, allowing uncertainty estimates to be
obtained from existing LoRA adapters without modifying them. Checkpoint ensemble (Chen et al.,
2017) utilizes predictions from multiple LoRA checkpoints saved during a single fine-tuning process
to calibrate uncertainty. Deep ensemble (Lakshminarayanan et al., 2017; Wang et al., 2023; Zhai
et al., 2023a) combines the predictions from multiple LoRA adapters for better uncertainty calibra-
tion. Laplace-LoRA (Yang et al., 2024a) applies Bayesian inference via Laplace approximation to
the LoRA parameters after fine-tuning, resulting in improved calibration and uncertainty estimates.
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Although these methods have demonstrated improved uncertainty estimations, they all utilize a fixed
set of LoRA parameters fine-tuned over the entire downstream task dataset. The point estimates of
parameters have very limited capabilities in capturing epistemic uncertainty, while direct calibration
of epistemic uncertainty over the entire LoRA parameter space is an ideal but not practical approach.

Therefore, we propose Functional-Level Uncertainty Quantification for Calibrated Fine-Tuning
(UQ4CT) to calibrate the functional-level epistemic uncertainty via the LoRA MoE architecture.
We propose a functional perspective on LoRA parameters where we treat the LoRA experts as basis
functions and consider the more complex, prompt dependent functions as mixtures of those basis
functions. On top of learning the parameters in the LoRA experts, UQ4CT also trains a prompt-
dependent LoRA mixture to form a calibrated distribution over the functional space. The LoRA
experts capture different functional relationships in the fine-tuning data throughout training, and the
MoE routers dynamically select these functional bases conditioned on the input. The selection pro-
cess models the functional level epistemic uncertainty, and consequently captures the uncertainty in
the output space. We calibrate functional level epistemic uncertainty to align with predictive cor-
rectness during training time. This significantly improves uncertainty estimations of the model on
its predictions without compromising the accuracy. To summarize, our contributions include:

• A novel epistemic uncertainty quantification approach with Mixture-of-Experts architec-
ture during fine-tuning stage to model functional level epistemic uncertainty and align with
predictive correctness, which mitigates overconfidence issue and improves generalizability.

• A novel training calibration loss function incorporating predictive correctness to calibrate
the prompt-dependent LoRA mixture for better uncertainty estimation.

• More than 25% Expected Calibration Error reduction on 4 common-sense reasoning tasks
and 1 domain-specific question answering task, superior ECE performance under distri-
bution shift scenarios on 2 common-sense reasoning tasks and 4 domain-specific question
answering tasks without compromising accuracy.

2 PRELIMINARIES

2.1 LOW-RANK ADAPTATION (LORA)

LLMs have numerous large weight matrices to perform matrix multiplication, denoted as W0 ∈
Rnout×nin that maps inputs x to outputs h. Hu et al. (2021a) proposes LoRA, which fixes W0 and
introduces a low-rank perturbation ∆W to the weight matrix:

h = W0x+∆Wx = W0x+BAx. (1)

Here, ∆W is calculated as the product of two matrices, B ∈ Rnout×nlr and A ∈ Rnlr×nin where nlr is
significantly smaller than nin or nout. For example, we use nlr = 32 while nin = nout = 4096 for the
Llama2-7b model (Touvron et al., 2023c). Therefore, the total number of LoRA parameters for this
∆W is nlr(nin +nout), which is far smaller than the parameter count of the full matrix, ninnout. One
of the key motivations of incorporating LoRA to fine-tune LLMs is the vast amount of memory cost
reduction compared with fine-tuning on the full model. For an LLM with 7 billion parameters, main-
taining the average gradient and average squared gradients for optimization multiplies the memory
required by a factor of 3 compared to simply loading model weights. LoRA greatly mitigates this
memory cost as the tripled memory consumption only applies to LoRA adapters.

2.2 MIXTURE OF EXPERTS (MOE)

LoRA Mixture-of-Experts (Li et al., 2024; Wu et al., 2024b) is a efficient approach to scale the
number of parameters while maintaining the same computational bounds. LoRA MoE utilizes the
top-k router to assign each token to the LoRA experts (Lepikhin et al., 2020). The router is a linear
layer that maps the input hidden state h to a probability distribution of candidate experts.

Let hℓ
i ∈ R1×d (1 ≤ i ≤ s, 1 ≤ ℓ ≤ L) denote the output hidden state of the i-th token at the ℓ-th

layer of the LLM, where L is the number of LLM layers and d is the hidden dimension. With Wℓ
r as
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the trainable router weight at layer ℓ, the top-k gate router chooses k experts with highest probability
given a hidden state hℓ

i :

Rℓ(hℓ
i) = KeepTop-k(Softmax(Wℓ

r · hℓ
i)). (2)

Finally, we obtain the final MixLoRA prediction with:

MixLoRA(hℓ) =

K∑
k=1

Rℓ(hℓ)kE
ℓ
k(h

ℓ), Eℓ
k(h

ℓ) = Wℓ · hℓ +Bℓ
iA

ℓ
i · hℓ (3)

where W is the pretrained weights of the feed-forward network (FFN) layer and Bℓ
iA

ℓ
i is the i-th

LoRA expert.

