
Hallucinations in Code to Natural Language Generation: Prevalence and
Evaluation of Detection Metrics

Anonymous ACL submission

Abstract

Language models have demonstrated remark-001
able capabilities across a wide range of tasks002
in software engineering, such as code genera-003
tion, yet they suffer from hallucinations. While004
hallucinations have been studied independently005
in natural language and code generation, their006
occurrence in tasks involving both code and007
natural language is underexplored. This pa-008
per presents the first comprehensive analysis009
of hallucinations in two critical tasks involving010
code to natural language generation: commit011
message generation and code review comment012
generation. We quantify the prevalence of hal-013
lucinations in recent language models and ex-014
plore a range of metric-based approaches to015
automatically detect them.Our findings reveal016
that approximately 50% of generated code re-017
views and 20% of generated commit messages018
contain hallucinations, predominantly mani-019
festing as input inconsistency, logic inconsis-020
tency, or intention violation. Whilst commonly021
used metrics are weak detectors on their own022
(56.6% and 61.7% ROC-AUC, respectively),023
combining multiple metrics substantially im-024
proves performance (69.1% and 75.3% respec-025
tively). Notably, model confidence and fea-026
ture attribution metrics effectively contribute027
to hallucination detection, showing promise for028
inference-time detection. Our work calls for fu-029
ture research on more robust detection methods030
and hallucination-resistant models for code to031
natural language generation. 1032

1 Introduction033

AI-based software engineering tools are becoming034

increasingly ubiquitous due to their potential to035

improve developer productivity (Jain et al., 2022;036

Fan et al., 2023; Hou et al., 2024). While such037

tools can accelerate software development, their038

reliance on underlying language models exposes039

the risk of hallucination—the phenomenon where040

1All code and data will be released upon acceptance.

models generate outputs that are inconsistent with 041

their inputs or fabricate non-existent information 042

(Ji et al., 2023; Huang et al., 2025). Such behav- 043

ior may decrease developer productivity or even 044

mislead junior developers (Ferino et al., 2025), al- 045

lowing errors to propagate through to the software. 046

Although prior research has focused on the effects 047

of hallucination during code generation (Liu et al., 048

2024; Tian et al., 2024; Agarwal et al., 2024), these 049

effects remain largely unexplored in tasks involv- 050

ing code-to-natural-language generation. Unlike 051

code, natural language outputs are not easily verifi- 052

able. Furthermore, the tasks’ multi-modal nature 053

raises the question of whether hallucination detec- 054

tion techniques developed for the natural language 055

domain will generalize to this context. 056

In this paper, we present a comprehensive 057

study of hallucinations in code to natural language 058

(Code2NL) generation tasks. We focus on two key 059

tasks: (1) automated commit message generation, 060

which aids developers in documenting what and 061

why code was changed, and (2) automated code 062

review generation, which assists reviewers in iden- 063

tifying potential issues in code changes and sug- 064

gesting improvements. To systematically analyze 065

hallucination in Code2NL, we first develop a halluci- 066

nation annotation workflow specific to the Code2NL 067

context based on the outputs from task-specific 068

models. We then empirically evaluate the effec- 069

tiveness of various metric-based approaches for 070

automatically detecting these hallucinations. In par- 071

ticular, we examine both reference-based metrics 072

(which compare against human-written references) 073

and reference-free metrics (without the references). 074

Our findings reveal the severity of the halluci- 075

nation problem in Code2NL tasks. We found that 076

nearly 50% of model-generated code reviews and 077

20% of generated commit messages contain hal- 078

lucinations. The three predominant categories of 079

hallucinations are input inconsistency (where the 080

generated NL is inconsistent with the code change), 081

1

logic inconsistency (where the NL contains inter-082

nally contradictory reasoning), and intention viola-083

tion (where the generation fails for the specific task,084

e.g., it is not a review comment for code review but085

just a summary of the code change). Furthermore,086

we demonstrate that individual metrics for hallu-087

cination detection perform only marginally better088

than random chance (56.6% ROC-AUC for code089

review and 61.7% for commit messages). How-090

ever, combining multiple metrics yields substan-091

tial improvements (69.1% and 75.3% respectively).092

Notably, reference-free metrics show promising re-093

sults comparable to using all available metrics, sug-094

gesting the feasibility of detecting hallucinations095

without ground truth references.096

This work makes three primary contributions:097

(1) the first systematic characterization of hallu-098

cinations in code to natural language tasks, re-099

vealing the severity and patterns of the problem;100

(2) a comprehensive evaluation of automatic hal-101

lucination detection methods, demonstrating that102

combining multiple metrics significantly improves103

detection capability; and (3) identification of key104

reference-free metrics (model confidence and at-105

tribution scores) that effectively predict hallucina-106

tions, facilitating real-time detection in production107

environments without requiring reference text.108

2 Related Work109

Hallucination in Code Generation Prior re-110

search has examined different types of hallucina-111

tions in code generation across various scenarios.112

Most studies typically focus on hallucinations in113

established benchmarks such as HumanEval (Chen114

et al., 2021), DS-1000 (Lai et al., 2023), and MBPP115

(Austin et al., 2021). However, these benchmarks116

focus on natural language to code (NL2Code) gen-117

eration, which primarily evaluate on code models118

on generate function code or script given a descrip-119

tion in natural language.120

The taxonomies developed for code hallucina-121

tions are often tailored to code-specific character-122

istics, e.g., dead/unreachable code, syntactic in-123

correctness, the use of unimported libraries (Liu124

et al., 2024; Agarwal et al., 2024). In addition,125

code generated in these benchmarks can often be126

verified by executing the code and comparing the127

output against ground truth, which facilitates the128

identification of hallucinations (Tian et al., 2024).129

On the other hand, the hallucination in the130

Code2NL tasks is overlooked. Code2NL tasks often131

occur in various important real-world software en- 132

gineering tasks such as writing commit messages 133

and code reviewing. To perform Code2NL tasks, 134

code models are required to understand both code 135

and its context to generate a summary or express 136

concerns in natural language. As a result, the hal- 137

lucination taxonomies from the NL2Code tasks 138

cannot be applied to the Code2NL tasks and the 139

correctness of the natural language output itself is 140

difficult to verify automatically. 141

Hallucination in Natural Language Generation 142

Initially, Maynez et al. (2020) categorized halluci- 143

nations in abstract summarization into two types: 144

intrinsic hallucinations (where models misinter- 145

pret information present in the input, generating 146

content that contradicts the source document) and 147

extrinsic hallucinations (where models forge infor- 148

mation absent from the input that cannot be veri- 149

fied using available information). More recently, 150

Huang et al. (2025) identified three subcategories 151

of intrinsic hallucinations in LLMs: instruction- 152

inconsistent (outputs are not consistent with the 153

instruction), logic inconsistency (output itself ex- 154

hibits internal logical contradictions), and context 155

inconsistency (outputs are not consistent with the 156

provided input context). Huang et al. (2025) fur- 157

ther refined these factual hallucinations by distin- 158

guishing between factual contradiction (outputs 159

that can be grounded but contradict real-world 160

knowledge) and factual fabrication (outputs that 161

are completely made up with no basis in reality 162

or verifiable facts). This taxonomy aligns more 163

closely with our Code2NL tasks and serves as a 164

foundation to determine the hallucination types in 165

Section 3.2. 166

Automatic Hallucination Detection Automatic 167

hallucination detection methods can be catego- 168

rized into two broad categories: reference-based 169

and reference-free. Reference-based metrics use 170

ground truth to gauge the quality of the generated 171

outputs, using this quality as an estimation of hal- 172

lucination. This includes lexical overlap such as 173

BLEU (Papineni et al., 2002), which evaluates n- 174

gram similarity between generated and reference 175

texts. This is commonly used in both Code2NL and 176

NL2NL tasks (Liu et al., 2018a; Li et al., 2024; 177

Tufano et al., 2021; Li et al., 2022; Liu et al., 178

2025). More advanced metrics leverage Natural 179

Language Inference (NLI): the model output is 180

treated as a “hypothesis” to be validated against 181

the reference. An entailment classifier labels out- 182

2

put as entailment or contradiction, which maps to183

faithful or hallucinated content (Manakul et al.,184

2023; Elaraby et al., 2023; Hu et al., 2024; Valentin185

et al., 2024). Reference-free methods operate in186

many open-ended generation settings, where a re-187

liable reference is unavailable, by analyzing inter-188

nal model behaviors and input-output relationships.189

One family of approaches estimates uncertainty190

inside models during generation (Guerreiro et al.,191

2023; Huang et al., 2024), with hallucinations typ-192

ically exhibiting lower confidence in probability193

distributions and higher entropy. Another promis-194

ing line is feature attribution techniques (Tang et al.,195

2022; Chen et al., 2025), which examine how in-196

puts influence outputs, e.g., when a model halluci-197

nates, its attention patterns or hidden states behave198

anomalously. While these metrics have been used199

to detect hallucinations in various NL2NL tasks,200

such as in neural machine translation, question201

answering, document summarization (Guerreiro202

et al., 2023; Dale et al., 2023), their capabilities in203

Code2NL tasks remain unknown.204

3 Study Design205

3.1 Research Questions206

RQ1: To what extent do LLMs hallucinate in207

code to natural language tasks? Prior work on208

hallucination in software engineering has focused209

on code generation, which can be verified determin-210

istically. However, little attention has been paid to211

hallucinations in code to natural language genera-212

tion tasks, such as code review comment generation213

and commit message generation.214

RQ2: How effectively can existing hallucina-215

tion detection methods perform on code to NL216

tasks? While prior work in NLP have developed217

various methods (Dale et al., 2023; Huang et al.,218

2025; Ji et al., 2023) to detect hallucinations in nat-219

ural language generation, their applicability to the220

bi-modal scenario of Code2NL remains unknown.221

Effective detection in such contexts requires an un-222

derstanding of the semantics behind both code and223

natural language, as well as their interaction.224

3.2 Hallucination Annotation Workflow225

Since no existing work addresses hallucinations in226

the Code2NL context, we developed a decision-tree-227

based hallucination detection workflow by adapting228

taxonomies from both code generation (Liu et al.,229

2024) and natural language hallucination (Huang230

NO/Unsure

Is M semantically
equivalent to the ground

truth?

Informative
& Plausible

Yes

Is M obviously deviating
from the given context

(input, task, it self)?
Unsure

Is M informative? Yes

Uninformative/Too Generic

NO

Input Inconsistency

Which type of
deviation best
describes M?

