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ABSTRACT

Deep reinforcement learning has the potential to address various scientific prob-
lems. In this paper, we implement an optics simulation environment for reinforce-
ment learning based controllers. The environment incorporates nonconvex and
nonlinear optical phenomena as well as more realistic time-dependent noise. Then
we provide the benchmark results of several state-of-the-art reinforcement learn-
ing algorithms on the proposed simulation environment. In the end, we discuss
the difficulty of controlling the real-world optical environment with reinforcement
learning algorithms. We will make the code of the paper publicly available.

1 INTRODUCTION

In recent years, deep reinforcement learning (RL) has been used to solve challenging problems in
various fields (Sutton & Barto, 2018), including self-driving car (Bansal et al., 2018) and robot
control (Zhang et al., 2015). Among all of the applications, deep RL made significant progress
in play games on a superhuman level (Mnih et al., 2013; Silver et al., 2014; 2016; Vinyals et al.,
2017). Beyond playing games, deep RL has the potential to strongly impact the traditional control
and automation tasks in the natural science, such as control problems in chemistry (Dressler et al.,
2018), biology (Izawa et al., 2004), quantum physics (Bukov et al., 2018), optics and photonics
(Genty et al., 2020).

In optics and photonics, there is particular potential for RL methods to drive the next generation of
optical laser technologies (Genty et al., 2020). This is not only because there is increasing demand
for adaptive control and automation (of tuning and control) for optical systems (Baumeister et al.,
2018), but also because many phenomena in optics are nonlinear and multidimensional (Shen, 1984),
with noise-sensitive dynamics that are extremely challenging to model using conventional methods.
RL methods are able to control multidimensional environment with nonlinear function approxima-
tion (Dai et al., 2018). Thus, study the RL controller in optics becomes increasingly promising in
optics and photonics as well as its applications in scientific research, medicine, and other industries
(Genty et al., 2020; Fermann & Hartl, 2013).

Traditionally, many of the control problems in optics and photonics were implemented by stochastic
parallel gradient descent (SPGD) algorithm with PID controller (Cauwenberghs, 1993; Zhou et al.,
2009; Abuduweili et al., 2020a). The target is to maximize the reward (e.g. optical pulse energy) by
adjusting and controlling the system parameters. The SPGD algorithm is one of the special cases of
stochastic error descent method (Cauwenberghs, 1993; Dembo & Kailath, 1990). Stochastic error
descent is based on the model-free distributed learning mechanism. A parameter update rule is
proposed by which each individual parameter vector perturbation contributes to a decrease in error
(or increase in reward). However, SPGD is typically a convex optimization solver, and many control
problems in optics are non-convex. SPGD may be failed to search the global optimum of the optics
control system unless the initial state of the system is near a global optimum. In general, the initial
state of the optical system was adjusted by experienced experts, then utilizing SPGD to control the
manually adjusted system, which becomes extremely hard with the increasing system complexity.
In order to achieve efficient control and automation, deep RL was introduced to control optical
systems (Tünnermann & Shirakawa, 2019; Sun et al., 2020; Abuduweili et al., 2020b). Most of the
previous works implemented Deep-Q Network (Mnih et al., 2013) and Deep Deterministic Policy
Gradient (Lillicrap et al., 2015), in optical control systems to achieve the comparable performance
with traditional SPGD-PID control (Tünnermann & Shirakawa, 2019; Valensise et al., 2021). But
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there is a lack of works on the evaluation of more RL algorithms in the more complex optical control
environment.

Studying and validating RL algorithms in the real-world optical system is a challenging process
because its cost is expensive and requires experienced experts to implement the optical system.
Instrumenting and operating RL algorithms in a simple optical system require significant funds and
manpower. An effective alternative to validate RL algorithms in optics is simulation. Simulation has
been used for robotics and autonomous driving since the early days of research (Pomerleau, 1998;
Bellemare et al., 2013). As learning-based robotics expands in both interest and application, the role
of simulation may become ever more critical in driving research progress. But there is not any open
sourced RL environment for optics control simulation by now.

In this paper, we introduce OPS (Optical Pulse Stacking environment) - a scalable open simulator for
controlling a typical optical system. The physics behind our OPS system is the same as many other
optical problems, including coherent optical inference (Wetzstein et al., 2020) and linear optical
sampling (Dorrer et al., 2003), which can be used for precise measurement, industrial manufac-
turing, and scientific research. A typical optical pulse stacking system directly and symmetrically
stacks up the input pulses to multiply the pulse energy for output stacked pulses (Tünnermann &
Shirakawa, 2017; Stark et al., 2017; Astrauskas et al., 2017; Yang et al., 2020). By providing an
optical control simulation environment, we aim to encourage exploration of the application of RL
on optical control tasks and furtherly explore the RL controllers in natural science. We use OPS to
evaluate some important RL algorithms including twin delayed deep deterministic policy gradient
(TD3, Fujimoto et al. (2018)), soft actor-critic (SAC, Haarnoja et al. (2018a)), and proximal policy
optimization (PPO, Schulman et al. (2017)). After reporting the results of these RL algorithms, we
discuss the difficulty of RL algorithms in the real-world optical system. With the provided simulat-
ing environment OPS and the experiments of RL algorithms, we believe that this work can promote
the research on RL applications in optics as well as benefit both the machine learning and the optics
community.