2.3 ALEATORIC AND EPISTEMIC UNCERTAINTIES

In machine learning models, uncertainty can be categorized into aleatoric (data-wise) and epistemic
(model-wise) uncertainty (Hora, 1996; Hüllermeier & Waegeman, 2021). For LLMs, aleatoric un-
certainty arises from the inherently ambiguous and context dependent nature of natural languages
where a single phrase or sentence can have multiple valid interpretations in different contexts. Epis-
temic uncertainty is introduced by the model’s lack of knowledge due to limited learning capabilities,
suboptimal modeling or sparse training data.

Epistemic uncertainty is highly related to several well-known limitations of generative models. For
example, it has been observed that when an LLM is pretrained on a diverse range of text data, it
is generally well-calibrated, i.e. the predicted probability of the next token generally aligns with
what is observed in real text. However, after fine-tuning or alignment with human preferences, the
calibration error deteriorates (Zhao et al., 2021; Achiam et al., 2023a). A related phenomenon is
forgetting, where the performance of a fine-tuned LLM diminishes on tasks outside the scope of the
target downstream task (Lin et al., 2023; Luo et al., 2023).

Motivated by these observations, we explore functional-level epistemic uncertainty in generative
models and aim to develop metrics that assess model performance on specific problem instances to
fine-tune the parameter mixture.

3 METHODOLOGY

The high level goal of UQ4CT is to balance the exploration and exploitation of different LoRA
experts during fine-tuning. In particular, we incorporate the functional-level epistemic uncertainty
(FEU) to calibrate the prompt-dependent parameter mixture with LoRA MoE.

Assume that our answer a is generated via a mixture of mechanisms or models M , conditioning
on the input prompt x. Assume that e(a) is an embedding of a so that least squares distance is a
natural distance on the space of e(a). For an expressive enough model class M, and a calibrated
distribution P (M |x) over the model class, we can measure the deviation of the generated answer to
the “ideal” one a∗ = f∗(x) as:

EM∼P (M |x)
[
Ea∼P (a|M,x)

[
∥e(a)− e(a∗)∥2

]]
= EP (M |x)

[
EP (a|M,x)

[
∥e(a)− EP (a|M,x)[e(a)]∥2

]]︸ ︷︷ ︸
Aleatoric Uncertainty

+EP (M |x)
[
∥EP (a|M,x)[e(a)]− e(a∗)∥2

]︸ ︷︷ ︸
Epistemic Uncertainty

.

(4)

Note that we hereby quantify uncertainty as a function of the input prompt x, since the distribution
of model M conditions on x. We hence name the task “functional-level uncertainty quantification”.

3.1 FUNCTIONAL-LEVEL EPISTEMIC UNCERTAINTY

Motivated by the decomposition in Eq. (4) for least squares loss, we may consider a general distance
d, and define epistemic uncertainty that characterizes the variation caused by model training proce-
dure. Specifically, we focus on the variation introduced in the model fine-tuning stage of LLMs.
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Figure 1: Mixture of Experts (MoE) architecture to capture and calibrate functional-level epis-
temic uncertainty. Experts B1...NA1...N capture functional relationships in the data throughout
fine-tuning, the weights w1...N |h quantify the uncertainty in selecting these functional bases condi-
tioned on the input hidden state h, which is the semantic representation of the input token x. In the
UQ4CT workflow, we align this uncertainty with predictive correctness. When the router makes a
correct prediction, the loss reinforces this decision, thereby increasing the router confidence in its
selection, which aligns with a lower epistemic uncertainty. Conversely, when the router makes an
incorrect prediction, the loss penalizes this selection, potentially causing the router to distribute its
probabilities more broadly across experts, which is indicative of higher epistemic uncertainty.

Mathematically, given prompt x, we consider the following definition of epistemic uncertainty:

Epistemic Uncertainty = EM∼P (M |x)EM ′∼P (M ′|x)
[
∥EP (a|M,x)[e(a)]− EP (a′|M ′,x)[e(a

′)]∥2)
]
.

(5)

Here, a′ represents the ground truth output sampled from the ideal MoE model M ′ conditioned on
the prompt x. The epistemic uncertainty measures the least squares distance between e(a) and e(a′)
from current mixture distribution P (M |x) and the ideal mixture distribution P (M ′|x).

