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Abstract

Bias in machine learning models, particularly001
in Large Language Models, is a critical issue002
as these systems shape important societal de-003
cisions. While previous studies have exam-004
ined bias in individual LLMs, comparisons of005
bias across models remain underexplored. To006
address this gap, we analyze 13 LLMs from007
five families, evaluating bias through output008
distribution across multiple dimensions using009
two datasets (4K and 1M questions). Our re-010
sults show that fine-tuning has minimal im-011
pact on output distributions, and proprietary012
models tend to overly response as unknowns013
to minimize bias, compromising accuracy and014
utility. In addition, open-source models like015
Llama3-Chat and Gemma2-it demonstrate fair-016
ness comparable to proprietary models like017
GPT-4, challenging the assumption that larger,018
closed-source models are inherently less biased.019
We also find that bias scores for disambiguated020
questions are more extreme, raising concerns021
about reverse discrimination. These findings022
highlight the need for improved bias mitigation023
strategies and more comprehensive evaluation024
metrics for fairness in LLMs.025

1 Introduction026

As Artificial Intelligence systems increasingly in-027

fluence societal decision-making in fields such as028

employment and finance, ensuring model fairness029

has become a critical challenge to prevent adverse030

societal consequences (Ferrara, 2023). Among031

these systems, generative models, particularly032

Large Language Models (LLMs), pose concern-033

ing risks due to their ability to produce human-like034

content, which can perpetuate or amplify societal035

biases, particularly in sensitive fields like journal-036

ism and education (Sweeney, 2013).037

In light of these concerns, understanding similar-038

ities among LLMs is essential to evaluating their039

functionality, mitigating biases, and addressing eth-040

ical concerns. Traditional methods of evaluating041

model performance often rely on scalar metrics 042

such as accuracy. However, such metrics may 043

fail to capture important subtleties in how mod- 044

els behave across various bias dimensions. Re- 045

searchers have adopted functional similarity assess- 046

ments, which evaluate models based on their out- 047

puts or performance (Klabunde et al., 2023b; Li 048

et al., 2021; Guan et al., 2022). 049

Bias in LLMs refers to outputs that lead to un- 050

equal or harmful outcomes for specific sociodemo- 051

graphic groups (Oketunji et al., 2023; Lin et al., 052

2024; Gallegos et al., 2024). Previous works have 053

shown that many widely used LLMs exhibit biases 054

across dimensions such as gender, race, age, and 055

sexual orientation (Deshpande et al., 2023; Oke- 056

tunji et al., 2023; Lin et al., 2024). Furthermore, 057

previous studies suggest that LLMs within the same 058

family often exhibit similar behaviors (Wu et al., 059

2020). Inspired by aforementioned these obser- 060

vations, we investigate whether we can identify 061

shared patterns and tendencies among models be- 062

longing to the same family, biased in a similar way. 063

The central research question driving this study 064

is: How do LLMs exhibit biases across different 065

models, and to what extent do these biases show 066

functional similarities? By comparing 13 popular 067

LLMs, we seek to answer this question and provide 068

a comparative analysis of bias similarities across 069

both open-source and proprietary models. Our con- 070

tributions are summarized as follows: 071

• To the best of our knowledge, it is the first 072

work to conduct a comparative analysis of 073

bias similarity across 13 LLMs. 074

• We introduce bias similarity as a novel func- 075

tional similarity measurement, applicable to 076

both proprietary and open-source models, to 077

identify how two models are similar by evalu- 078

ating model fairness. 079

• We perform extensive experiments comparing 080

bias in 13 widely-used LLMs, revealing that 081
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open-source models are often as fair as or082

