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Abstract
This paper studies the sample-efficiency of learn-
ing in Partially Observable Markov Decision Pro-
cesses (POMDPs), a challenging problem in rein-
forcement learning that is known to be exponen-
tially hard in the worst-case. Motivated by real-
world settings such as loading in game playing,
we propose an enhanced feedback model called
“multiple observations in hindsight”, where af-
ter each episode of interaction with the POMDP,
the learner may collect multiple additional ob-
servations emitted from the encountered latent
states, but may not observe the latent states them-
selves. We show that sample-efficient learning
under this feedback model is possible for two new
subclasses of POMDPs: multi-observation reveal-
ing POMDPs and distinguishable POMDPs. Both
subclasses generalize and substantially relax re-
vealing POMDPs—a widely studied subclass for
which sample-efficient learning is possible un-
der standard trajectory feedback. Notably, dis-
tinguishable POMDPs only require the emission
distributions from different latent states to be dif-
ferent instead of linearly independent as required
in revealing POMDPs.

1. Introduction
Partially observable reinforcement learning problems, where
the agent must make decisions based on incomplete infor-
mation about the environment, are prevalent in practice,
such as robotics (OpenAI et al., 2019), economics (Zheng
et al., 2020) and decision-making in education or clinical
settings (Ayer et al., 2012). However, from a theoretical
standpoint, it is well established that learning a near-optimal
policy in Partially Observable Markov Decision Processes
(POMDPs) requires exponentially many samples in the
worst case (Mossel & Roch, 2005; Krishnamurthy et al.,
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2016). Such a worst-case exponential hardness stems from
the fact that the observations need not provide useful infor-
mation about the true underlying (latent) states, prohibiting
efficient exploration. This is in stark contrast to fully ob-
servable RL in MDPs in which a near-optimal policy can be
learned in polynomially many samples, without any further
assumption on the MDP (Kearns & Singh, 2002; Auer et al.,
2008; Azar et al., 2017).

Towards circumventing this hardness result, one line of
recent work seeks additional structural conditions under
which a polynomial sample complexity is possible (Katt
et al., 2018; Liu et al., 2022a; Efroni et al., 2022). A preva-
lent example there is revealing POMDPs (Jin et al., 2020a;
Liu et al., 2022a), which requires the observables to re-
veal some information about the true latent state so that
the latent state is (probabilistically) distinguishable from
the observables. Another approach, which we explore in
this paper, entails using enhanced feedback models that
deliver additional information beyond what is provided by
standard trajectory-based feedback. This is initiated by the
work of Lee et al. (2023), who proposed the framework of
Hindsight Observable POMDPs (HOMDPs). In this setting,
latent states are revealed in hindsight after each episode has
finished. This hindsight revealing of latent states provides
crucial information to the learner, and enables the adapta-
tion of techniques for learning fully observable MDPs (Azar
et al., 2017). As a result, it allows a polynomial sample com-
plexity for learning any POMDP (tabular or with a low-rank
transition) under this feedback model, negating the need for
further structural assumptions (Lee et al., 2023).

In this paper, we investigate a new feedback model that
reveals multiple additional observations—emitted from the
same latent states as encountered during each episode—in
hindsight to the learner. As opposed to the hindsight ob-
servable setting, here the learner does not directly observe
the latent states, yet still gains useful information about the
latent states via the additional observations. This model
resembles practical scenarios such as the save/load mech-
anism in game playing, in which the player can replay the
game from a previously saved state. Similar feedback mod-
els such as RL with replays (Amortila et al., 2022; Li et al.,
2021; Lee et al., 2023) have also been considered in the
literature in fully observable settings. This feedback model
is also theoretically motivated, as the additional observa-
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tions in hindsight provide more information to the learner,
which in principle may allow us to learn a broader class of
POMDPs than under standard feedback as studied in exist-
ing work (Jin et al., 2020a; Liu et al., 2022a; Zhan et al.,
2022; Chen et al., 2022a; Liu et al., 2022b).

Our contributions can be summarized as follows.

• We define a novel feedback model—POMDPs with
k multiple observations (k-MOMDP)—for enhancing
learning in POMDPs over the standard trajectory feed-
back (Section 3). Under k-MOMDP feedback, after
each episode is finished, the learner gains additional
observations emitted from the same latent states as
those visited during the episode.

• We propose k-MO-revealing POMDPs, a natural relax-
ation of revealing POMDPs to the multiple observation
setting, and give an algorithm (k-OMLE) that can
learn k-MO-revealing POMDPs sample-efficiently un-
der k-MOMDP feedback (Section 4). Concretely, we
provide learning results for both the tabular and the
low-rank transition settings.

• We propose distinguishable POMDPs as an attempt
towards understanding the minimal structural assump-
tion for sample-efficient learning under k-MOMDP
feedback (Section 5.1). While being a natural superset
of k-MO-revealing POMDPs for all k, we also show a
reverse containment that any distinguishable POMDP
is also a k-MO-revealing POMDP with a sufficiently
large k. Consequently, any distinguishable POMDP
can be learned sample-efficiently by reducing to k-MO-
revealing POMDPs and using the k-OMLE algorithm
(Section 5.2).

• For distinguishable POMDPs, we present another algo-
rithm OST (Section 5.3) that achieves a sharper sample
complexity than the above reduction approach. The al-
gorithm builds on a closeness testing subroutine using
the multiple observations to infer the latent state up to a
permutation. Technically, compared with the reduction
approach whose proof relies implicitly on distribution
testing results, the OST algorithm utilizes distribution
testing techniques explicitly in its algorithm design.

Additional related work is discussed in Appendix A.

2. Preliminaries
Notations For any natural number n ∈ N, we use [n] to
represent the set [n] = 1, 2, . . . , n. We use Im to denote the
identity matrix within Rm×m. For vectors, we denote the
ℓp-norm as ∥ · ∥p and ∥ · ∥p→p, and the expression ∥x∥A rep-
resents the square root of the quadratic form x⊤Ax. Given
a set S, we use ∆(S) to denote the set of all probability
distributions defined on S. For an operator O defined on

S and a probability distribution b ∈ ∆(S), the notation
Ob : O → R denotes the integral of O(o | s) with re-
spect to b(s), where the integration is performed over the
entire set S. For two series {an}n≥1 and {bn}n≥1, we use
an ≤ O(bn) to mean that there exists a positive constant C
such that an ≤ C · bn. For λ ≥ 0, we use Poi(λ) to denote
the Poisson distribution with parameter λ.

POMDPs In this work, we study partially ob-
servable Markov decision processes (POMDPs)
with a finite time horizon, denoted as P . The
POMDP can be represented by the tuple P =(
S,A, H,O, d0, {rh}Hh=1, {Th}Hh=1, {Oh}Hh=1

)
, where

S denotes the state space, A denotes the set of possible
actions, H ∈ N represents the length of the episode, O
represents the set of possible observations, and d0 represents
the initial distribution over states, which is assumed to be
known. The transition kernel Th : S × A → S describes
the probability of transitioning from one state to another
state after being given a specific action at time step h. The
reward function rh : O → [0, 1] assigns a reward to each
observation in O, and Oh : S → ∆(O) is the observation
distribution function at time step h. For a given state s ∈ S
and observation o ∈ O, Oh(o | s) represents the probability
of observing o while in state s. Note that (with known
rewards and initial distribution) a POMDP can be fully
described by the parameter θ = ({Th}Hh=1, {Oh}Hh=1). We
use τh := (o1:h, a1:h) = (o1, a1, · · · , oh−1, ah−1, oh, ah)
to denote a trajectory of observations and actions at time
step h ∈ [H]. We use S, A, O to denote the cardinality of
S, A, and O respectively.