3.2 QUANTIFYING FEU WITH LORA MOE FRAMEWORK

We quantify the functional-level epistemic uncertainty (FEU) with the MoE architecture, which is
represented by the embedding e(a) in Eq. (5). As shown in Figure 1, the LoRA experts B1...NA1...N

capture important functional relationships in the data during fine-tuning. We treat these functions
represented by the LoRA experts as basis functions f1...N and define them as follows:

f1, f2, . . . , fN = {B1A1, B2A2, . . . , BNAN}. (6)

Conditional on the input prompts, the more complex functional relationships that recursively map
inputs to outputs are represented as linear combinations (mixture of experts) of the basis func-
tions.Uncertainty quantification in this functional space reduces to quantifying the uncertainty of
the weights over the basis functions. In particular, the weights w1...N |h from the top-k router dy-
namically selects these basis functions conditioned on the input hidden state h:

h =

N∑
i=1

(wi|h) · fi =
N∑
i=1

(wi|h) · (BiAi). (7)

The top-k weights that produce the final output hidden state quantify the functional level epistemic
uncertainty in the function selection.

In the mixture of LoRA experts architecture, we follow the routing mechanisms of the MoE layers
as in Eq. (2) and (3). Specifically, we employ top-2 gate routers, which chooses the 2 experts with
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highest probability given a hidden state hℓ
i :

Rℓ(hℓ
i) = KeepTop-2(Softmax(Wℓ

r · hℓ
i)). (8)

Given an input prompt x with length s, we model functional-level epistemic uncertainty (FEU) by
aggregating Rℓ(hℓ

i) over both layer dimension and sequence dimension:

FEU(x) =
1

s

s∑
i=1

[
1

L

L∑
ℓ=1

Rℓ(hℓ
i)

]
(9)

3.3 TRAINING CALIBRATION LOSS

We then calibrate the FEU model of the epistemic uncertainty against predictive accuracy. Specifi-
cally for the MoE top-k routers, we design the following calibration loss for training:

Lcal = ∥1{MixLoRA(x) = y∗} − FEU(x)∥2 , (10)

where the first term is an indicator function of whether the model prediction matches the ground
truth y∗ given the prompt x. Here, the indicator function resembles EP (a′|M ′,x)[e(a

′)] in Equation
5, where the ground truth y∗ is a′ and the indicator function maps the predictive correctness to a
confidence space e ∈ [0, 1]. We employ a one-hot definition of the ground truth confidence. When
the prediction from current mixture model matches the ground truth, the ground truth confidence is
1. Otherwise, when the predictions do not match, the ground truth confidence is 0.

As shown in Figure 1, this term effectively promotes expert exploitation for correct predictions and
expert exploration for incorrect predictions by directly calibrating the functional level epistemic un-
certainty to align with the predictive correctness. Ideally, when the N LoRA experts together capture
all the functional relationships across the data distribution with cross entropy during fine-tuning, our
proposed loss Lcal also finds proper mixture of LoRA experts conditioned on the input x by con-
ditionally promoting expert exploitation and exploration. This allows the model to select correct
functional relationships regarding x to generate an output that better matches the data distribution,
which grants calibrated uncertainty estimations.

Load balancing is a common technique to ensure even exploitation across experts with the MoE
architecture (Fedus et al., 2022). We follow the load balancing loss Lb proposed by (Li et al., 2024)
and define our loss function as:

L = CE+ α · Lb + β · Lcal, (11)

where CE represents cross entropy loss, α and β are the hyperparameters of two auxiliary terms.
Details about Lb can be found in Appendix A.1.

4 RELATED WORK

4.1 PARAMETER-EFFICIENT FINE TUNING FOR LLMS

Large Language Models (Brown et al., 2020; Chowdhery et al., 2022; Hoffmann et al., 2022; Tou-
vron et al., 2023a;d) have shown impressive abilities in handling various natural language processing
tasks. Building on these advances, instruction fine-tuning(Chung et al., 2022; Iyer et al., 2022; Zheng
et al., 2024) has enhanced LLMs’ capacity to comprehend and follow human instructions, forming
the core of modern conversational AI systems(Wu et al., 2023b; Achiam et al., 2023b). However, as
LLMs increase in size, the fine-tuning process demands much more time and memory.

To address these challenges, several strategies have been proposed, including parameter-efficient
fine-tuning (PEFT)(Mangrulkar et al., 2022), model distillation(Liu et al., 2023; Xiao et al., 2023),
quantization(Frantar et al., 2022; Xiao et al., 2022a), and pruning(Frantar & Alistarh, 2023; Ma et al.,
2023). Among these, LoRA(Hu et al., 2021b), which leverages low-rank matrix decomposition of
linear layer weights, is a widely adopted PEFT technique that boosts model performance without
adding computational costs during inference. For example, VeRA(Kopiczko et al., 2023) introduces
learnable scaling vectors to modify shared pairs of frozen random matrices across layers, while
FedPara(Hyeon-Woo et al., 2021) focuses on low-rank Hadamard products for federated learning
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settings. Tied-Lora(Renduchintala et al., 2023) applies weight tying to further minimize the number
of trainable parameters. AdaLoRA(Zhang et al., 2023) uses Singular Value Decomposition (SVD) to
prune less important singular values for efficient updates, and DoRA(Liu et al., 2024) separates pre-
trained weights into magnitude and direction components, applying LoRA to update the directional
component during fine-tuning, thus reducing the number of parameters to be trained.