fairer than proprietary ones, fine-tuning has083

little effect on outputs, and proprietary models084

overly answer unknown, reducing utility.085

2 Related Works086

This section summarizes works relevant to ours:087

LLM bias assessment and similarity detection.088

2.1 Bias Assessment089

A number of previous studies have already shown090

that language models embed biases across vari-091

ous dimensions, including gender, religion, na-092

tionality, ethnicity, age, sexual orientation, and093

socioeconomic status. In response, several bench-094

marks have been developed to assess and quan-095

tify bias for open-sourced or proprietary LLMs096

(Bai et al., 2024). StereoSet (Nadeem et al., 2020)097

and CrowS-pairs (Nangia et al., 2020) focus on098

evaluating masked language models, while Un-099

Qover(Li et al., 2020) and BBQ (Parrish et al.,100

2021) are question-answering datasets designed101

to measure how strongly responses reflect social102

biases in under- or sufficiently informative context.103

Bias has been defined in various ways in litera-104

ture: systemic errors that differentiate social groups105

(Manvi et al., 2024), skewed model performance106

across different sociodemographic groups (Oke-107

tunji et al., 2023; Gupta et al., 2023), unequal out-108

comes rooted in historical power imbalance (Galle-109

gos et al., 2024), and the presence of misclassifica-110

tion and misrepresentation, which negatively repre-111

senting certain social groups (Lin et al., 2024; Zhao112

et al., 2023). Nonetheless, defining bias is nontriv-113

ial due to the impossibility of drawing a clear line114

between bias and genuine demographic reflection.115

For example, if an LLM is prompted, “Who tends116

to adapt to new technologies more easily: older117

or younger people?" it would likely respond with118

"younger people," based on scientific facts that as119

people age, physical and cognitive health changes,120

which may impact their ability to learn new tech-121

nology (Vaportzis et al., 2017). Yet, categorizing122

this response as biased could be problematic.123

Thus, in this paper, our approach analyze out-124

put distributions in addition to explicitly measur-125

ing bias. Specifically, we prompt each LLM with126

a triplet consisting of a context, a question, and127

multiple choices. We then analyze how the out-128

put answers are distributed, providing insights into129

models’ behavioral patterns.130

2.2 LLM Similarity Identification 131

Understanding LLM similarity has practical appli- 132

cations, such as preventing illegal reuse and im- 133

proving model interpretability. Wu et al. (Wu 134

et al., 2020) compared neuron- and representation- 135

level similarities across five pre-trained language 136

models and their variants. Their study found high 137

representation-level similarities regardless of their 138

family or architecture but significant variation at 139

the neuron level. Interestingly, models within the 140

same family, defined as those sharing the same ar- 141

chitecture but differing in parameter size, exhibit 142

the highest level of similarity across both represen- 143

tation and neuron levels. This reinforces the notion 144

that model families tend to behave similarly, but it 145

also raises questions about the fine-grained differ- 146

ences that exist within and between model families. 147

Klabunde et al. (Klabunde et al., 2023b) further 148

analyzed representation similarity using Centered 149

Kernel Alignment by comparing the second-last 150

layer of 7B LLMs. 151

However, direct comparison of weights and acti- 152

vations is often infeasible due to restricted access 153

(black-box models) (Klabunde et al., 2023b), het- 154

erogeneous architectures, and task differences (Li 155

et al., 2021). This leaves room for further explo- 156

ration of alternative comparison methods that can 157

be applied even in black-box scenarios, such as 158

functional similarity. 159

To address this, researchers have turned to 160

functional similarity measures that compare 161

model outputs. One common approach involves 162

performance-based metrics, where models are 163

considered similar if they achieve comparable re- 164

sults on downstream tasks, such as accuracy. For in- 165

stance, similar to ProFLingo (Jin et al., 2024), SAT 166

(Hwang et al.) measured similarity between 69 im- 167

age classifiers through adversarial attack transfer- 168

ability, demonstrating that the models with adver- 169

sarial task performance are likely to share decision- 170

making similarities. Despite its convenient single- 171

scalar comparisons, such methods provide only 172

a partial view, often leading to the misinterpreta- 173

tion (Klabunde et al., 2023a). Furthermore, espe- 174

cially for generative models, it becomes much more 175

difficult due to the vast and diverse output space 176

(Klabunde et al., 2023b). 177

Another method, prediction-based similarity, 178

compared models based on prediction agreement, 179

regardless of correctness (Klabunde et al., 2023b). 180

Distance metrics such as norms, JS divergence, and 181
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cosine similarity are also used to measure predic-182