Input Repetition

Intent Deviation

Logic Inconsistency

Generated
Message (M)

No

Others

Yes Semantic
Equivalent

Hallucination

Non-Hallucination

Need Fact Checking

Figure 1: Hallucination Annotation Flowchart

et al., 2025). Our workflow2 (see Figure 1) evalu- 231

ates a generated NL as follows: 232

Semantic Equivalence. We first determine 233

whether the generated NL is semantically equiva- 234

lent to the ground truth (i.e., conveying the same 235

intent with similar framing and emphasis). If equiv- 236

alent, the output is classified as non-hallucination. 237

Contextual Faithfulness. For semantically non- 238

equivalent outputs, we assess whether the NL devi- 239

ates from the context (source code, task specifica- 240

tion, and generated text itself). Non-deviating out- 241

puts are classified as either Informative & Plausible 242

(valid alternatives) or Uninformative (truisms). 243

Hallucination Type Classification. When con- 244

text deviation exists, we categorize the halluci- 245

nation into five types: (1) Input Inconsistency, 246

where the generation conflicts with the source code, 247

e.g., pointing out a non-existent issue in code re- 248

view or speculating intent that contradicts the code 249

change in commit messages; (2) Logic Inconsis- 250

tency, where the generation itself is illogical; (3) In- 251

put Repetition, where the generation directly copies 252

from the input; (4) Intent Deviation, where the 253

generation deviates from the task’s goal, e.g., not 254

providing a code review that identifies issues or 255

a commit message that explains the code change; 256

and (5) Others for cases that are not covered by 257

the above types. Cases requiring additional project 258

specific fact-checking are labeled as Unsure. 259

2See Appendix A for detailed definition and annotation
guidelines.

3

Model CodeReview CommitBench
Overall Sample Overall Sample

Llama3.1-8B 5.28 5.25 15.06 15.29
Qwen2.5-7B 5.43 5.73 15.37 15.57
CCT5 5.58 6.53 17.45 17.46

Table 1: Performance (BLEU-4 in %) of fine-tuned
models on CodeReview and CommitBench benchmarks.

3.3 Datasets and Code2NL Generation260

Datasets. We choose the widely used CodeRe-261

viewer (Li et al., 2022) dataset for code review262

comment generation and CommitBench (Schall263

et al., 2024) for commit message generation. The264

CodeReviewer corpus contains code diff and natu-265

ral language review pairs, spanning 9 popular pro-266

gramming languages and over 1k GitHub projects.267

It includes 118k training examples and 10k ex-268

amples each for validation and testing. Com-269

mitBench contains code diffs paired with natural270

language commit messages, spanning over 72k271

GitHub repositories and 6 programming languages.272

It includes 1.16 million training examples and 250k273

examples each for validation and testing. While re-274

lated, the two tasks are different in nature—commit275

messages are primarily descriptive, whereas code276

reviews require deeper reasoning about functional277

correctness, style compatibility, and potential im-278

pacts across the codebase.279

Models. To analyze hallucination behaviors, we280

conduct experiments to select language models that281

are highly capable in both tasks. This is determined282

by BLEU-4 results (Papineni et al., 2002), which283

is the most commonly used metric (Li et al., 2022;284

Schall et al., 2024). We choose two recent fami-285

lies of LLMs (Qwen2.5 and Llama3.1) 3 with var-286

ied model sizes (7-8B vs 70-72B) for both direct287

prompting and task-specific fine-tuning. We also288

fine-tune CCT5 (Lin et al., 2023), which is a 220M289

T5-based model pre-trained on 1.5M code change290

to commit message pairs. We found that fine-tuned291

models performed the best for both tasks4. Ta-292

ble 1 (Overall columns) presents the experimental293

results. Thus, we select the three fine-tuned models294

to generate outputs for hallucination analysis in295

Sections 4 and 5.296

3.4 Hallucination Detection Methodology297

We employ both reference-based and reference-298

free hallucination detection approaches: the former299

3These were the latest models at the time of experiment.
4See Appendix B for details on prompting and fine-tuning.

for model development where the ground truth is 300

available, and the latter for real-world deployment 301

where references are unavailable. Table 2 presents 302

a summary of the metrics used for hallucination 303

detection, including two types of reference-based 304

(BLEU-4 and NLI entailment), and three types of 305

reference-free (similarity, uncertainty, and feature- 306

attribution). Uncertainty and feature-attribution 307

metrics are calculated with either LLaMA3.1-8B- 308

Instruct,9 Qwen2.5-7B-Instruct(Yang et al., 2025) 309

or CCT5(Lin et al., 2023). Due to space limitations, 310

detailed descriptions and formulas are provided in 311

Appendix C.1. In total, 26 unique methods were 312

considered: 2 reference-based metrics + 3 similari- 313

ties scores + 3 models × 7 feature attribution and 314

uncertainty metrics. 315

4 To what extent do LLMs hallucinate in 316

code to natural language tasks? 317

To address RQ1, we manually categorize the mes- 318

sages generated by the three fine-tuned models into 319

our Code2NL hallucination annotation workflow 320

introduced in Section 3.2 to identify the presence 321

and types of hallucinations. Using the annotated 322

samples, we further analyze the overall prevalence 323

of hallucinations and their distributional patterns 324

across models and two datasets. 325

4.1 Manual Annotation 326

We selected the top 3 fine-tuned models (lama3.1- 327

8B-Instruct, Qwen2.5-7B-Instruct, and CCT5) to 328

generate messages in the test set. To address 329

RQ1, we manually labeled a subset of samples that 330

were randomly selected from the test set of each 331

task, constituting a statistically significant sample 332

size with a confidence level of 90% and a mar- 333

gin of error of ±5%. This results in 264 samples 334

for CodeReviewer comments and 268 samples for 335

CommitBench. In total, we annotated 1,596 sam- 336

ples, including 264 × 3 model outputs for CodeRe- 337

viewer comments and 268 × 3 for CommitBench 338

messages. 339

Two annotators (authors of the paper) with exten- 340

sive backgrounds in computer science and software 341

engineering (5+ years of experience) annotated the 342

samples. Our annotation process consisted of two 343

stages: first, conducting two pilot rounds to refine 344

the taxonomy and develop clear guidelines; and 345

then, annotating the remaining samples separately. 346

9https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

4

Metric Type Description
BLEU-4 Lexical-Overlap The n-gram overlap between the generation y and reference ŷ.
Entailment NLI The probability that a NLI classifier predicts ŷ entails y. We used nli-

deberta-v35 as the classifier.
Similarity Similarity The embedding-based cosine similarity between the generation y and

source code x. We used three embeding models: codebert-base6,
codet5p-220m-bimodal7, and codet5p-770m8.

SeqLogProb Uncertainty The average negative log-probability of the generated tokens in y as
assigned by a language model M .

SeqLogit Uncertainty The average raw logit score (pre-Softmax) of the generated tokens in y
from a model M .

SeqEntropy Uncertainty The average entropy of the generated tokens in y from a model M .
Source Attribution Feature Attribution The average of the maximum attribution scores from source tokens to

each generated token in y (i.e., 1
T

∑T
t=1 maxi∈[1,N] Ai,t, where Ai,t =

xi × ∂yt
∂xi

is the importance of xi to yt from a model M). A higher score
represents source contributes more strongly to y.

Target Attribution Feature Attribution The average of the maximum attribution scores from previously gen-
erated tokens (y1, . . . , yt−1) to each current token yt. A higher score
represents the reliance on previously generated tokens.

Changed Attribution Feature Attribution The average of the maximum attribution scores from source tokens that
are changed (in +, - lines) to each generated token in y. A high score
represents changed tokens contributes strongly to y.

Unchanged Attribution Feature Attribution The average of the maximum attribution scores from source tokens that
are unchanged to each generated token in y. A high score represents
unchanged snippets in source contributes strongly to y.

Table 2: Descriptions of hallucination detection metrics, including into reference-based (BLEU-4 and
Entailment) and reference-free (all others). For uncertainty and feature attribution, the model M ∈
{LLaMA3.1-8B,Qwen2.5-7B, and CCT5}. We apply both self-attribution (generator attributes its own output) and
cross-attribution (external model attributes generator’s output) See Appendix C.1 for a detailed description.

The initial round of independent annotation on 150347

samples showed fair agreement (Cohen’s κ = 0.36348

for CodeReviewer, κ = 0.30 for CommitBench).349

After resolving disagreements and clarifying the350

guidelines, a second batch (150 samples) yielded351

substantially improved agreement—moderate for352

CodeReviewer (κ = 0.56) and fair for Commit-353

Bench (κ = 0.38). With a further refinement, the354

guidelines were finalized, and the annotators then355

divided the remaining samples (half-half), cross-356

examining each other’s work to ensure consistent357

labeling.358

4.2 Hallucination Prevalence and Patterns359

Table 3 shows that hallucination rates vary signif-360

icantly across tasks. For the code review task,361

all models exhibit high hallucination rates rang-362

ing from 42.8% to 47.0%. Surprisingly, although363

CCT5 achieves the highest BLEU score on the364

CodeReviewer dataset among the three models (Ta-365

ble 8), it also exhibits the highest hallucination rate366

at 47.0%. This highlights the risk of hallucinations367

even in models with strong BLEU performance.368

On the other hand, the commit message generation369

task has a lower hallucination rate than code review370

(14.2% to 21.6%), where Qwen2.5 has the lowest371

rate at 14.2%. This may be because code review is372

more challenging than commit message generation, 373

as it requires identifying problems and providing 374

specific feedback beyond what is directly observ- 375

able in the code changes. Such added complexity 376

might lead to increased hallucination behavior. 377

The overall distribution of hallucination types 378

varies between tasks. Notably, the Input Inconsis- 379

tency emerges as the dominant hallucination type 380

for both tasks. This suggests that models frequently 381

generate messages that contradict or misrepresent 382

the actual code changes. One frequent issue in code 383

review is that the generated messages tend to fabri- 384

cate non-existent code tokens. For example, CCT5 385

suggests “I think this should be orderPath instead 386

of orderPathKey”. However, orderPathKey does not 387

appear in the code change: +~public static final 388

String ORDER_PATH = "orderPath"; This suggests 389

that the model does not fully understand the mean- 390

ing of newly introduced code. In the commit mes- 391

sage task, models also often misunderstand the 392

code changes. For example, the generated mes- 393

sage “nomad: fix peers.json recovery for protocol 394

version 3” misrepresents the change, which actu- 395

ally adds support for Nomad versions below 3, as 396

indicated by the code line + if s.config.RaftConfig 397

.ProtocolVersion < 3 {. 398

Intent deviation and logic inconsistency appear 399

5

Category Type CodeReviewer CommitBench

CCT5 Llama3.1 Qwen2.5 CCT5 Llama3.1 Qwen2.5

Non-Hallucination Semantic_Equivalent 1.5 1.1 1.5 11.2 12.3 16.4
Informative 9.5 9.8 8.7 48.1 42.5 44.4