4.2 MIXTURE OF EXPERTS

The Mixture-of-Experts concept(Jacobs et al., 1991), introduced as early as 1991, presented a novel
supervised learning framework where multiple networks (experts) specialize in handling distinct
subsets of training data. Modern MoE variants adapt this by modifying the traditional feed-forward
sub-layer within transformer blocks, incorporating sparsely activated LoRA experts, which allows
for significant expansion in model width without a proportional increase in computational overhead.

Different MoE architectures have since emerged, distinguished by their expert sampling and rout-
ing strategies. For example, LLaVA-MoLE(Chen et al., 2024) improves token routing to domain-
specific experts within transformer layers, reducing data conflicts and consistently outperforming
standard LoRA baselines. Other MoE-based approaches include MoRAL(Yang et al., 2024b),
which focuses on efficiently adapting LLMs to new domains and tasks for lifelong learning, and
LoRAMoE(Dou et al., 2024), which incorporates LoRAs via a router network to mitigate the is-
sue of world knowledge forgetting. PESC(Wu et al., 2024a) transforms dense models into sparse
ones through an MoE structure, lowering computational and GPU memory requirements. MoE-
LoRA(Luo et al., 2024) introduces a new parameter-efficient MoE method using Layer-wise Ex-
pert Allocation (MoLA) for transformer models, while MoCLE(Gou et al., 2023) activates task-
specific model parameters based on instruction clusters. MixLoRA (Li et al., 2024) implements a
high-throughput framework for LoRA MoE training and inference process, constructing LoRAs as
stochastic experts to reduce computational overhead while expanding model capacity.

Despite the performance improvements these architecture advancements have brought, the overcon-
fidence problem of fine-tuned models is lacking attention (Xiao et al., 2022c; He et al., 2023; Tian
et al., 2023; OpenAI, 2023). Enhancing the uncertainty estimation capabilities of these models is
fundamental toward more reliable, interpretable and trustworthy applications of LLMs.

4.3 UNCERTAINTY QUANTIFICATION IN LLMS

Uncertainty quantification has garnered substantial attention in various tasks and domains within
neural networks(Gal & Ghahramani, 2015; Gal & Ghahramani, 2016a; Malinin & Gales, 2018;
Ovadia et al., 2019; Malinin et al., 2021; Lin et al., 2022; Kuhn et al., 2023; Lin et al., 2023). This
focus extends to LLMs, where the precise quantification of prediction uncertainty has become a
critical area of research(Xiao et al., 2022b; Lin et al., 2022; Mielke et al., 2022; Chen & Mueller,
2023; Duan et al., 2023; Huang et al., 2023). LLMs, particularly in generative tasks, pose unique
challenges, especially when it comes to measuring the uncertainty of their outputs(Liu et al., 2019;
Malinin & Gales, 2021; Kuhn et al., 2023; Lin et al., 2023). The distinction between aleatoric
and epistemic uncertainty was recently examined in the context of LLMs(Hou et al., 2023), though
this was approached by ensembling model inputs rather than model instances and did not address
fine-tuning tasks specifically.

Existing works have investigated the application of ensembling in fine-tuning LLMs for uncertainty
quantification. Gleave & Irving (2022); Sun et al. (2022) focus on uncertainty estimation in full
model fine-tuning, while this approach inherently incurs significant memory overhead. Wang et al.
(2023); Zhai et al. (2023b); Balabanov & Linander (2024) explore the use of LoRA ensembles
for uncertainty estimation in LLMs. Yang et al. (2024a) applies a post-hoc Laplace approxima-
tion Mackay (1992) to model LoRA parameters after fine-tuning. BatchEnsemble(Wen et al., 2020),
introduces component-specific rank-1 matrices as multiplicative modifications to a base model.
Though this method has been applied to LLMs, it has been used in the pre-training phase rather
than fine-tuning(Tran et al., 2022). None of these methods provide calibrations on epistemic uncer-
tainty, which is crucial to mitigate overconfidence in the fine-tuning stage given the sparse dataset.
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5 EXPERIMENTS

5.1 DATASETS

We include 5 multiple-choice question answering benchmarks to evaluate UQ4CT: OpenBookQA
(OBQA, Mihaylov et al. (2018)), ARC-Easy (ARC-E) and ARC-Challenge (ARC-C) from AI2
Reasoning Challenge (Clark et al., 2018), BOOLQ (Clark et al., 2019) and ClimateQA, an expert-
annotated domain specific benchmark for climate science. We also use computer science, law, medi-
cation and engineering subsets from MMLU dataset(Hendrycks et al., 2020) to evaluate performance
under distribution shift. We fine-tune on the publicly available training split and test on the valida-
tion split from these benchmarks to evaluate model performance. We report the average model
performance over 3 random runs and the standard deviations in the subscript.