Learning goal A policy π is a tuple π = (π1, . . . , πH),
where πh : τh−1 ×O → ∆(A) is a mapping from histories
up to step h to actions. We define the value function for π
for model θ by Vθ(π) = EP

o1:H∼π[
∑H

h=1 rh(oh)], namely
as the expected reward received by following π. We use
V ∗(θ) = maxπ Vθ(π) and π∗(θ) = argmaxπ Vθ(π) to
denote the optimal value function and optimal policy for a
model θ. We denote the parameter of the true POMDP as
θ∗. We also use the shorthand V (π) := Vθ∗(π).

3. POMDPs with Multiple Observations
In this section, we propose POMDPs with k multiple obser-
vations (k-MOMDP), a new enhanced feedback model for
learning POMDPs defined as follows. In the t-th round of
interaction, the learner

1. Plays an episode in the POMDP with a policy πt,
and observes the standard trajectory feedback τ t =

(o
t,(1)
1 , at1, · · · , o

t,(1)
H , atH) (without observing the la-

tent states {sth}h∈[H]).

2. Receives k − 1 additional observations o
t,(2:k)
h

iid∼
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Oh(·|sth) for h ∈ [H] after the episode ends.

At k = 1, the feedback model is the same as the standard
trajectory feedback. At k > 1, the k − 1 additional obser-
vations cannot affect the trajectory τ t but can reveal more
information about the past encountered latent states, which
could be beneficial for learning (choosing the policy for the
next round). We remark that such a “replay” ability has also
been explored in several recent works, such as Lee et al.
(2023) who assume that the learner could know the visited
states after each iteration, and Amortila et al. (2022); Li et al.
(2021) who assume that the learner could reset to any visited
states then continue to take actions to generate a trajectory.

We consider a general setting where the value of k in k-
MOMDP can be determined by the learner. Consequently,
for a fair comparison of the sample complexities, we take
into account all observations (both the trajectory and the
(k − 1) additional observations) when counting the number
of samples, so that each round of interaction counts as kH
observations/samples.

Relationship with the hindsight observable setting
Closely related to k-MOMDP, Lee et al. (2023) propose the
hindsight observable setting, another feedback model for
learning POMDPs in which the learner directly observes the
true latent states {sth}h∈[H] after the t-th episode. In terms
of their relationship, neither feedback model is stronger than
(can simulate) the other in a strict sense, when learning from
bandit feedback: Conditioned on the k − 1 additional obser-
vations, the true latent state could still be random; Given the
true latent state, the learner in general, don’t know the emis-
sion distribution to simulate additional samples. However,
our multiple observation setting is conceptually “weaker”
(making learning harder) than the hindsight observatbility
setting, as the true latent state is exactly revealed in the
hindsight observable setting but only “approximately” re-
vealed in our setting through the noisy channel of multiple
observations in hindsight.

A natural first question about the k-MOMDP feedback
model is that whether it fully resolves the hardness of learn-
ing in POMDPs (for example, making any tabular POMDP
learnable with polynomially many samples). The following
result shows that the answer is negative.

Proposition 1 (Existence of POMDP not polynomially
learnable under k-MO feedback for any finite k). For any
H,A ≥ 2, there exists a POMDP with H steps, A actions,
and S = O = 2 (non-revealing combination lock) that can-
not be solved with o(AH−1) samples with high probability
under k-MOMDP feedback for any k ≥ 1.

Proposition 1 shows that some structural assumption on the
POMDP is necessary for it to be sample-efficiently learn-
able in k-MOMDP setting (proof can be found in Appendix

C.1), which we investigate in the sequel. This is in contrast
to the hindsight observable setting (Lee et al., 2023) where
any tabular POMDP can be learned with polynomially many
samples, and suggests that k-MOMDP as an enhanced feed-
back model is in a sense more relaxed.

4. k-MO-revealing POMDPs
We now introduce the class of k-MO-revealing POMDPs,
and show that they are sample-efficiently learnable under
k-MOMDP feedback.

4.1. Definition
To introduce this class, we begin by noticing that learn-
ing POMDPs under the k-MOMDP feedback can be recast
as learning an augmented POMDP under standard trajec-
tory feedback. Indeed, we can simply combine the ob-
servations during the episode and the hindsight into an
augmented observation {o(1:kh )}

h∈[H]
which belongs to

Ok = {o(1:k) : o(i) ∈ O}. The policy class that the learner
optimizes over in this setting is a restricted policy class
(denoted as Πsingleobs) that is only allowed to depend on the
first entry o

(1)
h instead of the full augmented observation

o
(1:k)
h .

We now present the definition of a k-MO revealing POMDP,
which simply requries its augmented POMDP under the
k-MOMDP feedback is (single-step) revealing. For any
matrix O = {O(o|s)}o,s∈O×S ∈ RO×S and any k ≥ 1, let

O⊗k ∈ ROk×S denote the column-wise k self-tensor of O,
given by O⊗k(o1:k|s) =

∏k
i=1 O(oi|s).

Definition 2 (MO-revealing POMDP). For any k ≥ 1 and
α ∈ (0, 1], a POMDP is said to be (α, k)-MO-revealing if
its augmented POMDP under the k-MOMDP feedback is α-
revealing. In other words, a POMDP is k-MO-revealing if
for all h ∈ [H], the matrix O⊗k

h has a left inverse O⊗k+
h ∈

RS×Ok

(i.e. O⊗k+
h O⊗k

h = IS) such that∥∥O⊗k+
h

∥∥
1→1

≤ α−1.

Above, we allow any left inverse of O⊗k
h and use the matrix

(1 → 1) norm to measure the revealing constant follow-
ing Chen et al. (2023), which allows a tight characterization
of the sample complexity.

As a basic property, we show that (α, k)-MO-revealing
POMDPs are strictly larger subclasses of POMDPs as k
increases. The proof can be found in Appendix E.1.

Proposition 3 (Relationship between (α, k)-MO-revealing
POMDPs). For all α ∈ (0, 1] and k ≥ 1, any (α, k)-
MO-revealing POMDP is also an (α, k + 1)-MO-revealing
POMDP. Conversely, for all k ≥ 2, there exists a POMDP
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that is (α, k + 1)-MO-revealing for some α > 0 but not
(α′, k)-MO-revealing for any α′ > 0.

Proposition 3 shows that (α, k)-MO-revealing POMDPs
are systematic relaxations of the standard α-revealing
POMDPs (Jin et al., 2020c; Liu et al., 2022a; Chen et al.,
2023), which corresponds to the special case of (α, k)-MO-
revealing with k = 1. Intuitively, such relaxations are also
natural, as the k-multiple observation setting makes it easier
for the observations to reveal information about the latent
state in any POMDP. We remark in passing that the contain-
ment in Proposition 3 is strict.

4.2. Algorithm and Guarantee
In this section, we provide the theoretical guarantee for
learning k-MO-revealing POMDPs via the k-OMLE algo-
rithm (Algorithm 3).

Our guarantee for k-OMLE requires the POMDP to sat-
isfy the k-MO-revealing condition and an additional guar-
antee on its rank, similar to existing work on learning
POMDPs (Wang et al., 2022; Chen et al., 2022a; Liu et al.,
2022b). For simplicity of the presentation, here we consider
the case of POMDPs with low-rank latent transitions (which
includes tabular POMDPs as a special case); our results
directly hold in the more general case where d is the PSR
rank of the problem (Chen et al., 2022a; Liu et al., 2022b;
Zhong et al., 2022).

Definition 4 (Low-rank POMDP (Zhan et al., 2022; Chen
et al., 2022a)). A POMDP P is called low-rank POMDP
with rank d if its transition kernel Th : S ×A → S admits
a low-rank decomposition of dimension d, i.e. there exists
two mappings µ∗

h : S → Rd, and ϕ∗
h : S × A → Rd such

that Th (s
′ | s, a) = µ∗

h (s
′)
⊤
ϕ∗
h(s, a).