Uninformative Uninformative 20.1 1.5 3.8 15.7 7.1 9.7

Unsure Unsure 22.0 41.3 43.2 5.6 16.4 15.3

Hallucination

Input_Inconsistency 26.5 23.9 24.6 17.2 19.8 13.1
Input_Repetition 4.2 0.0 0.0 0.0 0.7 0.7
Intent_Deviation 0.8 17.4 15.9 0.4 0.4 0.0
Logic_Inconsistency 14.0 4.5 1.9 1.9 0.7 0.4
Others 1.5 0.4 0.4 0.0 0.0 0.0

Total Hallu 47.0 46.2 42.8 19.5 21.6 14.2

Table 3: The distribution (percentage) of hallucination types for annotated samples.

as another two pronounced hallucination types in400

the code review task, but they are rare in the com-401

mit message generation, suggesting that commit402

message generation models generate messages that403

better align with the task and suffer less logic in-404

consistency. Interestingly, we observe many cases405

where the generated review comment reads more406

like a commit message—for example, “This is a407

temporary fix.”, which describes the code change408

rather than providing a review.409

Different models exhibit different type of hal-410

lucinations. CCT5, which is the specialized fine-411

tuned model demonstrates higher logic inconsis-412

tencies (14.0% in CodeReviewer) but significantly413

lower intent deviation (0.8%) than general-purpose414

LLMs. On the other hand, larger models (Llama3.1,415

Qwen2.5) frequently have intent deviation (≥416

15.9% average) but fewer logic inconsistencies417

(≤4.5%). This pattern likely reflects the difference418

between specialized and general-purpose pretrain-419

ing. Despite fine-tuning, general models retain420

broad task knowledge from pretraining, which can421

lead them to apply reasoning patterns from unre-422

lated tasks—resulting in higher intent deviation.423

5 How well do existing metrics detect424

hallucinations in code to NL tasks?425

RQ1 showed that models often exhibit hallucina-426

tions and misinterpretations of code changes. In427

RQ2, we examine how effective automated ap-428

proaches are at detecting these hallucinations in429

code review and commit message generation. Us-430

ing our manually annotated dataset, we evaluate431

both reference-based and reference-free metrics de-432

scribed in Section 3.4. Our goal is to assess how433

well existing metrics detect hallucinations in Code-434

to-NL tasks, particularly for code changes. We 435

evaluate both individual metrics and combinations 436

of complementary ones to determine whether they 437

can approximate human judgment. 438

We use ROC-AUC to evaluate the hallucination 439

detection capability of each metric. The positive 440

class is the hallucination samples that we anno- 441

tated. The negative class is the non-Hallucination 442

samples. A ROC-AUC score of 1 indicates per- 443

fect discrimination between hallucinated and non- 444

hallucinated cases, while a score of 0.5 suggests no 445

discriminatory power equivalent to random guess- 446

ing. For individual metrics, we calculate the ROC- 447

AUC to assess discrimination power.10 To combine 448

metrics, we use logistic regression and evaluate its 449

performance using accuracy and ROC-AUC. 450

5.1 How do individual metrics perform in 451

detecting hallucinations? 452

Figures 2 and 3 show the ROC-AUC scores of indi- 453

vidual metrics for detecting hallucinations in code 454

review and commit message generation tasks, re- 455

spectively. The ALL row represents the generator- 456

agnostic result, using all outputs from CCT5, 457

Llama3.1, and Qwen2.5. The remaining rows show 458

performance in the generator-specific result, based 459

on outputs from each model individually. 460

Based on the the generator-agnostic results, 461

the current metrics achieve modest ROC-AUC 462

scores ranging from 0.538–0.566 on CodeReviewer 463

and 0.562–0.617 on CommitBench. On CodeRe- 464

viewer, uncertainty-based metrics (logit and en- 465

tropy) perform best, while embedding similarity 466

and reference-based metrics are best on Commit- 467

10The point-biserial correlation confirms a similar trend be-
tween metric scores and hallucination labels. Detailed results
are provided in Appendix C.2.

6

BLEU

CCT5
 (C

ha
ng

ed
)

CCT5
 (E

ntr
op

y)

CCT5
 (L

og
it)

CCT5
 (P

rob
ab

ilit
y)

CCT5
 (S

ou
rce

-Ta
rge

t)

CCT5
 (Ta

rge
t-Ta

rge
t)

CCT5
 (U

nch
an

ge
d)

En
tai

lm
en

t

Lla
ma3

.1
(Cha

ng
ed

)

Lla
ma3

.1
(En

tro
py

)

Lla
ma3

.1
(Lo

git
)

Lla
ma3

.1
(Pr

ob
ab

ilit
y)

Lla
ma3

.1
(So

urc
e-T

arg
et)

Lla
ma3

.1
(Ta

rge
t-Ta

rge
t)

Lla
ma3

.1
(Unch

an
ge

d)

Qwen
2.5

 (C
ha

ng
ed

)

Qwen
2.5

 (E
ntr

op
y)

Qwen
2.5

 (L
og

it)

Qwen
2.5

 (P
rob

ab
ilit

y)

Qwen
2.5

 (S
ou

rce
-Ta

rge
t)

Qwen
2.5

 (Ta
rge

t-Ta
rge

t)

Qwen
2.5

 (U
nch

an
ge

d)

Sim
-Cod

eB
ER

T

Sim
-Cod

eT
5p

-22
0M

Sim
-Cod

eT
5p

-77
0M

Hallucination Detector (Metric)

ALL

CCT5

Llama3.1

Qwen2.5M
es

sa
ge

 G
en

er
at

or 0.445 0.517 0.560 0.508 0.463 0.507 0.493 0.468 0.448 0.490 0.535 0.566 0.515 0.444 0.512 0.462 0.493 0.552 0.548 0.511 0.513 0.508 0.489 0.538 0.532 0.487

0.458 0.603 0.490 0.657 0.607 0.621 0.379 0.396 0.500 0.463 0.378 0.712 0.658 0.304 0.543 0.305 0.468 0.404 0.679 0.646 0.354 0.438 0.333 0.630 0.644 0.534

0.509 0.506 0.558 0.509 0.447 0.488 0.512 0.569 0.413 0.474 0.575 0.482 0.478 0.617 0.510 0.564 0.483 0.576 0.489 0.483 0.610 0.562 0.569 0.510 0.477 0.455

0.360 0.409 0.671 0.365 0.329 0.431 0.569 0.451 0.404 0.541 0.629 0.445 0.422 0.419 0.478 0.559 0.533 0.648 0.435 0.417 0.591 0.528 0.594 0.490 0.459 0.447
0.4

0.5

0.6

0.7

RO
C

AU
C

Figure 2: ROC-AUC Scores of Metrics for Hallucination Detection Across Generators on CodeReviewer.

BLEU

CCT5
 (C

ha
ng

ed
)

CCT5
 (E

ntr
op

y)

CCT5
 (L

og
it)

CCT5
 (P

rob
ab

ilit
y)

CCT5
 (S

ou
rce

-Ta
rge

t)

CCT5
 (Ta

rge
t-Ta

rge
t)

CCT5
 (U

nch
an

ge
d)

En
tai

lm
en

t

Lla
ma3

.1
(Cha

ng
ed

)

Lla
ma3

.1
(En

tro
py

)

Lla
ma3

.1
(Lo

git
)

Lla
ma3

.1
(Pr

ob
ab

ilit
y)

Lla
ma3

.1
(So

urc
e-T

arg
et)

Lla
ma3

.1
(Ta

rge
t-Ta

rge
t)

Lla
ma3

.1
(Unch

an
ge

d)

Qwen
2.5

 (C
ha

ng
ed

)

Qwen
2.5

 (E
ntr

op
y)

Qwen
2.5

 (L
og

it)

Qwen
2.5

 (P
rob

ab
ilit

y)

Qwen
2.5

 (S
ou

rce
-Ta

rge
t)

Qwen
2.5

 (Ta
rge

t-Ta
rge

t)

Qwen
2.5

 (U
nch

an
ge

d)

Sim
-Cod

eB
ER

T

Sim
-Cod

eT
5p

-22
0M

Sim
-Cod

eT
5p

-77
0M

Hallucination Detector (Metric)

ALL

CCT5

Llama3.1

Qwen2.5M
es

sa
ge

 G
en

er
at

or 0.354 0.405 0.518 0.517 0.493 0.450 0.610 0.535 0.372 0.512 0.498 0.600 0.523 0.451 0.502 0.410 0.517 0.529 0.562 0.486 0.438 0.515 0.455 0.592 0.520 0.617

0.392 0.389 0.481 0.536 0.524 0.437 0.609 0.546 0.409 0.559 0.535 0.513 0.478 0.466 0.495 0.460 0.567 0.565 0.482 0.442 0.452 0.502 0.518 0.514 0.481 0.577

0.331 0.389 0.578 0.485 0.433 0.433 0.633 0.526 0.341 0.507 0.492 0.663 0.528 0.444 0.517 0.333 0.507 0.542 0.623 0.491 0.369 0.507 0.392 0.669 0.538 0.675

0.327 0.443 0.481 0.538 0.540 0.495 0.580 0.533 0.381 0.469 0.458 0.627 0.572 0.451 0.493 0.451 0.479 0.468 0.599 0.541 0.507 0.547 0.463 0.579 0.543 0.582
0.35
0.40
0.45
0.50
0.55
0.60
0.65

RO
C

AU
C

Figure 3: ROC-AUC Scores of Metrics for Hallucination Detection Across Generators on CommitBench.

Bench. Nonetheless, the ROC-AUC scores suggest468

the limited effectiveness of current metrics on hal-469

lucination detection, which are slightly better than470

random guessing, highlighting the challenges of471

automated hallucination detection in these tasks.472

Based on the generator-specific results, hal-473

lucinations in CCT5 are more detectable on474

the CodeReviewer dataset (ROC-AUC 0.65-0.71),475

while hallucinations in Llama3.1 are most de-476

tectable on the CommitBench dataset (ROC-AUC477

0.62-0.68). This suggests that the effectiveness478

on hallucination detection of the metrics may vary479

across generation models and datasets.480

5.2 Can combining multiple metrics enhance481

the accuracy of hallucination detection?482

To analyze the descrimination power of combined483

metrics for hallucination detection, we use a logis-484

tic regression model fitted to our annotated samples.485

For each generation task, we combine all samples486

from the three models, resulting in 440 samples for487

CodeReviewer and 717 samples for CommitBench.488

To understand the capability of different types489

of metrics, we build three logistic regression mod-490

els using: (1) all metrics, (2) reference-based met-491

rics only, and (3) reference-free metrics only.11492

Since some metrics may capture similar signals or493

redundant, leading to multicollinearity and over-494

fitting, we use the Akaike Information Criterion495

11To account for potential differences in output patterns
across models, we include model names as a categorical vari-
able, resulting 27 variables in total.