5.2 EXPERIMENT SETUP

We implement UQ4CT with PyTorch (Paszke et al., 2019), extending the MixLoRA repository in
(Li et al., 2024) and compare the average performance in three random runs and report the mean
and standard deviation with following baselines. We use the publicly available LLaMA-2-7B-hf
(Touvron et al., 2023c) as our base model. In particular, we apply MixLoRA to query, key, value
and output layers, together with the feed-fowrward networks in LLaMA-2-7B-hf (gate layer, down
layer and up layer). Details are provided in Appendix A.4

• LoRA(Hu et al., 2021a). We use standard LoRA fine-tuning as lower performance bound.

• Monte Carlo (MC) Dropout(Gal & Ghahramani, 2016b) keeps dropout on at both training
and testing time. By performing multiple forward passes, MC dropout randomly shuts
down a portion of model nodes, producing ensemble-alike predictions. To combine LoRA
fine-tuning with MC dropout, we apply dropout on the input of the LoRA adapter, following
the implementation of Mangrulkar et al. (2022).

• Deep Ensemble(Lakshminarayanan et al., 2017) averages the predictions from each en-
semble member which have been trained with varying random initialization. We combine
deep ensemble with LoRA by fine-tuning 3 randomly initialized LoRAs together and en-
sembling their output as final predictions.

• Laplace-LoRA (LA)(Yang et al., 2024a) applies a post-hoc Laplace approximation on
fine-tuned LoRA parameters for better uncertainty estimation.

• MixLoRA(Li et al., 2024) incorporates LoRAs via a router network to reduce computa-
tional overhead while expanding model capacity. We add this as a baseline to resemble
plain LoRA MoE model performance.

Evaluation Metrics. We measure the prediction accuracy on the validation set for all 5 tasks. For
uncertainty calibration, we incorporate expected calibration error (ECE, Guo et al. (2017)) with 15
bins, which measures the alignment between predicted probabilities and empirical accuracy. We also
investigate model performance under distribution shift to ensure the model has predictable behavior
when given data from other domains as this is a crucial component for real-world applications.
Specifically, we test models fine-tuned on OBQA dataset with 4 domain-specific MMLU subtask
ensembles focusing on different professionalities and ARC-E/C datasets to approximate larger and
smaller distribution shifts. Metric details are provided in Appendix A.5.

5.3 RESULTS

We assess the prediction accuracy and uncertainty calibration of models under both in-distribution
and distribution shift scenarios. The in-distribution scenario examines the alignment of the fine-
tuned model on the target downstream task, while the distribution shift scenario evaluates the gener-
alizability of the model on novel tasks beyond the fine-tuned domain. These two scenarios combined
provides a comprehensive assessment of model robustness in real-world applications where it is es-
sential for the model to excel on its primary task while maintaining the ability to effectively handle
unforeseen or out-of-distribution inputs.
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Table 1: Performance comparison of different methods fine-tuned with LlaMA2-7B across 4 com-
mon sense reasoning tasks and a domain-specific task. UQ4CT shows substantial ECE improve-
ments while maintaining high accuracy.

Metrics Methods BoolQ ARC-E ARC-C OBQA ClimateQA

ACC ↑

LoRA 69.51.93 74.81.39 53.80.6 72.10.87 59.92.13
MC Drop 66.83.66 76.81.30 50.92.01 74.81.34 58.22.11
Ensemble 66.23.7 71.21.0 47.50.57 75.51.4 59.66.9
LA 68.71.32 74.62.11 51.40.83 70.81.24 55.23.29
MixLoRA 71.51.05 77.72.27 54.31.07 75.52.91 61.61.76
UQ4CT 73.50.52 76.61.30 52.81.77 77.31.36 63.31.74

ECE ↓

LoRA 11.90.78 11.92.04 19.44.75 10.21.07 14.30.64
MC Drop 12.20.85 11.91.99 19.84.85 10.90.24 14.30.56
Ensemble 7.282.3 9.11.49 10.231.39 8.832.35 13.53.29
LA 17.11.72 16.63.7 18.10.5 17.21.2 12.61.9
MixLoRA 7.882.09 9.090.81 10.741.07 12.91.99 12.51.32
UQ4CT 2.30.82 6.00.2 6.11.11 5.01.15 8.10.52

5.3.1 IN-DISTRIBUTION PERFORMANCE

We first evaluate UQ4CT and baseline models fine-tuned on the 4 common sense reasoning tasks and
the climate question answering task under the in-distribution scenario, where models are trained and
evaluated on different splits of the same dataset. Note that one of the key advantages of UQ4CT is
that uncertainty calibration happens during the fine-tuning stage with little computational overhead,
while other UQ methods require repetitive sampling or other post-hoc complexities.

As shown in Table 1, UQ4CT demonstrates notable improvements in uncertainty calibration across a
variety of tasks. Across all benchmarks, UQ4CT maintains competitive accuracy (ACC) compared
to the baseline methods. For example, on the BoolQ and ClimateQA datasets, UQ4CT achieves
accuracy rates of 73.5% and 63.3%, respectively. This empirically demonstrates that UQ4CT is
capable of maintaining high accuracy with uncertainty calibration, which assures the gain in UQ
performance does not compromise accuracy.