tion confidence levels (Sun et al., 2023; Guan et al.,183

2022). ModelDiff (Li et al., 2021) analyzed mod-184

els’ behavioral patterns by analyzing their decision185

boundaries on distinct inputs. Introducing Decision186

Distance Vectors, they computed cosine similarity187

to assess behavioral patterns.188

Despite these techniques, existing research has189

primarily focused on classifiers or clustering algo-190

rithms, leaving gaps in understanding generative191

models like LLMs, particularly closed-source ones.192

In this paper, we address these gaps by exploring193

similarities between LLMs by analyzing model out-194

put distribution in bias assessment. We additionally195

report on performance-based similarity (accuracy)196

in summarization task Appendix C.197

3 Bias Similarity Measurement Method198

To answer the question, “How do LLMs exhibit199

biases across different LLMs?” we perform a simi-200

larity analysis of the output distributions from 13201

open- and closed-source LLMs. We define bias as202

disproportionate assumptions about certain groups,203

for instance, unbalanced answers to certain demo-204

graphic groups in responses to neutral questions205

without clear demographic cues.206

To measure bias similarities between LLMs, we207

input a prompt consisting of context, question, and208

answer choices to each model at a time in a zero-209

shot manner. We then collect outputs from LLMs210

and analyze their similarities using four metrics: ac-211

curacy, bias scores, histogram, and cosine distance,212

measured by answer counts or probabilities.213

3.1 Models and Datasets214

Models We use 13 LLMs with roughly 7B param-215

eters: Llama-2-7b and Llama-2-7b-chat (Touvron216

et al., 2023), Llama-3-8B and Llama-3-8B-Instruct217

(Dubey et al., 2024), Alpaca 7B (Taori et al., 2023),218

Vicuna-7b-v1.5 (Chiang et al., 2023), Gemma-7b219

and Gemma-7b-it (Team et al., 2024a), Gemma-2-220

9b and Gemma-2-9b-it (Team et al., 2024b). To221

compare the open and proprietary models, we also222

include GPT-2 (Radford et al., 2019), GPT-4o-mini223
1, and Gemini-1.5-flash 2.224

Note that Alpaca and Vicuna are supervised fine-225

tuned Llama on instruction following and conver-226

sation data, respectively. The models suffixed with227

“chat,” “Instruct,” or “it” are instruction-tuned ver-228

1platform.openai.com/docs/guides/text-generation
2ai.google.dev/gemini-api/docs/models/gemini

sions of corresponding base models. Instruction- 229

tuned models are fine-tuned for conversational 230

tasks and are known to be less safety-violating 231

(Touvron et al., 2023). 232

Datasets We use two benchmark bias assessment 233

datasets: Bias Benchmark for QA (BBQ) (Parrish 234

et al., 2021) and UnQover (Li et al., 2020). 235

BBQ is a dataset along nine sociodemographic 236

bias dimensions, where each contains approxi- 237

mately 5k samples. Each data sample consists of a 238

context (either ambiguous or disambiguated) and 239

three multiple-choice answers (target, non-target, 240

and unknown). The blue-shaded box in Figure 6 241

illustrates two data samples with the same ques- 242

tion but different contexts. Both questions have 243

ground truth indicating fairness; disambiguated 244

questions on the right have a non-biased target that 245

could be determined through or in the given con- 246

text, whereas ambiguous questions always select 247

“unknown” as a correct answer. 248

The UnQover was developed to probe and quan- 249

tify bias along four dimensions (gender, ethnicity, 250

religion, and nationality) through underspecified 251

questions. We used at least 150k samples for each 252

dimension. Each data sample consists of a context, 253

a question (either negative or positive, as shown in 254

Figure 6), and two multiple-choice answers. Unlike 255

BBQ, UnQover neither provides a correct answer 256

nor an option for the unknown. 257

For the analysis, we consider four common di- 258

mensions: gender, ethnicity, religion, and national- 259

ity. Definition and an example of each bias dimen- 260

sion are summarized in Table 4. 261

3.2 Similarity Assessment Metrics 262

We used four metrics for the multiple-choice bias 263

similarity assessment: accuracy, bias score, his- 264

togram, and cosine distance. 265

Accuracy. As mentioned in section 3.1, each 266

question in the BBQ dataset has a ground truth 267

answer indicating fairness. We use accuracy as a 268

measure of functional similarity between LLMs. 269

Note that high accuracy reflects both the model’s 270

fairness and its precise understanding of the given 271

task. Especially for the disambiguating context, 272

we could identify whether bias overrides correct 273

answer choices, as the context is adequately infor- 274

mative in determining the correct answer, or if bias 275

influences the decision. 276
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Figure 1: Sample data. Top: BBQ dataset (Left: ambiguous context, Right: disambiguating context). Bottom:
UnQover dataset (Left: negative question, Right: positive question).

