
Published as a conference paper at ICLR 2024

SWE-BENCH: CAN LANGUAGE MODELS RESOLVE
REAL-WORLD GITHUB ISSUES?

Carlos E. Jimenez* 1,2 John Yang* 1,2 Alexander Wettig1,2

Shunyu Yao1,2 Kexin Pei3 Ofir Press1,2 Karthik Narasimhan1,2

1Princeton University 2Princeton Language and Intelligence 3University of Chicago

ABSTRACT

Language models have outpaced our ability to evaluate them effectively, but for
their future development it is essential to study the frontier of their capabilities.
We find real-world software engineering to be a rich, sustainable, and challenging
testbed for evaluating the next generation of language models. To this end, we in-
troduce SWE-bench, an evaluation framework consisting of 2,294 software engi-
neering problems drawn from real GitHub issues and corresponding pull requests
across 12 popular Python repositories. Given a codebase along with a description
of an issue to be resolved, a language model is tasked with editing the codebase
to address the issue. Resolving issues in SWE-bench frequently requires under-
standing and coordinating changes across multiple functions, classes, and even
files simultaneously, calling for models to interact with execution environments,
process extremely long contexts and perform complex reasoning that goes far be-
yond traditional code generation tasks. Our evaluations show that both state-of-
the-art proprietary models and our fine-tuned model SWE-Llama can resolve only
the simplest issues. The best-performing model, Claude 2, is able to solve a mere
1.96% of the issues. Advances on SWE-bench represent steps towards LMs that
are more practical, intelligent, and autonomous.

1 INTRODUCTION

Language models (LMs) are rapidly being deployed in commercial products such as chatbots and
coding assistants. At the same time, existing benchmarks have become saturated (Kiela et al., 2021;
Ott et al., 2022) and fail to capture the frontier of what state-of-the-art LMs can and cannot do. There
is a need for challenging benchmarks that more accurately reflect real-world applications of LMs to
help shape their future development and usage (Srivastava et al., 2023).

euclidean_diff

matrix_transform

dstack_struct_col

vstack_struct_col

join_struct_col

Pre PR Post PR Tests

Unit Tests
data leak in GBDT due to warm

start (This is about the non-

histogram-based version of...

Issue

Codebase
sklearn/

examples/ setup.cfg

setup.pyREADME.rst

reqs.txt

 Language Model

Generated PR

sklearn

gradient_boosting.py

utils

helper.py

+20 -12

Figure 1: SWE-bench sources task instances from real-world Python repositories by connecting
GitHub issues to merged pull request solutions that resolve related tests. Provided with the issue
text and a codebase snapshot, models generate a patch that is evaluated against real tests.

Building a good benchmark is difficult since tasks must be challenging enough to stump existing
models, but model predictions must also be easy to verify (Martı́nez-Plumed et al., 2021). Coding

∗Equal contribution. Correspondence to {carlosej,jy1682}@princeton.edu.
Data, code, and leaderboard at swebench.com

1

mailto:carlosej@princeton.edu
mailto:jy1682@princeton.edu
https://swebench.com

Published as a conference paper at ICLR 2024

tasks are appealing as they pose challenging problems to LMs yet generated solutions can be easily
verified by running unit tests. However, existing coding benchmarks, such as HumanEval (Chen
et al., 2021), mostly involve self-contained problems that can be solved in a few lines of code.

In the real world, software engineering is not as simple. Fixing a bug might involve navigating a
large repository, understanding the interplay between functions in different files, or spotting a small
error in convoluted code. Inspired by this, we introduce SWE-bench, a benchmark that evaluates
LMs in a realistic software engineering setting. As shown in Figure 1, models are tasked to resolve
issues (typically a bug report or a feature request) submitted to popular GitHub repositories. Each
task requires generating a patch describing changes to apply to the existing codebase. The revised
codebase is then evaluated using the repository’s testing framework.

SWE-bench offers several advantages over existing LM programming benchmarks. These include, a
realistic setting that utilizes user-submitted issues and solutions, diverse inputs featuring unique code
problems from 12 repositories, a robust framework for execution-based evaluation, and the ability
to continuously update the benchmark with new instances, requiring minimal human intervention.

We evaluate multiple state-of-the-art LMs on SWE-bench and find that they fail to solve all except
the simplest issues. Using a BM25 retriever, Claude 2 is only able to resolve 1.96% of the issues.

In addition to SWE-bench our contributions include the release of a training dataset, SWE-bench-
train, which is essential for advancing open model development in this challenging domain. This
dataset comprises a collection of 19,000 non-testing task instances derived from 37 repositories.
Utilizing SWE-bench-train, we release two fine-tuned models, SWE-Llama 7b and 13b, based on
the CodeLlama (Rozière et al., 2023) model. We find that in some settings SWE-Llama 13b is
competitive with Claude 2 and is capable of processing contexts exceeding 100,000 tokens.

2 SWE-BENCH

SWE-bench is a benchmark featuring GitHub issues from popular repositories that report bugs or
request new features, and pull requests that make changes to the repository to resolve these issues.
The task is to generate a pull request that addresses a given issue and passes tests related to the issue.

2.1 BENCHMARK CONSTRUCTION

GitHub is a rich data source for software development, but repositories, issues, and pull requests can
be noisy, ad-hoc, or poorly documented or maintained. To find high-quality task instances at scale,
we use a 3-stage pipeline as follows.

Resolves an issue

Contributes tests

✓
✓

Attribute Filter21 Scrape PRs
12 popular repositories
>90% Python Code

3

Installs successfully

PR passes all tests

✓
✓

Execution Filter

Figure 2: SWE-bench task instances are created from merged pull requests that resolve an issue,
contributes tests, and install successfully.

Stage I: Repo selection and data scraping. We start by collecting pull requests (PRs) from 12
popular open-source Python repositories on GitHub, producing about ∼ 90,000 PRs in total. We
focus on popular repositories as they tend be better maintained, have clear contributor guidelines,
and have better test coverage. Each PR has an associated codebase specified by it’s base commit.

Stage II: Attribute-based filtering. We create candidate tasks by selecting the merged PRs that (1)
resolve a GitHub issue and (2) make changes to the test files of the repository, which indicates that
the user likely contributed tests to check whether the issue has been resolved.

Stage III: Execution-based filtering. For each candidate task, we apply the PR’s test content, and
log the associated test results before and after the PR’s other content is applied. We filter out task
instances without at least one test where its status changes from a fail to pass (henceforth referred
to as fail-to-pass test). We also filter out instances that result in installation or runtime errors.

2

Published as a conference paper at ICLR 2024

Through these stages of filtering, the original 90,000 PRs are filtered down to the 2,294 task in-
stances which comprise SWE-bench. A final breakdown of these task instances across repositories
is presented in Figure 3, and Table 1 highlights the key features of SWE-bench task instances. We
highlight that the codebases are large with thousands of files, and the reference pull requests often
make changes to multiple files at once. Technical details about SWE-bench’s construction pipeline
are discussed in Appendix A. Additional dataset statistics are in Appendix A.5.

2.2 TASK FORMULATION

Model input. A model is given an issue text description and a complete codebase. The model is
then tasked to make an edit to the codebase to resolve the issue. In practice, we represent edits as
patch files, which specify which lines in the codebase to modify in order to resolve the issue.

Evaluation metrics. To evaluate a proposed solution, we apply the generated patch, using unix’s
patch program, to the codebase and then execute the unit and system tests associated with the
task instance. If the patch applies successfully and all of these tests pass we consider the proposed
solution to have successfully resolved the issue. The metric for our benchmark is the percentage of
task instances that are resolved. Additional technical details in Appendix A.4.

2.3 FEATURES OF SWE-BENCH

Traditional benchmarks in NLP typically involve only short input and output sequences and consider
somewhat “contrived” problems created specifically for the benchmark. In contrast, SWE-bench’s
realistic construction setting imbues the dataset with unique properties, which we discuss below.

Real-world software engineering tasks. Since each task instance in SWE-bench consists of a
large and complex codebase and a description of a relevant issue, solving SWE-bench requires
demonstrating sophisticated skills and knowledge possessed by experienced software engineers but
are not commonly evaluated in traditional code generation benchmarks.

Continually updatable. Our collection process can be easily applied to any Python repository on
GitHub and requires minimal human intervention. Therefore, we can extend SWE-bench with a
continual supply of new task instances and evaluate LMs on issues created after their training date,
which ensures that the solution was not included in their training corpus.

Diverse long inputs. Issue descriptions are typically long and detailed (195 words on average), and
codebases regularly contain many thousands of files. Solving SWE-bench requires identifying the
relatively small number of lines that need to be edited to solve an issue amongst a sea of context.

Robust evaluation. For each task instance, there is at least one fail-to-pass test which was used
to test the reference solution, and 40% of instances have at least two fail-to-pass tests. These tests
evaluate whether the model addressed the problem in the issue. In addition, a median of 51 additional
tests run to check whether prior functionality is properly maintained.

Cross-context code editing. Unlike prior settings that may constrain edit scope to an individ-
ual function or class (e.g., Chen et al., 2021; Cassano et al., 2022) or provide cloze-style fill-in
blanks (e.g., Lu et al., 2021; Fried et al., 2023), SWE-bench does not provide such explicit guid-
ance. Rather than merely having to produce a short code snippet, our benchmark challenges models
to generate revisions in multiple locations of a large codebase. SWE-bench’s reference solutions
average editing 1.7 files, 3.0 functions, and 32.8 lines (added or removed).

Wide scope for possible solutions. The task of repository-scale code editing can serve as a level
playing field to compare approaches ranging from retrieval and long-context models to decision-
making agents, which could reason and act in code. SWE-bench also allows creative freedom, as
models can generate novel solutions that may deviate from the reference PR.

3 SWE-LLAMA: FINE-TUNING CODELLAMA FOR SWE-BENCH

It is important to benchmark the performance of open models on SWE-bench alongside proprietary
models. At the time of writing, only the CodeLlama models (Rozière et al., 2023) are able to handle
the very long contexts necessary. However, we observe that the off-the-shelf CodeLlama variants

3

Published as a conference paper at ICLR 2024

astropy (95)

django (850)flask (11)
matplotlib (184)

pylint (57)
pytest (119)

requests (44)

scikit-learn (229)
seaborn (22)

sphinx (187) sympy (386)

xarray (110)

Figure 3: Distribution of SWE-bench tasks
(in parenthesis) across 12 open source GitHub
repositories that each contains the source code
for a popular, widely downloaded PyPI package.

Table 1: Average and maximum numbers char-
acterizing different attributes of a SWE-bench
task instance. Statistics are micro-averages cal-
culated without grouping by repository.

Mean Max

Issue Text Length (Words) 195.1 4477

Codebase # Files (non-test) 3,010 5,890
Lines (non-test) 438K 886K

Gold Patch
Lines edited 32.8 5888
Files edited 1.7 31
Func. edited 3 36

Tests # Fail to Pass 9.1 1633
Total 120.8 9459

are not capable of following the detailed instructions to generate repository-wide code edits, and
typically output placeholder responses or unrelated code. To better evaluate the capabilities of these
models, we perform supervised fine-tuning on the 7 billion- and 13 billion-parameter CodeLlama-
Python models. The resulting models are specialized repository editors that can run on consumer
hardware and resolve GitHub issues.

Training data. We follow our data collection procedure and collect 19,000 issue-PR pairs from an
additional 37 popular Python package repositories. In contrast to Section 2.1, we do not require
that pull requests contribute test changes. This allows us to create a much larger training set to use
for supervised fine-tuning. To eliminate the risk of data contamination, the set of repositories in the
training data is disjoint from those included in the evaluation benchmark.

Training details. Given the instructions, an issue text from GitHub and the relevant code files as the
prompt, we finetune SWE-Llama to generate the patch that solved the given issue (the “gold patch”).
For memory efficiency, we fine-tune only the weights of the attention sublayer using LoRA Hu et al.
(2022), and exclude training sequences with more than 30,000 tokens, reducing the effective size of
the training corpus to 10,000 instances. More details are provided in Appendix B.

4 EXPERIMENTAL SETUP

In this section we explain how inputs are constructed to run SWE-bench evaluation. In addition, we
review the models that we evaluate in this work.

4.1 RETRIEVAL-BASED APPROACH

SWE-bench instances provide an issue description and a codebase as input to the model. While
issues descriptions are usually short (195 words on average as shown in Table 1), codebases consist
of many more tokens (438K lines on average) than can typically be fit into an LMs context window.
Then the question remains of exactly how to choose the relevant context to provide to the model?

To address this issue for our baselines, we simply use a generic retrieval system to select the files
to insert as context. In particular, we evaluate models under two relevant context settings: 1) sparse
retrieval and 2) an oracle retrieval.

Sparse retrieval. Dense retrieval methods are ill-suited to our setting due to very long key and
query lengths, and especially the unusual setting of retrieving code documents with natural language
queries. Therefore, we choose to use BM25 retrieval (Robertson et al., 2009) to retrieve relevant files
to provide as context for each task instance. We experiment with three different maximum context
limits, and simply retrieve as many files as fits within the specified limit. We evaluate each model
on all limits that fit within its context window and report the best performance. From observation,
models perform best on the shortest context window, as shown in Table 2.

“Oracle” retrieval. For analysis purposes we also consider a setting where we “retrieve” the files
edited by the reference patch that solved the issue on GitHub. This “oracle” setting is less realistic,

4

Published as a conference paper at ICLR 2024

since an engineer working on addressing an issue may not know a priori which files need to be
modified. In addition, this setting is also not necessarily comprehensive since edited files alone may
not include all the required context to understand exactly how software will behave when interacting
with unseen parts of the code.

We compare the BM25 retrieval results with those of the “oracle” retrieval setting, as shown in
Table 3. We observe that in approximately 40% of instances, BM25 retrieves a superset of the
oracle files for the 27,000-token context limit. However, in almost half of the instances with the
27,000-token limit, it retrieves none of the files from the “oracle” context.

4.2 INPUT FORMAT

Once the retrieved files are selected using one of the two methods above, we construct the input
to the model consisting of task instructions, the issue text, retrieved files and documentation, and
finally an example patch file and prompt for generating the patch file. Examples of instances and
further details on this formulation are provided in Appendix D.

4.3 MODELS

Due to the need to process long sequence lengths, there are only a few models that are currently
suitable for SWE-bench. Thus we evaluate ChatGPT-3.5 (gpt-3.5-turbo-16k-0613), GPT-4
(gpt-4-32k-0613), Claude 2, and SWE-Llama with their context limits shown in Table 4.

Table 2: Model resolve rates with BM25 re-
trieval, with different maximum context lengths.

Max. Content

Model 13k 27k 50k

Claude 2 1.96 1.87 1.22
SWE-Llama 7b 0.70 0.31 0.00
SWE-Llama 13b 0.70 0.48 0.00

Table 3: BM25 recall with respect to oracle files
for different maximum context lengths.

BM25 Recall

13k 27k 50k

Avg. 29.58 44.41 51.06
All 26.09 39.83 45.90
Any 34.77 51.27 58.38

Table 4: We compare the different context lengths and proportion of the “oracle” retrieval setting
covered. Models with shorter context lengths are thus inherently disadvantaged. Note that descrip-
tions of token-lengths is a relative non-standard measure (e.g. Llama-tokenized sequences are 42%
longer on average than the equivalent sequence tokenized for GPT-4).

ChatGPT-3.5 GPT-4 Claude 2 SWE-Llama

Max. Tokens 16,385 32,768 100,000 ≥100,000
% of Instances 58.1% 84.1% 96.4% ≥94.8%

5 RESULTS

We report results for models using different retrieval mechanisms and prompting styles, then provide
some analysis and insight into model performance and difficulty. We summarize models’ perfor-
mance using BM25 retrieval in Table 5. Across the board, models struggle significantly to resolve
issues. The best performing model, Claude 2, is only able to resolve 1.96% of the issues.

To analyze the importance of the retriever to the overall system results, we present the “oracle”
retrieval results in Appendix Table 18. There, Claude 2 is able to resolve 4.8% of issues using the
“oracle” retriever. We further analyze the importance of context in the discussion below.

Difficulty differs across repositories. When breaking performance down by repository, all models
trend similarly across different repositories as show in Figure 4. Despite this, the issues resolved by
each model do not necessarily overlap extensively. For example, in the “oracle” setting Claude 2 and

5

Published as a conference paper at ICLR 2024

Table 5: We compare models against each other using the BM25 retriever as described in Section 4.
∗Due to budget constraints we evaluate GPT-4 on a 25% random subset of SWE-bench.

Model % Resolved % Apply

Claude 2 1.96 43.07
ChatGPT-3.5 0.17 26.33
GPT-4∗ 0.00 14.83
SWE-Llama 7b 0.70 51.74
SWE-Llama 13b 0.70 53.62

astropy
django

matplotlibseaborn flask
requests xarray pylint

pytest
scikit-learnsphinx

sympy0

5

10

15

%
Re

so
lve

d ChatGPT-3.5
Claude 2
SWE-Llama 13b

Figure 4: Resolution rate for three models across the 12 repositories represented in SWE-bench in
the “Oracle” retrieval setting.

SWE-Llama 13b perform comparably, with each model resolving 110 and 91 instances respectively.
Yet of these instances, Claude 2 only solves 42% of the instances solved by SWE-Llama.

This may also be related to the presence of images in issues, which can be encoded into the is-
sue markdown with embedded image links (i.e. ![image][https://...]). Some repositories
naturally feature more instances with images; for example 32% of matplotlib and 10% of seaborn
instances contain embedded images in their issue text compared to just 2% of all instances. Solving
these instances may require multi-modal LMs or some kind of external tool use to process images.

Difficulty correlates with context length. Chat models may be pre-trained on long sequences of
code but are typically asked to generate shorter coder snippets with limited context provided to
frame the question. As shown in Figure 5, we see that as total context length increases, Claude 2’s
performance drops considerably; behavior that is also observed in other models. In our evaluation
settings, models see a lot of code that may not be directly related to solving the issue at hand, and
they seem to frequently struggle with localizing problematic code needing to be updated. This result
corroborates other studies showing that models become distracted by additional context and may be
sensitive to the relative location of target sequences (Liu et al., 2023b). Even when increasing the
maximum context size for BM25 would increase recall with respect to the oracle files, performance
drops, as shown in Table 2, as models are simply ineffective at localizing problematic code.