CodeReviewer CommitBench
Type Acc AUC Acc AUC

Best Individual Metric

logit_Llama3.1 - 0.57 - 0.60
Sim-CodeT5p-770M - 0.48 - 0.62

Multiple Metrics on Logistic Regression

Reference-based 81.6 0.59 76.0 0.68
Reference-free 81.6 0.66 78.9 0.75
ALL 82.7 0.69 77.8 0.75

Table 4: Logic regression results (Acc (%) and AUC)
on hallucination prediction using multiple metrics.

(AIC) (Akaike, 1974) to identify metrics that mean- 496

ingfully contribute to the prediction. Then, we use 497

the selected metrics as features to fit the logistic 498

regression model and analyze the coefficients to 499

identify which metrics are most important for hal- 500

lucination detection. 501

Table 4 shows the logistic regression results. 502

Combining multiple metrics substantially im- 503

proves ROC-AUC scores for hallucination detec- 504

tion across both datasets, compared to using indi- 505

vidual metrics alone. For CodeReviewer, the ROC- 506

AUC increased from the best individual score of 507

0.57 (logit_Llama3.1) to 0.69 when using all met- 508

rics. For CommitBench, it improved from 0.62 509

(similarity_score_codet5p-770m) to 0.75. Surpris- 510

ingly, using reference-free metrics alone achieved 511

ROC-AUC scores close to that of using all metrics. 512

In contrast, reference-based metrics achieved lower 513

7

Type Metric |Coef| Sign

Uncertainty logit_Llama3.1 6.00∗ +
Uncertainty entropy_Qwen2.5 3.33∗ +
Attribution source_target_Qwen2.5 2.83∗ +
Attribution source_target_Llama3.1 2.78∗ -
N-gram BLEU 1.94∗ -

Table 5: Top-5 important features on predicting hal-
lucinations in CodeReviewer. ∗ indicates the coef is
significant (p < 0.05).

Type Metric |Coef| Sign

Uncertainty logit_Llama3.1 6.86∗ +
Uncertainty logit_Qwen2.5 5.93∗ -
Attribution changed_CCT5 4.71∗ -
N-gram BLEU 3.49∗ -
Similarity similarity_score_codebert 2.41∗ +

Table 6: Top-5 importance features on predicting hal-
lucinations in CommitBench. ∗ indicates the coef is
significant (p < 0.05).

performance, possibly because they are fewer in514

number or inherently less predictive. This high-515

lights a potential benefit of hallucination detections516

in these Code2NL tasks without ground-truth.517

Tables 5 and 6 present the most important518

features along with their coefficients. The Se-519

qLogit calculated with Llama3.1 (Logit_Llama3.1)520

emerges as the most important feature for both521

tasks. Uncertainty metrics from Llama3.1 and522

Qwen2.5 consistently appear among the top fea-523

tures, demonstrating strong predictive power. Fea-524

ture attribution metrics rank next in predictive525

strength, indicating that hallucinations can be de-526

tected by analyzing how models utilize source code527

during generation.528

Figure 4 presents an example generated for code529

review.12 The generated review suggests passing530

a parameter that is already being passed in both531

old and new code, while ignoring the actual code532

change. This hallucinated generation has high logit533

and high attribution from source code. Particularly,534

the generated tokens appearing in the input context535

have high confidence based on elevated logit val-536

ues. For example, based on uncertainty calculated537

with Llama3.1, particularly API method names like538

tlsClientConfig and dial have logit values of 14.1539

and 13.6. However, based on the attribution scores,540

critical changes (i.e., the addition of the “false” pa-541

rameter) that should be the primary focus of the542

review has minimal contribution to the generation.543

12An example of commit message is provided in Appendix
Figure 7.

 }

@@ -204,7 +204,7 @@ func (d *RPCFactory) CreateFrontendGRPCConnection(
hostName string) *grpc.ClientC
 }
 }
- return d.dial(hostName, tlsClientConfig)

+ return d.dial(hostName, tlsClientConfig, false)
2nd highest attribution score=0.118

max attribution score=0.137

Qwen2.5: I think we should pass the ` tls ClientConfig ` to the ` d . dial ` function .

attribution
score=0.009

Logit=14.1 Logit=13.56

Figure 4: An example of feature attribution on a hallu-
cinated code review comment generated by Qwen2.5.
Attribution model: Llama3.1.

Instead, these common tokens like tlsClientConfig 544

have large attribution scores, meaning that they 545

contributing significantly to the generation. 546

For non-hallucinations, we observed that the 547

correct input in the code changes contributes sig- 548

nificantly to the relevant generation compared to 549

other code snippets (e.g., in the generated com- 550

ment, “Why is this needed?” the “this” token was 551

mainly contributed by the changed line of code 552

“+ from databricks import koalas as ks”). This in- 553

dicates that the balance between the contribution 554

from changed elements and unchanged elements is 555

one important cause of hallucination in code review 556

tasks. 557

6 Conclusion 558

We present the first study of hallucinations in 559

Code2NL tasks, focusing on commit message and 560

code review comment generation. We find that 561

hallucination is a prevalent problem, with nearly 562

50% of code reviews and 20% of commit mes- 563

sages containing hallucinations. We identify com- 564

mon hallucination types: input inconsistency, logic 565

inconsistency, and intention violation, which can 566

guide practitioners in recognizing potential model 567

failures. Our findings demonstrate that individ- 568

ual metrics struggle to detect hallucinations effec- 569

tively, while combining metrics substantially im- 570

proves detection performance. Notably, model con- 571

fidence and feature attribution provide effective 572

signals for revealing hallucination patterns, provid- 573

ing promises for real-time detection in AI-powered 574

software engineering tools. While our multi-metric 575

approach shows significant improvements, there re- 576

mains substantial room for future work to develop 577

more robust hallucination detection and mitigation 578

techniques in code to natural language generation 579

tasks. 580

8

7 Limitations581

While our study advances the understanding of hal-582

lucination severity and automatic detection capabil-583

ities in Code2NL tasks, several limitations remain.584

Dataset Size. Despite using statistically repre-585

sentative samples from the test set, our annotated586

dataset is relatively small due to the significant ef-587

fort required for manual annotation. To mitigate588

this limitation, we analyzed both model-specific589

and aggregated samples across models to increase590

effective sample sizes.591

Hallucination Granularity. We primarily fo-592

cused on instance-level (whole sequence) hallucina-593

tion analysis to establish a foundational understand-594

ing of the phenomenon. Our feature attribution595

analysis showed promise for token-level halluci-596

nation detection, revealing cases where generation597

heavily relied on unchanged code snippets while598

ignoring critical changes. Future work should ex-599

plore finer-grained token-level hallucination analy-600

sis with appropriate annotations and develop tech-601

niques for more precisely identifying hallucinations602

at different levels of granularity.603

Model Recency and Coverage. Due to cost con-604

straints, we excluded commercial models (e.g.,605

GPT-4o, Claude 3.7) from our analysis and focused606

on the latest open-source language models avail-607

able at the time of our experiments. However, the608

landscape is evolving rapidly, with newer models609

such as LLaMA 4 and Qwen2.5-Coder emerging610

since our evaluation. As a result, our findings may611

not fully generalize to these newer or commercial612

models, or to different model families such as Gem-613

ini, which could exhibit different hallucination pat-614

terns in Code2NL tasks. Our work lays the founda-615

tion for future research in this space, highlighting616

the need for ongoing evaluation as models continue617

to evolve and diversify.618

References619

Vibhor Agarwal, Yulong Pei, Salwa Alamir, and Xi-620
aomo Liu. 2024. Codemirage: Hallucinations in621
code generated by large language models. arXiv622
preprint arXiv:2408.08333.623

H. Akaike. 1974. A new look at the statistical model624
identification. IEEE Transactions on Automatic Con-625
trol, 19(6):716–723.626

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten627
Bosma, Henryk Michalewski, David Dohan, Ellen628

Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 629
Program synthesis with large language models. arXiv 630
preprint arXiv:2108.07732. 631

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 632
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka- 633
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 634
Greg Brockman, et al. 2021. Evaluating large 635
language models trained on code. arXiv preprint 636
arXiv:2107.03374. 637

Yuyan Chen, Zehao Li, Shuangjie You, Zhengyu Chen, 638
Jingwen Chang, Yi Zhang, Weinan Dai, Qingpei Guo, 639
and Yanghua Xiao. 2025. Attributive reasoning for 640
hallucination diagnosis of large language models. In 641
Proceedings of the AAAI Conference on Artificial 642
Intelligence, volume 39, pages 23660–23668. 643

David Dale, Elena Voita, Loic Barrault, and Marta R. 644
Costa-jussà. 2023. Detecting and mitigating halluci- 645
nations in machine translation: Model internal work- 646
ings alone do well, sentence similarity Even better. 647
In Proceedings of the 61st Annual Meeting of the 648
Association for Computational Linguistics (Volume 649
1: Long Papers), pages 36–50, Toronto, Canada. As- 650
sociation for Computational Linguistics. 651

Mohamed Elaraby, Mengyin Lu, Jacob Dunn, Xuey- 652
ing Zhang, Yu Wang, Shizhu Liu, Pingchuan Tian, 653
Yuping Wang, and Yuxuan Wang. 2023. Halo: Es- 654
timation and reduction of hallucinations in open- 655
source weak large language models. arXiv preprint 656
arXiv:2308.11764. 657

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya 658
Lyubarskiy, Shubho Sengupta, Shin Yoo, and Jie M. 659
Zhang. 2023. Large Language Models for Software 660
Engineering: Survey and Open Problems . In 2023 661
IEEE/ACM International Conference on Software 662
Engineering: Future of Software Engineering (ICSE- 663
FoSE), pages 31–53, Los Alamitos, CA, USA. IEEE 664
Computer Society. 665

Samuel Ferino, Rashina Hoda, John Grundy, and 666
Christoph Treude. 2025. Junior software developers’ 667
perspectives on adopting llms for software engineer- 668
ing: a systematic literature review. arXiv preprint 669
arXiv:2503.07556. 670