We also make the standard realizability assumption that
the model class contains the true POMDP: θ∗ ∈ Θ (but
otherwise does not require that the mappings {µ∗

h, ϕ
∗
h}h are

known).

We state the theoretical guarantee for k-OMLE on low-
rank POMDPs. The proof follows directly by adapting the
analysis of Chen et al. (2022a) into the augmented POMDP
(see Appendix D.2).

Theorem 5 (Results of k-OMLE for (α, k)-MO-revealing
low-rank POMDPs). Suppose the true model θ∗ is a low-
rank POMDP with rank d, is realizable (θ∗ ∈ Θ), and
every θ ∈ Θ is (α, k)-MO-revealing. Then choosing β =
O(log (NΘ/δ)), with probability at least 1− δ, Algorithm
3 outputs a policy πT such that V ∗ − V (πT ) ⩽ ε within

N = THk = Õ
(
poly(H)kdA logNΘ/

(
α2ε2

))
samples. Above, NΘ is the optimistic covering number of Θ
defined in Appendix D.

We also state a result of tabular (α, k)-revealing POMDPs.
Note that any tabular POMDP is also a low-rank POMDP
with rank d = SA, hence Theorem 5 applies; however the
result below achieves a slightly better rate (by using the fact
that the PSR rank is at most S).

Theorem 6 (Results of k-OMLE for (α, k)-MO-revealing
tabular POMDPs). Suppose θ∗ is (α, k)-MO-revealing and
Θ consists of all tabular (α, k)-MO-revealing POMDPs.
Then, choosing β = O(H

(
S2A+ SO

)
+ log(1/δ)), then

with probability at least 1− δ, Algorithm 3 outputs a policy
πT such that V ∗−V (πT ) ⩽ ε within the followinng number
of samples:

Õ
(
poly(H)kSA(S2A+ SO)/

(
α2ε2

))
.

We remark that the rate asserted in Theorem 5 & 6 also hold
for the Explorative Estimation-To-Decisions (Explorative
E2D) (Foster et al., 2021) and the Model-based Optimistic
Posterior Sampling (Agarwal & Zhang, 2022) algorithms
(with an additional low-rank requirement on every θ ∈ Θ
for Explorative E2D), building upon the unified analysis
framework of Chen et al. (2022b;a). See Appendix D.2 for
details.

5. Distinguishable POMDPs
Given k-MO-revealing POMDPs as a first example of
sample-efficiently learnable POMDPs under k-MOMDP
feedback, it is of interest to understand the minimal structure
required for learning under this feedback. In this section, we
investigate a natural proposal—distinguishable POMDPs,
and study its relationship with k-MO-revealing POMDPs as
well as sample-efficient learning algorithms.

5.1. Definition
The definition of distinguishable POMDPs is motivated
by the simple observation that, if there exist two states
si, sj ∈ S that admit exactly the same emission distribu-
tions (i.e. Ohei = Ohej ∈ ∆(O)), then the two states are
not distinguishable under k-MOMDP feedback no matter
how large k is. Our formal definition makes this quantitia-
tive, requiring any two states to admit α-different emission
distributions in the ℓ1 (total variation) distance.

Definition 7 (Distinguishable POMDP). For any α ∈ (0, 1],
a POMDP is said to be α-distinguishable if for all h ∈ [H]
(where ei ∈ RS denotes the i-th standard basis vector),

min
i ̸=j∈S

∥Oh(ei − ej)∥1 ≥ α.

Qualitatively, we say a POMDP is distinguishable if it is
α-distinguishable for some α > 0.

Notably, distinguishability only requires the emission matrix
Oh to have distinct columns. This is much weaker than the
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(single-step) revealing condition (Jin et al., 2020a; Liu et al.,
2022a; Chen et al., 2022a; 2023) which requires Oh to
have linearly independent columns. In other words, in a
distinguishable POMDP, different latent states may not be
probabilistically identifiable from a single observation as in
a revealing POMDP; however, this does not preclude the
possibility that we can identify the latent state with k > 1
observations.

Also, we focus on the natural case of tabular POMDPs
(i.e. S, A, O are finite) when considering distinguishable
POMDPs1, and leave the question extending or modifying
the definition to infinitely many states/observations to future
work.

5.2. Relationship with k-MO-revealing POMDPs
In Appendix E.1, we show that any k-MO revealing POMDP
is necessarily a distinguishable POMDP. Perhaps more sur-
prisingly, we show that the reverse containment is also true
if we allow k to be large—Any α-distinguishable POMDP
is also a k-MO revealing POMDP for a suitable large k
depending on (S,O, α), and revealing constant Θ(1).

Using this relation, we derive a sample-efficient learning
algorithm for distinguishable POMDPs by direct reduction
to the k-MO-revealing POMDPs with such a choice of k.

5.3. Sharper Algorithm: OST
We now introduce a more efficient algorithm—Optimism
with State Testing (OST; Algorithm 1)—for learning distin-
guishable POMDPs under k-MOMDP feedback.

Recall that in a distinguishable POMDP, different latent
states have α-separated emission distributions, and we can
observe k observations per state. The main idea in OST is
to use closeness testing algorithms (Chan et al., 2013; Batu
et al., 2013) to determine whether any two k-fold observa-
tions are from the same latent state. As long as all pairwise
tests return correct results, we can perform a clustering to
recover a “pseudo” state label that is guaranteed to be the
correct latent states up to a permutation. Given the pseudo
states, we can then adapt the techniques from the hindsight
observable setting (Lee et al., 2023) to accurately estimate
the transitions and emissions of the POMDP and learn a
near-optimal policy.

Algorithm description We first define a planning ora-
cle (Lee et al., 2023; Jin et al., 2020b), which serves as an
abstraction of the optimal planning procedure that maps any
POMDP (T,O, r) to an optimal policy of it.

1When S is infinite (e.g. if the state space S is continuous),
requiring any two emission distributions to differ by α in ℓ1 dis-
tance may be an unnatural requirement, as near-by states could
yield similar emission probabilities in typical scenarios.

Algorithm 1 Optimism with State Testing (OST)
Input: POMDP planner POP, parameters β1, β2 > 0 and

k ∈ N.
1: Initialize: Emission and transition models O1, T1, ini-

tial pseudo state space [nh
1 ] = ∅ (i.e. nh

1 = 0) and initial
visitation counts n1

h(s) = n1
h(s, a) = 0 for all s ∈ S̃1,

a ∈ A and h ∈ [H].
2: for iteration t = 1, · · · , T do
3: for all (s, a) ∈ [S]×A do
4: Set bt(s, a) = min

{√
β1/nt(s, a), 2H

}
and

bt(s) = min
{√

β2/nt(s), 2
}

as the exploration
bonus for all (s, a) ∈ [S]×A.

5: Set r̂th(s, a) = min{1, r̄th(s, a) + Hbt(s) +
bt(s, a)} for all (s, a) ∈ [S] × A, where r̄t is
defined in (1).

6: Update πt = POP (T̂t, Ôt, r̂t).
7: Execute πt to collect a k-observation trajectory τ tk,

where τ tk =
(
o
t,(1:k)
1 , a1, . . . , o

t,(1:k)
H , aH

)
.

8: Call ASSIGN PSEUDO STATES (Algorithm 2) to ob-
tain pseudo states {s̃th}h∈[H].

9: Set nt+1
h (s) =

∑
l∈[t],h∈[H] 1{s̃lh = s} for all

(h, s) ∈ [H]× [S].
10: Set nt+1

h (s, a) =
∑

l∈[t],h∈[H] 1{s̃lh = s ∧ alh = a}
for all (h, s, a) ∈ [H]× [S]×A.

11: Update T̂t+1 and Ôt+1 by (2) and (3).
12: Return πt.