The most substantial performance improvement is observed in the reduction of Expected Calibration
Error (ECE). UQ4CT consistently outperforms other methods, reducing ECE by more than 25%
on average across the evaluated benchmarks. Unlike other methods where the ECE performance
is worsened on the more challenging ARC-C benchmark, UQ4CT achieves an ECE score of 6.1,
showcasing the effectiveness of the calibration.

In addition to experiments on LLaMA-2-7B in the main text, we also present additional experiments
on fine-tuning Mistral-7B in Appendix A.2 for more comprehensive evaluation of our method. For
both LLaMA-2-7B and Mistral-7B models, UQ4CT consistently shows substantial improvements
in uncertainty calibration across various tasks. The improvements are critical in applications where
the model’s confidence must align with its predictive accuracy given limited data, particularly in
safety-critical and domain-specific tasks.

5.3.2 PERFORMANCE UNDER DISTRIBUTION SHIFT

Due to the sparse nature of the fine-tuning data, real world deployment of LLMs often requires the
model to be robust to out-of-distribution knowledge (Ouyang et al., 2022; Touvron et al., 2023b;c).
Therefore, we evaluate the performance of UQ4CT along with other baseline models fine-tuned on
the OBQA dataset under smaller and larger distribution shift scenarios. Similar to the dataset setup
in (Yang et al., 2024a), we use ARC-C and ARC-E dataset to simulate smaller distribution shift
because the ARC dataset has similar domain focus on general science reasoning, but is generally
more challenging and covers a broader range of scientific topics than OBQA. For larger distribution
shift, we ensemble the domain-specific MMLU subtasks into 4 benchmarks focusing on different
professionalities: Computer Science (CS), Engineering (Eng), Law and Health. These tasks have
very broad coverage of the domain task at various knowledge levels ranging from elementary school
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Table 2: Performance comparison of different methods fine-tuned on OBQA dataset with LlaMA2-
7B across 2 smaller distribution shift (DS) tasks and 4 larger distribution shift tasks. UQ4CT shows
substantial ECE improvements while maintaining high accuracy.

ID Smaller DS Larger DS
Metrics Methods OBQA ARC-C ARC-E CS Eng Law Health

ACC ↑

LoRA 72.10.87 58.61.93 66.53.38 35.52.35 30.81.72 34.91.41 39.11.52
MC Drop 74.81.34 58.72.07 66.63.30 36.01.69 30.32.25 35.10.86 39.11.35
Ensemble 75.51.4 57.70.78 69.10.48 36.72.18 30.31.13 35.31.02 39.91.89
LA 70.81.24 58.70.58 67.90.41 33.71.22 29.61.32 35.40.75 38.51.61
MixLoRA 75.52.91 58.51.44 69.21.02 35.22.92 30.30.98 35.90.43 40.61.13
UQ4CT 77.31.36 58.81.06 65.81.31 36.21.24 34.12.31 35.81.01 40.01.24

ECE ↓

LoRA 10.21.07 16.72.28 13.32.48 29.72.69 32.31.85 29.23.08 31.02.13
MC Drop 10.90.24 16.72.20 13.22.21 23.22.32 31.61.64 28.02.93 25.92.27
Ensemble 8.832.35 15.11.09 11.10.99 22.41.32 28.52.13 29.01.37 24.50.39
LA 17.21.2 16.20.5 24.40.42 28.62.61 30.51.43 29.51.83 30.71.2
MixLoRA 12.91.99 19.01.88 14.52.57 26.43.25 33.71.87 30.32.27 28.31.07
UQ4CT 5.01.15 8.93.46 6.51.85 19.62.90 23.11.17 25.93.43 21.93.49

to professionals. This domain-specificity demonstrates larger distribution shift from OBQA, which
is a general common sense reasoning task. Details of the ensemble is provided in Appendix. A.6.

The distribution shift evaluations are provided in Table 2. UQ4CT provides substantial improve-
ments in terms of ECE while maintains similar accuracy for both smaller and larger distribution
shift scenarios. For smaller distribution shifts, UQ4CT shows comparable ECE performance as the
in-distribution scenario. For the more challenging larger distribution shifts, UQ4CT still achieves
the best ECE performance among all baseline models. Note that UQ4CT also achieves competi-
tive prediction accuracy across all domain-specific tasks. This empirically shows that our proposed
alignment of the functional epistemic uncertainty with predictive correctness improves generaliz-
ability and mitigating the overconfidence problem on the fine-tuned model.

5.4 ABLATION STUDY

In this section, we conduct ablation studies to investigate the effectiveness of our designed calibra-
tion loss, Lcal. We first evaluate the incremental weighting performance of the calibration term,
which investigates the effectiveness of Lcal at the early stage of fine-tuning. Then, we perform
a sensitivity test, where we explore the overall performance impact of Lcal. We also conduct an
ablation study on the impact of active LoRA experts in Appendix A.3.