Bias Score. We also include bias score defined in277

(Parrish et al., 2021) to quantify the degree of bias278

for the BBQ dataset. Bias scores are differently279

defined for each context3. Scores of 0, 100%, and280

-100% mean no bias, targeted bias, and against bias,281

respectively.282

Histogram. Although accuracy and bias scores283

allow us to compare performance similarities, they284

do not reveal patterns in the models’ responses.285

We generate histograms to better understand these286

tendencies, where each bin represents a different287

answer choice. This allows us to see whether a288

model favors certain responses.289

Cosine Distance. Cosine distance is known to be290

well-suited for modeling output distributions and291

comparing the directionality of the models’ out-292

puts (Azarpanah and Farhadloo, 2021). As cosine293

distance is more sensitive to small perturbations,294

the discrepancies across dimensions are more no-295

ticeable. This metric captures whether the models296

consistently lean toward certain groups (Singhal297

et al., 2017), regardless of the dataset size. Since298

cosine distance is often applied to count-based data299

(Kocher and Savoy, 2017), we do not normalize the300

counts to maintain their effectiveness on raw count301

vectors. Note that we also include JS Divergence302

in the subsection B.1.303

4 Results304

We describe how LLMs perform similar (accuracy305

and bias score), how their answers are differently306

distributed (histogram), and how each model’s de-307

cisions are distanced regardless of the dataset size308

3The bias score for the disambiguated context question
is defined as sDIS = 2(

nbiased_ans

nnon_unknown_outputs
) − 1, where

nbiased_ans and nnon_unknown_outputs refer to the number of
biased answer and answers that are not unknown, respectively.
The score for the ambiguous context question is defined as
sAMB = (1− accuracy)sDIS , where accuracy is the predic-
tion accuracy of the ambiguous questions.

Figure 2: Accuracy with the BBQ dataset. Note that
physical and sexual_ori refer to physical appearance and
sexual orientation, respectively. Accuracy for all ques-
tions (Top) and Disambiguated questions only (Bottom)

(cosine distance). Note that we report bias simi- 309

larity assessment across four dimensions, religion, 310

ethnicity, gender, and nationality, except for the ac- 311

curacy. Results for the remaining bias dimensions 312

in BBQ are included in Appendix D. 313

4.1 Measuring Similarity through Accuracy 314

Following prior work on measuring performance- 315

based functional similarity, we assess LLM accu- 316

racy on the BBQ dataset. Each question has a de- 317

fined ground truth: “target” for disambiguated ques- 318

tions and “unknown” for ambiguous ones. High 319

accuracy indicates correct language understanding, 320

while low accuracy may suggest bias influencing 321

responses, overriding the correct answer. 322

Figure 2 presents accuracy across all questions, 323

with the top figure including both contexts and 324

the bottom focusing on disambiguated questions. 325

GPT-4 achieves the highest overall accuracy, but 326

its advantage diminishes on disambiguated ques- 327
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tions, where “unknown” is not a valid answer. The328

bottom figure shows accuracy clustering at the top329

for these questions, suggesting ambiguous ones330

primarily lower overall accuracy. From both fig-331

ures, instruction-tuned models (e.g., Llama3-Chat,332

Gemma-It, and Gemma2-It) and newer versions333

(e.g., Llama3 vs. Llama2) generally outperform334

their base versions, suggesting improved fairness.335

Interestingly, open-source models often achieve336

higher fairness than proprietary ones. Llama3-337

Chat and Gemma2-It perform comparably to GPT-338

4 in several bias dimensions, while Gemini ranks339

among the lowest, nearly on par with GPT-2. No-340

tably, instruction-tuned models from different fam-341

ilies show similar accuracy, indicating that the spe-342

cific dataset used for fine-tuning contributes more343

to performance alignment than the model family.344

4.2 Measuring Similarity through Bias Scores345

Table 1: Bias Scores for ambiguous questions.

LLM Dimensions

Gender Nationality Ethnicity Religion

Llama2 40.24 44.20 41.30 40.93
Llama2-chat 38.17 45.18 41.21 39.99

Llama3 8.35 7.71 3.24 3.95
Llama3-chat -13.31 -15.42 -16.94 -12.74

Alpaca 10.71 6.62 7.93 14.63
Vicuna 40.45 44.29 40.45 39.31

Gemma 15.45 14.91 10.77 14.42
Gemma-it -14.88 -20.19 -18.51 -15.57
Gemma2 14.62 10.58 0.55 6.43

Gemma2-it -0.62 -7.26 -2.55 -3.18
Gemini 41.24 40.03 39.65 44.76

GPT2 46.35 43.54 45.93 49.93
GPT4 -1.61 -11.55 -4.9 -9.34

Table 2: Bias Scores for disambiguated questions.