Definition 8 (POMDP Optimal Planner). The POMDP plan-
ner POP takes as input a transition function T := {Th}Hh=1,
an emission function O := {Oh}Hh=1, and a reward function
r : S ×A → [0, 1] and returns a policy π = POP(T,O, r)
to maximize the value function under the POMDP with la-
tent transitions {Th}Hh=1, emissions {Oh}Hh=1, and reward
function r.

OST operates over T rounds, beginning with arbitrary ini-
tial estimates T̂1 and Ô1 of the model. We set the initial
pseudo state space as an empty set. Then, at each iteration t,
OST calculates reward bonuses bt(s, a) and bt(s) to capture
the uncertainty of T̂t and Ôt, quantified by the number of
visits to each latent state in the pseudo state space (Line 4).
The bonuses are added to the following empirical reward
estimates (Line 5):

r̄th(s, a) =
∑
o∈O

∑
ℓ∈[t]

r(o)1
{
sℓh = s, oℓh = o

}
min{1, nt

h(s)}
. (1)

We then call POP to calculate the policy for the current
iteration, and deploy it to obtain a k-observation trajectory
from the k-MOMDP feedback (Line 6-7).

We next employ closeness testing and clustering to assign
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Algorithm 2 Pseudo state assignment via closeness testing
(ASSIGN PSEUDO STATES)

1: for h ∈ [H] do
2: assigned = 0.
3: for s̃ ∈ [nt

h] do
4: if closeness test(ot,(1:k)h , o

t′,(1:k)
h ) = accept

(Algorithm 4) for all t′ ∈ [s̃t
′

h = s̃] then
5: Set s̃th = s̃, assigned = 1, nt+1

h = nt
h, break

6: if assigned = 0 then
7: Set s̃th = nt

h + 1, nt+1
h = nt

h + 1.

pseudo states (s̃t1, . . . , s̃
t
H) to the trajectory τ tk (Line 8) us-

ing Algorithm 2. For each k-observation o
t,(1:k)
h generated

from the state visited in the new iteration, we perform a
closeness test with all past {ot

′,(1:k)
h }

t′>t
to check if they

belong to the same pseudo state: Two states are the same
state if their k observations pass closeness testing, differ-
ent if they fail closeness testing. Using the test results, we
perform a simple “clustering” step: If ot,(1:k)h passes the
closeness test against all {ot

′,(1:k)
h } who has been assigned

as pseudo state s̃, then we assign s̃ to o
t,(1:k)
h . If the state is

not assigned after all tests, then that indicates the encoun-
tered latent state has not been encountered before (not in the
current pseudo state space [nt

h]), in which case we assign
o
t,(1:k)
h with a new pseudo state nt

h + 1, which enlarges the
pseudo state space to [nt+1

h ] = [nt
h + 1].

Our particular closeness testing algorithm (Algorithm 4)
adapts the test and analysis in (Lee et al., 2023) and makes
certain modifications, such as repeating a test with a Poisson
number of samples log(1/δ) times to reduce the failure
probability from a Θ(1) constant to δ, as well as imposing
a hard upper limit k on the total sample size (so that the
test can be implemented under the k-MOMDP feedback),
instead of a Poisson number of samples which is unbounded.

Finally, using the assigned pseudo states, we update the
visitation counts of each (pseudo) state s and state-action
(s, a) (Line 9-10). Then we update the pseudo latent models
(T̂t+1, Ôt+1) = ({T̂ t+1

h }Hh=1, {Ô
t+1
h }Hh=1) using empirical

estimates based on the previous data (Line 11):

T̂ t+1
h (s′ | s, a) =

∑
ℓ∈[t]

1
{
sℓh = s, sℓh+1 = s′

}
min{1, nt+1

h (s, a)}
, (2)

Ôt+1
h (o | s) =

∑
ℓ∈[t]

1
{
sℓh = s, oℓh = o

}
min{1, nt+1

h (s)}
. (3)

Theoretical guarantee We now present the main guar-
antee for OST for learning distinguishable POMDPs. The
proof can be found in Appendix E.5.

Theorem 9 (Learnining distinguishable POMDPs by
OST). For any α-distinguishable POMDP, choosing β1 =
O(H3 log(OSAHK/δ)), β2 = O(O log(OSKH/δ)) and
k = Õ((

√
O/α2 + O2/3/α4/3)), with probability at least

1− δ, the output policy of Algorithm 1 is ε-optimal after the
following number of samples:

Õ
(
poly(H) ·

(
SO

ε2
+

SAk

ε2

))
= Õ

(
poly(H) ·

(
SO

ε2
+

SA
√
O

ε2α2
+

SAO2/3

ε2α4/3

))
.

The proof of Theorem 9 builds on high-probability cor-
rectness guarantees of closeness test, which enables us
to adapt the algorithm and analysis of the hindsight ob-
servable setting Lee et al. (2023) if all tests return the cor-
rect results (so that pseudo states coincide with the true
latent states up to a permutation). Compared to the rate ob-
tained by k-OMLE (Eq. (5)), Theorem 9 achieves a better
sample complexity (all three terms above are smaller the
S2AO1.5/(α2ε2) term therein, ignoring H factors). Tech-
nically, this is enabled by the explicit closeness tests built
into OST combined with a sharp analysis of learning tabular
POMDPs with observed latent states, rather than the implicit
identity tests used in the reduction approach (Theorem E.1)
with the k-OMLE algorithm.

6. Conclusion
In this paper, we investigated k-Multiple Observations MDP
(k-MOMDP), a new enhanced feedback model that allows
efficient learning in broader classes of Partially Observ-
able Markov Decision Processes (POMDPs) than under the
standard feedback model. We introduced two new classes
of POMDPs—k-MO-revealing POMDPs and distinguish-
able POMDPs and designed sample-efficient algorithms
for learning in these POMDPs under k-MOMDP feedback.
Overall, our results shed light on the broader question of
when POMDPs can be efficiently learnable from the lens
of enhanced feedbacks. We believe our work opens up
many directions for future work, such as lower bounds for
the sample complexities, identifying alternative efficiently
learnable classes of POMDPs under k-MOMDP feedback,
generalizing distinguishable POMDPs to the function ap-
proximation setting, or developing more computationally
efficient algorithms.
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A. Related Work
Sample-efficient learning of POMDPs Due to the non-Markovian characteristics of observations, policies in POMDPs
generally rely on the complete history of observations, making them more challenging to learn compared to those in fully
observable MDPs. Learning a near-optimal policy in POMDPs is statistically hard in the worst case due to a sample
complexity lower bound that is exponential in the horizon (Mossel & Roch, 2005; Krishnamurthy et al., 2016; Papadimitriou
& Tsitsiklis, 1987), and is also computationally hard (Papadimitriou & Tsitsiklis, 1987; Vlassis et al., 2012).

To circumvent this hardness, a body of work has been dedicated to studying various sub-classes of POMDPs, such as
revealing POMDPs (Hsu et al., 2012; Guo et al., 2016; Jin et al., 2020c; Liu et al., 2022a; Chen et al., 2023), and decodable
POMDPs (Efroni et al., 2022) (with block MDPs (Krishnamurthy et al., 2016; Du et al., 2019; Misra et al., 2020) as a special
case). Other examples include reactiveness (Jiang et al., 2017), revealing (future/past sufficiency) and low rank (Cai et al.,
2022; Wang et al., 2022), latent MDPs (Kwon et al., 2021; Zhou et al., 2022), learning short-memory policies (Uehara et al.,
2022b), and deterministic transitions (Uehara et al., 2022a). Our definitions of k-MO-revealing POMDPs and distinguishable
POMDPs can be seen as additional examples for tractably learnable subclasses of POMDPs under a slightly stronger setting
(k-MOMDP feedback).