2 SIMULATION ENVIRONMENT

2.1 PHYSICS OF THE SIMULATION
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Figure 1: Illustration of the principle of optical pulse stacking. Only 3-stage pulse stacking was
plotted for simplicity.

The optical pulse stacking (OPS, or also called pulse combination) system recursively stacks up
the optical pulses in the time domain. The dynamics of the OPS are similar to the recurrent neural
networks (RNN) or Wavenet architecture (Oord et al., 2016). We illustrate the dynamics of the OPS
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in RNN style as shown in fig. 1. The input of the OPS is a periodic pulse train1 with a repetition
period of T . Assume the basic function of the first pulse at time step t is E1 = E(t), then the
consecutive pulses can be described as E2 = E(t + T ), E3 = E(t + 2T )... The OPS system
recursively imposes the time delay on earlier pulses for every two consecutive pulse pairs. As an
example, the 1st stage time-delay controller imposes the time delay τ1 on pulse 1 to shift the pulse
1. With the proper time delay, pulse 1 could be stacked with the next pulse E2 to create the stacked
pulses E1,2 = E(t + τ1) + E(t + T ). Similarly, pulse 3 could be stacked with pulse 4 to create
E3,4 = E(t+ 2T + τ1) + E(t+ 3T ) , and so on. In 2nd stage OPS, the time delay τ2 was further
imposed to E1,2 to make it to stack up with E3,4 to create E1,2,3,4. This kind of stacking is repeated
in each stage OPS controller, which stacks up the pulses in geometrical progression (recursion). An
N -stage OPS system simply multiplies pulse energy by 2N times by stacking up 2N pulses, in which
N time delays (τ1, τ2, ..., τN ) are needed to control and stabilize. Please check the more detailed
illustration and configuration of the real-world OPS experiment in appendix A.

2.2 CONTROL OBJECTIVE AND NOISE

The objective of the controlling OPS system is to maximize the final stacked (output) pulse energy
by adjusting the time delays. For N -stage OPS system, let PN denotes the final energy of N times
stacked pulse, and τ = [τ1, τ2, ..., τN ] denote the time delays. Then the objective function for
controlling N -stage OPS system is:

argmax
τ

PN (τ ) = argmaxτ1,τ2,...,τNPN (τ1, τ2, ..., τN ) (1)

If any noise were ignored, we would analyze the exact function of the final pulse energy PN w.r.t.
the time delays τ . Figure 2(a) shows the function of the pulse energy P1(τ1) w.r.t. the first time
delay τ1 in 1-stage OPS system. And fig. 2(b) shows the function surface of P2(τ1, τ2) w.r.t. the first
and second stages time delay (τ1, τ2) in 2-stage OPS system. As can be seen, the control function
of the OPS system is non-linear and non-convex even ignoring any noises2. This is a challenging
problem for any controlling algorithms to achieve the global optimum (or better local optimum)
from a random initial state.
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Figure 2: Function plot of the (a) 1-stage OPS: pulse energy P1(τ1) w.r.t. delay line τ1. (b) 2-stage
OPS: pulse energy P2(τ1, τ2) w.r.t. delay lines (τ1, τ2).

In general, noise can not be ignored and the system is quite noise-sensitive. That is because the
wavelength of the pulse is in µm level (1µm = 10−6m). The noise in the environment, including
vibration of optical devices and temperature drift of the atmosphere, could easily bring the shift of
the time delay then change the output pulses. So the objective function in real-world practice is
more complex than fig. 2, especially for higher stage (high-dimensional) OPS.

1The periodic pulse train generally emitted by lasers. The wave function of each laser pulse is almost the
same except for the time delay of a period.

2Part of the reasons are the optical periodicity and nonlinearity of the coherent interference.
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In this simulation, we mainly consider two kinds of noise. The first one is fast noise which comes
from the vibration of devices. The noise could be formulated as a zero-mean Gaussian random
noise N (0,σ) by following the simulation noise of Tünnermann & Shirakawa (2019). The second
is slow noise, which comes from slow temperature drift. The influence of the temperature drift can
be formulated as a piecewise linear function (Ivanova et al., 2021). We used µt to represent the
time-dependent slow noise and formulated µt as a slow-changed piecewise linear function.