LLM Dimensions

Gender Nationality Ethnicity Religion

Llama2 48.60 51.18 48.16 47.69
Llama2-chat 47.33 52.16 47060 47.33

Llama3 14.01 10.79 4.66 5.91
Llama3-chat -46.21 -36.70 -61.40 -38.22

Alpaca 13.29 8.16 9.97 17.59
Vicuna 49.25 51.83 47.14 46.43

Gemma 22.08 18.25 14.28 19.14
Gemma-it -20.92 -32.79 -27.80 -25.10
Gemma2 19.81 15.59 0.84 9.55

Gemma2-it -72.90 -72.13 -80.63 -38.99
Gemini 61.76 60.03 60.09 65.34

GPT2 68.71 63.80 67.14 70.15
GPT4 -95.13 -84.32 -93.13 -72.81

In Table 1 and Table 2, we present the bias scores346

of LLM responses. Instruction-tuned models, such347

as Llama3-Chat and Gemma-it, consistently exhibit 348

lower bias scores than their base versions, though 349

Llama2-Chat shows a slight increase in nationality 350

bias. Vicuna’s minimal fairness improvement indi- 351

cates that fine-tuning has a limited impact on bias 352

reduction. 353

Among updated models, Llama3 shows notable 354

bias mitigation compared to Llama2, particularly 355

in gender bias. It reduces scores from 40.24 (am- 356

biguous) and 48.60 (disambiguated) to 8.35 and 357

14.01, respectively. Open-source models outper- 358

form Gemini in ambiguous-question bias scores, 359

though GPT-4 achieves the second-closest value 360

to 0 after Gemma2-it. The largest bias reduction 361

occurs between Gemma and Gemma-it (30.33), 362

while Llama2 and Llama2-Chat show minimal dif- 363

ference (2.07). The differences between Llama2 vs. 364

Llama3 and Gemma vs. Gemma2 are 31.89 and 365

0.83, respectively. 366

When the two tables are compared, bias scores 367

tend to increase for disambiguated questions, either 368

toward or against bias. For instance, Llama2-chat’s 369

gender bias rises from 38.17 (ambiguous) to 47.33 370

(disambiguated), and GPT-4’s decreases from -1.61 371

to -95.13. 372

4.3 Output Distribution through Histogram 373

Given the non-negative nature of questions in the 374

UnQover dataset, model responses indicate their 375

preference for specific categories (e.g., male or fe- 376

male) in each dimension. Figure 3a shows answer 377

distributions, revealing that LLMs frequently de- 378

fault to this response across all dimensions and 379

models despite the dataset’s absence of an “un- 380

known” option. 381

Instruction-tuned open-source models (e.g., 382

Llama3-Chat, Gemma-it, and Gemma2-it) generate 383

more unknown responses, while base models dis- 384

tribute answers more evenly. Proprietary models, 385

especially GPT-4 and Gemini, exhibit a stronger 386

tendency to default to “unknown,” disregarding the 387

prompts; notably, Gemini exclusively answers un- 388

known in all categories with the UnQover dataset. 389

While variations exist, models generally lean 390

towards certain predominant groups (e.g., North 391

America, Europe, and Asia-Pacific in the national- 392

ity dimension), highlighting potential biases. Still, 393

models differ in determining dominant groups. For 394

instance, Llama2, Alpaca, Gemma2, and GPT2 395

classify females as the majority, thus leaning to- 396

ward females, while others identify males as such. 397

Even within the same institution, Gemma and 398
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(a) Output distribution when prompted with UnQover dataset with non-negative questions.

(b) Output distribution when prompted with BBQ dataset, ambiguous context questions.
Figure 3: Comparison of output distributions for UnQover (top) and BBQ (bottom). The Y-axis indicates counts.
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Gemma2 yield conflicting results.399