Nuno M. Guerreiro, Elena Voita, and André Martins. 671
2023. Looking for a needle in a haystack: A com- 672
prehensive study of hallucinations in neural machine 673
translation. In Proceedings of the 17th Conference 674
of the European Chapter of the Association for Com- 675
putational Linguistics, pages 1059–1075, Dubrovnik, 676
Croatia. Association for Computational Linguistics. 677

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong 678
Wang, Li Li, Xiapu Luo, David Lo, John Grundy, 679
and Haoyu Wang. 2024. Large language models for 680
software engineering: A systematic literature review. 681
ACM Trans. Softw. Eng. Methodol., 33(8). 682

Xiangkun Hu, Dongyu Ru, Lin Qiu, Qipeng Guo, 683
Tianhang Zhang, Yang Xu, Yun Luo, Pengfei Liu, 684
Yue Zhang, and Zheng Zhang. 2024. Refchecker: 685

9

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.18653/v1/2023.acl-long.3
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.18653/v1/2023.eacl-main.75
https://doi.org/10.1145/3695988
https://doi.org/10.1145/3695988
https://doi.org/10.1145/3695988
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486

Reference-based fine-grained hallucination checker686
and benchmark for large language models.687

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,688
Zhangyin Feng, Haotian Wang, Qianglong Chen,689
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting690
Liu. 2025. A survey on hallucination in large lan-691
guage models: Principles, taxonomy, challenges, and692
open questions. ACM Trans. Inf. Syst., 43(2).693

Yuheng Huang, Jiayang Song, Zhijie Wang, Shengming694
Zhao, Huaming Chen, Felix Juefei-Xu, and Lei Ma.695
2024. Look before you leap: An exploratory study of696
uncertainty measurement for large language models.697
In International Conference on Software Engineering698
(ICSE).699

Naman Jain, Skanda Vaidyanath, Arun Iyer, Nagarajan700
Natarajan, Suresh Parthasarathy, Sriram Rajamani,701
and Rahul Sharma. 2022. Jigsaw: large language702
models meet program synthesis. In Proceedings of703
the 44th International Conference on Software Engi-704
neering, ICSE ’22, page 1219–1231, New York, NY,705
USA. Association for Computing Machinery.706

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan707
Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea708
Madotto, and Pascale Fung. 2023. Survey of hal-709
lucination in natural language generation. ACM com-710
puting surveys, 55(12):1–38.711

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,712
Ruiqi Zhong, Luke Zettlemoyer, Wen-tau Yih, Daniel713
Fried, Sida Wang, and Tao Yu. 2023. Ds-1000: A714
natural and reliable benchmark for data science code715
generation. In International Conference on Machine716
Learning, pages 18319–18345. PMLR.717

Jiawei Li, David Faragó, Christian Petrov, and Iftekhar718
Ahmed. 2024. Only diff is not enough: Generating719
commit messages leveraging reasoning and action of720
large language model. Proceedings of the ACM on721
Software Engineering, 1(FSE):745–766.722

Zhiyu Li, Shuai Lu, Daya Guo, Nan Duan, Shailesh723
Jannu, Grant Jenks, Deep Majumder, Jared Green,724
Alexey Svyatkovskiy, Shengyu Fu, and Neel Sun-725
daresan. 2022. Automating code review activities726
by large-scale pre-training. In Proceedings of ES-727
EC/FSE, page 1035–1047.728

Bo Lin, Shangwen Wang, Zhongxin Liu, Yepang Liu,729
Xin Xia, and Xiaoguang Mao. 2023. Cct5: A code-730
change-oriented pre-trained model. In Proceedings731
of the 31st ACM Joint European Software Engineer-732
ing Conference and Symposium on the Foundations733
of Software Engineering, ESEC/FSE 2023, page734
1509–1521, New York, NY, USA. Association for735
Computing Machinery.736

Hong Yi Lin, Patanamon Thongtanunam, Christoph737
Treude, and Wachiraphan Charoenwet. 2024. Im-738
proving automated code reviews: Learning from ex-739
perience. In Proceedings of the 21st International740
Conference on Mining Software Repositories, MSR741
’24, page 278–283, New York, NY, USA. Association742
for Computing Machinery.743

Chunhua Liu, Hong Yi Lin, and Patanamon Thongta- 744
nunam. 2025. Too noisy to learn: Enhancing data 745
quality for code review comment generation. In Pro- 746
ceedings of the 21st International Conference on Min- 747
ing Software Repositories. 748

Fang Liu, Yang Liu, Lin Shi, Houkun Huang, Ruifeng 749
Wang, Zhen Yang, Li Zhang, Zhongqi Li, and Yuchi 750
Ma. 2024. Exploring and evaluating hallucinations 751
in llm-powered code generation. arXiv preprint 752
arXiv:2404.00971. 753

Zhongxin Liu, Xin Xia, Ahmed E Hassan, David Lo, 754
Zhenchang Xing, and Xinyu Wang. 2018a. Neural- 755
machine-translation-based commit message genera- 756
tion: how far are we? In Proceedings of the 33rd 757
ACM/IEEE International Conference on Automated 758
Software Engineering, pages 373–384. 759

Zhongxin Liu, Xin Xia, Ahmed E. Hassan, David Lo, 760
Zhenchang Xing, and Xinyu Wang. 2018b. Neural- 761
machine-translation-based commit message genera- 762
tion: how far are we? In Proceedings of the 33rd 763
ACM/IEEE International Conference on Automated 764
Software Engineering, ASE ’18, page 373–384, New 765
York, NY, USA. Association for Computing Machin- 766
ery. 767

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023. 768
SelfCheckGPT: Zero-resource black-box hallucina- 769
tion detection for generative large language models. 770
In Proceedings of the 2023 Conference on Empiri- 771
cal Methods in Natural Language Processing, pages 772
9004–9017, Singapore. Association for Computa- 773
tional Linguistics. 774

Joshua Maynez, Shashi Narayan, Bernd Bohnet, and 775
Ryan McDonald. 2020. On faithfulness and factu- 776
ality in abstractive summarization. In Proceedings 777
of the 58th Annual Meeting of the Association for 778
Computational Linguistics, pages 1906–1919, On- 779
line. Association for Computational Linguistics. 780

Kishore Papineni, Salim Roukos, Todd Ward, and Wei- 781
Jing Zhu. 2002. Bleu: a method for automatic evalu- 782
ation of machine translation. In Proceedings of ACL, 783
pages 311–318. 784

Gabriele Sarti, Nils Feldhus, Ludwig Sickert, and Os- 785
kar van der Wal. 2023. Inseq: An interpretability 786
toolkit for sequence generation models. In Proceed- 787
ings of the 61st Annual Meeting of the Association 788
for Computational Linguistics (Volume 3: System 789
Demonstrations), pages 421–435, Toronto, Canada. 790
Association for Computational Linguistics. 791

Maximilian Schall, Tamara Czinczoll, and Gerard De 792
Melo. 2024. Commitbench: A benchmark for com- 793
mit message generation. In 2024 IEEE Interna- 794
tional Conference on Software Analysis, Evolution 795
and Reengineering (SANER), pages 728–739, Pots- 796
dam, Germany. IEEE. 797

Avanti Shrikumar, Peyton Greenside, and Anshul Kun- 798
daje. 2017. Learning important features through 799
propagating activation differences. In Proceedings of 800

10

https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3510003.3510203
https://doi.org/10.1145/3611643.3616339
https://doi.org/10.1145/3611643.3616339
https://doi.org/10.1145/3611643.3616339
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3643991.3644910
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.1145/3238147.3238190
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.18653/v1/2023.acl-demo.40
https://doi.org/10.1109/SANER60148.2024.00080
https://doi.org/10.1109/SANER60148.2024.00080
https://doi.org/10.1109/SANER60148.2024.00080
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html
https://proceedings.mlr.press/v70/shrikumar17a.html

the 34th International Conference on Machine Learn-801
ing, volume 70 of Proceedings of Machine Learning802
Research, pages 3145–3153. PMLR.803

Ben Snyder, Marius Moisescu, and Muhammad Bilal804
Zafar. 2024. On early detection of hallucinations in805
factual question answering. In Proceedings of the806
30th ACM SIGKDD Conference on Knowledge Dis-807
covery and Data Mining, KDD ’24, page 2721–2732,808
New York, NY, USA. Association for Computing809
Machinery.810

Joël Tang, Marina Fomicheva, and Lucia Specia. 2022.811
Reducing hallucinations in neural machine trans-812
lation with feature attribution. arXiv preprint813
arXiv:2211.09878.814

Yingchen Tian, Yuxia Zhang, Klaas-Jan Stol, Lin Jiang,815
and Hui Liu. 2022. What makes a good commit816
message? In Proceedings of the 44th International817
Conference on Software Engineering, pages 2389–818
2401.819

Yuchen Tian, Weixiang Yan, Qian Yang, Xuandong820
Zhao, Qian Chen, Wen Wang, Ziyang Luo, Lei Ma,821
and Dawn Song. 2024. Codehalu: Investigating code822
hallucinations in llms via execution-based verifica-823
tion. arXiv preprint arXiv:2405.00253.824

Rosalia Tufano, Luca Pascarella, Michele Tufano,825
Denys Poshyvanyk, and Gabriele Bavota. 2021. To-826
wards automating code review activities. In Proceed-827
ings of ICSE, pages 163–174.828

Simon Valentin, Jinmiao Fu, Gianluca Detommaso,829
Shaoyuan Xu, Giovanni Zappella, and Bryan Wang.830
2024. Cost-effective hallucination detection for llms.831
In KDD 2024 GenAI Evaluation Workshop.832

Lanxin Yang, Jinwei Xu, Yifan Zhang, He Zhang, and833
Alberto Bacchelli. 2023. Evacrc: Evaluating code834
review comments. In Proceedings of the 31st ACM835
Joint European Software Engineering Conference836
and Symposium on the Foundations of Software Engi-837
neering, ESEC/FSE 2023, page 275–287, New York,838
NY, USA. Association for Computing Machinery.839

Qwen An Yang, Baosong Yang, Beichen Zhang,840
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,841
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin,842
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,843
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,844
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li,845
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji846
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang847
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang848
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru849
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical850
report. Preprint, arXiv:2412.15115.851