<20k
20k-50k

50k-100k
>100k

of Input Tokens

0
10
20
30
40
50

%
of

Ta
sk

s

<500
500-1k

1k-2k >2k

of Issue Tokens

Status
Resolved
Applied

Figure 5: We compare the performance of Claude 2 on tasks
partitioned by total input length and by only the issue length.

Table 6: We show the results for
the “Oracle”-collapsed retrieval
setting, which uses oracle files but
collapses code that isn’t directly
modified by the PR ±15 lines.

Model “Oracle”-collapsed

Resolved Applied

ChatGPT-3.5 1.09 40.93
Claude 2 5.93 68.18
GPT-4 3.40 48.65

Further investigating this, we provide an input ablation on the “oracle” retrieval context, “oracle”-
collapsed, where retrieved files are collapsed entirely, except for the lines actually edited by the
true pull request (with ±15 lines of buffer) shown in Table 6. In this setting, we see increases in
performance, with GPT-4 jumping from 1.3% to 3.4% and Claude 2 from 4.8% to 5.9%.

6

Published as a conference paper at ICLR 2024

Difficulty does not correlate with issue resolution date. In Table 7 we show model results in the
“oracle” retrieval setting, partitioned by date, for PRs created before or after 2023. We find that for
most models there’s little difference in performance before or after this date, with the exception of
GPT-4. We consider this result to be largely promising as it suggests that despite models having
been exposed to some version of an repository’s codebase, they are unlikely to “cheat” to address
issues simply by generating a more recent version of the repository.

Table 7: We compare performance on task instances from before and after 2023 in the “Oracle”
retrieval setting. Most models show little difference in performance. ∗Due to budget constraints,
GPT-4 is evaluated on a 25% random subset of SWE-bench tasks, which may impact performance.

Claude 2 ChatGPT-3.5 GPT-4∗ SWE-Llama 7b SWE-Llama 13b

Before 2023 4.87 0.49 1.96 2.95 3.98
After 2023 4.23 0.77 0.0 3.46 3.85

Finetuned models are sensitive to context distribution shifts. The finetuned models SWE-Llama
7b and 13b perform surprisingly poorly with BM25 retrieved context. As these models were fine-
tuned using the “oracle” retrieval as context, we suspect this shift in context makes it difficult for
the model to perform reliably. For instance, SWE-Llama was trained to edit every file included as
context whereas in the BM25 setting many files provided in context are not expected to be changed.

Generating patches is easier than generating whole files. Models are often trained using standard
code files and likely rarely see patch files. We generally formulate our task to have models generate
patch files as opposed to recreating the entire file with their proposed change, since patch files will
usually be a much more efficient representation of a file change. As shown in Table 5, we observe
that models still struggle with generating well-formatted patch files. So we experiment with asking
models to instead regenerate entire files with their proposed changes to resolve the issue. In this
setting, we find that models generally perform worse at this task than when generating patch files;
for instance, Claude 2 scores at 2.2% compared to 4.8% in the main table for “oracle” retrieval.
Even when controlling for instance length, generating on the shorter half of the task instances by
input tokens yields 3.9% compared to 7.8% for generating patches with Claude 2.

Language models tend to generate shorter, simpler edits. Model generated patch files tend to
add and remove fewer lines than their respective gold patch. As shown in Table 8, compared to an
average gold patch, model generated patch files that apply correctly are less than half the total length
(74.5 versus 30.1 lines) of gold edit patch files, and rarely edit more than a single file.

Table 8: Average edits of model generated patches in the “oracle” retrieval setting across success-
fully applied patches. For the task instances specific to each model, we calculate the same statistics
across the gold patches. Avg Gold shows statistics macro-averaged over each models’ respective
gold patches. All Gold shows statistics for all gold patches unconditioned on model performance.

Model Total Lines Added Removed Functions Files

Claude 2 19.6 4.2 1.9 1.1 1.0
Gold 44.1 12.0 5.8 2.1 1.2

ChatGPT-3.5 30.1 3.8 2.7 1.6 1.0
Gold 39.6 9.5 6.1 1.9 1.2

GPT-4 20.9 4.4 1.5 1.0 1.0
Gold 33.6 8.4 3.8 1.9 1.1

SWE-Llama 13b 17.6 1.6 1.2 1.2 1.1
Gold 37.8 10.0 4.4 1.9 1.1

SWE-Llama 7b 16.7 1.3 1.2 1.2 1.1
Gold 40.2 11.3 4.9 1.9 1.1

Avg Gold 39.1 10.2 5.0 1.9 1.1
All Gold 74.5 22.3 10.5 3.0 1.7

7

Published as a conference paper at ICLR 2024

5.1 A QUALITATIVE ANALYSIS OF SWE-LLAMA GENERATIONS

We select 11 generations from SWE-Llama and Claude 2 to better understand the quality of the task
and generated patches under the “oracle” retrieval setting. Here we discuss an example from SWE-
Llama and our overall findings, with in-depth analyses for other examples shown in Appendix F.

Gold Patch

 (self, section: str) -> List[str]: 
- self. (_(), self._consume_fields()) 
+ self._config.napoleon_use_param: 
+
+ fields = self. (multiple=True) 
+ self. (fields) 
+ : 
+ fields = self. () 
+ return self. (_(), fields)

def
return
if

return
else

_parse_other_parameters_section
_format_fields

_consume_fields
_format_docutils_params

_consume_fields
_format_fields

'Other Parameters'

'Other Parameters'

Allow to declare multiple parameters at once (ex: x, y: int) 

sphinx/ext/napoleon/docstring.py

Generated Patch

 (self, section: str) -> List[str]: 
 self. (_(), self._consume_fields()) 
 return self._format_docutils_params(self._consume_fields())

def
return
_parse_other_parameters_section

_format_fields- 'Other Parameters'
+

sphinx/ext/napoleon/docstring.py

Generated Patch Test Results
PASSED

PASSED

PASSED

PASSED

PASSED

FAILED

FAILED

NumpyDocstringTest (test_yield_types) 
TestNumpyDocstring (test_escape_args_and_kwargs 1) 
TestNumpyDocstring (test_escape_args_and_kwargs 2)

TestNumpyDocstring (test_escape_args_and_kwargs 3) 
TestNumpyDocstring (test_pep526_annotations) 
NumpyDocstringTest (test_parameters_with_class_reference) 
TestNumpyDocstring (test_token_type_invalid)

===== 2 failed, 45 passed, 8 warnings in 5.16s =====

Model Input

You will be provided with a partial code base and an issue

statement explaining a problem to resolve.

napoleon_use_param should also affect "other
parameters" section Subject: napoleon_use_param
should also affect "other parameters" section

def self

return

def self

if

 (, se...

 self. (_(

 (, section):

 fields = self. ()

 self._config.napoleon_use_param: ...

_parse_other_parameters_section

_format_fields

_parse_parameters_section

_consume_fields

 # type: (unicode) -> List[unicode]

type: (unicode) -> List[unicode]

'Other Para...

Problem

Currently, napoleon always renders the Other parameters
section as if napoleon_use_param was False, see source

Figure 6: We show an example of an formatted task instance, a model prediction, and the testing
framework logs. In the patches, red highlights are deletions. Green highlights are additions.

We’ll consider the task instance sphinx-doc sphinx-8713 from the Sphinx documenta-
tion generator, shown in Figure 6. The issue states that the napoleon extension of Sphinx is
not properly formatting the documentation keyword “Other Parameters” when the config setting
napoleon.use_param is set to True. The issue text further provides a detailed code snippet of
where the problematic source code is suspected to be, as well as some code examples for reproduc-
ing the error and additional information related to package versions. For this particular instance, the
model did not resolve the task, failing to pass some of the tests resolved by the gold solution.

In the “oracle” retrieval setting, the model input provides this issue text along with some instruc-
tions, the full contents of files edited by the gold patch, and an example of the diff format we
expect the answer to be in. The total model input consists of 1,558 lines of context or 20,882 to-
kens. When comparing the gold patch and the model’s patch, we find an obvious mistake. While
the model edits the correct function, _parse_other_parameters_section at line 684 in
sphinx/ext/napoleon/docstring.py , it changes the function to behave as if napoleon.
use_param were always True instead of checking the config setting first and copying what the
_parse_parameters_section does, like the gold patch. In the tests, test_parameters
_with_class_reference directly compares the documentation produced using a config where
napoleon_use_param is set to False, which catches the model’s error immediately.

Comparing results across all the examples we consider, we notice a few prominent trends in behav-
ior. Models tend to write primitive Python code and do not leverage existing third-party libraries or
the rest of the codebase for their solutions. Models’ generations also reflect a “greedy” approach
of solving the problem exactly, with little regard for code style or logical constraints that might be
reflected by the codebase (i.e. using relative instead of absolute imports). In contrast, we observe
that many gold patches will make structural improvements that cover a much larger scope of the
codebase; these edits not only resolve the issue, but also anticipate and solve potential future issues.

6 RELATED WORK

Evaluation of LMs. Several recent works for evaluating LMs have either proposed a collection
of mutually distinct tasks spanning across multiple domains (Hendrycks et al., 2021; Liang et al.,
2022; Srivastava et al., 2023) or turned to the web as an interactive setting featuring tasks that require

8

Published as a conference paper at ICLR 2024

multiple steps to solve (Yao et al., 2022; Zhou et al., 2023; Deng et al., 2023; Liu et al., 2023d). There
are several drawbacks with such a “potpourri” style setup. First, each task tends to narrowly focus on
one or a few skills, resulting in challenges that are typically too simple, pigeonhole the model into a
reduced role, and do not provide models with the bandwidth to exercise their versatility or potentially
demonstrate new abilities (Srivastava et al., 2023). Consequently, a model’s performance on such
task conglomerations may not yield actionable, deep insights regarding its capabilities and how to
improve them (Schlangen, 2019; Martı́nez-Plumed et al., 2021; Bowman & Dahl, 2021). SWE-
bench addresses these shortcomings, as our work demonstrates that it is significantly challenging,
presents a wide range of possibilities for improving LMs to solve this task, and is easy to refresh
over time with new task instances, each of which introduce novel, nuanced, and practical challenges.

Code Generation Benchmarks. HumanEval (Chen et al., 2021) is the current standard in a long-
standing pursuit of synthesizing code from natural language descriptions (Yu et al., 2018; Austin
et al., 2021; Hendrycks et al., 2021; Li et al., 2022a; Zan et al., 2023). In the past year, subsequent
benchmarks have sought to augment HumanEval with extensions to different languages (Cassano
et al., 2022; Athiwaratkun et al., 2023; Orlanski et al., 2023), variations in edit scope (Yu et al.,
2023; Du et al., 2023), similar but novel code completion tasks (Muennighoff et al., 2023), and
more testing (Liu et al., 2023a). Simultaneously, separate works have sought to introduce new cod-
ing paradigms (Yin et al., 2022; Yang et al., 2023) or design library-specific problems (Lai et al.,
2022; Zan et al., 2022). Instead of partitioning problems into siloed datasets and curtailing them
for simplicity’s sake, SWE-bench’s collection procedure transforms the source code with minimal
post-processing, preserving a much broader set of challenges grounded in real-world software en-
gineering beyond closed form completion, such as patch generation, reasoning over long contexts,
navigating a codebase directory, and capturing dependency-based relationships across modules.

ML for Software Engineering. To overcome traditional program analysis techniques that may not
scale or incorporate natural language, one direction of current software engineering research is to
use neural networks, including LMs, to automate real-world software development processes (Ma-
niatis et al., 2023; Zheng et al., 2023; Hou et al., 2023). Use cases include automating commit
generation (Jung, 2021; Liu et al., 2023c), PR review (Yang et al., 2016; Li et al., 2022b; Tufano
et al., 2021), bug localization Kim et al. (2019); Chakraborty et al. (2018), testing (Kang et al., 2023;
Xia et al., 2023; Wang et al., 2023), and program repair (Gupta et al., 2017; Allamanis et al., 2017;
Monperrus, 2018; Jiang et al., 2018; Goues et al., 2019; Gao et al., 2022; Dinh et al., 2023; Motwani
& Brun, 2023). Most relevant to SWE-bench are works that have sought to apply LMs towards au-
tomated program repair (Xia & Zhang, 2022; 2023; Fan et al., 2023; Sobania et al., 2023), guiding
code editing with commits (Chakraborty & Ray, 2021; Zhang et al., 2022; Fakhoury et al., 2023).
However, none of the existing datasets (Just et al., 2014; Karampatsis & Sutton, 2019) present code
context at the scale of SWE-bench. Moreover, SWE-bench can be easily extended to new program-
ming languages and repositories, and it provides a significantly more realistic and challenging arena
to carry out experiments towards augmenting LMs with software engineering tools and practices.

7 DISCUSSION

Limitations and future directions. SWE-bench task instances are all in Python; we hope to apply
SWE-bench’s task instance collection procedure to expand its coverage to more programming lan-
guages and domains. Second, our experiments aim to establish a baseline of the simplest and most
straight-forward approaches for this task; we do not intend to constrain future methodologies to the
same type of approach and encourage future work to investigate different methods (e.g., agent-based
approaches, tool augmented LMs). Lastly, while this work evaluates models using execution-based
code testing, relying solely on this method is insufficient to guarantee reliable performance of model
generations, as we find automated code generations from LMs can frequently be less comprehensive,
efficient, or readable compared to human-written solutions.

Conclusion. The complexity of real-world software development processes extends far beyond
just code completion. By drawing on the open-source collaborative pipeline, SWE-bench creates
a faithful mirror of real world coding environments. This more realistic environment encourages
creative solutions that can have immediate applicability in open-source software development. We
hope that this benchmark and our other contributions can serve as valuable assets in the future
development of LMs that are more practical, intelligent, and autonomous.

9

Published as a conference paper at ICLR 2024

8 ETHICS STATEMENT

SWE-bench is collected entirely from public repositories with licenses that permit software usage
that our contributions are in accordance with. Details of the licenses are included in Table 12.
During the collection or evaluation processes, we do not collect information about GitHub users,
and the SWE-bench task instances do not use GitHub data beyond what is offered via the public API
and website. Our contributions do not involve any human subject participation; we do not perform
crowdsourcing or recruit human task workers for any part of SWE-bench, including its collection
and evaluation procedures along with the experiments. SWE-bench’s filtering criteria for GitHub
repositories based on popularity does not implicitly or explicitly rely on any discriminative or biased
heuristics for repository selection. For the dataset release, we plan to open source the SWE-bench
task instances, the collection and evaluation infrastructure, the experimental results, the training
data used for fine-tuning SWE-Llama models, and the SWE-Llama model weights. Following best
practice precedents, we will also put forth ample documentation to describe each component and
its use, and we will also put in place convenient communication channels for soliciting feedback to
improve SWE-bench. SWE-bench does not put forth any immediately harmful insights. We briefly
discuss the potential impact of SWE-bench’s usage in Section E.

9 REPRODUCIBILITY STATEMENT

For our submission, we have uploaded the entirety of the source code as a zipped file that has been
properly anonymized. We have organized the codebase such that separate directories correspond to
different contributions within the main paper (i.e. dataset collection, evaluation, open source model
inference, SWE-Llama training, etc.). The source code contains inline documentation that details
purpose and usage of different parts of the codebase. In addition, we also include the full set of 2294
SWE-bench task instances that contains all the components discussed in the main paper. Beyond the
documentation in the source code, we include thorough technical details for the collection pipeline
and evaluation procedures in Section A.2 and Section A.4 that complements the original details in
Section 2 of the main paper. These sections fully cover the logic presented in the code and can
be helpful for understanding it. Moving forward, as discussed in the ethics statement, we plan to
more formally release SWE-bench to the public as an open source repository with thorough details
that describes the benchmark, outlines the code, and details its usage. A major component of SWE-
bench is the collection framework, which will be part of the open sourced code. Because of its easily
maintainable design, as discussed in the main paper, our hope and belief is that SWE-bench should
be highly reproducible.

10 ACKNOWLEDGEMENTS

We thank Danqi Chen, Tri Dao, Zexuan Zhong, Tianyu Gao, Will Merrill, Mengzhou Xia, Dan
Friedman, Adithya Bhaskar, Austin Watkins, Aatmik Gupta, and Richard Zhu for their valuable
feedback and advice. We acknowledge support from the National Science Foundation under Grant
No. 2239363 and an Oracle Collaborative Research award. Any opinions, findings, conclusions, or
recommendations expressed in this material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

10

Published as a conference paper at ICLR 2024

REFERENCES

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. Learning to represent programs
with graphs. arXiv preprint arXiv:1711.00740, 2017.

Ben Athiwaratkun, Sanjay Krishna Gouda, Zijian Wang, Xiaopeng Li, and Yuchen Tian et. al. Multi-
lingual evaluation of code generation models, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, and Charles Sutton. Program synthesis with large
language models, 2021.

Samuel R. Bowman and George E. Dahl. What will it take to fix benchmarking in natural language
understanding?, 2021.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to bench-
marking neural code generation, 2022.

Saikat Chakraborty and Baishakhi Ray. On multi-modal learning of editing source code, 2021.

Saikat Chakraborty, Yujian Li, Matt Irvine, Ripon Saha, and Baishakhi Ray. Entropy guided spec-
trum based bug localization using statistical language model. arXiv preprint arXiv:1802.06947,
2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, and
Jared Kaplan et. al. Evaluating large language models trained on code, 2021.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web, 2023.

Tuan Dinh, Jinman Zhao, Samson Tan, Renato Negrinho, Leonard Lausen, Sheng Zha, and George
Karypis. Large language models of code fail at completing code with potential bugs. arXiv
preprint arXiv:2306.03438, 2023.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for evaluat-
ing llms on class-level code generation, 2023.