5.4.1 INCREMENTAL WEIGHTING ON CALIBRATION TERM

Due to the random initialization of LoRA experts, the predictions during early fine-tuning stage are
likely to be incorrect as the model has little knowledge on the functional relationships regarding the
data. Thus, it is intuitive to incrementally increase the weight parameter β over the calibration term
Lcal in the training loss for the LoRA experts to learn before calibration. We conduct this study by
incrementally increase β from 0 to 1 within 50 gradient steps during the early stage of fine-tuning:

β = min

{
1,

current grad step

50

}
. (12)

We choose 50 gradient steps from our observation that training loss generally stabilizes after 50
gradient steps, indicating the LoRA experts have learned some functional relationships from data.

As shown in Table 3, the incremental loss has significantly worse ECE performance across all tasks.
This demonstrates the advantage of uncertainty calibration even in the early stage. In the beginning,
the lack of functional relationships on the training data in LoRA experts lead to high epistemic un-
certainty. Thus, UQ4CT encourages exploration over all LoRA experts while UQ4CT Incremental
lacks it due to the small weighting in the beginning.
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Table 3: Performance comparison of UQ4CT with and without incremental weighting. Incremental
weighting has worse ECE performance while maintains similar accuracy.

Metrics Methods BoolQ ARC-E ARC-C OBQA ClimateQA

ACC ↑ UQ4CT 73.50.52 76.61.30 52.81.77 77.31.36 63.31.74
UQ4CT Incremental 72.00.19 75.40.81 54.60.95 77.60.43 60.23.17

ECE ↓ UQ4CT 2.30.82 6.00.2 6.11.11 5.01.15 8.10.52

UQ4CT Incremental 4.00.16 9.81.51 13.82.08 10.31.73 12.20.88

Table 4: Performance of UQ4CT with varying β value on OBQA dataset. Prediction accuracy and
uncertianty alignment increases with β, highlighting the effectiveness of the calibration term.

β ACC ↑ ECE ↓
0 75.52.91 12.91.99
0.2 76.00.6 7.470.78
0.5 75.90.31 7.820.93
0.8 76.60.4 5.941.16
1 77.31.36 5.01.15

5.4.2 SENSITIVITY TEST ON CALIBRATION TERM

To further understand the effectiveness of the calibration loss, we perform a sensitivity test of the
coefficient β in Equation 11. This evaluates how our proposed calibration of parameter mixtures
affect the overall model prediction and uncertainty quantification capabilities. We evaluate β values
of 0, 0.2, 0.5, 0.8 and 1, where β = 0 resembles the original MixLoRA method.

Results in Table 4 demonstrate the effectiveness of the calibration loss. When β = 0, the model
is optimized without calibration on parameter mixtures, resulting in high ECE value. Even with
small β = 0.2 or β = 0.5, the ECE scores drastically improved compared to no calibration setting.
Finally, when β = 1, the calibration term effectively optimizes the conditional parameter mixtures to
generate outputs that fit data distribution well, resulting in lower ECE scores and higher accuracies.

6 DISCUSSION & CONCLUSION

In this work, we propose Functional-Level Uncertainty Quantification for Calibrated Fine-Tuning
(UQ4CT), which addresses the overconfidence issues commonly encountered during fine-tuning of
large language models. We present a functional perspective on quantifying epistemic uncertainty in
LLMs and utilize it for uncertainty-calibrated fine-tuning. By incorporating functional-level epis-
temic uncertainty quantification with a mixture-of-experts framework, our proposed uncertainty-
calibrated training loss effectively addresses the challenge of overconfidence in fine-tuned LLMs
by significantly improving uncertainty calibration while maintaining high accuracy. Our evalua-
tions demonstrate that UQ4CT reduces the Expected Calibration Error by more than 25% without
compromising accuracy across a variety of downstream tasks, including common-sense and domain-
specific reasoning, under in-distribution and out-of-distribution scenarios.

The limitation of UQ4CT lies in its dependency on predictive correctness. For general language
modeling tasks such as chat completion, there lacks a clear metric on whether the response is correct
or not. This limits the application of UQ4CT as naively token matching is a poor indicator of
semantic correctness due to the ambiguous nature of language. For future work, we are exploring
ways to adapt UQ4CT on open-ended problems that lacks a definitive optimization objective.

REPRODUCIBILITY STATEMENT

We share our experimental details in Appendix A.4, and also provide the code and model weights
for running experiments in the supplementary materials to reproduce our model performance results.
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Table 5: Performance comparison of different methods fine-tuned with Mistral-7B across 4 common
sense reasoning tasks and a domain-specific task. UQ4CT shows significant ECE improvements
while maintaining high accuracy.