A Hallucination Annotation852

We used the annotation workflow described in Sec-853

tion 3.2 to guide the process of identifying and854

labeling hallucinations. Detailed definitions for 855

each node (both non-hallucination and hallucina- 856

tion classes) are provided in Table 7. 857

To help annotators understand the essential ele- 858

ments of commit messages and code review com- 859

ments, task definitions were also provided in A.1. 860

Through initial pilot rounds and discussions among 861

annotators, we distilled a set of rules to guide the 862

annotation process, which is provided in A.2. 863

A.1 Essential Elements in Code Reviews and 864

Commit Messages 865

Code Review Comments The primary purpose 866

of code review comments is to offer constructive 867

feedback from reviewers to code authors, aiming 868

to improve code quality and maintain coding stan- 869

dards. A review comment often covers three ele- 870

ments: 871

• What (Evaluation): A review comment should 872

point out what is the concern or issue in the 873

code (Yang et al., 2023). 874

• How (Suggestion): An ideal review comment 875

provides suggestions for correction or preven- 876

tion since code review is expected to help fix 877

defects, improve quality, and address develop- 878

ers’ quality concerns (Yang et al., 2023). 879

• Why: Explain the reasoning behind the con- 880

cern and/or the suggested improvement (Lin 881

et al., 2024). 882

Commit Messages The primary purpose of com- 883

mit messages is to provide developers (both current 884

and future) with a summary of code changes, en- 885

abling them to understand how the code of a project 886

has changed and why. Two elements have been 887

shown to be essential for a commit message (Liu 888

et al., 2018b; Tian et al., 2022). 889

• What (Changes): A summary of what changes 890

were made in the code. This often includes: 891

– A summary of code object change that 892

shows the object of change, characteris- 893

tics of changes, or contrast before and 894

after. For example, “this commit re- 895

moves the following deprecated prop- 896

erties: * ‘server.connection-timeout’ * 897

‘server.use-forward-headers’ [...]”. An- 898

other example, “rename HeldCertifi- 899

cate.Builder.issuedBy() to signedBy()”. 900

11

https://doi.org/10.1145/3637528.3671796
https://doi.org/10.1145/3637528.3671796
https://doi.org/10.1145/3637528.3671796
https://doi.org/10.1145/3611643.3616245
https://doi.org/10.1145/3611643.3616245
https://doi.org/10.1145/3611643.3616245
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115

Type: Definition

Semantic Equivalent (SE): The generated message is semantically equivalent to the ground truth.

• In code review, a semantically equivalent comment should share the same intentions regarding both the issues
identified and the solutions proposed as in the ground truth.

• In commit message, we should consider both the “What” and “Why” together to decide the semantic equivalence.
Semantic equivalent commit messages should convey the same intents with similar framing and emphasis.

Not_SE_Informative: M is different from ground truth but it is informative for the task as hand.

• In code review, M is considered as informative if it points out a concern and/or provide suggestions for improvement.

• For commit messages, M captures some aspects of the code change but may overlook certain points compared
to the ground truth. For instance, ‘Add ’scheme’ to sys path in ok_test/scheme.py” indicates where the change
occurs but lacks the ’why.’ In contrast, the ground-truth message Add ’scheme’ to path to handle zip archive case”
provides (why) context on the purpose of the modification. Note (simple way): M must contain “What”, but can
be incomplete or slightly different from ground truth; “Why” can be missing.

Not_SE_Uninformative: M is different from the ground truth and it doesn’t provide useful information for the task at
hand.

• In code review, M is considered uninformative if it merely seeks information to understand the code design or
implementation choices, presents a general question without rationale, serves as self-justification for the code
change, or acts as a compliment to the code. Note (simple way): if the What (issue) is missing, then it’s not
informative.

• In commit messages, vague and general wording fails to clearly communicate the specifics of the change, such
as the ‘what’ (the nature of the modification) and the ‘why’ (the reason for the modification). For example, the
message ‘Minor refactoring in VRaptor’ lacks detail about what parts were refactored and the intended impact
of those changes, making it difficult for reviewers to understand the significance or context of the update. Note
(simple way): “What” is essential, it’s uninformative if it lacks specifics of “What”. See Table ?? for more
examples of uninformative commits.

Unsure_or_Looks_Applicable: M appears relevant to the context but needs further fact-checking, as its factual accuracy
cannot be directly verified from the given context

• In code review, this can involve M using context such as historical background, rationale beyond the given input,
or the need for fact-checking the provided solution.

• In a commit message, the rationale for explaining the issue or objectives in M might need fact-checking.

Input Inconsistency : M conflicts with the provided input.

• In code review, this means M points out an non-existent issue or provides a solution that is already exists in the
code change or violates with programming commonsense.

• In commit message, this means that M contains information that’s not included in the code change, or misinterpret
code change.

Logic Inconsistency: M itself doesn’t make logical sense.
Context Repetition: M is completely or largely copied from the input.
Intent Deviation: M deviates with the goal of the task at hand: not providing a review in code review task or not
providing a commit message that covers what is being changed and why it’s being changed.
Others: This is used to capture any other types that’s not covered in the above categories

Table 7: The definitions for each of the type in our annotation. M denotes the model generated message.

– An illustration of function. For example,901

Rename preferred-mapper property so its902

clear it only applies to JSON)903

– Description of implementation princi-904

ples. For example, “SslContextBuilder905

was using InetAddress.getByName(null)906

[...] On Android, null returns IPv6 loop-907

back, which has the name ‘ip6-localhost’908

” 909

• Why: A justification of the motivation behind 910

the code change. This often includes describ- 911

ing objectives or issues, illustrating require- 912

ments, or implying necessity. 913

A.2 Summarized rules for annotation 914

Rules for Annotating Generated Code Reviews 915

12

1. Unsure → Knowledge_Overreach: a note916

of Knowledge_Overreach should be left for917

cases that contain code snippets or software918

evolution (maintains, process related), we are919

not sure whether the generated content is true920

or not. E.g., “I think it would be better to use921

‘getById‘ here.”922

2. For a composite review that contains multiple923

sentences, there might be some sentences not924

functioning as review. As long as there is at925

least one review exist, we consider it as review926

(not intent deviation).927

3. A review might have multiple sentences and928

each sentence has different labels, we decide929

the final label based on most severe one (label930

hallucination types if it exists).931

For example, given this message “I think932

this is a bug. The ‘m_indirectKernelMem‘933

is a ‘std::vector<usm::memory>‘. The934

‘usm_mem‘ is a single element of that vec-935

tor. So this line is going to overwrite the936

‘m_indirectKernelMem‘ with a single ele-937

ment.”. We have two labels: (a) we can-938

not tell that the m_indirectKernelMem‘ is a939

‘std::vector<usm::memory> or not, which is940

‘Unsure‘ requires fact checking; and (b) we941

know that “So this line is going to overwrite942

the ‘m_indirectKernelMem‘ with a single el-943

ement.” is wrong based on the code context,944

it won’t overwrite, so it’s Input Inconsistency.945

Base on the two labels, we choose Input In-946

consistency for this message.947

4. How to distinguish it’s a review or a justifi-948

cation? A review should contain the basic949

components of issue/concern, with optional950

suggestion and explanation, while a justifica-951

tion is a message aligned with the code change952

(no concern or suggestion, no new informa-953

tion inside). For example, this message “This954

is a bit of a hack, but I think it’s the best we955

can do for now” should be labeled as Intent956

Deviation since there is no any issue or con-957

cern.958

5. Cases where the model suggests changing959

back to the older version without explanation,960

we don’t know whether the suggestion is bet-961

ter or not. If know exactly what to fact check,962

we label it Unsure (needs fact checking); oth-963

erwise, if it’s not violating the context, then964

we choose NO context deviation and then de- 965

cide whether it’s Informative or Uninforma- 966

tive. The following message should be labeled 967

as Context Deviation → No and Informative, 968

because it’s sensible given the code context: 969

“I think this is a bit of a misnomer. I think 970

it should be "Gets or sets JSON serialization 971

settings".”. 972

6. In cases where the review is ambiguous, it 973

might refer back to multiple places in the code 974

patch, we label it as No-context deviation if 975

it’s possible to apply in at least one kinds of 976

scenario. Leave a comment of “Can be inter- 977

preted as another wrong way”. In the example 978

of: “Layout/EmptyLinesAroundBlockBody: 979

Extra empty line detected at block body end.”, 980

where the ‘block body end’ can be mapped to 981

different places, one with an extra empty line 982

and one without. 983

7. A review can apply to multiple places in 984

the code patch, we prioritize mapping it to 985

the code change part (-/+ lines) unless the 986

review explicitly mentions other unchanged 987

code snippets. For example, in this message 988

“I think this is a bit of overkill. We can just 989

use ‘Fatal‘ and ‘Warning‘ directly.”, the ‘Fa- 990

tal’ and ‘Warning’ exist in both code changed 991

parts and unchanged parts, but we prioritize 992

the changed part. 993

Rules for Annotating Commit Messages 994

1. A message is considered as semantically 995

equivalent to the ground truth message if the 996

information you can get are equal after read- 997

ing both. Specifically, both “what” changed in 998

the code and and “why” it is changed should 999

be aligned. 1000

2. For semantic equivalence, we don’t not over- 1001

infer the meanings, if the message doesn’t 1002

explicit mention about it then it’s not. E.g., 1003

“Added support for CircleMarker” we don’t 1004

infer the CircleMarker is a type/instance of 1005

Marker unless the code explicitly defined it. 1006

3. For cases where we are not sure and cannot 1007

understand the message based on the given 1008

context, our prior knowledge and external web 1009

search, label it as Unsure, leave a note of “Dif- 1010

ficult to comprehend the message”. 1011

13

4. The <I> symbol comes from training data,1012

where they mask out information referring to1013

a different platform such as issue IDS, URLs,1014

and version numbers. For example, the mes-1015

sage “Bump to <I> (#<I>)” is not halluci-1016

nating, but it’s Uninformative based on the1017

code change as it doesn’t tell specifics of what1018

bump to <I>. This message “removed unused1019

imports from rfc<I>” is considered informa-1020

tive based on the code context.1021

B Prompting and Fine-tuning Models1022

Zero-shot prompting We use vLLM13 for zero-1023

shot prompting. The model temperature was set1024

to 0 to make the output deterministic. We used1025

the following prompts for code review and commit1026

message generation.1027

Below is a code diff submitted during a code
review process.
Please write a commit message within 50
words.
[code_diff]: {code_diff}
Respond only with valid JSON. Do not write an
introduction or summary.

1028

Below is a code diff submitted during a code
review process. Please write a code review com-
ment within 50 words to identify the concerns
and suggest improvements.
[code_diff]: {code_diff}
Respond only with valid JSON. Do not write an
introduction or summary.