Sarah Fakhoury, Saikat Chakraborty, Madan Musuvathi, and Shuvendu K. Lahiri. Towards generat-
ing functionally correct code edits from natural language issue descriptions, 2023.

Zhiyu Fan, Xiang Gao, Martin Mirchev, Abhik Roychoudhury, and Shin Hwei Tan. Automated
repair of programs from large language models, 2023.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Wen tau Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling
and synthesis, 2023.

Xiang Gao, Yannic Noller, and Abhik Roychoudhury. Program repair, 2022.

Claire Le Goues, Michael Pradel, and Abhik Roychoudhury. Automated program repair. Commu-
nications of the ACM, 62(12):56–65, 2019.

David Gros, Prem Devanbu, and Zhou Yu. Ai safety subproblems for software engineering re-
searchers, 2023.

Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. Deepfix: Fixing common c lan-
guage errors by deep learning. In Proceedings of the aaai conference on artificial intelligence,
volume 31, 2017.

11

Published as a conference paper at ICLR 2024

Maurice H. Halstead. Elements of Software Science (Operating and programming systems series).
Elsevier Science Inc., USA, 1977. ISBN 0444002057.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps, 2021.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Leon Song, Samyam Ra-
jbhandari, and Yuxiong He. Deepspeed ulysses: System optimizations for enabling training of
extreme long sequence transformer models, 2023.

Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. Shaping program
repair space with existing patches and similar code. In Proceedings of the 27th ACM SIGSOFT
international symposium on software testing and analysis, pp. 298–309, 2018.

Tae-Hwan Jung. Commitbert: Commit message generation using pre-trained programming language
model, 2021.

René Just, Darioush Jalali, and Michael D. Ernst. Defects4J: A Database of existing faults to enable
controlled testing studies for Java programs. In ISSTA 2014, Proceedings of the 2014 International
Symposium on Software Testing and Analysis, pp. 437–440, San Jose, CA, USA, July 2014. Tool
demo.

Sungmin Kang, Juyeon Yoon, and Shin Yoo. Large language models are few-shot testers: Exploring
llm-based general bug reproduction, 2023.

Rafael-Michael Karampatsis and Charles Sutton. How often do single-statement bugs occur?
the manysstubs4j dataset. 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories (MSR), pp. 573–577, 2019. URL https://api.semanticscholar.org/
CorpusID:173188438.

Douwe Kiela, Max Bartolo, Yixin Nie, Divyansh Kaushik, Atticus Geiger, and Zhengxuan Wu et.
al. Dynabench: Rethinking benchmarking in nlp, 2021.

Yunho Kim, Seokhyeon Mun, Shin Yoo, and Moonzoo Kim. Precise learn-to-rank fault localization
using dynamic and static features of target programs. ACM Transactions on Software Engineering
and Methodology (TOSEM), 28(4):1–34, 2019.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Scott Wen
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for
data science code generation, 2022.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, and Ré mi Leblond
et. al. Competition-level code generation with AlphaCode. Science, 378(6624):1092–1097, dec
2022a. doi: 10.1126/science.abq1158. URL https://doi.org/10.1126%2Fscience.
abq1158.

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh Jannu, Grant Jenks, Deep Majumder, Jared
Green, Alexey Svyatkovskiy, Shengyu Fu, and Neel Sundaresan. Automating code review activi-
ties by large-scale pre-training, 2022b.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris Tsipras, Dilara Soylu, and Michihiro Yasunaga
et. al. Holistic evaluation of language models, 2022.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://api.semanticscholar.org/CorpusID:173188438
https://api.semanticscholar.org/CorpusID:173188438
https://doi.org/10.1126%2Fscience.abq1158
https://doi.org/10.1126%2Fscience.abq1158

Published as a conference paper at ICLR 2024

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for code generation. arXiv
preprint arXiv:2305.01210, 2023a.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni,
and Percy Liang. Lost in the middle: How language models use long contexts, 2023b.
arXiv:2307.03172.

Shangqing Liu, Yanzhou Li, Xiaofei Xie, and Yang Liu. Commitbart: A large pre-trained model for
github commits, 2023c.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, and Hanyu Lai et. al. Agentbench:
Evaluating llms as agents, 2023d.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, and Ambrosio Blanco et.
al. Codexglue: A machine learning benchmark dataset for code understanding and generation.
CoRR, abs/2102.04664, 2021.

Petros Maniatis, Daniel Tarlow, and Google DeepMind. Large sequence models for soft-
ware development activities, 2023. URL https://blog.research.google/2023/05/
large-sequence-models-for-software.html.

Fernando Martı́nez-Plumed, Pablo Barredo, Seán Ó hÉigeartaigh, and José Hernández-Orallo. Re-
search community dynamics behind popular ai benchmarks. Nature Machine Intelligence, 3:581
– 589, 2021. URL https://api.semanticscholar.org/CorpusID:236610014.

Thomas J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2(4):
308–320, 1976. doi: 10.1109/TSE.1976.233837.

Martin Monperrus. Automatic software repair. ACM Computing Surveys, 51(1):1–24, jan 2018. doi:
10.1145/3105906. URL https://doi.org/10.1145%2F3105906.

Manish Motwani and Yuriy Brun. Better automatic program repair by using bug reports and tests
together, 2023.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo,
Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruc-
tion tuning code large language models, 2023.

Gabriel Orlanski, Kefan Xiao, Xavier Garcia, Jeffrey Hui, Joshua Howland, Jonathan Malmaud, Ja-
cob Austin, Rishabh Singh, and Michele Catasta. Measuring the impact of programming language
distribution, 2023.

Simon Ott, Adriano Barbosa-Silva, Kathrin Blagec, Janina Brauner, and Matthias Samwald. Map-
ping global dynamics of benchmark creation and saturation in artificial intelligence. Nature
Communications, 13, 2022. URL https://api.semanticscholar.org/CorpusID:
247318891.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and be-
yond. Foundations and Trends® in Information Retrieval, 3(4):333–389, 2009.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, and Xiaoqing Ellen Tan et.
al. Code llama: Open foundation models for code, 2023.

David Schlangen. Language tasks and language games: On methodology in current natural language
processing research, 2019.

Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. An analysis of the automatic
bug fixing performance of chatgpt, 2023.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, and Abu Awal Md Shoeb et. al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models, 2023.

Rosalia Tufano, Luca Pascarella, Michele Tufano, Denys Poshyvanyk, and Gabriele Bavota. To-
wards automating code review activities, 2021.

13

https://blog.research.google/2023/05/large-sequence-models-for-software.html
https://blog.research.google/2023/05/large-sequence-models-for-software.html
https://api.semanticscholar.org/CorpusID:236610014
https://doi.org/10.1145%2F3105906
https://api.semanticscholar.org/CorpusID:247318891
https://api.semanticscholar.org/CorpusID:247318891

Published as a conference paper at ICLR 2024

Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing Wang. Software
testing with large language model: Survey, landscape, and vision, 2023.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: revisiting automated
program repair via zero-shot learning. In Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 959–
971, 2022.

Chunqiu Steven Xia and Lingming Zhang. Conversational automated program repair, 2023.

Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Lingming Zhang. Universal
fuzzing via large language models. arXiv preprint arXiv:2308.04748, 2023.

John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. Intercode: Standardizing
and benchmarking interactive coding with execution feedback, 2023.

Xin Yang, Raula Gaikovina Kula, Norihiro Yoshida, and Hajimu Iida. Mining the modern code
review repositories: A dataset of people, process and product. In Proceedings of the 13th Inter-
national Conference on Mining Software Repositories, pp. 460–463, 2016.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents, 2022.

Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua How-
land, Paige Bailey, Michele Catasta, Henryk Michalewski, Alex Polozov, and Charles Sutton.
Natural language to code generation in interactive data science notebooks, 2022.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, Yuchi Ma, Guangtai Liang, Ying Li, Tao
Xie, and Qianxiang Wang. Codereval: A benchmark of pragmatic code generation with generative
pre-trained models, 2023.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene
Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev. Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
3911–3921, Brussels, Belgium, October-November 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/D18-1425. URL https://aclanthology.org/D18-1425.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu
Chen, and Jian-Guang Lou. Cert: Continual pre-training on sketches for library-oriented code
generation, 2022.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Yongji Wang, and
Jian-Guang Lou. Large language models meet nl2code: A survey, 2023.

Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Gligoric. Coditt5:
Pretraining for source code and natural language editing, 2022.

Zibin Zheng, Kaiwen Ning, Jiachi Chen, Yanlin Wang, Wenqing Chen, Lianghong Guo, and We-
icheng Wang. Towards an understanding of large language models in software engineering tasks.
arXiv preprint arXiv:2308.11396, 2023.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic web environ-
ment for building autonomous agents, 2023.

14

https://aclanthology.org/D18-1425

Published as a conference paper at ICLR 2024

APPENDIX

In the appendix, we provide more thorough details regarding the dataset construction process, eval-
uation pipeline, and characterization of the SWE-bench benchmark.

A BENCHMARK DETAILS

This section complements Section 2 with a more technical and fine-grained summary of the data col-
lection, execution-based validation, and evaluation procedures, along with a fuller characterization
of the task instances.

A.1 HIGH LEVEL OVERVIEW

Pull request scraping. From a list of the top 5,000 most downloaded PyPI libraries during August
2023, we select the top 100 packages, identify each library’s corresponding open-source GitHub
repository, verify which packages have licenses allowing for free software use, and collect all PRs for
these repositories via the GitHub developer API. We elect to source problems from well-trafficked
repositories because widespread use usually suggests that the repository has extensive documenta-
tion, structured open-source development guidelines, and working, well-formatted code.

Task instance construction. We construct candidate task instances from PRs that satisfy three
conditions. First, the PR’s status must be Merged. A Merged status indicates that the PR’s associated
code changes were accepted and incorporated into its parent repository. Second, the PR resolves one
or more issues in its repository. An issue is defined according to its canonical usage in GitHub as
a digital ticket for tracking bugs, enhancements, or any general development goals for a software
project. We scan a PR’s title, body, and commit messages for linked issues (i.e. “fixes #24”). Third,
the PR must introduce one or more new tests. A new test is counted when a PR’s code changes edits
a file path containing a testing-related keyword (e.g. “test”, “testing”).

A PR that satisfies these criteria is then converted into a candidate task instance such as the example
in Figure 7. The codebase C is identified by the repository’s owner/name moniker and the pull
request’s base commit. Recovering the actual codebase from this information is straightforward.
We create mirrors of the original GitHub repositories, where each mirror is uniquely identified as
owner name. Cloning a repository’s corresponding mirror and checking out the base commit
yields C in its pre-PR state. The problem statement P is an aggregate of all related issues’ titles and
descriptions along with any subsequent comments written before the timestamp of the PR’s initial
commit to avoid leakage of solution details. A PR’s code changes are separated into a test patch
and a gold patch δ. T consists of all tests from files edited in the test patch. As shown in Figure 7,
both T and δ are stored as patch files. Further details about parsing PR and semantic data is in
Appendix A.2.

Execution-based validation. We verify the usability of a task instance via execution. For each
candidate, we first define a virtual environment to serve as an execution context, then install C
before applying any patches, and finally run T once before and once after the solution δ is applied.
A candidate is removed from consideration for the final dataset if any step in the verification process
fails. In addition, to ensure that a solution δ is non-trivial, we compare the pre-solution and post-
solution validation logs to check for whether there are one or more tests in T where the status
changes from fail to pass. Lastly, we exclude task instances with tests that invoke newly created
functions or classes first introduced in the solution δ. Since naming such constructs is typically
an arbitrary process and usually not explicitly specified in the problem statement, resolving tests
such as these may be an impossible task even for human developers. Information about execution
contexts, codebase installation, determining test statuses from logs, and more are in Appendix A.3.

Continuous Updates. SWE-bench’s collection process is easily extensible to any open source code
repositories, allowing for easy and low-maintenance extension to new programming languages and
code domains. This design also provides SWE-bench with temporal robustness; as new language
models trained on more recent source code are released over time, SWE-bench can simply be up-
dated to produce new task instances based on PRs created after any LM’s training date.

https://hugovk.github.io/top-pypi-packages/

15

https://hugovk.github.io/top-pypi-packages/

Published as a conference paper at ICLR 2024

Gold Patch
sklearn/ensemble/_hist_gradient_boosting/gradient_boosting.py

1041 (self): 
1042 + (self.loss and 
1043 + self.n_trees_per_iteration_): 
1044 + (
1045 +
1046 +) 
1047 + 
1048 self.loss :

1049 self.n_trees_per_iteration_ : 
1050 _LOSSES[]()

def
if

raise

if
if

return

_get_loss
==

== 1

==
== 1

'categorical_crossentropy'

"'categorical_crossentropy' is not suitable for " 
"a binary classification problem. Please use " 
"'auto' or 'binary_crossentropy' instead."

'auto'

'binary_crossentropy'

ValueError

Test Patch

418 stump_clf. (, y_isnan). (, y_isnan)
419

420 + ():

421 + # categorical_crossentropy should only be used if there

422 + # are more than two classes present. PR #14869

423 + [[], []]

424 + y [,]

425 + gbrt (loss)

426 + pytest.raises(, match):

427 + gbrt. (, y)

428

429

assert

def

with

fit score

test_crossentropy_binary_problem

fit

@pytest.mark.parametrize(, [,])

X X

X

HistGradientBoostingClassifier
ValueError

X

==

'categorical_crossentropy'
"'crossentropy' not suitable"

"scoring" 'loss'

1

= 1 0
= 0 1

= =
=

None

sklearn/ensemble/_hist_gradient_boosting/tests/test_gradient_boosting.py

Problem Statement
HGBC with categorical_crossentropy fails silently on binary classification

Ping @NicolasHug @ogrisel

gives:

And works fine.

should either generalize or raise an error on binary classification.

binary_crossentropy categorical_crossentropy

import as
from import
from import

 numpy np

 sklearn.experimental enable_hist_gradient_boosting

 sklearn.ensemble

 [[,], [,], [,], [,], [,]]

y [, , , ,]

gb (loss ,

 min_samples_leaf)

gb. (, y)

(gb. ([[,]]))

(gb. ([[,]]))

HistGradientBoostingClassifier

X

HistGradientBoostingClassifier

X

= 1 0 1 0 1 0 0 1 1 1
= 1 1 1 0 1

= =
=1

1 0
0 1

'categorical_crossentropy'

fit
print predict
print predict

[0]

[0]

Metadata
Repo

Created At
Instance ID

scikit-learn/scikit-learn
scikit-learn__scikit-learn-14869
Aug 31, 2019

Issue #s
Pull Number

[14858]
14869
1018f9f...Base Commit

Figure 7: SWE-bench task instance example. Problem statement P is an aggregation of the issues
related to the pull request. Codebase C corresponds to a repository and base commit. The tests T
and solution D are derived from the original PR’s associated code changes. Stylized for readability.

A.2 CONSTRUCTION PROCESS

We discuss additional details regarding the conversion of a pull request object into a candidate task
instance. At a high level, the main goal of this conversion is to acquire relevant information for
putting together the codebase C, problem statement P , unit tests T , and solution δ components
introduced in Section 2. To this end, a SWE-bench task instance consists of the following fields,
presented in the following Table 9. Collectively, the fields correspond to the four task instance
modules.

Field Description

base commit (str) The commit ID that the original PR is applied on top of
created at (date) Datetime object of when PR was first created (not merged)
hints text (str) Natural language suggestions for how to solve problem
instance id (str) A unique identifier created from repo and pull number
issue numbers (list) List of issue numbers that the original pull request resolves
patch (str) .patch-format styled string that is a reference solution

to the problem, extracted from the original PR’s code changes
problem statement (str) Natural language description of desired change to codebase
pull number (int) The pull number of the original pull request
test patch (str) .patch-format styled string containing unseen tests

for checking if a task was solved, extracted from the original
PR’s code changes

version (str) Release version (w.r.t. repo) during which PR was created
repo (str) The repository the task instance originates from
FAIL TO PASS (list) List of tests that change in status from fail to pass
PASS TO PASS (list) List of tests that change in status from pass to pass
env install commit (str) Base commit at which to install necessary

dependencies for running task instance.

Table 9: Description of each field of a SWE-bench task instance object. See § A.2 for details
regarding how each field is collected.

Problem Statement. The problem statement P for each task instance is readily available as the
problem statement field. The problem statement is an aggregate of all issues’ first comments
along with any comments attached to those issues that were created before the creation date of
the PR’s initial commit. We crawl for issues from PR’s title, body, and commit messages. After

16

Published as a conference paper at ICLR 2024

concatenating these components’ text data, we first remove any Markdown-style comments, then
look through the remaining text for references to issue numbers (a pound # sign followed by a
number) and check whether the word preceding the issue number reference is included in a set of
keywords suggesting that the issue was resolved by the PR (e.g. “closes”, “fixes”, “resolves”). The
found issues are recorded in the issue numbers field, then separate web requests are made to
retrieve each issue’s data. To form the problem statement, each issue’s title and body are
added together and then concatenated with the next issue’s if there are multiple. It is also during this
step that the hints text field is created and collected from the PR’s comment section, where text
from comments created before the PR’s initial commit. The intuition for this collection methodology
is that such PR comments would likely contain natural language and pseudo-code suggestions to
the original human task worker regarding how to complete the problem at hand. The experiments
presented in this work do not make use of hints text, but we believe this information may be
interesting for future investigations.

Codebase. The codebase C content is not stored in plaintext for every task instance. Rather, the
task instance contains a reference to the relevant codebase via the repo and base commit field.
Both fields are available in the original PR’s data. To make retrieval of the codebase C from these
two elements reproducible and reliable, we create mirrors of the original repository. Mirrors for
the repository constituting both the evaluation and fine tuning data are collected and open-sourced
under the SWE-bench GitHub organization. Because an original repository’s code may be subject to
changes in its commit and edit history outside of the authors’ control, we choose to create a mirror
repository to ensure that later modifications to the codebase do not potentially render a task instance
unusable due to a corruption or removal of the associated base commit. Additionally, we create
a mirror instead of cloning and storing the latest version of a repository. This is because a mirror
retains the original commit hashes, history, branches, and tags, serving as a faithful and complete
history of the technical details of the original repository. A mirror does not retain stars, watchers,
issues, or pull requests from the original repository.