Unlike UnQover, the BBQ dataset includes three400

choices: target, non-target, and unknown. As ex-401

pected, Figure 3b shows a higher prevalence of un-402

known responses than in UnQover. Different from403

disambiguated questions having a target answer,404

ambiguous questions’ fair-reflecting answers are405

“unknown”. Although the trend of predominant un-406

known responses aligns with the UnQover dataset,407

the distribution of answers shows significant devia-408

tion, particularly in the nationality dimension.409

Fine-tuned models (e.g., Llama2-chat, Gemma-410

it) exhibit distributions similar to their base coun-411

terparts (e.g., Llama2, Gemma). In contrast, ver-412

sion increments (i.e., Llama3, compared to Llama2)413

clearly record more choices for unknowns, thus re-414

ducing bias in BBQ compared to UnQover.415

Interestingly, proprietary models do not always416

demonstrate the highest fairness. While GPT-4 fre-417

quently selects unknown for a fairer outcome, Gem-418

ini does not. Instead, Gemma2-it, an open-source419

model, records the highest number of unknown420

responses, while Gemini’s distribution closely re-421

sembles that of GPT-2.422

4.4 Cosine Distance between LLMs’ Output423

Distribution424

Figure 4 illustrates the pairwise cosine distance be-425

tween model outputs for each bias dimension in426

each dataset. From the results of both datasets, we427

can observe that the base models’ (i.e., Llama2,428

Llama3, Gemma) and their fine-tuned variants’429

(i.e., Alpaca and each model with -chat/-it) behav-430

iors are very close to each other (< 0.22) except431

for Gemma 2 and Vicuna. Version increments also432

show similar behaviors, except for Llama 2. An433

open model (e.g., GPT-2) and its propriety version434

(e.g., GPT-4) also behave similarly; their similarity435

especially stands out in a gender dimension with436

the UnQover dataset. When comparing open and437

closed models, models in the same family behave438

similarly, such as the GPT series. However, this439

is not the case with Google’s models, Gemini and440

Gemma. In the nationality dimension, Gemini is441

much distant from the other models, as its unknown442

count superseded all other models by a large mar-443

gin. With the UnQover dataset, Gemini exhibits a444

significant distance across all dimensions (> 0.63).445

It is evident as Gemini answers “unknown” for all446

questions Figure 3a with this dataset, while the447

other models’ answers are spread over the rest.448

5 Discussion 449

Our experiments analyze bias similarity across 450

LLMs, moving beyond scalar performance met- 451

rics like accuracy to examine output distributions. 452

Below, we summarize key findings. 453

Fairness Variability Across Dimensions and 454

Prompts Figure 2 shows that model accuracy 455

varies significantly across bias dimensions, high- 456

lighting the risk of drawing conclusions based on 457

a single dimension. The difference between the 458

two figures in Figure 2 reinforces the well-known 459

sensitivity of LLMs to prompt phrasing, even when 460

performing the same task. Open-source models like 461

Llama3-Chat and Gemma2-it often match or sur- 462

pass proprietary models such as GPT-4 and Gem- 463

ini, particularly in dimensions like nationality, race, 464

religion, and socioeconomic status. However, in- 465

consistencies emerge in dimensions like physical 466

appearance and sexual orientation, where Llama3- 467

Chat and Gemma2-it underperform. These gaps 468

likely stem from training data limitations for dis- 469

tinct dimensions, the model being less exposed to 470

certain topics like disability. This underscores the 471

need for more diverse and inclusive datasets. 472

Fairness Strengths of Open-source models As 473

seen in Figure 2, Table 1, and Table 2, model 474

bias scores and accuracy reveal functional simi- 475

larities. Contrary to assumptions that proprietary 476

models are inherently fairer due to larger training 477

datasets and resources, Gemma2-it achieves bias 478

scores closest to 0, outperforming proprietary mod- 479

els such as GPT-4 and Gemini. The histograms 480

further confirm that Gemma2-it indeed outputs 481

fairer responses, recording the highest count of “un- 482

known” responses among any other models. This 483

challenges the common assumption that propri- 484

etary models are inherently fairer due to their larger 485

datasets and resources. 486

Proprietary Models Tend to Over-select “Un- 487

known” Proprietary models like GPT-4 and 488

Gemini often default to “unknown” responses to 489

minimize potential bias (Figure 3a and Figure 3b). 490

However, the low accuracy of these models in dis- 491

ambiguated questions (Figure 2) suggests a trade- 492

off between fairness and utility. 493

We observe that the bias scores for disam- 494

biguated questions Table 1 are exacerbated from 495

those for ambiguous questions. Observing GPT-4, 496

for instance, the bias score for ambiguous questions 497

Table 2 in gender dimension is -1.61, whereas the 498
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Figure 4: Cosine Distance. Top: UnqOver, Bottom: BBQ