1029

Fine-tuning models We fine-tuned the three1030

models on task-specific training data, including two1031

general language models (Llama3.1-8B-Instruct141032

and Qwen2.5-7B-Instruct15) and one specialized1033

small language model pre-trained on code and com-1034

mit message generation (Lin et al., 2023). The ex-1035

periment was conducted on 1 NVIDIA H100 GPU.1036

For CCT5 (Lin et al., 2023), we reused the code1037

and scripts from their replication package16 to fine-1038

tune the model on our dataset.1039

For LLaMA3.1-8B-Instruct and Qwen2.5-7B-1040

Instruct, we perform instruction fine-tuning to fur-1041

13https://docs.vllm.ai/en/latest/
14https://huggingface.co/meta-llama/Llama-3.

1-8B-Instruct
15https://huggingface.co/Qwen/Qwen2.

5-7B-Instruct
16https://github.com/Ringbo/CCT5

ther update the models parameters for the tasks at 1042

hand. We use full fine-tuning rather than parameter- 1043

efficient methods such as LoRA, as our preliminary 1044

experiments found that full fine-tuning performed 1045

better. The following instruction templates are used 1046

during training: 1047

Below is an instruction that describes a task,
paired with an input that provides further con-
text. Write an Output that appropriately com-
pletes the request.
Instruction: Review the code diff and pro-
vide a constructive comment highlighting any
issues and suggesting improvements.
Input:
Code diff: {code_diff}
Output:
{code_review}

1048

Below is an instruction that describes a task,
paired with an input that provides further con-
text. Write an Output that appropriately com-
pletes the request.
Instruction: You are a programmer who
makes the below code changes. Please write a
commit message for the below code diff
Input:
Code diff: {code_diff}
Output:
{commit_message}

1049

Results We evaluated seven models in total on 1050

their capability of generating task-specific mes- 1051

sages using the traditional BLEU-4 metric (Pap- 1052

ineni et al., 2002). Table 8 presents the experimen- 1053

tal results on code review comment generation and 1054

commit message generation across prompting and 1055

fine-tuning approaches. 1056

The experimental results reveal several key pat- 1057

terns. First, zero-shot prompting approaches consis- 1058

tently underperform fine-tuned models, with BLEU 1059

scores ranging from 3.88-4.70% for code review 1060

and 8.62-9.72% for commit messages. In contrast, 1061

fine-tuned models achieve substantially higher per- 1062

formance, with the specialized CCT5 model reach- 1063

ing 5.58% on code review and 17.45% on commit 1064

messages. This highlights the necessity of fine- 1065

tuning for generating higher-quality code2NL mes- 1066

sages. 1067

Second, code review proves to be a more chal- 1068

lenging task compared to commit message gener- 1069

14

https://docs.vllm.ai/en/latest/
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://github.com/Ringbo/CCT5

Setting Model CodeReview CommitBench
Overall Sample Overall Sample

Zero-shot prompt

Llama3.1-8B-Instruct 4.22 3.28 9.21 8.89
Qwen2.5-7B-Instruct 4.70 4.00 8.99 8.62
Llama3.1-70B-Instruct 3.88 4.09 9.72 9.88
Qwen2.5-72B-Instruct 4.29 4.31 8.62 8.06

Fine-tuned
Llama3.1-8B-Instruct 5.28 5.25 15.06 15.29
Qwen2.5-7B-Instruct 5.43 5.73 15.37 15.57
CCT5 5.58 6.53 17.45 17.46

Table 8: Performance (BLEU-4 measured in %) comparison of different models on CodeReview and CommitBench
benchmarks under zero-shot and fine-tune settings.

ation, with BLEU scores approximately 2-3 times1070

lower across all model configurations. This is sensi-1071

ble given that code review comments require mod-1072

els to critically analyze and provide constructive1073

feedback on code changes, representing a higher1074

cognitive demand than the descriptive nature of1075

commit messages.1076

The performance on our manually sampled sub-1077

set closely mirrors the overall dataset performance,1078

with sample BLEU scores showing similar trends1079

(e.g., CCT5 achieving 6.53% vs 5.58% overall for1080

code review), validating the representativeness of1081

our evaluation approach.1082

C Hallucination Detection1083

C.1 Hallucination Detection Methodology1084

Details1085

We adopt existing hallucination measurement met-1086

rics, including reference-based and reference-free1087

hallucination detection approaches to address dif-1088

ferent practical needs. Reference-based metrics1089

serve as valuable benchmarks during model train-1090

ing and evaluation when gold standards are avail-1091

able, while reference-free methods enable halluci-1092

nation detection in real-world deployment scenar-1093

ios where reference texts are typically unavailable.1094

C.1.1 Reference-based Metrics1095

In reference-based metrics, hallucination is esti-1096

mated by the quality of a generation y, which is1097

evaluated by comparing against the reference ŷ1098

using certain metrics. The hypothesis is that the1099

lower the quality is, the more likely y it is to be a1100

hallucination. We use two metrics that are widely1101

used for quality estimation: Lexical overlap with1102

BLEU, and Natural Language Inference.1103

Lexical overlap metrics such as BLEU evalu-1104

ate the n-gram overlap between the y and ŷ. This1105

type of metric has been widely used in prior work1106

to evaluate the quality of generated commit mes-1107

sages (Liu et al., 2018a; Li et al., 2024) and review1108

comments (Tufano et al., 2021; Li et al., 2022). 1109

Recently, it has also been adapted to study the cor- 1110

relation with hallucinations in natural language gen- 1111

eration tasks, such as neural machine translation 1112

(Guerreiro et al., 2023; Dale et al., 2023). 1113

Natural Language Inference (NLI). NLI is a 1114

standard NLP task that evaluates the logic rela- 1115

tionship between a pair of premise and hypothesis 1116

sentences, determining whether it is entailment, 1117

contradiction, or neutral, which has been widely 1118

used to evaluate the factual consistency (Hu et al., 1119

2024; Valentin et al., 2024) and hallucination de- 1120

tection (Manakul et al., 2023; Elaraby et al., 2023). 1121

We use NLI to measure the probability of the refer- 1122

ence y entails the the generated NL ŷ. The intuition 1123

is that if the y can be directly inferred from the ref- 1124

erence ŷ, then it is high quality and less likely to 1125

hallucinate. We used the best performing model 1126

nli-deberta-v317 based on the performance on Sen- 1127

tence Transformer 18 to obtain the entailment logit. 1128

C.1.2 Reference-free Metrics 1129

In reference-free measurements, reference is not 1130

accessed, only information from the source input 1131

or from the model behaviors while generating a 1132

sequence is used. We use three types of measure- 1133

ments: similarity-based, uncertainty-based, and 1134

feature-attribution based. 1135

Similarity between the generation and the 1136

source We estimate semantic similarity between 1137

source and generation using cosine similarity 1138

cos(Ey, Ex) between embeddings of generated NL 1139

y and source code x. The intuition is that irrele- 1140

vant generations are less similar and more likely 1141

to hallucinate. To obtain the embeddings, we use 1142

three models pre-trained on both code and natural 1143

language corpora: codebert-base19, codet5p-220m- 1144

17https://huggingface.co/cross-encoder/nli-deberta-v3-
base

18https://sbert.net/
19https://huggingface.co/microsoft/codebert-base

15

bimodal20, and codet5p-770m21.1145

Sequence-level confidence scores A sequence-1146

level confidence score has been used in machine1147

translation for hallucination detection (Guerreiro1148

et al., 2023; Huang et al., 2024), where it is calcu-1149

lated via aggregating token-level uncertainty into1150

sentence level by taking the average across the se-1151

quence. Token-level confidence can be measured1152

in various ways. The intuition is when a model1153

hallucinates, it tends to be less confident. Several1154

metrics have been proposed to estimate the token-1155

level uncertainty, including probability, logit and1156

entropy (Guerreiro et al., 2023; Huang et al., 2024;1157

Valentin et al., 2024).1158

We also use entropy to measure uncertainty: a1159

more uniform token distribution (higher entropy)1160

indicates lower model certainty. This can be for-1161

mulated as follows:1162

SeqEntropy =
1

L

L∑
i=1

Hi, (1)1163

where Hi is the entropy of the token distribution.1164

Feature attribution In a transformer-based1165

model M , generating a token yt involves both the1166

input x and previously generated target tokens (y11167

to yt−1). Prior work has shown that the interaction1168

between yt and these sources reveals hallucination1169

patterns (Tang et al., 2022; Chen et al., 2025; Sny-1170

der et al., 2024), which can be detected through fea-1171

ture attribution in NL hallucinations. We conduct1172

both feature attribution for both the input source x1173

and the previously generated target tokens.1174

We employ a widely used feature attribution1175

method Input X Gradient (Shrikumar et al., 2017),1176

which calculates the gradient of the output with re-1177

spect to the input and considers the impact of input1178

magnitudes on generation. The attribution score1179

from xi to yt can be formulated as:1180

Ai,t = xi ×
∂yt
∂xi

(2)1181

where Ai,t is the attribution score, and ∂yt
∂xi

denotes1182

the gradient of yt in an attribution model M with1183

respect to the input xi. A higher Ai,t indicates that1184

xi is more important for generating yt.1185

Source Attribution Score. To investigate hallu-1186

cinations on sequence level, we apply an aggre-1187

gation function on A to convert a sequence of1188

20https://huggingface.co/Salesforce/codet5p-220m-
bimodal

21https://huggingface.co/Salesforce/codet5p-770m

token-level attribution scores into a single attribu- 1189

tion value. We first compute the maximum attribu- 1190

tion value across all input tokens for each output 1191

token yt, then take the average of these maximum 1192

values. The attribution score of the source to the 1193

generated sequence. 1194

SourceAttr =
1

T

T∑
t=1

max
i∈[1,N]