We create a mirror from a repository after and within the same day when task instances were col-
lected. The mirror retains the original repository’s “owner/name” moniker, except that the “/”
character is converted to a “ ” to confirm to GitHub naming conventions. Given this infrastructure,
retrieving a task instance’s codebase is straightforward. First, the correct mirror can be cloned from
the SWE-bench organization using repo. Next, within the local copy of the mirror, checking out
the base commit will reset the repository to codebase C. To proceed to another task instance
from the same repository, git version control is used to automatically remove any modifications
associated with the current task instance before checking out the next task instance’s base commit.

Solution, Test Patches. The solution δ and tests T are derived from the file changes data, or diff,
of a PR. As mentioned in Section 2.1, the original diff along with solution δ and tests T are
represented as a .patch file, a format for efficiently specifying transformations to line-based text
files. Generally speaking, a .patch is structured as a list of blocks, where each block consists of
a header and one or more hunks that collectively correspond to changes to a single file. The header
contains metadata specifying a file path and line numbers, while the actual modifications to the
target file are encoded as multiple lines prefixed by “+” and “-” to indicate additions and removals.
To create the tests T , we first identifying every unique block within the patch, then pick out and
conglomerate blocks with file paths that contain testing-related keywords (e.g. “tests”, “testing”).
The remaining blocks are merged to form the solution δ. We validate the robustness of the script
written to parse correctly T and δ by applying both patches to the corresponding codebase C and
running the tests; we then check that the results reproduce the behavior of the base PR’s diff data.
The solution δ is saved as the patch field while the tests T are saved as the test patch field.

Remaining Fields. The created at field is a timestamp that specifies when the base PR was cre-
ated. We retain the created at field from the original data and use this field to perform temporal
analysis of model performance. The version field is a string that corresponds to the release ver-
sion, with respect to the repo, during which the PR was released. Depending on availability and the
amount of effort required for each method, we create the version field by retrieving the informa-
tion directly from the source code, building the repository locally and invoking code to display the
version to standard output, or comparing the created at field with a timeline of release versions

Documentation for creating a mirror repository using GitHub

17

https://docs.github.com/en/repositories/creating-and-managing-repositories/duplicating-a-repository

Published as a conference paper at ICLR 2024

from a repository’s webpage. We create executable contexts for every version of a repository, as
discussed in greater detail in § A.3.

A.3 EXECUTION-BASED VALIDATION

After filtering through all the PRs from a repository and converting those that satisfy the aforemen-
tioned criteria into candidate task instances, the next step is to validate the usability of each task
instance via execution. This procedure is broken down into three steps. First, we create executable
contexts for each release version of a repository. Next, we check whether the solution δ and tests T
can be applied, installed, and run successfully on top of codebase C. Finally, we examine each task
instance’s execution log to verify a specific set of behaviors to ensure that the task is usable and fair
for model evaluation.

Executable Contexts. We choose to create executable contexts per release version after experi-
menting with various degrees of granularity with regards to what definition level to define virtual
environments for. Defining task instance-specific contexts is most conducive to ensuring end-to-end
installation success, but comes at the cost of laborious manual handcrafting. On the other hand, a
repository-specific context based on the latest version of a repository is typically too coarse of a
definition that is not compatible with older versions’ requirements. We find that release versions are
a good proxy for capturing the dependency requirements across a subset of task instances, striking a
manageable balance between installation success and manual effort. We manually create each exe-
cutable context by examining the codebase of the latest task instance for each version. Based on the
source code and documentation typically found in the repository’s README and CONTRIBUTING
guides, we find out the Python version, necessary dependencies, and installation command.

Validation Engine. The purpose of the validation engine is to verify candidate task instances.
Specifically, this step checks first, that the solution δ and tests T can be applied to codebase C,
and second, that the codebase can be properly installed and run within the corresponding virtual
environment. To do this, we perform validation repository-by-repository, where for each repository’s
set of task instances, we perform the following procedure:

1. Create executable contexts as conda envs. based on latest task instance per version.

2. Group task instances by version.

3. Iterate across each task instances group, where for each task instance, we perform the
following within the corresponding conda env.

(a) Remove any file changes and checkout the task instance’s base commit. This sets
the repository to codebase C.

(b) Run the installation command to instantiate codebase C.
(c) Apply the test patch T to codebase C.
(d) Run the testing script, determined from test patch T , to generate test result logs logpre.
(e) Apply the solution δ patch to the codebase C with tests T .
(f) Run the testing script from part (d) again to generate test result logs logpost.

The testing command consists of the testing framework used by the repository (e.g. pytest, tox)
with paths specified in T appended. The testing command would run any and all tests that are speci-
fied within the contents of each file path. If any of the steps (a) through (f) fails, the candidate task
instance is discarded from consideration. With moderate variation across repositories, we observe
that this step generally removes half of the candidate task instances.

Examining Validation Logs. Last but not least, we check the logs logpre and logpost created by the
validation engine for specific properties. First, to guard against arbitrary naming choices, we check
logpre for ImportError and AttributeError occurrences, which are potentially indicative
of dependency naming related errors that would trivial and near-impossible to address correctly. To
this end, we remove all task instances with such errors in their logpre from consideration. Next, we
compare the test results to check that the task instance is non-trivial, indicated by at least one or
more tests having a fail status before the solution δ is applied, then a pass status after. To check
this, we first define several repository-specific parsers to convert logpre and logpost into mappings
of test ti ∈ T to a status s ∈ [fail,pass]. Given these two data structures, we then check that there

18

Published as a conference paper at ICLR 2024

Repo Total PRs Crawled Post-Conversion Post-Validation (Final)

astropy 9,469 1,016 95
django 16,914 2,880 850
flask 2,434 107 11
matplotlib 16,545 1,057 184
pylint 3,848 787 57
pytest 5,147 750 119
requests 2,344 84 44
scikit-learn 15,159 1,169 229
seaborn 1,004 203 22
sphinx 4,931 645 187
sympy 11,928 1,897 386
xarray 3,416 812 110

Total 93,139 11,407 2,294

Table 10: Statistics for how many candidate task instances were kept after the completion of a stage
across the construction and validation procedures.

exists at least one ti where s changes from fail to pass. If no such tests are found, the task instance
is removed from consideration.

If a task instance fulfills these two criteria, then it is included in the evaluation dataset. Table 10
displays a summary of how many task instances were removed from consideration across the con-
struction process and execution based validation steps. We save all finalized task instances to a
single .json file that is open sourced and available for download.

Alongside the task instances, we also create a corresponding folder containing the ground truth
test results. For each task instance, from their respective logpre and logpost test-to-status map-
pings, we create a test results data structure where the keys are FAIL TO FAIL, FAIL TO PASS,
PASS TO FAIL, and PASS TO PASS, and the values are lists of tests. By “caching” these results,
we remove the need to re-run the solution δ at evaluation time (although re-running is an available
option). We use this data structure to verify task completion, as discussed in Section A.4.

A.4 EVALUATION PROCEDURE

 Lang. Model
SWE-Llama

 Harness
 Apply → Rep
 Apply → Rep
 Run Test Script
 Log Results

Patch
Tests

SWE-Bench Task

1 Input 2 Generates

3 Evaluation

3

3

4 Results
Codebase

Astropy/Astropy

 Tests
table/tests/test_ops.p

 test_join_struct_co
 test_vstack_struct_co
 test_dstack_struct_col

 Patch
diff --git a/astropy/utils/... 
--- a/astropy/utils/meta.py 
+++ b/astropy/utils/meta.py 
@@ -73,7 +73,7 @@ def... 
 ... 
- return arr.dtype.str 
+ return arr.dtype.str if arr.

 dtype.names is None else ...

 Problem P
Title: vstack'ing
structured array tables
fails with casting error

 Results
table/tests/test_ops.py

 test_join_struct_col

 test_vstack_struct_col

 test_dstack_struct_col

Figure 8: Visualization of the evaluation pipeline at an individual task instance level. During evalua-
tion, the Patch is model generated. A prediction .patch must be applied successfully and produce
the same results as the corresponding task instance’s D for task completion.

We provide a visualization of the evaluation procedure in Figure 8. The evaluation procedure scores
the model’s δ̂ .patch generation with respect to the behavior of the solution δ. At a finer-grained
level, the evaluation procedure can be broken down into four separate steps, highlighted by the
numbered steps in Figure 8. First, the codebase and problem statement are visible and given to the

19

Published as a conference paper at ICLR 2024

LM; the LM then generates a .patch prediction δ̂. In the evaluation step, the following steps are
performed per prediction on the target task instance:

1. Remove any file changes and checkout the task instance’s base commit. This sets the
repository to codebase C.

2. Activate the executable context corresponding to the task instance’s version.

3. Run installation command to instantiate codebase C.

4. Apply test patch T to codebase C.

5. Apply prediction patch δ̂ to codebase C with tests T .

6. If the previous step fails, we attempt to fix prediction patch δ̂ automatically and reapply it.

7. Run the testing script, determined from test patch T , to generate test result logs logδ̂ .

Steps 1 through 4 reliably do not fail due to verification during the task instance validation process.
If applying the prediction patch (Step 5) fails, we attempt to repair the prediction patch file by
removing unnecessary context lines and recalculating the header values (Step 6). If the remaining
patch fails again or running the test command (Step 7) fails, then the prediction is automatically
given a score of 0. Assuming these steps succeed, the output log logδ̂ can then be converted to
a test-to-status mapping, identical in structure to the via the appropriate, repository-specific parser
introduced in § A.3.

Evaluation Metrics Calculation. To determine task completion, we compare the test-to-status
mapping parsed from logδ̂ with the list of tests corresponding to the FAIL TO PASS and
PASS TO PASS keys from the ground truth test results data structure. Determining task completion
is straightforward; we check that all FAIL TO PASS and PASS TO PASS tests are found and have
a pass status in the evaluation test-to-status mapping. If a test is missing or has a non-pass status, it
is considered a fail status. As defined and used in the main paper, a task is considered solved if all
tests across FAIL TO PASS and PASS TO PASS pass.

A.5 EVALUATION TEST SET CHARACTERIZATION

We include an expanded form of Table 1 that includes repository specific statistics in Table 11. Table
12 presents a brief description of each repository extracted from the repository’s documentation
along with the repository’s associated open source license. The associated licenses all permit non-
commercial usage of the original library source code as long as the permissions in the original
licenses are upheld and retained. In addition to the original statistics presented in Table 1, we
introduce three new values. The δ # Lines Added and δ # Lines Removed together sum up to δ Lines
Edited. “Added” refers to the number of new lines that are introduced, while “Removed” are pre-
existing lines taken out by the solution. The |T | (Pass to Pass) statistic refers to the number of tests
that were passing before the solution δ was applied during the validation pipeline. Unlike fail to pass
tests that are intended to characterize the problem statement P and determine if a revision addresses
the issue, pass to pass tests are included to ensure that the revision does not break or violate any
existing expected behavior. These tests are extracted during the validation log examination phase
as discussed in § A.3. We note that fail to fail tests and pass to fail tests are not considered during
evaluation, and those statistics are not reflected in the above table.

Task Instance Issue Categories. To provide a better sense of the types of problems that
SWE-bench task instances include, we perform simple analyses on the issues, identified by the
issue numbers field, for each task instance. Per issue, we inspect metadata, specifically tags, to
characterize the type of contribution put forth by the PR. Table 13 groups and shows several exam-
ples of the 2,289 tags we found across all issues. While the absolute majority of issues are associated
with bug fixes, SWE-bench’s task instances are associated with a diverse set of code changes with
purposes beyond debugging and error correction.

Attribute Distributions. In Figure 9, we present plots of the cumulative distribution function for
attributes introduced in Table 1. From these plots, we see that the median SWE-bench task instance
has a problem description of 140 words, and will take place within a codebase containing just shy of
1900 files and 400K lines. The corresponding reference solution δ will usually edit a single function

20

Published as a conference paper at ICLR 2024

Figure 9: Cumulative Distribution Functions for different attributes of SWE-bench task instances.

21

Published as a conference paper at ICLR 2024

astropy django flask matplotlib pylint pytest

P Length (Characters) 2,742 1,307 1,185 2,381 2,011 2,948
C # Files 1,811 6,356 225 4,395 2,426 497
C # Lines 804k 407k 35k 646k 109k 111k
δ # Files Edited 1.5 1.5 1.6 1.5 1.8 1.4
δ # Func. Edited 2.5 2.0 2.4 2.2 1.8 1.7
δ # Lines Edited 36.0 18.5 35.4 58.9 36.0 24.5
δ # Lines Added 25.0 12.8 23.7 35.7 26.6 18.2
δ # Lines Removed 10.9 5.7 11.6 23.2 9.5 6.4
|T | (Fail to Pass) 21.7 8.8 1.4 2.4 6.8 4.1
|T | (Pass to Pass) 191.0 85.9 32.5 242.4 47.0 60.7
|T | (All) 212.8 94.6 33.9 244.8 53.7 64.8

requests scikit-learn seaborn sphinx sympy xarray

P Length (Characters) 1,654 2,239 1,667 1,888 1,213 3,515
C # Files 119 1,224 273 1,483 1,666 260
C # Lines 30k 361k 105k 423k 678k 137k
δ # Files Edited 1.64 1.68 1.77 1.51 1.9 2.45
δ # Func. Edited 1.59 2.24 1.41 2.72 3.22 3.16
δ # Lines Edited 25.5 44.0 30.1 30.6 36.3 124.8
δ # Lines Added 19.2 32.7 24.9 22.0 24.2 95.6
δ # Lines Removed 6.2 11.3 5.2 8.6 12.1 29.2
|T | (Fail to Pass) 7.6 7.5 12.9 2.3 2.2 58.5
|T | (Pass to Pass) 87.1 150.7 86.8 45.1 74.5 297.5
|T | (All) 94.7 158.2 99.7 47.4 76.8 356.1

Table 11: Average numbers characterizing different attributes of a SWE-bench task instance grouped
by repository. In addition to the statistics presented in Table 1, we also introduce three new values:
δ # Lines Added, δ # Lines Removed, and |T | (Pass to Pass).

Repository Summary License

astropy/astropy Astronomy and astrophysics core library BSD 3-Clause
django/django Web framework for building web applications BSD 3-Clause
pallets/flask Lightweight framework for small web apps BSD 3-Clause
matplotlib/matplotlib Plotting library for creating visuals Custom
pylint-dev/pylint Static code analyser for Python 2 or 3 GPL 2.0
pytest-dev/pytest Testing framework for Python MIT
psf/requests Simple, elegant library for writing HTTP requests Apache-2.0
scikit-learn/scikit-learn Machine Learning in Python BSD 3-Clause
mwaskom/seaborn Statistical data visualization in Python BSD 3-Clause
sphinx-doc/sphinx Library for creating documentation Custom
sympy/sympy Computer algebra system written in Python Custom
pydata/xarray N-D labeled arrays and datasets Apache-2.0

Table 12: Summary and licenses for all GitHub repositories that task instances were extracted from.

within a file, changing ∼15 lines, and has a single fail to pass test to verify the correctness of the
change along with 51 pass to pass tests to check whether existing behavior is preserved.

Patch Fix Rate. We present Table 14, which presents summary statistics of how many task instances
each model generated patches for (out of 2294), how many of these patches applied successfully,
and how many of the successfully applied patches required undergoing the patch fixing procedure
introduced in Appendix A.4. We find that fixed patches tend to make up a smaller percentage of the
SWE-Llama patches that successfully applied, suggesting that SWE-Llama’s fine tuning procedure
has a positive effect on generating well-formatted patches. For closed source models, fewer patches
apply successfully, and of the ones that do, a greater percentage require the post-generation fix,
suggesting that models still struggle with patch generation and structured outputs in general.

22

Published as a conference paper at ICLR 2024

Category Count Examples

Bug 442 “Bug” (179); “type:bug” (114); “bug” (57); “type: bug” (48);
“Bug :beetle:” (23); “status: confirmed bug” (20);;

Feature 167 “type:enhancement” (47); “Enhancement” (25); “New feature” (24);
“Feature Request” (22); “type: enhancement” (19);
“Enhancement :star:” (15); “New Feature” (7); “enhancement” (6);

Regression 39 “type: regression” (14); “Regression” (14); “regression” (8);
Other 1641 “help wanted” (71); “good first issue” (66); “printing” (58);

“extensions:autodoc” (58); “Easy” (57); “Easy to Fix” (54);
“domains:py” (27); “core” (26); “sets” (23); “Wrong Result” (23);
“units” (22); “Good first issue” (21);

Table 13: Categories of tags associated with issues from SWE-bench’s task instances.

Model Retrieval Setting Generations Applies Fixed Patch Fix %

ChatGPT-3.5 BM25 13k 2,270 604 363 60.1%
ChatGPT-3.5 “Oracle” 1,262 500 222 44.4%
ChatGPT-3.5 “Oracle”-collapsed 1,811 939 420 44.73%
Claude 2 BM25 13k 2,281 988 302 30.57%
Claude 2 “Oracle” 2,138 1,441 360 24.98%
Claude 2 “Oracle”-collapsed 2,242 1,564 465 29.73%
GPT-4 BM25 27k 573 85 59 69.41%
GPT-4 “Oracle” 462 195 121 62.05%
GPT-4 “Oracle”-collapsed 2,292 1,116 684 61.29%
SWE-Llama 13b BM25 13k 2,010 1,230 369 30.0%
SWE-Llama 13b “Oracle” 2,125 1,532 378 24.67%
SWE-Llama 7b BM25 13k 2,139 1,187 340 28.64%
SWE-Llama 7b “Oracle” 2,119 1,503 298 19.83%

Table 14: Statistics for how many patches for 2,294 task instances were generated, applied suc-
cessfully, and required a post-generation fix to apply successfully for each [model, retrieval setting]
combination during evaluation. The GPT-4 BM25 27k and “Oracle” settings were ran on the 25%
subset. The GPT-4 “Oracle”-collapsed setting was run on the full SWE-bench test set.