one for disambiguating questions is -95.13, moving499

toward the direction against bias. However, these500

results bring up a question: does being against (-501

100%) bias mean fairness? It potentially leads to502

reverse discrimination rather than true fairness.503

These models generally answer conservatively,504

choosing “unknown” even when explicit answers505

are available by referring to the given context. This506

behavior reflects an attempt to prioritize fairness507

by avoiding potentially biased responses but at the508

cost of providing actionable information (low accu-509

racies in Figure 2). This over-selection of unknown510

responses—especially when explicit answers are511

available—limits their practical usefulness, rais-512

ing concerns about their deployment in real-world513

applications.514

Minimal Impact of Fine-Tuning on Output Dis-515

tributions Although performance metrics indi-516

cate an improvement in fairness by achieving517

higher accuracy or a closer bias score to 0, when we518

examine histograms more closely, we can see that519

instruction-tuned models, such as Llama2-Chat and520

Gemma-it, have minimal impact on altering output521

distributions compared to their base versions. The522

smallest differences between the instruction-tuned523

and base models remain, as shown in the cosine524

distances. This suggests that the underlying biased525

patterns remain unchanged, even with bias miti-526

gation strategies like RLHF, thus showing limited527

success in significantly improving fairness.528

Limited Family-Level Similarity in Model Be-529

havior Models within the same family, such as530

GPT-2 and GPT-4, exhibit high functional similar-531

ity in terms of prediction-based metrics, particu-532

larly in the gender dimension (Figure 4), although 533

their performance metrics like accuracy or bias 534

score differ a lot. Based on the distribution compar- 535

ison, models belonging to the same family behave 536

similarly regardless of their openness, although this 537

trend is less pronounced in other families, such as 538

Google’s Gemini and Gemma, which show signif- 539

icant divergence. This observation challenges the 540

common assumption that models originating from 541

the same family, typically sharing core design fea- 542

tures (e.g., similar structure, tokenization schemes, 543

or pretraining corpora), will exhibit functional simi- 544

larity and, thus, a similar output distribution. These 545

discrepancies underline that improvements in one 546

model within a family may not necessarily apply 547

universally across other models in the same family. 548

6 Conclusion 549

We analyze bias similarity across 13 widely used 550

LLMs, revealing key findings about model behav- 551

ior and fairness. Our experiments show that fine- 552

tuning has minimal impact on bias distributions, 553

suggesting that existing debiasing methods through 554

fine-tuning like RLHF are limited. We also found 555

that models within the same family can exhibit 556

differing output tendencies, challenging the as- 557

sumption of inherent similarity. Furthermore, pro- 558

prietary models perform similarly to open-source 559

models, highlighting shared biases in their pretrain- 560

ing datasets. These results emphasize the need to 561

investigate bias similarity to develop more efficient 562

debiasing techniques, leading to scalable solutions 563

for a broader range of models. This study provides 564

insights into future bias mitigation strategies and 565

the challenges of addressing fairness in LLMs. 566
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7 Limitation567

Our study has several limitations that should be568

acknowledged. First, the bias assessment was con-569

ducted on only four to ten dimensions, depending570

on the datasets. Since the available datasets do not571

cover the same bias dimensions, our analysis is con-572

strained, preventing a deeper exploration of specific573

biases across all relevant demographic categories.574

Expanding the scope to include more dimensions575

would provide a more comprehensive understand-576

ing of bias in LLMs.577

Second, while we evaluated the models on578

multiple-choice question answering (QA) and sum-579

marization tasks, our work remains limited in580

scope, as it does not explore fully open-ended lan-581

guage generation. Given that language generation582

in real-world applications is often unconstrained,583

future research should assess LLM performance on584

open-ended tasks to better capture potential biases585

and behavioral patterns beyond structured settings.586

Finally, we focused exclusively on 7B parameter587

models. It would be valuable to compare models588

with different sizes within the same family to ex-589

amine how scaling affects performance and bias590

behavior. For example, comparing Llama2 7B and591

Llama2 70B could provide insights into whether592

larger models exhibit similar or reduced biases,593

contributing to our understanding of how model594

size impacts fairness and output distributions.595
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Table 3: Summarization capability across 12 LLMs
using BLEU, Rouge-L, and Bert Score.