Ai,t, (3) 1195

where T is the length of the generated sequence, 1196

SourceAttr represents final sequence-level overall 1197

source contribution score. The intuition is that 1198

when the maximum input contribution is small, the 1199

generated y is likely to be a hallucination as the 1200

model didn’t generate based on the input. 1201

Given our input is a code change consisting of 1202

both old and new code, human developers primarily 1203

focus on the changed parts when generating com- 1204

mit messages and code review comments. Based 1205

on this observation and the assumption that mod- 1206

els should similarly emphasize code changes, we 1207

designed variations of the aggregation methods 1208

that separate attribution scores for changed and 1209

unchanged code. Our hypothesis is that lower attri- 1210

bution scores on the changed parts indicate a higher 1211

likelihood of hallucination. 1212

ChangedAttr =
1

T

T∑
t=1

max
i∈C

Ai,t, (4) 1213

UnchangedAttr =
1

T

T∑
t=1

max
i∈[1,N]\C

Ai,t, (5) 1214

where C ⊂ [1, N] represents the indices of tokens 1215

in the changed code (all - and + lines), and [1, N] \ 1216

C represents the indices of unchanged code tokens. 1217

Target Attribution. We also calculate the attri- 1218

bution score from previously generated tokens: 1219

TargetAttr =
1

T

T∑
t=1

max
j∈1,...,t−1

Âj, t, (6) 1220

where Âj, t is the attribution score from y1 to 1221

yj (j ranges from 1 to t − 1). The final Targe- 1222

tAttr score denotes the overall maximum attribu- 1223

tion score from previously generated tokens to the 1224

current token. 1225

To obtain attribution scores for generated se- 1226

quences, we use constrained attribution (Sarti et al., 1227

2023) through the Inseq library.22 Constrained attri- 1228

bution works by providing an attribution model M 1229

22https://inseq.org/en/latest/

16

with both the input code x and the generated output1230

y, then analyzing how the model associates each1231

input token with each output token step by step.1232

Rather than generating text freely, the model is1233

constrained to follow the specified target sequence,1234

allowing us to measure which parts of the input1235

most strongly influence each token in the output.1236

This reveals the model’s implicit justification for1237

each output token based on the input.1238

As the attribution model M , we use the same1239

three models fine-tuned in our RQ1 experiments1240

for each task: LLaMA3.1-8B-Instruct, Qwen2.5-1241

7B-Instruct, and CCT5. For each generation, we1242

apply both self-attribution (where the generator at-1243

tributes its own output, e.g., CCT5 attributes its1244

own generation) and cross-attribution (where a dif-1245

ferent model attributes the output, e.g., CCT5 at-1246

tributes LLaMA3.1-8B’s generation). This dual1247

perspective helps us understand whether a model1248

is aware of its own hallucinations and whether ex-1249

ternal models can detect hallucinations based on1250

attribution signals. While attributing each output1251

token, we also extract uncertainty scores based on1252

logit, probability, and entropy.1253

C.2 Correlation between Detection Metrics1254

and Hallucination1255

In addition to ROC-AUC, we also analyzed the1256

correlation between each individual metric and the1257

hallucination labels we annotated (hallucination1258

= 1, non-hallucination = 0). To evaluate the cor-1259

relation, we use the point-biserial correlation co-1260

efficient (rpb), which measures the strength and1261

direction of the relationship between a continuous1262

variable (i.e., metric scores) and a dichotomous1263

variable (i.e., the binary hallucination label).1264

The results are presented in Figures 5 and 6.1265

Overall, the correlation is weak (|rpb| ∈ [0, 0.2))1266

across all samples for individual metrics. How-1267

ever, when examining generator-specific results,1268

the correlation between certain generator–metric1269

pairs increases (|rpb| ∈ [0.2, 0.3)).1270

These findings further motivate our exploration1271

of how combining multiple metrics can improve1272

hallucination detection.1273

17

BLEU

CCT5
 (C

ha
ng

ed
)

CCT5
 (E

ntr
op

y)

CCT5
 (L

og
it)

CCT5
 (P

rob
ab

ilit
y)

CCT5
 (S

ou
rce

-Ta
rge

t)

CCT5
 (Ta

rge
t-Ta

rge
t)

CCT5
 (U

nch
an

ge
d)

En
tai

lm
en

t

Lla
ma3

.1
(Cha

ng
ed

)

Lla
ma3

.1
(En

tro
py

)

Lla
ma3

.1
(Lo

git
)

Lla
ma3

.1
(Pr

ob
ab

ilit
y)

Lla
ma3

.1
(So

urc
e-T

arg
et)

Lla
ma3

.1
(Ta

rge
t-Ta

rge
t)

Lla
ma3

.1
(Unch

an
ge

d)

Qwen
2.5

 (C
ha

ng
ed

)

Qwen
2.5

 (E
ntr

op
y)

Qwen
2.5

 (L
og

it)

Qwen
2.5

 (P
rob

ab
ilit

y)

Qwen
2.5

 (S
ou

rce
-Ta

rge
t)

Qwen
2.5

 (Ta
rge

t-Ta
rge

t)

Qwen
2.5

 (U
nch

an
ge

d)

Sim
-Cod

eB
ER

T

Sim
-Cod

eT
5p

-22
0M

Sim
-Cod

eT
5p

-77
0M

Hallucination Detector (Metric)

ALL

CCT5

Llama3.1

Qwen2.5M
es

sa
ge

 G
en

er
at

or -0.155 0.025 0.053 0.032 -0.014 0.003 -0.003 -0.046 -0.119 -0.032 0.031 0.076 0.027 -0.115 0.029 -0.060 -0.020 0.047 0.054 0.025 0.015 -0.014 -0.016 0.027 0.055 0.011

-0.168 0.102 -0.031 0.172 0.133 0.067 -0.067 -0.102 -0.004 -0.040 -0.139 0.238 0.200 -0.274 0.074 -0.243 -0.017 -0.111 0.188 0.192 -0.160 -0.164 -0.175 0.129 0.210 0.062

-0.026 0.033 0.007 0.054 0.013 -0.007 0.007 0.081 -0.187 -0.128 0.082 -0.007 -0.016 0.162 0.028 0.070 -0.101 0.091 -0.021 -0.017 0.164 0.109 0.102 -0.026 -0.024 -0.027

-0.256 -0.117 0.220 -0.170 -0.225 -0.089 0.089 -0.106 -0.194 0.070 0.197 -0.100 -0.139 -0.158 -0.048 0.048 0.064 0.218 -0.101 -0.141 0.096 0.049 0.073 -0.021 -0.040 -0.014 0.2

0.1

0.0

0.1

0.2

Po
in

t B
ise

ria
l C

or
re

la
tio

n

Figure 5: Point-biserial correlation between metrics and hallucinations on CodeReviewer.

BLEU

CCT5
 (C

ha
ng

ed
)

CCT5
 (E

ntr
op

y)

CCT5
 (L

og
it)

CCT5
 (P

rob
ab

ilit
y)

CCT5
 (S

ou
rce

-Ta
rge

t)

CCT5
 (Ta

rge
t-Ta

rge
t)

CCT5
 (U

nch
an

ge
d)

En
tai

lm
en

t

Lla
ma3

.1
(Cha

ng
ed

)

Lla
ma3

.1
(En

tro
py

)

Lla
ma3

.1
(Lo

git
)

Lla
ma3

.1
(Pr

ob
ab

ilit
y)

Lla
ma3

.1
(So

urc
e-T

arg
et)

Lla
ma3

.1
(Ta

rge
t-Ta

rge
t)

Lla
ma3

.1
(Unch

an
ge

d)

Qwen
2.5

 (C
ha

ng
ed

)

Qwen
2.5

 (E
ntr

op
y)

Qwen
2.5

 (L
og

it)

Qwen
2.5

 (P
rob

ab
ilit

y)

Qwen
2.5

 (S
ou

rce
-Ta

rge
t)

Qwen
2.5

 (Ta
rge

t-Ta
rge

t)

Qwen
2.5

 (U
nch

an
ge

d)

Sim
-Cod

eB
ER

T

Sim
-Cod

eT
5p

-22
0M

Sim
-Cod

eT
5p

-77
0M

Hallucination Detector (Metric)

ALL

CCT5

Llama3.1

Qwen2.5M
es

sa
ge

 G
en

er
at

or -0.199 -0.150 0.024 0.015 -0.009 -0.072 0.173 0.073 -0.164 -0.002 -0.006 0.134 0.050 -0.057 0.006 -0.115 0.009 0.036 0.069 -0.008 -0.089 0.018 -0.055 0.142 0.031 0.152

-0.154 -0.165 -0.008 0.026 0.010 -0.085 0.153 0.099 -0.126 0.068 0.064 -0.023 -0.044 -0.028 0.005 -0.033 0.071 0.097 -0.068 -0.100 -0.055 -0.006 0.056 0.029 -0.035 0.097

-0.253 -0.184 0.096 -0.022 -0.073 -0.103 0.239 0.088 -0.212 -0.018 -0.042 0.239 0.075 -0.086 0.027 -0.229 -0.026 0.023 0.164 0.019 -0.218 0.025 -0.183 0.259 0.074 0.237

-0.211 -0.096 -0.017 0.038 0.043 -0.005 0.102 0.038 -0.135 -0.051 -0.044 0.179 0.123 -0.043 -0.014 -0.070 -0.003 -0.033 0.137 0.078 0.015 0.053 -0.042 0.124 0.043 0.103 0.2

0.1

0.0

0.1

0.2

Po
in

t B
ise

ria
l C

or
re

la
tio

n

Figure 6: Point-biserial correlation between metrics and hallucinations on CommitBench.

diff --git a/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php \
b/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php
index <HASH>..<HASH> 100644
--- a/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php
+++ b/tests/PHPUnit/Framework/TestingEnvironmentManipulator.php
@@ -148,7 +148,7 @@ class TestingEnvironmentManipulator implements EnvironmentManipulator
 $diConfigs[] = $testCaseClass::$fixture->provideContainerConfig();
 }

- if (method_exists($testCase, 'provideContainerConfigBeforeClass')) {
+ if (method_exists($testCaseClass, 'provideContainerConfigBeforeClass')) {
 $diConfigs[] = $testCaseClass::provideContainerConfigBeforeClass();
 }

max attribution score = 0.042

Llama3.1: Fix ing a typo in the Testing Environment Manip ulator

Logit=12.6 Logit=18.7 Logit=20.1Logit=20.1

max attribution score = 0.064

Figure 7: An example of feature attribution on a hallucinated commit message comment generated by Llama3.1.
Attribution model: Llama3.1.

18

	Introduction
	Related Work
	Study Design
	Research Questions
	Hallucination Annotation Workflow
	Datasets and Code2NL Generation
	Hallucination Detection Methodology

	To what extent do LLMs hallucinate in code to natural language tasks?
	Manual Annotation
	Hallucination Prevalence and Patterns

	How well do existing metrics detect hallucinations in code to NL tasks?
	How do individual metrics perform in detecting hallucinations?
	Can combining multiple metrics enhance the accuracy of hallucination detection?

	Conclusion
	Limitations
	Hallucination Annotation
	Essential Elements in Code Reviews and Commit Messages
	Summarized rules for annotation

	Prompting and Fine-tuning Models
	Hallucination Detection
	Hallucination Detection Methodology Details
	Reference-based Metrics
	Reference-free Metrics

	Correlation between Detection Metrics and Hallucination