A.6 DEVELOPMENT SET CHARACTERIZATION

In addition to the evaluation test set, we also provide a development set for evaluating models and
tuning hyperparameters before running on the final test set. Following the style of tables and graphs
from before, we present similar statistics to characterize the 225 development task instances (slightly
more than 10% of the main evaluation set) collected from 6 open source repositories with licenses
permitting such usage. The development set was collected following the exact same set of method-
ologies and filters as the main evaluation set. In addition to the pre-existing steps, we also filter the
development set to keep task instances that were created after January 1, 2019. Similar to Table 12,
in Table 15, we briefly summarize the purpose and licenses of the 6 selected repositories.

Following Table 13, we also list the tags associated with the the development set tasks in Table 16,
again showcasing the diversity and coverage of task types beyond fixing bugs. Compared to the main
evaluation tasks, we can also see tags (e.g., “Crash :collision:”, “io”) that refer to issues presenting
problems which are unique to the repositories in the development set.

Following Table 1, we present the same set of repository-specific average statistics for the 6 repos-
itories in the development set in Table 17. Across the entire development set, each task instance
has 19.9 average / 2 median F2P tests. There are 171.3 average / 79.0 median P2P tests, and 191.2
average / 101.0 median tests in total per task instance.

23

Published as a conference paper at ICLR 2024

Repository Summary Count License

marshmallow-code/ Parse complex objects to/from Python data-types 9 MIT
marshmallow

pylint-dev/astroid Library for AST parsing, static analysis/inference 31 LGPL-2.1
pydicom/pydicom Read/modify/write DICOM files w/ Python 56 Custom
pvlib/pvlib-python Simulate photovoltaic energy systems performance 63 Custom
pyvista/pyvista 3D plotting, mesh analysis through interface 16 MIT
sqlfluff/sqlfluff SQL linter, supports multiple dialects, templates 50 MIT

Table 15: Summary and licenses for all GitHub repositories that development task instances were
extracted from.

Category Count Examples

Bug 127 “bug” (111); “Bug :cockroach:” (10); “rule bug” (6);
Feature 55 “enhancement”: 46; “Enhancement :star:”: 5; “feature-request”: 2;
Regression 4 “Regression” (4);
Other 95 “api”: 11, “documentation”: 7, “help wanted”: 6, “config options”: 5,

“io”: 5, “jinja”: 4, “good first issue”: 4, “parser” 3

Table 16: Categories of tags associated with issues from SWE-bench’s development task instances.

B ADDITIONAL DETAILS ON TRAINING SWE-LLAMA

B.1 TRAINING DETAILS

Optimization. We finetune using LoRA (Hu et al., 2022) with r = 16, α = 16, dropout = 0.05,
on the query, key, value, and output projection matrices of every attention sublayer. We train with
a learning rate of 6e − 4 and a batch size of 32 sequences per gradient step for a maximum of
4 epochs. During training, we save checkpoints every 50 steps, and after training, select the best
checkpoint based on the validation loss on a held-out 100 instances. SWE-Llama 7b was initialized
with CodeLlama-Python 7b and trained in 20 hours on 4 NVIDIA A100s. SWE-Llama 13b was
initialized with CodeLlama-Python 13b and trained in 47 hours on 8 NVIDIA A100s. We used
DeepSpeed Ulysses (Jacobs et al., 2023) and Flash Attention (Dao et al., 2022) to enable long
context training.

C ADDITIONAL RESULTS

C.1 RESULTS WITH “ORACLE” RETRIEVAL

Using the “oracle” retrieval method described in Section 4.1, we show the general performance
results in Table 18. Naturally, providing only the files edited by the reference solution’s pull request,
model performance improves compared to the noisier BM25 retrieval setting.

C.2 EVALUATION TEST SET

We include a repository-by-repository breakdown of model performance in Table 19 that corre-
sponds to Figure 4 in the main paper. As discussed, in the main paper, performance differs heavily
across repositories.

C.3 GPT-4 EVALUATION SUBSET RESULTS

In this section, we present the statistics shown in Table 5 for the 25% random subset that GPT-4 was
tested in Table 20. As the selection of the subset is random, we find that the % Resolved and %
Apply rates are consistent with the main results, and not significantly skewed towards being simpler
or more difficult than the general evaluation set.

24

Published as a conference paper at ICLR 2024

astroid marshmallow pvlib pydicom pyvista sqlfluff

P Length (Characters) 2199 1619 1790 2076 1475 2639
C # Files 252 82 294 455 866 2297
C # Lines 60K 22K 459K 170K 661K 205K
δ # Files Edited 2.51 1.89 1.83 1.54 2.1 3.26
δ # Func. Edited 3.03 2.11 2.89 2.23 3.0 2.71
δ # Lines Edited 83.1 36.2 93.3 42.0 101.0 102.5
δ # Lines Added 52.8 24.7 67.0 29.7 79.4 63.6
δ # Lines Removed 30.3 11.6 26.4 12.3 21.6 38.9
|T | (Fail to Pass) 23.2 53.0 19.1 24.0 8.8 14.8
|T | (Pass to Pass) 182.6 242.9 107.5 176.1 96.5 239.7
|T | (All) 205.8 295.9 126.6 200.1 105.3 254.5

Table 17: Average numbers characterizing different attributes of a SWE-bench task instance grouped
by repository for repositories in the development dataset. The same statistics presented in Table 11
are also shown here.

BM25 Retrieval “Oracle” Retrieval

Model % Resolved % Apply % Resolved % Apply

Claude 2 1.96 43.07 4.80 62.82
ChatGPT-3.5 0.17 26.33 0.52 21.80
GPT-4∗ 0.00 14.83 1.74 34.00
SWE-Llama 7b 0.70 51.74 3.01 65.52
SWE-Llama 13b 0.70 53.62 3.97 66.78

Table 18: We compare models against each other using the BM25 and oracle retrieval settings as
described in Section 4. The main results table, Table 5, presents the results for the different models
when using BM25 only. ∗Due to budget constraints we evaluate GPT-4 on a 25% random subset of
SWE-bench in the “Oracle” and BM25 27K retriever settings only.

C.4 EXTENDED TEMPORAL ANALYSIS

In this section, we present an extended temporal analysis of task instances solved by year that follows
the analysis shown in Table 7 of the evaluation section in the main paper. In Table 21, we present
the % Resolved statistic across models under the “Oracle” retrieval setting for 6 different temporal
partitions that group tasks by the years in which the issues were created. It is evident from the
table that there is no consistent correlation between model performance and year, supporting our
conclusion that despite having potentially seen older versions of code within its pre-training datasets,
understanding and implementing in fixes in SWE-bench is a difficult task that requires understanding
and cannot be accomplished feasibly or consistently via memoization of observed data.

C.5 F2P, P2P RATE ANALYSIS

In the main paper results, we present the “% Resolved” statistic that indicates how many task in-
stances were completely solved by the different models. In this section, we provide more fine-
grained insight into the gap of task instances where 1. The model’s patch generation was applied
successfully and 2. The task instance was not resolved. Assuming a patch is applied successfully,
we define 6 cases in Table 22 that fully capture the distribution of all possible outcomes based on
the pass/fail results of F2P and P2P tests. In addition to the “Resolved” outcome that has been
established, we introduce five new terms. The “Breaking Resolved” outcome refers to when the
desired behavior of the issue has been accomplished (all F2P tests pass), but not all prior behavior is
maintained (not all P2P tests pass). “Partially Resolved” refers to when prior behavior of a codebase
was maintained (all P2P tests pass); however, the desired behavior is not fully accomplished (not all
F2P tests pass). The “Work in Progress” case is when the desired behavior is not fully accomplished
(not all F2P tests pass) and the prior behavior of the codebase is not maintained (not all P2P tests
pass). A “No-Op” is when a code change does not have any effect on the original codebase; prior

25

Published as a conference paper at ICLR 2024

Repo Claude 2 ChatGPT-3.5 GPT-4 SWE-Llama 13b SWE-Llama 7b

astropy/astropy 3.23 0.00 0.00 1.06 3.16
django/django 6.15 1.32 2.50 5.19 4.00
matplotlib/matplotlib 3.05 3.33 0.00 3.12 1.11
mwaskom/seaborn 0.00 0.00 0.00 0.00 0.00
pallets/flask 0.00 0.00 0.00 9.09 0.00
psf/requests 15.91 2.33 8.33 13.64 18.18
pydata/xarray 6.90 0.00 0.00 5.81 3.00
pylint-dev/pylint 1.75 0.00 0.00 1.75 1.75
pytest-dev/pytest 5.93 0.00 0.00 5.04 4.20
scikit-learn/scikit-learn 5.41 0.00 0.00 3.12 0.88
sphinx-doc/sphinx 5.65 1.83 0.00 2.25 2.69
sympy/sympy 1.94 0.00 0.00 3.01 1.59

Table 19: % Resolved for models per repository represented in SWE-bench.

BM25 Retrieval “Oracle” Retrieval

Model % Resolved % Apply % Resolved % Apply

Claude 2 2.27 ↑ 0.31 45.72 ↑ 2.65 4.01 ↓ 0.79 62.65 ↓ 0.17
ChatGPT-3.5 0.17 −0.00 26.53 ↑ 0.02 0.70 ↑ 0.18 21.64 ↓ 0.16
GPT-4 0.00 −0.00 14.82 −0.00 1.74 −0.00 34.00 −0.00
SWE-Llama 7b 0.35 ↑ 0.35 49.04 ↓ 2.70 1.92 ↓ 1.09 63.70 ↓ 1.82
SWE-Llama 13b 0.70 −0.00 56.54 ↑ 2.92 4.54 ↑ 0.57 66.67 ↓ 0.11

Table 20: We compare models against each other using the BM25 and oracle retrieval settings as
described in Section 4 on a 25% random subset (574 instances) of SWE-bench in the “oracle” and
BM25 27K retriever settings only. This is the same subset that GPT-4 is evaluated on, as mentioned
in Table 5. The difference relative to percentages in Table 5 and Table 18 is included as a subscript.

behavior is maintained (all P2P tests pass) but the issue remains completely unresolved (0 F2P tests
pass). Finally, if the issue is unresolved (0 F2P tests pass) and prior working behavior is reverted
(some P2P tests fail), the codebase is left in a worse state, which we define to be a “Regression”.

In Table 23, we categorize patch generations that successfully applied according to these six cases.
We find that of non-“Resolved” issues, the majority of patch generations proposed by the model do
not solve a single F2P test case from the corresponding task instance (“No-Op” and “Regression”).
Within the subset of these cases, the majority (60% to 70%) of cases are a No-Op, while the model
breaks existing behavior for the remainder of these situations.

Generally, the cases where model generations pass some, but not all tests (“Breaking Resolved”,
“Partially Resolved”, “Work in Progress”) cumulatively represent a smaller subset of problems rel-
ative to the other three categories. From manual inspection of several of these cases, it is clear that
the model demonstrates some understanding of the task requirements. However, due to the baseline
methods’ limited view of the codebase that does not include information such as inter-file dependen-
cies and functions’ relationships, for many of these task instances often fail because a change that
correctly resolves the immediate issue does not account for other modules that use and are affected
by the changed entity. We include several case studies that directly highlight these shortcomings in
Section F Overall, these results highlight not just the difficulty of SWE-bench, but also point to the
potential value of providing feedback via an execution environment that would allow models to run
fixes against existing tests, then decide whether to continue editing or submit the patch for review.

C.6 PATCH GENERATION EXTENDED ANALYSIS

In this section, we present a statistics to quantify various facets of patch generations following
the metrics laid out in Table 8. In Table 24, we recalculate these values for all patch generations
in the oracle retrieval setting for all models, regardless of whether or not the patch was applied

26

Published as a conference paper at ICLR 2024

Year Total 25% Claude 2 GPT-3.5 GPT-4∗ SWE-Llama 13b SWE-Llama 7b

2023 244 61 4.51 1.56 0.00 4.07 3.50
2022 395 117 4.05 0.85 3.42 2.80 2.46
2021 383 102 4.18 0.00 2.94 4.45 2.56
2020 427 109 5.15 0.71 0.00 3.96 3.43
2019 437 112 5.72 1.49 1.79 4.55 2.21
2018 165 37 5.45 0.00 0.00 3.57 2.94
< 2018 89 36 4.49 0.00 2.78 3.37 1.09

Table 21: We present an extended temporal analysis in this table, showing the % resolved for task
instances across models in the “Oracle” retrieval setting, separated by different cutoff dates. The
Year column refers to the subset of tasks that were created during the specified calendar year. In
the Total column, we list the number of tasks that fall within the given year. The 25% column is
the same information for the subset that GPT-4 was evaluated on. The remaining model-specific
columns contain the % resolved metric.

F2P Tests Pass

P2P Tests Pass All Partial None

All Resolved Partially Resolved No-Op
Partial Breaking Resolved Work in Progress Regression
None Breaking Resolved Work in Progress Regression

Table 22: We present the 6 possible outcomes for a patch generation that is applied successfully and
then executed. The outcomes are distinguished by the number of F2P and P2P tests that pass.

successfully. Across all metrics, we find that patch generations across models are much closer in
size to the characteristics of average gold edits. While some models still generate fewer lines relative
to the corresponding Gold edit (e.g., Claude-2, ChatGPT-3.5, GPT-4), the SWE-Llama models edits
are on average longer in most respects.. When considering both Table 8 and Table 24, it becomes
clear that models struggle with generating longer output sequences to be correctly formatted patches.
Further inspection of such occurrences, as shown in our case studies in Section F, indicate that
hallucinations, abiding to existing code style/structure, and referencing long range dependencies
correctly are common errors that surface more frequently in longer generations.

C.7 SOFTWARE ENGINEERING METRICS

We perform preliminary evaluations that explore using software engineering metrics to evaluate the
efficiency and complexity of large code blocks integrated within a complex codebase. Unlike se-
mantic similarity scoring functions for evaluating fluency and surface form likeness that are popular
with traditional NLP benchmarks and have been adopted for code generation, metrics such as Cyclo-
matic complexity McCabe (1976) and Halstead complexity measures Halstead (1977) are founded
upon logical abstractions (e.g., Abstract Syntax Trees) and software principles to quantify the com-
plexity, efficiency, and readability of code as a scalar value. The patch generations and SWE-bench
evaluation logs are rich sources of information that software engineering metrics and static analyz-
ers can readily be applied to. Unlike small, code contest benchmarks where the insights of soft-
ware engineering metrics are not meaningful due to the minuscule scope of the target functionality,
SWE-bench’s task is complex enough that practitioners can use these tools to gain well-structured,
rigorous, and wide-ranging feedback signals on the complexity of a patch generation’s change and
its effect on the rest of the codebase.

We include our exploratory work here that demonstrates how software engineering metrics can re-
liably capture characteristics of code quality, and how comparing these statistics across two patches
can provide automatic observations about model capabilities. We use the Radon package, a library
for computing different software engineering metrics directly from source code.

Radon Documentation, open-source codebase

27

https://radon.readthedocs.io/en/latest/
https://github.com/rubik/radon

Published as a conference paper at ICLR 2024

Model Claude 2 ChatGPT-3.5 GPT-4∗ SWE-Llama 7b SWE-Llama 13b

Applied 1078 284 76 1257 1196

Resolved 110 12 10 69 91
Breaking Resolved 26 2 3 17 10
Partially Resolved 15 4 3 17 10
Work in Progress 20 2 1 17 16
No-Op 471 174 30 716 672
Regression 436 90 29 421 397

Table 23: Categorization of model generations that applied successfully by the cases defined in
Table 22. As mentioned, GPT-4 was evaluated on a 25% subset (574 instances) of SWE-bench.

Table 24: Average edits of model generated patches in the oracle retrieval setting across all patches
(including unsuccessfully applied patches). For the task instances specific to each model, we calcu-
late the same statistics across the gold patches.

Model Total Lines Added Removed Functions Files

Claude 2 27.2 6.6 3.3 1.2 1.1
Gold 61.6 17.8 8.6 2.6 1.4

ChatGPT-3.5 42.0 6.1 3.9 1.7 1.0
Gold 44.5 12.7 5.5 2.1 1.2

GPT-4 22.4 4.4 1.8 0.8 0.9
Gold 50.3 14.0 6.5 2.3 1.3

SWE-Llama 13b 68.9 9.5 4.3 2.5 1.6
Gold 61.5 17.8 8.6 2.6 1.4

SWE-Llama 7b 78.9 10.1 7.6 2.5 1.5
Gold 65.1 18.8 9.0 2.7 1.5

We look specifically at successfully applied Claude 2 patch predictions in the “Oracle” retrieval set-
ting for the psf/requests repository, which several models perform best at as reflected in Fig-
ure 4. Per prediction, we apply the patch to the codebase, then calculate the Cyclomatic complexity
and Halstead complexity scores for the modified functions. Cyclomatic complexity quantifies the
control flow of a function, counting the number of independent execution paths through the source
code (McCabe, 1976). A higher Cyclomatic complexity score suggests a more complex function
that has higher likelihood of defects and usually suggests difficult maintainability. Halstead com-
plexity counts the number of operators and operands in a program (Halstead, 1977). Per prediction,
we also perform the same set of steps for the corresponding gold patch.

We find that software engineering metrics provides automatic qualitative insights into model perfor-
mance. Consider the following simple case study in Figure 10. While the model patch prediction
(left) is fewer lines (6 instead of 11) and modifies fewer files (1 instead of 2) compared to the gold ref-
erence solution (right), the model’s edit places a conditional within a relatively complex and widely
used HTTPAdapter class. This introduces two new potential execution outcomes, raising the Cy-
clomatic complexity of HTTPAdapter from 3 to 5. In contrast, while longer, the reference solution
imports intra-module dependencies, modifies a logically simpler function in get connection,
and defines a new error type InvalidProxyURL to capture the novel bug described by the issue.