More recently, Zhan et al. (2022); Chen et al. (2022a); Liu et al. (2022b); Zhong et al. (2022) study learning in a more
general setting—Predictive State Representations (PSRs), which include POMDPs as a subclass. Zhan et al. (2022) show
that sample-efficient learning is possible in PSRs, and Chen et al. (2022a) propose a unified condition (B-stability, which
subsume revealing POMDPs and decodable POMDPs as special cases) for PSRs, and give algorithms with sharp sample
complexities. Our results on (α, k)-MO-revealing POMDPs can be viewed as an extension of the results of Chen et al.
(2022a) for revealing POMDPs, adapted to the multiple observation setting.

POMDPs with enhanced feedback Another line of work studies various enhanced feedback models for POMDPs (Kakade
et al., 2023; Amortila et al., 2022; Li et al., 2021; Lee et al., 2023). Kakade et al. (2023) propose an interactive access model
in which the algorithm can query for samples from the conditional distributions of the Hidden Markov Models (HMMs).
Closely related to our work, Lee et al. (2023) study in the Hindsight Observable Markov Decision Processes (HOMDPs)
as the POMDPs where the latent states are revealed to the learner in hindsight. Our feedback model can be viewed as a
conceptual weakening of their model as we do not, though we remark that neither is strictly stronger than the other (learner
can use neither one to simulate the other); see Section 3 for details. Also, in the fully observable setting, Amortila et al.
(2022); Li et al. (2021) have studied feedback models similar to ours where the learner could backtrack and revisit previous
states.

Distribution testing Our analyses for distinguishable POMDPs build on several techniques from the distribution testing
literature (Paninski, 2008; Andoni et al., 2009; Indyk et al., 2012; Ba et al., 2011; Valiant & Valiant, 2011; Goldreich &
Ron, 2011; Batu et al., 2013; Acharya et al., 2015; Chan et al., 2013); see (Canonne, 2020) for a review. Notably, our OST
algorithm builds on subroutines for the closeness testing problem, which involves determining whether two distributions
over a set with n elements are ε-close from samples. Batu et al. (2013) were the first to formally define this problem,
proposing a tester with sub-linear (in n) sample complexity with any failure probability δ. Subsequent work by Chan et al.
(2013) introduced testers whose sample complexity was information-theoretically optimal for the closeness testing problem
with a constant probability. The sample complexity of their tester in ℓ1 norm is Θ

(
max{n2/3/ε4/3, n1/2/ε2}

)
. Our OST

algorithm uses an adapted version of their tester and the technique of Batu et al. (2013) to determine whether two latent
states are identical with any failure probability through the multiple observations emitted from them.

B. Technical Lemmas
Lemma B.1. Suppose Ys ∈ {0, 1}Ok

for all s ∈ S, and the locations of the 1′s are disjoint within the rows s ∈ S. The
matrix Y is defined by

Y :=

Y
⊤
1
...

Y ⊤
S

 ∈ RS×Ok

.

Then we have

∥Y∥1→1 = 1.
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Proof of Lemma B.1. Let’s analyze the action of Y on an arbitrary non-zero vector x ∈ ROk

. Since each column of Y has
at most one non-zero element, which is 1, the action of Y on x is:

Yx =


∑Ok

i=1 Y1,ixi

...∑Ok

i=1 YS,ixi

 =

 xj1
...

xjS


Here, xjs is the element of x corresponding to the non-zero entry in row s of Y. Then, we have:

∥Y∥x =

S∑
s=1

|xjs | ≤
Ok∑
i=1

|xi| = ∥x∥ .

It follows that ∥Yx∥1

∥x∥1 ≤ 1 for any non-zero x ∈ ROk

, so ∥Y∥1→1 ≤ 1.

Now let’s find a non-zero vector x for which ∥Yx∥1

∥x∥1
= 1. Let x be the vector with all elements equal to 1, i.e., xi = 1 for all

i. Then, the action of Y on x is:

Yx =

 1
...
1

 .

This gives us ∥Y∥1→1 ≥ 1.

Combining the two inequalities, we finish the proof of Lemma B.1.

Lemma B.2. Suppose E is a matrix satisfies that ∥E∥1→1 < 1, then I+ E is invertible.

Proof. To prove this lemma, we will show that I+ E has no eigenvalue equal to zero. If there 0 is an eigenvalue and there
exists x ̸= 0, s.t.

(I+ E)x⃗ = 0,

which means

∥x∥1 = ∥Ex∥1.

This implies that ∥E∥1→1 ≥ 1, which contradicts with the fact that ∥E∥1→1 < 1. Hence I+ E must be invertible.

C. Proofs for Section 3
C.1. Proof of Proposition 1
Proof. Inspired by the bad case in Liu et al. (2022a), we construct a combination lock to prove the proposition, which is
defined as follows:

Consider two states, labeled as a ”good state” (sg) and a ”bad state” (sb), and two observations, og and ob. For the initial
H − 1 steps, the emission matrices are (

1/2 1/2
1/2 1/2

)
.

while at step H , the emission matrix becomes (
1 0
0 1

)
.

This implies that no information is learned at each step h ∈ [H − 1], but at step H , the current latent state is always directly
observed.
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In our model, there are A different actions with the initial state set as sg. The transitions are defined as follows: For every
h ∈ [H − 1], one action is labeled ”good”, while the others are ”bad”. If the agent is in the ”good” state and makes the
”good” action, it remains in the ”good” state. In all other scenarios, the agent transitions to the ”bad” state. The good action
is randomly selected from A for each h ∈ [H − 1]. The episode concludes immediately after oH is obtained.

All observations during the initial H − 1 steps get a reward of 0. At step H , observation og produces a reward of 1, while
observation ob yields 0. Therefore, the agent receives a reward of 1 solely if it reaches the state sg at step H , i.e., if the
optimal action is taken at every step.

Assume we attempt to learn this POMDP using an algorithm X , where we are given T episodes, with k-multiple observations,
to interact with the POMDP. Regardless of the selection of k, no information can be learned at step h ∈ [H − 1], making the
best strategy a random guess of the optimal action sequence. More specifically, the probability that X incorrectly guesses
the optimal sequence, given that we have T guesses, is(

AH−1 − 1

T

)
/

(
AH−1

T

)
= (AH−1 − T )/AH−1.

For T ≤ AH−1/10, this value is at least 9/10. Therefore, with a minimum probability of 0.9, the agent learns nothing
except that the chosen action sequences are incorrect, and the best policy it can produce is to randomly select from the
remaining action sequences, which is less efficient than (1/2)-optimal. This concludes our proof.

C.2. Proof of Proposition 3
Proof. First, we prove the existence of an (α, k + 1)-MO-revealing POMDP P that is not an (α, k)-MO-revealing POMDP.
To this end, it suffices to consider a POMDP with a single step (H = 1) with emission matrix O ≡ O1 ∈ RO×S .

We consider the following POMDP with H = 1, O = 2 and S = k+ 2. We denote O = {o1, o2} and S = {s1, · · · , sk+2}.
The probabilities O(o1 | si) and O(o2 | si) for i ∈ [k+2] are denoted as ui and vi respectively, with {v1, . . . , vk+2} ⊂ (0, 1)
being distinct. It should be noted that ui + vi = 1 for any i.

We first consider the rank of O⊗k ∈ R2k×(k+2). Note that O⊗k(o1:k|s) only depends on the number of o1’s and o2’s within
o1:k, which only has k + 1 possibilities (ok1 , o

k−1
1 o2, · · · , ok2). Therefore, Ok only has at most (k + 1) distinct rows, and

thus rank(O⊗k) ≤ k + 1. Since k + 1 < min {2k, k + 2} for all k ≥ 2, O⊗k is rank-deficient, and thus the constructed
POMDP with emission matrix O is not an (α′, k)-MO-revealing POMDP for any α′ > 0.