Metrics Methods BoolQ ARC-E ARC-C OBQA ClimateQA

ACC ↑

LoRA 70.30.62 84.80.47 70.20.84 82.80.62 72.51.6
MC Drop 69.61.07 84.60.91 69.60.76 82.60.71 72.51.6
Ensemble 71.81.29 84.20.66 71.01.41 82.50.6 72.92.88
LA 70.71.82 82.42.05 68.53.31 82.50.77 71.61.56
MixLoRA 73.10.38 85.51.27 71.21.75 83.31.14 72.01.69
UQ4CT 73.60.28 85.90.82 74.40.82 83.71.22 73.21.29

ECE ↓

LoRA 10.170.24 9.461.62 18.421.91 13.30.25 13.722.62
MC Drop 10.620.51 8.911.35 18.381.66 13.30.31 13.722.61
Ensemble 8.721.13 8.721.49 17.00.97 9.142.82 12.861.78
LA 5.332.16 20.35.7 21.274.15 6.413.22 14.642.21
MixLoRA 8.811.03 8.160.99 15.513.86 10.531.73 14.053.09
UQ4CT 3.070.83 5.70.69 7.040.58 7.921.14 11.41.14

A APPENDIX

A.1 LOAD BALANCING LOSS

We follow the load balancing loss in (Li et al., 2024). Given N experts indexed by i = 1 to N and
a batch B with T tokens, the auxiliary loss is computed as:

Laux = a ·N ·
N∑
i=1

Fi · Pi, (13)

where

Fi =
1

T

∑
x∈B

1{argmaxkR(x)k = i},Pi =
1

T

∑
x∈B

R(x)i. (14)

Here, R(·) is the top-k router, Fi is the fraction of tokens dispatched to expert i and Pi is the fraction
of the router probability allocated for expert i. The final loss is multiplied by the expert count N
to keep the loss constant as the number of experts varies, and the constant term a is set to 10−2as
a multiplicative coefficient, which is large enough to ensure load balancing while remaining small
enough not to overwhelm the primary objective.

A.2 EXPERIMENTAL RESULTS WITH MISTRAL-7B

In this section, we present the results using Mistral-7B (Jiang et al., 2023), a different decoder-based
LLM backbone. Table 5 shows the results of fine-tuning Mistral-7B on 4 common-sense reasoning
tasks and one domain-specific climate question-answering task.

For each of the tasks, UQ4CT effectively calibrates the parameter mixtures, leading to the best ECE
performance in 4 out of 5 tasks. This indicates the robustness of UQ4CT across different LLMs.

A.3 DECIDING NUMBER OF ACTIVE EXPERTS

One important aspect of the LoRA MoE architecture is how many experts to activate. Here, we
investigate the performance impact of different number of active LoRA experts. We evaluate the
model performance with 1 to 5 active experts with 8 in total.

As shown in Table 6, 2 active experts give the optimal performance in terms of accuracy and ECE
scores. One expert alone cannot capture complicated functional relationships, while more than 2
experts could potentially introduce redundant functional bases to the model, which deviates the out-
put distribution more from data distribution, thus worsening predictive and calibration performance.
Additionally, more active experts lead to a more flattened distribution across experts, which hardens
the alignment of parameter mixtures during fine-tuning.
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Table 6: Performance comparison of UQ4CT with varying number of experts on OBQA dataset.
Top-2 expert selection strategy grants best accuracy and calibration.

Top-K ACC ↑ ECE ↓
Top-1 74.80.62 7.691.96
Top-2 77.31.36 5.01.15

Top-3 75.20.8 5.80.81
Top-4 75.80.53 7.670.46
Top-5 75.30.5 6.290.61

A.4 TRAINING DETAILS

We train our model with total of 8 LoRA experts, and select 2 experts with the highest probability.
For each expert, we use rank = 16 and alpha = 32. We use batch size of 16 to train our model.
For climate task, we set the learning rate to 5e − 4 and dropout rate to 0.1 to incorporate the small
dataset size. For other tasks, we use 2e− 4 as our learning rate with dropout 0.05. We use AdamW
as our optimizer and a cutoff length of 512 for prompts during training.

The experimental setup for single LoRA based models is similar with LoRA ranks set to 80 to
accommodate the MoE model size. For the ensemble baseline, we use an ensemble size of 8 with
rank = 16. For Laplace-LoRA, we follow the Laplace hyperparameters in this Github Repository.

A.5 EXPECTED CALIBRATION ERROR

Expected calibration error (ECE) is a commonly used metric to asses uncertainty quantification per-
formance. ECE measures the alignment between prediction accuracy and model confidence through
regrouping the predicted probabilities into m bins. This method then computes the weighted average
of the difference between average accuracy and confidence in each bin:

ECE =

M∑
m=1

|Bm|
N

|acc(Bm)− conf(Bm)|, (15)

where |Bm| is the number of evaluated datapoints in bin m, acc and conf is calculated as following:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi), (16)

conf(Bm) =
1

|Bm|
∑
i∈Bm

P (ŷi). (17)

A.6 MMLU DISTRIBUTION SHIFT DATASET COMPOSITION

• Computer Science (CS):
– College Computer Science
– Computer Security
– High School Computer Science
– Machine Learning

• Engineering (Eng):
– Electrical Engineering

• Law:

– International Law
– Jurisprudence
– Professional Law

• Health:
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– Anatomy
– Clinical Knowledge
– College Medicine
– Human Aging
– Nutrition
– Professional Medicine
– Virology
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