D ADDITIONAL EXPERIMENTAL DETAILS

D.1 RETRIEVAL DETAILS

Sparse retrieval. During retrieval we make a slight augmentation to the documents by pre-pended
files’ contents with their file paths to better enable retrieval based on filenames that may be men-
tioned directly in the issue.

28

Published as a conference paper at ICLR 2024

Problem Statement: Misleading exception with invalid protocol in proxy variable. When the value
of https proxy or HTTPS PROXY variable(s) accidentally miss one ’/’ in the protocol, a trace-
back is thrown to the user which doesn’t pin point that the issue is with the proxy configuration...

Figure 10: Comparison of the Claude 2 prediction (left) and reference solution (right) patches
for SWE-bench task instance psf requests-4356. While the code generated by the
patch is fewer lines of code and solves the problem correctly, the prediction patch intro-
duces greater Cyclomatic complexity (requests.adapters.py/HTTPAdapter: 3 → 5)
compared to the gold solution (requests/adapters.py:get connection: 2 → 3,
requests/exceptions.py:InvalidHeader: 0 → 1). Changes that introduce new exe-
cution paths are boxed in blue. Parts of the gold patch have been truncated for appearance.

Oracle retrieval. Oracle retrieval file paths are simply extracted directly from the reference solu-
tion’s patch file excluding test files.

D.2 INFERENCE SETTINGS

Since generations are relatively expensive, we only generate a single patch file per instance. Follow-
ing precedent in code generation for evaluation in Pass@1 (Chen et al., 2021; Rozière et al., 2023),
we simply use greedy decoding for all models.

D.3 PROMPT TEMPLATE EXAMPLE

Models are prompted with the following general template with slight variations depending on the
model used.

You will be provided with a partial code base and an issue statement
explaining a problem to resolve.

<issue>
{ISSUE TEXT}
</issue>

<code>
[start of README.md]
{README.md text}
[end of README.md]
[start of file_1.py]
{file_1.py text}
[end of file_1.py]
...
</code>

Here is an example of a patch file. It consists of changes to the code
base. It specifies the file names, the line numbers of each change,

29

Published as a conference paper at ICLR 2024

and the removed and added lines. A single patch file can contain
changes to multiple files.

<patch>
--- a/file.py
+++ b/file.py
@@ -1,27 +1,35 @@
def euclidean(a, b):
- while b:
- a, b = b, a % b
- return a
+ if b == 0:
+ return a
+ return euclidean(b, a % b)

def bresenham(x0, y0, x1, y1):
points = []
dx = abs(x1 - x0)
dy = abs(y1 - y0)

- sx = 1 if x0 < x1 else -1
- sy = 1 if y0 < y1 else -1
- err = dx - dy
+ x, y = x0, y0
+ sx = -1 if x0 > x1 else 1
+ sy = -1 if y0 > y1 else 1

- while True:
- points.append((x0, y0))
- if x0 == x1 and y0 == y1:
- break
- e2 = 2 * err
- if e2 > -dy:
+ if dx > dy:
+ err = dx / 2.0
+ while x != x1:
+ points.append((x, y))

err -= dy
- x0 += sx
- if e2 < dx:
- err += dx
- y0 += sy
+ if err < 0:
+ y += sy
+ err += dx
+ x += sx
+ else:
+ err = dy / 2.0
+ while y != y1:
+ points.append((x, y))
+ err -= dx
+ if err < 0:
+ x += sx
+ err += dy
+ y += sy

+ points.append((x, y))
return points

</patch>

I need you to solve the provded issue by generating a single patch file
that I can apply directly to this repository using git apply. Please
respond with a single patch file in the format shown above.

Respond below:

30

Published as a conference paper at ICLR 2024

Experiments using slightly more or fewer lines of instructions or examples seemed to not affect
overall performance substantially, except for the findings of experiments stated in Section 5.

E SOCIETAL IMPACT

As reasoning on code has emerged as a foundational skill underlying many LM’s capability, a po-
tential future of machine-automated software engineering raises many important questions and has
important potential ramifications with regards to AI Safety (Gros et al., 2023). It is important to ad-
dress questions on how to ensure AI-generated code is faithful to human intents and what guardrails
might be in place when human objectives are misinterpreted by code agents that then carry out the
task. To observe such problems in a controlled setting and manifest their solutions, we hope SWE-
bench might serve as a testbed for designing safe, robust measures towards aligned, verifiable, and
safe AI-driven software engineering.

F IN-DEPTH ANALYSIS OF SWE-LLAMA GENERATIONS

In this section, we provide five additional qualitative analyses of generations from both Claude 2
and SWE-Llama generations (Oracle retrieval setting) following the style of Section 5.1.

Claude 2 qualitative studies can be found in Tables 25 and 26. Tables 27, 28, and 29 are task
instances that Claude 2 did not address correctly. SWE-Llama qualitative studies are covered across
Tables 30, 31, 32, 33, 34. For Tables 30, 31, and 32, we present task instances solved correctly
by SWE-Llama 13b. In Table 33 and 34, we present two task instances where SWE-Llama 13b
does not address the issue correctly, pointing out a subset of the reasoning and generation skills that
models may not be adept at enough to accomplish the task at hand.

The observations we make across these sections corroborate with the points stated in the main paper,
which is that models tend to struggle with multi-line and multi-file changes, are more adept when
the required fix is relatively short, and need help with understanding the codebase in an efficient
manner.

31

Published as a conference paper at ICLR 2024

Table 25: In this example, Claude 2 correctly addresses an issue from scikit-learn/scikit-learn. How-
ever, as demonstrated in the discussion, while the solution is correct, it demonstrates models’ ten-
dency to write primitive Python and not employ existing methods within the codebase.

Setting

• Model: Claude 2 with Oracle retrieval
• Task Instance: scikit-learn scikit-learn-13328

– Link to Issue: https://github.com/scikit-learn/scikit-learn/pull/13314
– Link to PR: https://github.com/scikit-learn/scikit-learn/issues/13328

Issue
TypeError when supplying a boolean X to HuberRegressor fit
Description
‘TypeError’ when fitting ‘HuberRegressor’ with boolean predictors.

Steps/Code to Reproduce

import numpy as np
from sklearn.datasets import make_regression
from sklearn.linear_model import HuberRegressor

Random data
X, y, coef = make_regression(n_samples=200, n_features=2, noise=4.0, coef

=True, random_state=0)
X_bool = X > 0
X_bool_as_float = np.asarray(X_bool, dtype=float)

Works
huber = HuberRegressor().fit(X, y)
Fails (!)
huber = HuberRegressor().fit(X_bool, y)
Also works
huber = HuberRegressor().fit(X_bool_as_float, y)

Expected Results
No error is thrown when ‘dtype’ of ‘X’ is ‘bool’ (second line of code in the snipped above,
.fit(X_bool, y)). Boolean array is expected to be converted to ‘float’ by ‘HuberRegressor.fit’
as it is done by, say ‘LinearRegression’.

Actual Results
‘TypeError‘ is thrown:
(Remaining lines omitted)

Gold Patch
diff --git a/sklearn/linear_model/huber.py b/sklearn/linear_model/huber.

py
--- a/sklearn/linear_model/huber.py
+++ b/sklearn/linear_model/huber.py
@@ -251,7 +251,8 @@ def fit(self, X, y, sample_weight=None):

self : object
"""
X, y = check_X_y(

- X, y, copy=False, accept_sparse=[’csr’], y_numeric=True)
+ X, y, copy=False, accept_sparse=[’csr’], y_numeric=True,
+ dtype=[np.float64, np.float32])

if sample_weight is not None:
sample_weight = np.array(sample_weight)
check_consistent_length(y, sample_weight)

32

https://github.com/scikit-learn/scikit-learn/pull/13314
https://github.com/scikit-learn/scikit-learn/issues/13328

Published as a conference paper at ICLR 2024

Model Generated Patch
--- a/sklearn/linear_model/huber.py
+++ b/sklearn/linear_model/huber.py
@@ -231,6 +231,9 @@ class HuberRegressor(LinearModel, RegressorMixin,

BaseEstimator):
self.tol = tol

+ def _validate_data(self, X, y=None):
+ return X.astype(np.float64) if X.dtype == np.bool else X
+

def fit(self, X, y, sample_weight=None):
"""Fit the model according to the given training data.

@@ -250,7 +253,7 @@ class HuberRegressor(LinearModel, RegressorMixin,
BaseEstimator):

self : object
"""

- X, y = check_X_y(
+ X, y = check_X_y(

X, y, copy=False, accept_sparse=[’csr’], y_numeric=True)
if sample_weight is not None:

sample_weight = np.array(sample_weight)
@@ -262,6 +265,9 @@ class HuberRegressor(LinearModel, RegressorMixin,

BaseEstimator):
raise ValueError(

"epsilon should be greater than or equal to 1.0, got %f"
% self.epsilon)

+
+ X = self._validate_data(X)

Tests
Fail to Pass (1)

sklearn/linear_model/tests/test_huber.py::test_huber_bool

Pass to Pass (9)
sklearn/linear_model/tests/test_huber.py::test_huber_max_iter
sklearn/linear_model/tests/test_huber.py::test_huber_gradient
sklearn/linear_model/tests/test_huber.py::test_huber_sample_weights
sklearn/linear_model/tests/test_huber.py::test_huber_sparse
sklearn/linear_model/tests/test_huber.py::test_huber_scaling_invariant

Additional Pass to Pass Tests omitted...

Discussion. In this task instance, the issue is describing an issue regarding how types are cast.
Specifically, when When fitting the HuberRegressor model with boolean predictors, like
X_bool , a TypeError occurs. This issue arises because the HuberRegressor does not auto-
matically convert boolean arrays to floats as some other models do, such as LinearRegression ,
causing a type mismatch error. For its fix, the model defines its own _validate_data function,
which encapsulates the type casting logic, and applies it to X . While it passes the tests, this fix
could be more efficient and potentially introduces stylistic and organizational inconsistencies. As
demonstrated in the reference solution, there is a much simpler solution of passing in dtype argu-
ments that leverage the existing flags of the check_X_y function call to resolve this more cleanly.
Other files’ content was not included in the oracle retrieval setting due to the context window limi-
tation.

33

Published as a conference paper at ICLR 2024

Table 26: We provide another example where Claude-2 solves the issue correctly and develops a
solution similar to the gold patch. However, the gold patch solution is more cognizant of avoiding
future potential issues that could be related to this code.

Setting

• Model: Claude 2 with Oracle retrieval
• Task Instance: matplotlib matplotlib-24362

– Link to Issue: https://github.com/matplotlib/matplotlib/issues/24349
– Link to PR: https://github.com/matplotlib/matplotlib/pull/24362

Issue
[Bug]: sharex and sharey don’t accept 0 and 1 as bool values

Bug summary
When using ‘0‘ or ‘1‘ in place of ‘False‘ or ‘True‘ in ‘sharex‘ or ‘sharex‘ arguments of ‘py-
plot.subplots‘ an error is raised.
Code for reproduction

import matplotlib.pyplot as plt

fig, ax = plt.subplots(ncols=2,sharey=1)

Actual outcome
We get the following error :

Traceback (most recent call last):
(Earlier lines omitted)
File "/***/matplotlib/lib/matplotlib/gridspec.py", line 293, in subplots
_api.check_in_list(["all", "row", "col", "none"],

File "/***/matplotlib/lib/matplotlib/_api/__init__.py", line 131, in
check_in_list

raise ValueError(msg)
ValueError: 1 is not a valid value for sharey; supported values are ’all’

, ’row’, ’col’, ’none’

Using ‘sharex‘ instead of ‘sharey‘ produces the same error (albeit with the following warning:

UserWarning: sharex argument to subplots() was an integer. Did you intend
to use subplot() (without ’s’)?

but this is expected and not part of the present issue)
Expected outcome
I expected values 1 and 0 to be understood as bool.

Model Generated Patch
diff --git a/lib/matplotlib/gridspec.py b/lib/matplotlib/gridspec.py
index 06dd3f19f6..32ee7c306e 100644
--- a/lib/matplotlib/gridspec.py
+++ b/lib/matplotlib/gridspec.py
@@ -276,9 +276,9 @@ class GridSpecBase:

raise ValueError("GridSpec.subplots() only works for GridSpecs
"

"created with a parent figure")

- if isinstance(sharex, bool):
+ if isinstance(sharex, bool) or sharex == 1 or sharex == 0:

sharex = "all" if sharex else "none"
- if isinstance(sharey, bool):
+ if isinstance(sharey, bool) or sharey == 1 or sharey == 0:

sharey = "all" if sharey else "none"
This check was added because it is very easy to type
‘subplots(1, 2, 1)‘ when ‘subplot(1, 2, 1)‘ was intended.

34

https://github.com/matplotlib/matplotlib/issues/24349
https://github.com/matplotlib/matplotlib/pull/24362

Published as a conference paper at ICLR 2024

Gold Patch
diff --git a/lib/matplotlib/gridspec.py b/lib/matplotlib/gridspec.py
--- a/lib/matplotlib/gridspec.py
+++ b/lib/matplotlib/gridspec.py
@@ -276,21 +276,12 @@ def subplots(self, *, sharex=False, sharey=False,

squeeze=True,
- if isinstance(sharex, bool):
+ if not isinstance(sharex, str):

sharex = "all" if sharex else "none"
- if isinstance(sharey, bool):
+ if not isinstance(sharey, str):

sharey = "all" if sharey else "none"
- # This check was added because it is very easy to type
- # ‘subplots(1, 2, 1)‘ when ‘subplot(1, 2, 1)‘ was intended.
- # In most cases, no error will ever occur, but mysterious behavior
- # will result because what was intended to be the subplot index is
- # instead treated as a bool for sharex. This check should go away
- # once sharex becomes kwonly.
- if isinstance(sharex, Integral):
- _api.warn_external(
- "sharex argument to subplots() was an integer. Did you "
- "intend to use subplot() (without ’s’)?")
- _api.check_in_list(["all", "row", "col", "none"],
+
+ _api.check_in_list(["all", "row", "col", "none", False, True],

sharex=sharex, sharey=sharey)

Tests
Fail to Pass (1)

lib/matplotlib/tests/test_subplots.py::test_shared

Pass to Pass (39)
lib/matplotlib/tests/test_subplots.py::test_label_outer_span
lib/matplotlib/tests/test_subplots.py::test_label_outer_non_gridspec
lib/matplotlib/tests/test_subplots.py::test_shared_and_moved
lib/matplotlib/tests/test_subplots.py::test_exceptions
lib/matplotlib/tests/test_subplots.py::test_subplots_offsettext[png]

Additional Pass to Pass Tests omitted...

Discussion. This example asks for 1 and 0 to be treated as boolean values for the sharex and
sharey arguments of the pyplot.subplots function. The current code raises an error. In
the generated patch, the model adds 1 and 0 as acceptable values. However, the gold patch adds
the acceptable values into a list ["all", "row", "col", "none", False, True] . It also
removes the Integral related warning tied to this issue. This clean up along with the clarity of
the check_in_list argument makes the code more concise and readable.

35

Published as a conference paper at ICLR 2024

Table 27: In this example, we show an issue from astropy/astropy that Claude 2 does not solve
correctly. The error is primarily due to the patch generation’s attempt to directly solve the issue.

Setting

• Model: Claude 2 with Oracle retrieval
• Task Instance: astropy astropy-14365

– Link to Issue: https://github.com/astropy/astropy/issues/14363
– Link to PR: https://github.com/astropy/astropy/pull/14365

Issue
ascii.qdp Table format assumes QDP commands are upper case
Description
ascii.qdp assumes that commands in a QDP file are upper case, for example, for errors they must be
“READ SERR 1 2” whereas QDP itself is not case sensitive and case use “read serr 1 2”. As many
QDP files are created by hand, the expectation that all commands be all-caps should be removed.

Expected behavior
The following qdp file should read into a ‘Table‘ with errors, rather than crashing.

read serr 1 2
1 0.5 1 0.5

How to Reproduce
Create a QDP file:

> cat > test.qdp
read serr 1 2
1 0.5 1 0.5
<EOF>

> python
Python 3.10.9 (main, Dec 7 2022, 02:03:23) [Clang 13.0.0 (clang

-1300.0.29.30)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from astropy.table import Table
>>> Table.read(’test.qdp’,format=’ascii.qdp’)
WARNING: table_id not specified. Reading the first available table [

astropy.io.ascii.qdp]
Traceback (most recent call last):
...

raise ValueError(f’Unrecognized QDP line: {line}’)
ValueError: Unrecognized QDP line: read serr 1 2

Running “qdp test.qdp” works just fine.

Model Generated Patch
--- a/astropy/io/ascii/qdp.py
+++ b/astropy/io/ascii/qdp.py
@@ -60,7 +60,7 @@

ValueError: Unrecognized QDP line...
"""
_decimal_re = r"[+-]?(\d+(\.\d*)?|\.\d+)([eE][+-]?\d+)?"