Next, we consider the rank of O⊗k+1. Using similar arguments as above, O⊗k+1 has (k+2) distinct rows, and thus its rank
equals the rank of the corresponding (k + 2)× (k + 2) submatrix:

uk+1
1 uk+1

2 · · · uk+1
k+2

uk
1v1 uk

2v2 · · · uk
k+2vk+2

...
...

. . .
...

vk+1
1 vk+1

2 · · · vk+1
k+2

 .

By rescaling each column i with 1/uk+1
i , the resulting matrrix is a Vandermonde matrix generated by distinct values

{vi/ui}i∈[k+2], and thus has full rank (Boyd & Vandenberghe, 2018, Exercise 6.18). This implies that O⊗k+1 is full-rank
and thus admits a finite left inverse (for example its pseudo inverse) (O⊗k+1)+ with finite (1 → 1) norm. This shows the
constructed POMDP is (α, k + 1)-MO-revealing with α =

∥∥(O⊗k+1)+
∥∥−1

1→1
> 0.

Now we prove that any (α, k)-MO-revealing POMDP P is also an (α, k + 1)-MO-revealing POMDP. Let P be an (α, k)-
revealing POMDP. Fix any h ∈ [H] and let O ≡ Oh for shorthand. Let (aij)ij represent the O⊗k matrix of P , where
i ∈ Ok and j ∈ S. Let (bij)ij denote the O⊗k+ matrix of P , where i ∈ S and j ∈ Ok.

By the definition of O⊗k+, we have the following equations:∑
o1···ok∈Ok

bs,o1···okao1···ok,s′ = 1 {s = s′} , ∀s, s′ ∈ S. (4)

Let (āij)ij represent the O⊗k+1 matrix of P , where i ∈ Ok+1 and j ∈ S. Note that we have āo1···ok+1,s =
ao1···ok,sO(ok+1 | s).
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Now we construct O⊗k+1+ = (b̄ij)ij as b̄s,o1···ok+1
:= bs,o1···ok . For all s, s′ ∈ S, we have:∑

o1···ok+1∈Ok+1

b̄s,o1···ok+1
āo1···ok+1,s′ =

∑
o1···ok+1∈Ok+1

bs,o1···okao1···ok,s′O(ok+1 | s′)

=
∑

o1···ok∈Ok

bs,o1···okao1···ok,s′

= 1 {s = s′} ,

where the last equation follows from (4). This shows that the constructed (O⊗k+1)+ is indeed a left inverse of O⊗k+1.
Further, for any vector v ∈ ROk+1

, we have∥∥(O⊗k+1)+v
∥∥
1
=
∑
s∈S

∑
o1:k+1

∣∣b̄s,o1···ok+1
vo1···ok+1

∣∣ =∑
s∈S

∑
o1:k+1

∣∣bs,o1···okvo1···ok+1

∣∣
≤
∑
ok+1

∥∥(O⊗k)+v:,ok+1

∥∥
1
≤ α−1

∑
ok+1

∥∥v:,ok+1

∥∥
1
= α−1 ∥v∥1 .

This shows that
∥∥(O⊗k+1)+

∥∥
1→1

≤ α−1. Since the above holds for any h ∈ [H], we have P is an (α, k + 1)-revealing
POMDP.

D. Proofs for Section 4
D.1. Algorithm: k-Optimistic Maximum Likelihood Estimation (k-OMLE)
Here, we provide a brief introduction to Algorithm k-OMLE. The algorithm is an adaptation of the the OMLE algorithm (Liu
et al., 2022a; Zhan et al., 2022; Chen et al., 2022a; Liu et al., 2022b) into the k-MOMDP feedback setting. As noted before,
we can cast the problem of learning under k-MOMDP feedback as learning in an augmented POMDP with the restricted
policy class Πsingleobs. Then, the k-OMLE algorithm is simply the OMLE algorithm applied in this problem.

Concretely, each iteration t ∈ [T ] of the k-OMLE algorithm consists of two primary steps:

1. The learner executes exploration policies {πt
h,exp}0⩽h⩽H−1

, where each πt
h,exp is defined via the ◦h−1 notation as

follows: It follows πt for the first h− 1 steps, then takes the uniform action Unif(A), and then taks arbitrary actions
(for example using Unif(A) afterwards (Line 5). All collected trajectories are then incorporated into D (Line 6).

2. The learner constructs a confidence set Θt within the model class Θ, which is a super level set of the log-likelihood of
all trajectories within the dataset D (Line 7). The policy πk is then selected as the greedy policy with respect to the
most optimistic model within Θk (Line 3).

D.2. Proof of Theorem 5 and Theorem 6
First, we define the optimistic cover and optimistic covering number for any model class Θ and ρ > 0. The definition is
taken from Chen et al. (2022b).

Definition D.1 (Optimistic cover and optimistic covering number (Chen et al., 2022b)). Suppose that there is a context
space X . An optimistic ρ-cover of Θ is a tuple

(
P̃,Θ0

)
, where Θ0 ⊂ Θ is a finite set, P̃ =

{
P̃θ0(·) ∈ RT H

⩾0

}
θ0∈Θ0,π∈Π

specifies a optimistic likelihood function for each θ ∈ Θ0, such that:

1. For θ ∈ Θ, there exists a θ0 ∈ Θ0 satisfying: for all τ ∈ T H and π, it holds that P̃π
θ0
(τ) ⩾ Pπ

θ (τ);

2. For θ ∈ Θ0,maxπ

∥∥∥Pπ
θ (τH = ·)− P̃π

θ (τH = ·)
∥∥∥
1
⩽ ρ2.

The optimistic covering number NΘ(ρ) is defined as the minimal cardinality of Θ0 such that there exists P̃ such that(
P̃,M0

)
is an optimistic ρ-cover of Θ.

Remind that we consider the k-MOMDP as an augmented POMDP and note that we are going to find the optimized policy
in Πsingleobs, which only depends on the single immediate observation o

(1)
h .
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Algorithm 3 k-Optimistic Maximum Likelihood Estimation (k-OMLE)
Input: Model class Θ, parameter β > 0, and k ∈ N.

1: Initialize: Θ1 = Θ, D = ∅.
2: for iteration t = 1, · · · , T do
3: Set θt, πt = argmaxθ∈Θt,π Vθ(π).
4: for h = 0, · · · , H − 1 do
5: Set exploration policy πt

h,exp := πt ◦h−1 Unif(A).
6: Execute πt

h,exp to collect a k-observation trajectory τ t,hk , and add (πt
h,exp, τ

t,h
k ) to D, where τ t,hk =(

o
t,(1:k)
1 , a1, . . . , o

t,(1:k)
H , a

t,(1:k)
H

)
as in Section 3.

7: Update confidence set

Θt+1 =

θ̂ ∈ Θ :
∑

(π,τt)∈D

logPπ
θ̂
(τt) ⩾ max

θ∈Θ

∑
(π,τt)∈D

logPπ
θ (τt)− β

 .

8: Return πT .

Our k-OMLE algorithm can be seen as an adaptation of Algorithm OMLE in Chen et al. (2022a) to the augmented POMDP
with policy class Πsingleobs.

Chen et al. (2022a) showed that OMLE achieves the following estimation bound for low-rank POMDPs.

Theorem D.1 (Theorem 9 in Chen et al. (2022a)). Choosing β = O(log (NΘ/δ)), then with probability at least 1 − δ,
Algorithm OMLE outputs a policy πT such that V⋆ − Vθ⋆

(
πT
)
⩽ ε, after

N = TH = Õ
(
poly(HdPSRA logNΘ/

(
α2ε2

))
samples, where they considered POMDPs as Predictive State Representations (PSRs), and dPSR is the PSR rank. For
low-rank POMDP, dPSR ≤ d, where d is the rank of the decomposition of the transition kernel.