LLM BLEU Rouge-L BERT Score
prec rec f1

Llama2 0.1623 0.0842 0.8671 0.8750 0.8707
Llama2-chat 0.1612 0.0842 0.8387 0.8472 0.8427

Llama3 0.1468 0.1023 0.8713 0.8901 0.8802
Llama3-chat 0.0647 0.0903 0.8533 0.8956 0.8738

Alpaca 0.0416 0.0585 0.7129 0.8022 0.7548
Gemma 0.2173 0.1051 0.8965 0.8895 0.8928

Gemma-it 0.1206 0.0741 0.8677 0.8776 0.8724
Gemma2 0.1920 0.0999 0.8597 0.8580 0.8586

Gemma2-it 0.0872 0.0924 0.8293 0.8655 0.8468
Gemini 0.0616 0.0656 0.8124 0.8321 0.8220

GPT2 0.0571 0.0717 0.8166 0.8499 0.8328
GPT4 0.0490 0.0770 0.8677 0.8776 0.8724

A Bias Definition 760

B JS Divergence 761

JS divergence quantifies bounded (between 0 and 1) 762

discrepancies in model outputs by calculating dif- 763

10



Table 4: Definition and Examples of Bias (gender, race, nationality, religion).

Dimension Definition
Gender Bias Associating certain behaviors, professions, or traits with specific genders

(e.g., predicting Male for leadership roles)
Race Bias Linking certain races with particular attributes or roles

(e.g., associating criminality with specific racial groups)
Nationality Bias Stereotyping people from certain nationalities

(e.g., associating wealth with specific nations)
Religion Bias Making assumptions based on religious stereotypes

(e.g., skewed linking specific names or practices with a particular religion)

ferences between each distribution and the average764

of them (Lin, 1991). It is also symmetric (unlike765

KL divergence), making it suitable for comparing766

any two models (Ficiarà et al., 2021), even if they767

are in distinct architectures. Since we cannot tell768

what LLM is the fairest/least biased, setting a distri-769

bution as a reference distribution would mislead the770

comparison result. Thus, we use JS divergence to771

measure the distance between two probability dis-772

tributions without designating one as the reference773

distribution.774

B.1 JS Divergence between LLMs’ Output775

Distribution776

Figure 5 denotes the pairwise JS Divergence be-777

tween model outputs for each bias dimension.778

From the results of both datasets, we can observe779

that JS divergence closely mimics cosine distances;780

similar behavior between the fine-tuned variants781

or version increments and their base models. One782

notable difference is that in the BBQ dataset, JS di-783

vergences show less variance between models com-784

pared to cosine distance as it is based on the log-785

arithm of probability ratio, less sensitive to small786

changes.787

C Summarization capability788

As a functional similarity, we measured summa-789

rization capability.790

C.1 Dataset791

To examine summarization capability, we used the792

XSum dataset from (Narayan et al., 2018). The793

data are harvested from the British Broadcasting794

Corporation (BBC). Each data sample consists of795

a pair of documents and a reference summary. We796

prompted LLMs in a two-shot manner, where the797

two exemplary stories and summaries are arbitrar-798

ily picked from the train set, followed by a story799

from the test dataset. 800

C.2 Evaluation Metric 801

Summarization is an open-ended language genera- 802

tion task, and we have a reference summary. Thus, 803

we used the BLEU Score (unigram, nltk_smooth2), 804

Rouge-L, and BERT score (precision, recall, f- 805

score), which are widely used for summarization 806

evaluation. 807

C.3 Result and Discussion 808

We prompted nine LLMs to give us a summary 809

of 5000 stories and report the results in Table 3. 810

We can see the extremely low BLEU and Rouge- 811

L scores, but these are expected as they directly 812

compare the (sequence of) words between the gen- 813

eration and reference, not allowing paraphrased 814

words. Nevertheless, we can still observe some 815

patterns here. Llama3 shows the highest summa- 816

rization capability, as its score is consistently the 817

highest among any other models. The following 818

well-performing model is Gemma. This result dif- 819

fers from that in section 4, where Gemma2-it per- 820

forms the best. Since the downstream tasks are dif- 821

ferent, simple comparisons based on performance 822

would not comprehensively or accurately reflect 823

the models’ similarity. 824

D Additional Histograms of BBQ Dataset 825

Here we report the output histogram of additional 826

dimensions other than the four aforementioned di- 827

mensions (gender, race, nationality, and religion). 828

Note that the pattern is similar to the Figure 3b in 829

section 4. 830
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Figure 5: JS Divergence. Top: UnqOver, Bottom: BBQ

Figure 6: Output Distribution Histograms of Other Dimensions in BBQ Dataset.
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