- _command_re = r"READ [TS]ERR(\s+[0-9]+)+"
+ _command_re = r"read [ts]err(\s+[0-9]+)+"

sep = delimiter
if delimiter is None:

36

https://github.com/astropy/astropy/issues/14363
https://github.com/astropy/astropy/pull/14365

Published as a conference paper at ICLR 2024

Gold Patch
diff --git a/astropy/io/ascii/qdp.py b/astropy/io/ascii/qdp.py
--- a/astropy/io/ascii/qdp.py
+++ b/astropy/io/ascii/qdp.py
@@ -68,7 +68,7 @@ def _line_type(line, delimiter=None):

_new_re = rf"NO({sep}NO)+"
_data_re = rf"({_decimal_re}|NO|[-+]?nan)({sep}({_decimal_re}|NO

|[-+]?nan))*)"
_type_re = rf"ˆ\s*((?P<command>{_command_re})|(?P<new>{_new_re})|(?P<

data>{_data_re})?\s*(\!(?P<comment>.*))?\s*$"
- _line_type_re = re.compile(_type_re)
+ _line_type_re = re.compile(_type_re, re.IGNORECASE)

line = line.strip()
if not line:

return "comment"
@@ -306,7 +306,7 @@ def _get_tables_from_qdp_file(qdp_file,

input_colnames=None, delimiter=None):

values = []
for v in line.split(delimiter):

- if v == "NO":
+ if v.upper() == "NO":

values.append(np.ma.masked)
else:

Understand if number is int or float

Tests
Fail to Pass (1)

astropy/io/ascii/tests/test_qdp.py::test_roundtrip[True]

Pass to Pass (8)
astropy/io/ascii/tests/test_qdp.py::test_get_tables_from_qdp_file
astropy/io/ascii/tests/test_qdp.py::test_roundtrip[False]
astropy/io/ascii/tests/test_qdp.py::test_read_example
astropy/io/ascii/tests/test_qdp.py::test_roundtrip_example
astropy/io/ascii/tests/test_qdp.py::test_roundtrip_example_comma
astropy/io/ascii/tests/test_qdp.py::test_read_write_simple
astropy/io/ascii/tests/test_qdp.py::test_read_write_simple_specify_name
astropy/io/ascii/tests/test_qdp.py::test_get_lines_from_qdp

Discussion. This issue requests a fix for handling QDP files; specifically, it asks for the expectation
of the commands to be uppercase to be removed. In the model generated patch, the model locates
the READ and ERR commands mentioned in the issue description in a regex pattern and edits it
directly. However, within the same file, it is clear that the regex pattern is used in additional patterns,
such as _type_re , and so a fix to the “root” regex pattern may not be appropriate. In addition,
amidst multiple regex pattern variables, identifying the correct one to modify requires reasoning that
can potentially be helped by execution. This error in this solution is reflected in the fact that it not
only fails to pass the given unit tests, but also fails existing tests enforcing prior behavior.

37

Published as a conference paper at ICLR 2024

Table 28: For this issue from the mwaskom/seaborn repository, the problem statement includes
hyperlinks to images. As discussed in Section 5, a minor subset of SWE-bench tasks include images
in them, making image understanding a small but important component to resolving issues that is
unexplored by the initial baselines.

Setting

• Model: Claude 2 with Oracle retrieval
• Task Instance: mwaskom seaborn-3217

– Link to Issue: https://github.com/mwaskom/seaborn/issues/2907
– Link to PR: https://github.com/mwaskom/seaborn/pull/3217

Issue
Width computation after histogram slightly wrong with log scale Note the slight overlap here:

(
so.Plot(tips, "total_bill")
.add(so.Bars(alpha=.3, edgewidth=0), so.Hist(bins=4))
.scale(x="log")

)

![image](https://user-images.githubusercontent.com/315810/
178975852-d8fd830e-ae69-487d-be22-36531fca3f8f.png)
It becomes nearly imperceptible with more bins:

(
so.Plot(tips, "total_bill")
.add(so.Bars(alpha=.3, edgewidth=0), so.Hist(bins=8))
.scale(x="log")

)

![image](https://user-images.githubusercontent.com/315810/
178976113-7026b3ae-0b87-48df-adc0-00e90d5aea94.png)
This is not about ‘Bars‘; ‘Bar‘ has it too:

(
so.Plot(tips, "total_bill")
.add(so.Bar(alpha=.3, edgewidth=0, width=1), so.Hist(bins=4))
.scale(x="log")

)

![image](https://user-images.githubusercontent.com/315810/
178975910-484df65f-4ce6-482e-9992-5d02faf6b9ea.png)

Model Generated Patch
--- a/seaborn/_core/plot.py
+++ b/seaborn/_core/plot.py
@@ -1327,9 +1327,7 @@

elif "width" in df:
view_width = view_df["width"]

else:
- view_width = 0.8 # TODO what default?
- spacing = scales[orient]._spacing(view_df.loc[view_idx,

orient])
- width.loc[view_idx] = view_width * spacing
+ width.loc[view_idx] = view_width

df["width"] = width

if "baseline" in mark._mappable_props:

38

https://github.com/mwaskom/seaborn/issues/2907
https://github.com/mwaskom/seaborn/pull/3217
https://user-images.githubusercontent.com/315810/178975852-d8fd830e-ae69-487d-be22-36531fca3f8f.png
https://user-images.githubusercontent.com/315810/178975852-d8fd830e-ae69-487d-be22-36531fca3f8f.png
https://user-images.githubusercontent.com/315810/178976113-7026b3ae-0b87-48df-adc0-00e90d5aea94.png
https://user-images.githubusercontent.com/315810/178976113-7026b3ae-0b87-48df-adc0-00e90d5aea94.png
https://user-images.githubusercontent.com/315810/178975910-484df65f-4ce6-482e-9992-5d02faf6b9ea.png
https://user-images.githubusercontent.com/315810/178975910-484df65f-4ce6-482e-9992-5d02faf6b9ea.png

Published as a conference paper at ICLR 2024

Gold Patch
diff --git a/seaborn/_core/plot.py b/seaborn/_core/plot.py
--- a/seaborn/_core/plot.py
+++ b/seaborn/_core/plot.py
@@ -1377,10 +1377,9 @@ def _unscale_coords(
- drop_cols = [*coord_cols, "width"] if "width" in df else

coord_cols
out_df = (

df
- .drop(drop_cols, axis=1)
+ .drop(coord_cols, axis=1)

.reindex(df.columns, axis=1) # So unscaled columns retain their
place

@@ -1396,12 +1395,6 @@ def _unscale_coords(
- if var == orient and "width" in view_df:
- width = view_df["width"]
- out_df.loc[values.index, "width"] = (
- transform(values + width / 2) - transform(values -

width / 2)
-)
-

return out_df
diff --git a/seaborn/_marks/bar.py b/seaborn/_marks/bar.py
--- a/seaborn/_marks/bar.py
+++ b/seaborn/_marks/bar.py
@@ -29,17 +29,23 @@ class BarBase(Mark):
+ transform = scales[orient]._matplotlib_scale.get_transform()
+ forward = transform.transform
+ reverse = transform.inverted().transform
+
+ other = {"x": "y", "y": "x"}[orient]
+
+ pos = reverse(forward(data[orient]) - data["width"] / 2)
+ width = reverse(forward(data[orient]) + data["width"] / 2) - pos
+
+ val = (data[other] - data["baseline"]).to_numpy()
+ base = data["baseline"].to_numpy()
+
(Remaining lines omitted...)

Tests
Fail to Pass (1)

tests/_marks/test_bar.py::TestBars::test_log_scale

Pass to Pass (8)
tests/_marks/test_bar.py::TestBar::test_categorical_positions_vertical
tests/_marks/test_bar.py::TestBar::test_categorical_positions_horizontal
tests/_marks/test_bar.py::TestBar::test_numeric_positions_vertical
tests/_marks/test_bar.py::TestBar::test_numeric_positions_horizontal
tests/_marks/test_bar.py::TestBar::test_set_properties

Additional Pass to Pass Tests omitted...

Discussion. The baseline model’s inability to solve this issue can be directly attributed to a lack of
an image input. We include this example to demonstrate that debugging real software issues may in-
volve digesting images; this presents a whole separate body of understanding and reasoning-related
challenges. Beyond the SWE-bench task, additional problems in software engineering, such as inter-
preting system design diagram, user interface specifications, and user feedback presents interesting
vision-language challenges.

39

Published as a conference paper at ICLR 2024

Table 29: In this final example of a Claude 2 generation, the model must resolve an error related to
resolving an error regarding cyclic dependencies. Claude 2’s solution under-delivers on an otherwise
complex problem.

Setting

• Model: Claude 2 with Oracle retrieval
• Task Instance: sympy sympy-18211

– Link to Issue: https://github.com/pylint-dev/pylint/issues/3525
– Link to PR: https://github.com/pylint-dev/pylint/pull/4703

Issue
Imports within TYPE CHECKING can induce “cyclic-import”
Suppose you have two modules: a.py and b.py. ‘a‘ imports ‘b‘, but ‘b‘ needs ‘a‘ in order to do
type annotations, then this is usually done by importing ‘a‘ within a ‘TYPE CHECKING‘ block.
Unfortunately, this causes pylint to report ‘cyclic-import‘.

Possibly related to https://github.com/PyCQA/pylint/issues/3285

Gold Patch
diff --git a/pylint/checkers/imports.py b/pylint/checkers/imports.py
--- a/pylint/checkers/imports.py
+++ b/pylint/checkers/imports.py
@@ -813,7 +813,9 @@ def _get_imported_module(self, importnode, modname):
- def _add_imported_module(self, node, importedmodname):
+ def _add_imported_module(
+ self, node: Union[astroid.Import, astroid.ImportFrom],

importedmodname: str
+) -> None:

"""notify an imported module, used to analyze dependencies"""
module_file = node.root().file
context_name = node.root().name

@@ -826,6 +828,10 @@ def _add_imported_module(self, node, importedmodname
):

except ImportError:
pass

+ in_type_checking_block = (
+ isinstance(node.parent, astroid.If) and node.parent.

is_typing_guard()
+)
+

if context_name == importedmodname:
self.add_message("import-self", node=node)

@@ -845,7 +851,10 @@ def _add_imported_module(self, node, importedmodname
):

update import graph
self.import_graph[context_name].add(importedmodname)

- if not self.linter.is_message_enabled("cyclic-import", line=
node.lineno):

+ if (
+ not self.linter.is_message_enabled("cyclic-import", line=

node.lineno)
+ or in_type_checking_block
+):

self._excluded_edges[context_name].add(importedmodname)

40

https://github.com/pylint-dev/pylint/issues/3525
https://github.com/pylint-dev/pylint/pull/4703
https://github.com/PyCQA/pylint/issues/3285

Published as a conference paper at ICLR 2024

Model Generated Patch
diff --git a/pylint/checkers/imports.py b/pylint/checkers/imports.py
index 4f3eed2..2b74a8d 100644
--- a/pylint/checkers/imports.py
+++ b/pylint/checkers/imports.py
@@ -49,6 +49,7 @@ import copy
import os
import sys
from distutils import sysconfig
+from typing import TYPE_CHECKING
from typing import Dict, List, Union

import astroid
@@ -61,6 +62,9 @@ from pylint.checkers.utils import (

node_ignores_exception,
)
from pylint.exceptions import EmptyReportError
+if TYPE_CHECKING:
+ from pylint.lint import PyLinter
+
from pylint.graph import DotBackend, get_cycles
from pylint.interfaces import IAstroidChecker
from pylint.reporters.ureports.nodes import Paragraph, VerbatimText,

VNode

Tests
Fail to Pass (1)

tests/_marks/test_bar.py::TestBars::test_log_scale

Pass to Pass (11)
tests/test_func.py::test_functionality[func_w0401_disabled_in_func.py]
tests/test_func.py::test_functionality[func_i0022.py]
tests/test_func.py::test_functionality[func_w0401.py]
tests/test_func.py::test_functionality[func_w0801.py]
tests/test_func.py::test_functionality[func_w0401_package]

Additional Pass to Pass Tests omitted...

Discussion. In this problem, the model is being asked to provide TYPE_CHECKING based handling
for resolving cyclic imports, which pylint currently throws an error for. The gold patch has a detailed
solution that involves conditional handling within the TYPE_CHECKING block, excludes the cyclic
import messages, and has generally more specific handling. The model generated patch employs a
“Stack Overlow” like solution; while creating a TYPE_CHECKING block is a popular solution for
resolving imports, solving this issue for the codebase in particular requires a more nuanced solution
than a general answer that may be available online.

41

Published as a conference paper at ICLR 2024

Table 30: Example of a SWE-Llama 13b generation that correctly solves a SWE-bench task instance.
In this example, the SWE-Llama generation is exactly the same as the solution.

Setting

• Model: SWE-Llama 13B with Oracle retrieval
• Task Instance: pydata xarray-5131

– Link to Issue: https://github.com/pydata/xarray/pull/5130
– Link to PR: https://github.com/pydata/xarray/pull/5131

Issue
When displaying a DatasetGroupBy in an interactive Python session, the first line of output contains
a trailing whitespace. The first example in the documentation demonstrate this:

>>> import xarray as xr, numpy as np
>>> ds = xr.Dataset(
... {"foo": (("x", "y"), np.random.rand(4, 3))},
... coords={"x": [10, 20, 30, 40], "letters": ("x", list("abba"))},
...)
>>> ds.groupby("letters")
DatasetGroupBy, grouped over ’letters’
2 groups with labels ’a’, ’b’.

There is a trailing whitespace in the first line of output which is ”DatasetGroupBy, grouped over
‘letters’ ”. This can be seen more clearly by converting the object to a string (note the whitespace
before n):

>>> str(ds.groupby("letters"))
"DatasetGroupBy, grouped over ’letters’ \n2 groups with labels ’a’, ’b’."

While this isn’t a problem in itself, it causes an issue for us because we use flake8 in continuous
integration to verify that our code is correctly formatted... [20 more lines]

Gold Patch
diff --git a/xarray/core/groupby.py b/xarray/core/groupby.py
--- a/xarray/core/groupby.py
+++ b/xarray/core/groupby.py
@@ -436,7 +436,7 @@ def __iter__(self):

return zip(self._unique_coord.values, self._iter_grouped())

def __repr__(self):
- return "{}, grouped over {!r} \n{!r} groups with labels {}.".format(
+ return "{}, grouped over {!r}\n{!r} groups with labels {}.".format(

self.__class__.__name__,

Model Generated Patch
diff --git a/xarray/core/groupby.py b/xarray/core/groupby.py
--- a/xarray/core/groupby.py
+++ b/xarray/core/groupby.py
@@ -436,7 +436,7 @@ def __iter__(self):

return zip(self._unique_coord.values, self._iter_grouped())

def __repr__(self):
- return "{}, grouped over {!r} \n{!r} groups with labels {}.".format(
+ return "{}, grouped over {!r}\n{!r} groups with labels {}.".format(

self.__class__.__name__,

42

https://github.com/pydata/xarray/pull/5130
https://github.com/pydata/xarray/pull/5131

Published as a conference paper at ICLR 2024

Tests
Fail to Pass (10)

xarray/tests/test_groupby.py::test_groupby_repr[obj0-x]
xarray/tests/test_groupby.py::test_groupby_repr[obj0-y]
xarray/tests/test_groupby.py::test_groupby_repr[obj0-z]
xarray/tests/test_groupby.py::test_groupby_repr[obj0-month]
xarray/tests/test_groupby.py::test_groupby_repr[obj1-x]
xarray/tests/test_groupby.py::test_groupby_repr[obj1-y]
xarray/tests/test_groupby.py::test_groupby_repr[obj1-z]
xarray/tests/test_groupby.py::test_groupby_repr[obj1-month]
xarray/tests/test_groupby.py::test_groupby_repr_datetime[obj0]
xarray/tests/test_groupby.py::test_groupby_repr_datetime[obj1]

Pass to Pass (16)
xarray/tests/test_groupby.py::test_consolidate_slices
xarray/tests/test_groupby.py::test_groupby_da_datetime
xarray/tests/test_groupby.py::test_groupby_duplicate_coordinate_labels
xarray/tests/test_groupby.py::test_groupby_input_mutation
xarray/tests/test_groupby.py::test_groupby_map_shrink_groups[obj0]

Additional Pass to Pass Tests omitted...

Discussion. In this problem, the model is asked to correct a trailing whitespace issue, and the
issue shows a demonstration of the error that arises during usage, but does not explicitly point
out the function to fix in the model. In the oracle retrieval setting, the model is given the
xarray/core/groupby.py file to edit directly, but most locate the line to edit. In this situ-
ation, the model successfully reasons that in the interactive Python setting, the underlying function
that is being invoked is actually the repr function. After locating the function, it must figure
out where in the return statement the whitespace is located. At this point, the fix is quite evident,
as there is an explicit space that the model removes. In this case, the model successfully passes all
tests for verifying the correctness of this fix explicitly (10 fail to pass tests) while also maintaining
the existing behavior of the file (16 pass to pass tests).

43

Published as a conference paper at ICLR 2024

Table 31: Example of a SWE-Llama 13b generation that correctly solves a SWE-bench task instance.
In this example, the SWE-Llama generation is different from the gold patch.

Setting

• Model: SWE-Llama 13B with Oracle retrieval
• Task Instance: psf requests-1724

– Link to Issue: https://github.com/psf/requests/issues/1723
– Link to PR: https://github.com/psf/requests/pull/1724

Issue
Unicode method names cause UnicodeDecodeError for some requests in Python 2.7.2 The following
example works fine:

files = {u’file’: open(u’/usr/bin/diff’, u’rb’)}
response = requests.request(method=’POST’, url=u’http://httpbin.org/post’

,
files=files)

But the following example (using ‘method=u’POST’‘ instead of ‘method=’POST’‘) produces a Uni-
codeDecodeError:

files = {u’file’: open(u’/usr/bin/diff’, u’rb’)}
response = requests.request(method=u’POST’, url=u’http://httpbin.org/post

’,
files=files)

Traceback (most recent call last):
[Full stack trace hidden]
File "/System/Library/Frameworks/Python.framework/Versions/2.7/...

msg += message_body
UnicodeDecodeError: ’ascii’ codec can’t decode byte 0xcf in position 140:

ordinal not in range(128)

My guess is that ‘u’POST’‘ is infecting the header with unicode when it should be a string. This is
because ‘sessions.py:313‘ is simply:

req.method = method.upper()

[Additional lines hidden...]

Gold Patch
diff --git a/requests/sessions.py b/requests/sessions.py
--- a/requests/sessions.py
+++ b/requests/sessions.py
@@ -12,7 +12,7 @@
from collections import Mapping
from datetime import datetime
-from .compat import cookielib, OrderedDict, [3 more omitted]
+from .compat import cookielib, OrderedDict, [3 omitted,
+ builtin_str
from .cookies import cookiejar_from_dict, extract_cookies_to_jar,

RequestsCookieJar
from .models import Request, PreparedRequest
from .hooks import default_hooks, dispatch_hook
@@ -309,6 +309,9 @@ def request(self, method, url,

:param cert: (optional) if String, path to ssl client cert
file (.pem). If Tuple, (’cert’, ’key’) pair.