In the proof of Theorem 9 in Chen et al. (2022a), the use of the policy class is based on the fact that the policy πt

at each iteration is chosen to be the optimal policy within the model confidence set Θt for that round, specifically
πt = argmaxθ∈Θt,π Vθ(π). By replacing the policy class with Πres, we still maintain this property, ensuring that the chosen
policy remains optimal within the updated model confidence set. Therefore, the replacement is valid and does not affect the
optimality of the selected policies throughout the algorithm. Hence, by invoking Theorem D.1 and the above argument, we
obtain the convergence rate stated in Theorem 5.

For tabular POMDPs with S states, the PSR rank becomes S. Additionally, Liu et al. (2022a) showed that logNΘ(ρ) ≤
O(H(S2A+ SO) log(HSOA/ρ)). By utilizing this result, we can derive the convergence rate for the tabular case.

Extension to Explorative E2D and MOPS The above augmentation (considering k-MOMDP as an augmented POMDP
and searching in Πsingleobs) can also be applied to extend Theorem 10 in Chen et al. (2022a). The theorem is achieved by
Algorithm Explorative Estimation-to-Decisions (Explorative E2D). Furthermore, it can be extended to Theorem F.6 in Chen
et al. (2022a), which is achieved by Model-based optimistic posterior sampling (MOPS). The OMLE, Explorative E2D, and
MOPS extension to k-MOMDPs share the same sample complexity rates.

MOPS and E2D require slightly stronger conditions compared to OMLE. While OMLE only necessitates θ⋆ to possess the
low PSR rank structure, E2D requires every model within Θ to exhibit the same low-rank structure. All three algorithms
require every model within Θ to be k-MO-revealing, not just θ∗.

E. Proofs for Section 5
E.1. Relationship between distinguishable POMDPs and k-MO-revealing POMDPs
We now study the relationship between distinguishable POMDPs and k-MO-revealing POMDPs. Formal statement and
proof of the following results see Appendix E.2 and Appendix E.3.
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We begin by showing that any k-MO revealing POMDP is necessarily a distinguishable POMDP. This is not surprising,
as distinguishability is a necessary condition for k-MO-revealing—if distinguishability is violated, then there exists two
states with identical emission distributions and thus identical emission distributions with k iid observations for any k ≥ 1,
necessarily violating k-MO-revealing.

Proposition E.1 (k-MO revealing POMDPs ⊂ Distinguishable POMDPs). For any α ∈ (0, 1], k ≥ 1, any (α, k)-revealing
tabular POMDP is a distinguishable POMDP.

Perhaps more surprisingly, we show that the reverse containment is also true in a sense if we allow k to be large—Any
α-distinguishable POMDP is also a k-MO revealing POMDP for a suitable large k depending on (S,O, α), and revealing
constant Θ(1).

Theorem E.1 (Distinguishable ⊂ MO-revealing with large k). There exists an absolute constant C > 0 such that any
α-distinguishable POMDP is also (1/2, k)-MO-revealing for any k ≥ C

√
O log(SO)/α2.

Proof by embedding a distribution test The proof of Theorem E.1 works by showing that, for any distinguishable
POMDP, the k-observation emission matrix O⊗k

h admits a well-conditioned left inverse with a suitably large k. The
construction of such a left inverse borrows techniques from distribution testing literature, where we embed an identity
test (Batu et al., 2013; Chan et al., 2013) with k observations into a S×Ok matrix, with each column consisting of indicators
of the test result. The required condition for this matrix to be well-conditioned (and thus O⊗k

h admitting a left inverse) is
that k is large enough—precisely k ≥ Õ(

√
O/α2) (given by known results in identity testing (Chan et al., 2013))—such

that the test succeeds with high probability.

Sample-efficient learning by reduction to k-MO-revealing case Theorem E.1 implies that, since any α-distinguishable
POMDP is also a (1/2, k)-MO-revealing POMDP with k = O(

√
O log(SO)/α2), it can be efficiently learned by the

k-OMLE algorithm, with number of samples

Õ
(
poly(H)SA

√
O(S2A+ SO)/

(
α2ε2

))
(5)

given by Theorem 6. This shows that any distinguishable POMDP is sample-efficiently learnable under k-MOMDP feedback
by choosing a proper k.

E.2. Proof of Proposition E.1
Proof. We utilize proof by contradiction to establish the validity of this problem. Suppose we have a tabular POMDP,
denoted by P , that is not distinguishable. Hence there exists i, j ∈ S, such that

∥Oh(ei − ej)∥1 = 0,

which means that there must exist two different states, s1 and s2 belonging to S, such that they share the same emission
kernels. As a result, the columns associated with s1 and s2 will be identical. Consequently, the k-fold tensor power of
the observation space O⊗k for P will be a rank-deficient matrix, implying that it lacks a left inverse. This leads us to
conclude that P cannot be a revealing POMDP. This contradiction substantiates our original proposition, hence completing
the proof.

E.3. Proof of Theorem E.1
Proof. Consider any α-distinguishable POMDP and any fixed h ∈ [H].

Step 1. By lemma E.3, we construct tests Zs = {Zs(o1:k)}o1:k∈Ok for each s ∈ S, such that Zs ≤ 1/2 with probability at
least 1− δ under Oh(·|s), and Zs ≥ 1 with probability at least 1− δ under Oh(·|s′) for any s′ ̸= s.

Step 2. For every s ∈ S, define “identity test for latent state s”:

Ys(o1:k) = 1

{
Zs(o1:k) = min

s′∈S
Zs′(o1:k)

}
∈ {0, 1},
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with an arbitrary tie-breaking rule for the min (such as in lexicographic order). Understand Ys ∈ ROk

as a vector. Define
matrix

Yh :=

Y
⊤
1
...

Y ⊤
S

 ∈ RS×Ok

.

By step 1, we have

YhO⊗k+
h = IS + E,

where the matrix E ∈ RS×S satisfies |Eij | ≤ Sδ. We pick δ = 1/(2S2) (which requires k ≥
√
O/α2 log 1/δ). Further,

notice that each Ys ∈ {0, 1}O
k

, and the locations of the 1’s are disjoint within the rows s ∈ S. By Lemma B.1 we have

∥Yh∥1→1 = 1.

Step 3. Notice that (where {e⊤s }s∈S are rows of E)

∥E∥1→1 = max
∥x∥1=1

∑
s∈S

∣∣e⊤s x∣∣ ≤∑
s∈S

∥es∥∞ ≤ S2δ ≤ 1/2.

By Lemma B.2 we know that IS + E is invertible. Further, we have

∥∥(IS + E)−1
∥∥
1→1

=

∥∥∥∥∥IS +

∞∑
k=1

(−1)kEk

∥∥∥∥∥
1→1

≤ 1 +

∞∑
k=1

∥E∥k1→1 =
1

1− ∥E∥1→1

≤ 2.

Finally, define the matrix

O⊗k+
h := (IS + E)−1Yh ∈ RS×Ok

.

We have O⊗k+
h O⊗k

h = (IS + E)−1YhO⊗k
h = (IS + E)−1(IS + E) = IS . Further,∥∥O⊗k+

h

∥∥
1→1

≤
∥∥(IS + E)−1

∥∥
1→1

· ∥Yh∥1→1 ≤ 2.

This completes the proof.

E.4. Subroutines

Algorithm 4 Closeness Testing closeness test({o(i)}i∈[k], {õ(i)}i∈[k])

Input: [o[i]]i∈[k], [õ
[i]]i∈[k]

1: Sample N1, · · · , NM ∼ Poi(k/M), where M = O(log(1/δ)).
2: Return fail if N1 + · · ·+NM > k.
3: for j ∈ [M ] do
4: Bj = {N1 + · · ·+Nj−1 + 1, · · · , N1 + · · ·+Nj}.
5: N

(j)
o =

∑
i∈Bj

1{oi = o}, Ñ (j)
o =

∑
i∈Bj

1{õi = o}.