"""
+
+ method = builtin_str(method)

44

https://github.com/psf/requests/issues/1723
https://github.com/psf/requests/pull/1724

Published as a conference paper at ICLR 2024

Model Generated Patch
diff --git a/requests/sessions.py b/requests/sessions.py
--- a/requests/sessions.py
+++ b/requests/sessions.py
@@ -254,7 +254,7 @@ def prepare_request(self, request):

p = PreparedRequest()
p.prepare(

- method=request.method.upper(),
+ method=str(request.method).upper(),

url=request.url,
files=request.files,
data=request.data,

Tests
Fail to Pass (6)

test_requests.py::RequestsTestCase::test_DIGEST_AUTH_RETURNS_COOKIE
test_requests.py::RequestsTestCase::test_DIGEST_HTTP_200_OK_GET
test_requests.py::RequestsTestCase::test_different_encodings_dont_break
test_requests.py::RequestsTestCase::test_generic_cookiejar_works
test_requests.py::RequestsTestCase::test_uppercase_scheme_redirect

Pass to Pass (75)
test_requests.py::RequestsTestCase::test_DIGEST_AUTH_SETS_SESSION_COOKIES
test_requests.py::RequestsTestCase::test_DIGEST_STREAM
test_requests.py::RequestsTestCase::test_HTTP_200_OK_GET_ALTERNATIVE
test_requests.py::RequestsTestCase::test_HTTP_200_OK_GET_WITH_PARAMS
test_requests.py::RequestsTestCase::test_HTTP_200_OK_HEAD

Additional Pass to Pass Tests omitted...

Discussion. Unlike the problem presented in Table 30, instead of an interactive python input, the
model is given an error trace from a function invocation, where the steps to recreate the prob-
lem from a user’s standpoint is offered. In addition, the issue also provides a suggestion dur-
ing the last line on a potential fix for the problem. Once again in the oracle setting, the model
takes advantage of the natural language suggestion and localizes the change to a line that is se-
mantically quite similar to the suggestion (req.method = method.upper() compared to
method=str(request.method).upper() . The model correctly addresses the issue, as re-
flected by all the passing tests. However, in this situation, we can see that the model is actually
quite “lucky” in its success. First, while the gold patch leverages built in functions that are used
for uniformity in handling string formatting, the model’s decision to use more primitive Python to
tackle this issue would likely not be well-received by a human reviewer due to its inconsistency with
the rest of the codebase. Further inspection of the builtin_str function, not shown in this
figure, also reveals that it handles additional string formatting cases beyond what was portrayed in
the issue. While the model solves the task this time, it is questionable whether this solution is robust
to future issues.

45

Published as a conference paper at ICLR 2024

Table 32: This is another example where SWE-Llama13b solves the task successfully. This example
is interesting because the model develops a somewhat novel solution compared to the reference that
is arguably more efficient and cleaner.

Setting

• Model: SWE-Llama 13B with Oracle retrieval
• Task Instance: django django-11727

– Link to Issue: https://code.djangoproject.com/ticket/29376
– Link to PR: https://github.com/django/django/pull/11727

Issue
Allow hiding the ”Save and Add Another” button with a show_save_and_add_another context
variable
To provide better adjustability, to introduce new context var - show_save_and_add_another .
E.g. if I want to hide button ”Save and add another”, I can just modify extra_context - write
False to the variable. For other buttons - ”Save” and ”Save and continue editing”, this already
works exactly in this manner.

Gold Patch
diff --git a/django/contrib/admin/templatetags/admin_modify.py b/django

/...
--- a/django/contrib/admin/templatetags/admin_modify.py
+++ b/django/contrib/admin/templatetags/admin_modify.py
@@ -54,12 +54,20 @@ def submit_row(context):

is_popup = context[’is_popup’]
save_as = context[’save_as’]
show_save = context.get(’show_save’, True)

+ show_save_and_add_another =
context.get(’show_save_and_add_another’, True)

(7 lines omitted...)
or (has_add_permission and add)
or has_editable_inline_admin_formsets

+ can_save_and_add_another = (
+ has_add_permission and
+ not is_popup and
+ (not save_as or add) and
+ can_save and
+ show_save_and_add_another
+)

can_save_and_continue = not is_popup and can_save and
has_view_permission
and show_save_and_continue

can_change = has_change_permission or
has_editable_inline_admin_formsets

ctx = Context(context)
@@ -70,10 +78,7 @@ def submit_row(context):

change and context.get(’show_delete’, True)
),
’show_save_as_new’: not is_popup and has_change_permission

and change and save_as,
- ’show_save_and_add_another’: (
- has_add_permission and not is_popup and
- (not save_as or add) and can_save
-),
+ ’show_save_and_add_another’: can_save_and_add_another,

’show_save_and_continue’: can_save_and_continue,
’show_save’: show_save and can_save,

46

https://code.djangoproject.com/ticket/29376
https://github.com/django/django/pull/11727

Published as a conference paper at ICLR 2024

Model Generated Patch
diff --git a/django/contrib/admin/templatetags/admin_modify.py b/django

/...
--- a/django/contrib/admin/templatetags/admin_modify.py
+++ b/django/contrib/admin/templatetags/admin_modify.py
@@ -72,7 +72,7 @@ def submit_row(context):

’show_save_as_new’: not is_popup and has_change_permission
and change and save_as,

’show_save_and_add_another’: (
has_add_permission and not is_popup and

- (not save_as or add) and can_save
+ (not save_as or add) and can_save and context

.get(’show_save_and_add_another’, True)
),
’show_save_and_continue’: can_save_and_continue,
’show_save’: show_save and can_save,

Tests
Fail to Pass (2)

test_override_show_save_and_add_another
test_submit_row (admin_views.test_templatetags.Admin...)

Pass to Pass (3)
test_choice_links (admin_views.test_templatetags.DateHierarchyTests)
test_override_change_form_template_tags
test_override_change_list_template_tags

Discussion. For this task instance that comes from the django/django repository, the model is asked
to introduce a context variable that would allow a user to hide the “Save and Add Another” button
via a context variable, similar to how it is done for two other existing buttons. The task is a bit
more difficult compared to the prior two settings because no explicit stack trace or programmatic
demonstration of the issue is offered. In this relatively under-specified setting that does not provide
suggestion with regards to localizing the function correctly, the model successfully reasons that it
should adjust the existing show_save_and_add_another key/value pair. When comparing the
gold patch solution, it can be argued that the model generated patch produces a much more efficient
solution in terms of lines edited, as it makes the smallest edit necessary to incorporate context
as a flag for setting the show_save_and_add_another hidden status. However, similar to the
discussion in Table 31, stylistically, the gold patch edits are much more consistent with the codebase,
and additional changes that are not explicitly discussed in the issue are also made to adhere to what
has been done in the codebase (i.e. the addition of a can_save_and_add_another field
. This task is an example of a potentially exciting direction where via human guidance or better
understanding of a codebase in general, models would then adjust their generations to not just make
the functionally correct changes, but also the stylistically right ones, too.

47

Published as a conference paper at ICLR 2024

Table 33: This is an example where SWE-Llama13b writes an incorrect solution, but maintains prior
behavior successfully. The difference in the model’s generation and the gold patch here demonstrates
how models tend to under-generate the necessary fixes.

Setting

• Model: SWE-Llama 13B with Oracle retrieval
• Task Instance: sphinx-doc sphinx-11445

– Link to Issue: https://github.com/sphinx-doc/sphinx/issues/11437
– Link to PR: https://github.com/sphinx-doc/sphinx/pull/11445

Issue
Using rst_prolog removes top level headings containing a domain directive

Describe the bug
If rst_prolog is set, then any documents that contain a domain directive as the first head-
ing (eg :mod:) do not render the heading correctly or include the heading in the toctree. In
the example below, if the heading of docs/mypackage.rst were mypackage2 instead of
:mod:mypackage2 then the heading displays correctly. Similarly, if you do not set rst_prolog
then the heading will display correctly. This appears to have been broken for some time because I
can reproduce it in v4.0.0 of Sphinx

How to Reproduce

$ sphinx-quickstart --no-sep --project mypackage --author me -v 0.1.0
--release 0.1.0 --language en docs

$ echo -e ’Welcome\n=======\n\n.. toctree::\n\n mypackage\n’
> docs/index.rst

$ echo -e ’:mod:‘mypackage2‘\n=================\n\nContent\n\n
Subheading\n----------\n’ > docs/mypackage.rst

$ echo -e ’rst_prolog = """\n.. |psf| replace:: Python Software
Foundation\n"""\n’ >> docs/conf.py

$ sphinx-build -b html . _build
$ grep ’mypackage2’ docs/_build/index.html

Model Generated Patch
diff --git a/sphinx/util/rst.py b/sphinx/util/rst.py
--- a/sphinx/util/rst.py
+++ b/sphinx/util/rst.py
@@ -25,7 +25,7 @@

logger = logging.getLogger(__name__)
-docinfo_re = re.compile(’:\\w+:.*?’)
+docinfo_re = re.compile(’:\\w+:.*?\n’)
symbols_re = re.compile(r’([!-\-/:-@\[-‘{-˜])’)
SECTIONING_CHARS = [’=’, ’-’, ’˜’]

Tests
Fail to Pass (2)

tests/test_util_rst.py::test_prepend_prolog_with_roles_with_newline
tests/test_util_rst.py::test_prepend_prolog_with_roles_without_newline

Pass to Pass (8)
tests/test_util_rst.py::test_prepend_prolog
tests/test_util_rst.py::test_prepend_prolog_with_CR
tests/test_util_rst.py::test_prepend_prolog_without_CR

Additional Pass to Pass Tests omitted...

48

https://github.com/sphinx-doc/sphinx/issues/11437
https://github.com/sphinx-doc/sphinx/pull/11445

Published as a conference paper at ICLR 2024

Gold Patch
diff --git a/sphinx/util/rst.py b/sphinx/util/rst.py
--- a/sphinx/util/rst.py
+++ b/sphinx/util/rst.py
@@ -10,22 +10,17 @@

from docutils.parsers.rst import roles
from docutils.parsers.rst.languages import en as english
+from docutils.parsers.rst.states import Body
from docutils.statemachine import StringList
from docutils.utils import Reporter
-from jinja2 import Environment
+from jinja2 import Environment, pass_environment

from sphinx.locale import __
from sphinx.util import docutils, logging

-try:
- from jinja2.utils import pass_environment
-except ImportError:
- from jinja2 import environmentfilter as pass_environment
-
-
logger = logging.getLogger(__name__)

-docinfo_re = re.compile(’:\\w+:.*?’)
+FIELD_NAME_RE = re.compile(Body.patterns[’field_marker’])
symbols_re = re.compile(r’([!-\-/:-@\[-‘{-˜])’) # symbols without dot(0

x2e)
SECTIONING_CHARS = [’=’, ’-’, ’˜’]

@@ -80,7 +75,7 @@ def prepend_prolog(content: StringList, prolog: str) ->
None:
if prolog:

pos = 0
for line in content:

- if docinfo_re.match(line):
+ if FIELD_NAME_RE.match(line):

pos += 1
else:

break
@@ -91,6 +86,7 @@ def prepend_prolog(content: StringList, prolog: str) ->

None:
pos += 1

insert prolog (after docinfo if exists)
+ lineno = 0

for lineno, line in enumerate(prolog.splitlines()):
content.insert(pos + lineno, line, ’<rst_prolog>’, lineno)

Discussion. For this task instance from the sphinx-doc/sphinx repository, a model is asked
to write logic to fix a case where the title is incorrectly being rendered. Simply understanding the
jargon being used and mapping such words to logic within the codebase is a significant challenge
faced by the model. The model is given a command line call that can help with this, but grounding
the terminology presented in the issues within the codebase is essential. From comparing the gold
patch and model generated patch, it is clear that the model does not come close to solving the task.
The model does generally identify that fixing the regex pattern is the correct action, as this is what
the gold patch does, too. However, where the model and oracle retrieval setting collectively fall short
is mainly due to the significant use of additional modules from both the codebase itself and third
party libraries. This example highlights the importance and potential for training language models
and designing inference procedures that allow for the automated discovery of such information.

49

Published as a conference paper at ICLR 2024

Table 34: In this final example, SWE-Llama 13b not only does not solve the task, but also corrupts
existing behavior in the model. This example demonstrates the need for models to understand the
codebase beyond the scope of the required edits.

Setting

• Model: SWE-Llama 13B with Oracle retrieval
• Task Instance: scikit-learn scikit-learn-13241

– Link to Issue: https://github.com/scikit-learn/scikit-learn/issues/8798
– Link to PR: https://github.com/scikit-learn/scikit-learn/pull/13241

Issue
Differences among the results of KernelPCA with rbf kernel

Description
When I run KernelPCA for dimension reduction for the same datasets, the results are different in
signs.

Steps/Code to Reproduce
Just to reduce the dimension to 7 with rbf kernel:
pca = KernelPCA(n_components=7, kernel=’rbf’, copy_X=False, n_jobs=-1)
pca.fit_transform(X)

Expected Results
The same result.

Actual Results
The results are the same except for their signs:
[[-0.44457 -0.18155 -0.10873 0.13548 -0.14371 -0.05746 0.18124]]
[[0.44457 0.18155 0.10873 -0.13548 -0.14371 -0.05746 -0.18124]]
[[-0.44457 -0.18155 0.10873 0.13548 0.14371 0.057469 0.18124]]

Gold Patch
diff --git a/sklearn/decomposition/kernel_pca.py b/sklearn/decompos...
--- a/sklearn/decomposition/kernel_pca.py
+++ b/sklearn/decomposition/kernel_pca.py
@@ -8,6 +8,7 @@
from scipy.sparse.linalg import eigsh

from ..utils import check_random_state
+from ..utils.extmath import svd_flip
from ..utils.validation import check_is_fitted, check_array
from ..exceptions import NotFittedError
from ..base import BaseEstimator, TransformerMixin,

_UnstableOn32BitMixin
@@ -210,6 +211,10 @@ def _fit_transform(self, K):

maxiter=self.max_iter,
v0=v0)

+ # flip eigenvectors’ sign to enforce deterministic output
+ self.alphas_, _ = svd_flip(self.alphas_,
+ np.empty_like(self.alphas_).T)
+

sort eigenvectors in descending order
indices = self.lambdas_.argsort()[::-1]
self.lambdas_ = self.lambdas_[indices]

50

https://github.com/scikit-learn/scikit-learn/issues/8798
https://github.com/scikit-learn/scikit-learn/pull/13241

Published as a conference paper at ICLR 2024

Model Generated Patch
diff --git a/sklearn/decomposition/kernel_pca.py b/sklearn/decompos...
--- a/sklearn/decomposition/kernel_pca.py
+++ b/sklearn/decomposition/kernel_pca.py
@@ -220,7 +220,7 @@ def _fit_transform(self, K):

self.alphas_ = self.alphas_[:, self.lambdas_ > 0]
self.lambdas_ = self.lambdas_[self.lambdas_ > 0]

- return K
+ return K / self.lambdas_

def _fit_inverse_transform(self, X_transformed, X):
if hasattr(X, "tocsr"):

Tests
Fail to Pass (1)

sklearn/tests/test_kernel_pca.py::test_kernel_pca_deterministic_output

Pass to Pass (54)
sklearn/tests/test_kernel_pca.py::test_kernel_pca
sklearn/tests/test_kernel_pca.py::test_kernel_pca_consistent_transform
sklearn/tests/test_kernel_pca.py::test_kernel_pca_deterministic_output
sklearn/tests/test_kernel_pca.py::test_kernel_pca_sparse
sklearn/tests/test_kernel_pca.py::test_kernel_pca_linear_kernel
sklearn/tests/test_kernel_pca.py::test_kernel_pca_n_components
sklearn/tests/test_kernel_pca.py::test_remove_zero_eig
sklearn/tests/test_kernel_pca.py::test_kernel_pca_precomputed
sklearn/tests/test_kernel_pca.py::test_gridsearch_pipeline
sklearn/tests/test_kernel_pca.py::test_gridsearch_pipeline_precomputed
sklearn/tests/test_pca.py::test_pca_dtype_preservation[randomized]
sklearn/tests/test_pca.py::test_pca_dtype_preservation[auto]
sklearn/tests/test_pca.py::test_pca_deterministic_output

Additional Pass to Pass Tests omitted...

Discussion. In this example from the scikit-learn/scikit-learn library, a model is given
an observation that the parities of the output from a call to the fit_transform function are
flipped. The model is also given lines of Python code and its standard output that recreates the issue.
The gold patch imports and uses the svd_flip function to solve this issue within a different
line of the _fit_transform function. What’s different about the model’s failure for this task
beyond the points discussed for the Table 33 example is that, in addition to understanding third party
dependencies that its edits rely on, it is also important for a model to understand what other parts of
the codebase in turn depend on the function it is changing. This example presents a different facet
as to why processing long contexts extend beyond the local edit scope is a difficult but worthwhile
challenge.

51

	Introduction
	SWE-bench
	Benchmark Construction
	Task Formulation
	Features of SWE-bench

	SWE-Llama: Fine-tuning CodeLlama for SWE-bench
	Experimental Setup
	Retrieval-Based Approach
	Input Format
	Models

	Results
	A Qualitative Analysis of SWE-Llama Generations

	Related Work
	Discussion
	Ethics Statement
	Reproducibility Statement
	Acknowledgements
	Benchmark Details
	High Level Overview
	Construction Process
	Execution-Based Validation
	Evaluation Procedure
	Evaluation Test Set Characterization
	Development Set Characterization

	Additional Details on Training SWE-Llama
	Training Details

	Additional Results
	Results with ``Oracle'' Retrieval
	Evaluation Test Set
	GPT-4 Evaluation Subset Results
	Extended Temporal Analysis
	F2P, P2P Rate Analysis
	Patch Generation Extended Analysis
	Software Engineering Metrics

	Additional Experimental Details
	Retrieval Details
	Inference Settings
	Prompt Template Example

	Societal Impact
	In-depth Analysis of SWE-Llama Generations