6: Z(j) = 1{
∑

o∈O
(N(j)

o −Ñ(j)
o )

2−N(j)
o −Ñ(j)

o

N
(j)
o +Ñ

(j)
o

≤
√
3Nj}.

7: Return accept if
∑

j∈[M ] z
(j) ≥ M/2, else reject

E.5. Proof of Theorem 9
Proof. First, we introduce the Hindsight Observable Markov Decision Processes (HOMDPs), POMDPs where the latent
states are revealed to the learner in hindsight.
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HOMDP (Lee et al., 2023) There are two phases in the HOMDP: train time and test time. During train time, at any given
round t ∈ [T ], the learner produces a history-dependent policy πt which is deployed in the partially observable environment
as if the learner is interacting with a standard POMDP. Once the t th episode is completed, the latent states st1:H are revealed
to the learner in hindsight, hence the terminology hindsight observability. Lee et al. (2023) showed that HOP-B achieves the
following estimation bound for HOMDPs

Theorem E.2 (Theorem 4.2 in Lee et al. (2023)). Let M be a HOMDP model with S latent states and O observations. With
probability at least 1− δ, HOP-B outputs a sequence of policies π1, . . . , πT such that

Reg(T ) = Õ
(
poly(H)

√
(SO + SA)T

)
.

Lemma E.1. (α-vector representation)

Our proof is a reduction from the result of E.2 combined with results for closeness testing to ensure that states are correct (up
to permutation). Suppose in algorithm 2, the pseudo-states are indeed true states (up to permutation). Then, our algorithm 2
achieves regret bound

Õ

(
poly(H) ·

(
SO

ε2
+

SA
√
O

ε2α2
+

SAO2/3

ε2α4/3

))
.

Now we explain our proof, our Algorithm 1 are different from HOP-B in two points:

1. HOP-B works for HOMDP, where the exact information of the pseudo-states can be immediately known. In k-MOMDP,
we cannot determine the exact state even when we can distinguish all the states. Therefore, Algorithm 1 reduces to the
HOP-B algorithm up to permute.

2. Since we cannot know the exact pseudo-states, we couldn’t assume the reward on the pseudo state space X is known
for each s ∈ X . We can only estimate the reward towards the estimated emission kernel.

r̄th(s, a) =
∑
o∈O

∑
ℓ∈[t]

rh(o)1
{
sℓh = s, oℓh = o

}
nt
h(s)

=
∑
o∈O

Ôt(o | s)rh(o),

where Ôt is the estimated emission kernel in the t-th iteration. This leads to an extra error between the estimated
reward function r̄ and true reward function rh(s, a) =

∑
o∈O O(o | s)rh(o).

Since we assume the reward function r can be bounded by 1, the error between the estimated reward function r̄ and
true reward function r(s, a) can be bounded as:

r̄h(s, a)− rh(s, a) =
∑
o∈O

(Ôt(o | s)−O(o | s))rh(o)

≤
∑
o∈O

∥Ôt(o | s)−O(o | s)∥.

which can be bounded by
√

(O log(SOTH/δ))/(nt(s)) with probability 1− δ as showed in Lee et al. (2023). Hence
we can additionally handle the reward estimation, however, this will not result in a change of the rate, as we can just
choose a larger constant in the exploration bonus for states in their HOP-B algorithm (line4, β2) to ensure optimism
still holds.

The previous theorem requires the pseudo states to be true. To ensure this requires the guarantee of closeness testing, which
we give here, we will prove it in Section E.6. We state that with a high probability, we could identify the pseudo-states (up
to permutation), which means that after an iteration, we could know whether the states visited in this iteration were visited
before. We use the closeness testing algorithm to test whether two observation sequences were generated from the same
state.

Lemma E.2 (Closeness testing guarantee). When k = O((
√
O/α2 + O2/3/α4/3) log 1/δ), with probability 1 − δ the

following holds: Throughout the execution of Algorithm 1, we have that there exists a permutation π : S → S, such that
pseudo-states are up to permutation of true states (we could identify each state).
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Algorithm 5 Closeness Testing 2 closeness test2([o[i]]i∈[k])

Input: [o[i]]i∈[k]

1: Sample N1, · · · , NM ∼ Poi(k/M), where M = O(log(1/δ))
2: Return fail if N1 + · · ·+NM > k.
3: for j ∈ [M ] do
4: Bj = {N1 + · · ·+Nj−1 + 1, · · · , N1 + · · ·+Nj}
5: N

(j)
o =

∑
i∈Bj

1{oi = o}
6: A(j) = {o : o ≥ α/(50O)}
7: C(j) =

∑
o∈A(j)(

(
N

(j)
o −Njqo

)2
−N

(j)
o )/Njqo)

8: z(j) = 1{C(j) ≤ Njα
2/10}.

9: Return accept if
∑

j∈[M ] z
(j) ≥ M/2, else reject

After identifying the pseudo-states (up to permutation), we can think that we have information about the state after each
iteration, as we said in Section 3.

On the success event of closeness testing, states are indeed correct. Therefore we can invoke Theorem E.2 to obtain regret
bound

Õ
(
poly(H) ·

(
SO

ε2
+

SAk

ε2

))
= Õ

(
poly(H) ·

(
SO

ε2
+

SA
√
O

ε2α2
+

SAO2/3

ε2α4/3

))

by taking k = O((
√
Oα2 +O2/3/α4/3) log 1/δ) to the bound of Theorem E.2, which finish the proof.

E.6. Closeness Testing
In this section, we prove the theoretical guarantee for closeness testing.

Proof of Lemma E.2. Let’s assume X ∼ Poi(λ). We have tail bound for X: for any x > 0,

P(X > λ+ x) ≤ ex−(λ+x) ln(1+ x
λ ).

Employing this tail bound, we conclude that Algorithm 4 will not return a fail with a probability of 1−O(δ). Our subsequent
analysis is contingent upon this event.

Based on Proposition 3 in Chan et al. (2013), given k = O((
√
Oα2 + O2/3/α4/3) log 1/δ), we can infer that for any

j ∈ [M ]: Z(j) = 1 with a probability of at least 2/3 if ot,(1:k)h and o
t′,(1:k)
h generated from the same state, Z(j) = 0 with a

probability of at least 2/3 if they are produced by different states. Utilizing standard repeating techniques, we find that with
O
(
log 1

δ

)
iterations, we can attain an error probability of at most δ.

Thus, we’ve established that if ot,(1:k)h and o
t′,(1:k)
h are generated from the same state, Algorithm 4 will return an accept with

a probability of 1 − δ. Conversely, if they are generated from different states, the algorithm 4 will return a reject with a
probability of 1− δ.

Lemma E.3. Suppose P is an α-distinguishable POMDP, then we can construct tests Zs = {Zs(o1:k)}o1:k∈Ok for each
s ∈ S, such that Zs = 0 with probability at least 1 − δ under Oh(·|s), and Zs = 1 with probability at least 1 − δ under
Oh(·|s′) for any s′ ̸= s.

Proof. We construct Zs by using the closeness testing technique.

First, we give to consider a problem: Given samples from an unknown distribution p, is it possible to distinguish whether p
equal to O versus p being α-far from every O?

Chan et al. (2013) proposes an algorithm to achieve its lower bound
√
O/α2. We improve their algorithm by repeating

log(1/δ) times to attain an error probability of at most δ. We denote qo = O(o | s). The algorithm is listed in Algorithm 5.
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Finally, we apply the repeating technique to Theorem 2 in Chan et al. (2013). Then we set k =
√
O/α2 log 1/δ and set

Zs(o1:k) = 1{closeness test2(o1:k) = accept}. Hence we can identify whether an observation sequence o1:k is generated
from state s with probability 1− δ. Therefore, we complete the proof of Lemma E.3.
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