By incorporating these two kinds of noise, overall noise et at time step t follow the distribution of:
et ∼ N (µt,σ). (2)

Please note that µt changes very slowly with time. For episodic training for RL agents, the µt could
be considered as a constant value for iterations within an episode. But the value of µt might differ
from one episode to the next episode. It makes the distribution of the noise change with episodic
training. And more importantly, it causes different noise distribution for the testing environment
compared with the training environment. This kind of noise distribution shift between training and
the testing environment was rarely discussed in the previous simulations. But this is quite common
for noise-sensitive optical control tasks.

2.3 REINFORCEMENT LEARNING ENVIRONMENT

Interactions with RL agent. An RL agent interacts with the OPS environment in discrete time
steps, as shown in fig. 3. At each time step t, the RL agent receives the current state of the OPS
environment st. Then the RL agent chooses an action at to send the OPS environment. The envi-
ronment conduct the action and moves to new state st+1. Then the reward rt, which measured by
the state st+1, feedback to the RL agent. The RL agent trained with the experience (st, at, st+1, rt)
to learn a policy π(a, s) which maximizes the expected cumulative reward.

OPS Environment

Initial pulses

RL agent
state 𝑠
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Figure 3: Illustration of the interaction between RL agent and OPS environment. Only 2-stage pulse
stacking was plotted in OPS for simplicity.

State space. State space of OPS is a continual and multidimensional vector space. The state
value st could be described as the pulse intensity measurement of the final stacked pulse st =
Intensity(Eout(t)). So st is the time-domain ”picture” of the final stacked pulse, which directly
reflects the performance of the control. In a real-world system, pulse intensity was detected by a
photo-detector then converted to digital time-series signals. In our simulation, we also implement
real-time rendering of the pulse intensity to monitor the controlling process.

Action space. Action space of N -stage OPS environment is a continual and N -dimensional vector
space. At time step t, the action at is a time delay value τ (t) for N -stage OPS environment: at =
τ (t) = (τ1(t), τ2(t), ..., τN (t)). The time delay value τ (t) was conducted by OPS environment to
lead the next state.

Reward. As mentioned in section 2.2, the objective of the OPS controller is maximizing the final
stacked pulse energy PN (τ ). We used the reward value as normalized final pulse energy:

r = − (PN (τ )− Pmax)2

(Pmin − Pmax)2
, (3)

where Pmax is the maximum pulse energy achieved at the global optimum, and Pmin is the min-
imum pulse energy. The maximum reward 0 achieved when P (τ ) = Pmax (peak position of
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fig. 2(b)) . As the model moves better and better, the cumulative reward will be closer to zero
instead of growing all the time.

State transition function. The environmental noise poses direct impacts to the delay lines (includ-
ing the vibration and temperature shift noise of the delay line devices). So in the state transition,
real conducted delay line τreal(t) is a combination of the action at = τ (t) and noise et:

τreal(t) = τ (t) + et = at + et, et ∼ N (µt,σ). (4)

Then the real time delay τreal(t) imposed to some selected pulses3 by delay line devices (the device
impose additional time delay for pulses) as conduct the action. The state transition is governed by
state, action and noise. The exact form of the state transition follow the principle of the coherent
pulse interference.

Different game difficulty of the environment. We implemented the OPS environment for any
(N ∈ {1, 2, 3, ...}) stage of pulse stacking. With the increase of the number of stages, the control
would become more and more difficult. In addition to the customized number of stages, we also
provided three modes (easy, medium, and hard) for each stage OPS, as shown in fig. 4. The mode
was determined by the initial state of the system and noise distribution:

• Easy mode. The initial state of the OPS system is near the global optimum for easy mode.
Figure 6(a) shows the example initial state of the easy mode of the 3-stage OPS environ-
ment. This is a case for many traditional optics control problems: the initial state of the
system is tuned by ”experts” to make it easy to control for convex controllers.

• Medium mode. The initial state of the system is random, as shown in fig. 6(b), which
makes the control problem becomes nonconvex. But in medium mode, the noise is time-
independent and we simply set the noise distribution as et ∼ N (0,σ). This is the case
for many classical reinforcement learning settings. The noise distribution of each episode
is the same. More importantly, the noise behavior of the training environment and testing
environment is similar.

• Hard mode. Similar to medium mode and fig. 6(b), the initial state of the system is random.
Different from the medium mode, the noise behavior is more complicated. The mean
value of the noise distribution µt is a time-dependent variable. Which slowly changes
during time, et ∼ N (µt,σ). Because in real-world applications, we always deploy the
testing environment and algorithms after training, so the noise distribution of the testing
environment is different from the training environment. The hard mode is closer to real-
world settings.

Mode Initial state Noise

easy near the 
optimum

time independent;
𝜇! ≡ 0

medium random time independent;
𝜇! ≡ 0

hard random time dependent;
d𝜇!/d𝑡 ≢ 0

Figure 4: Comparison of the different
game modes.

from optics_env import OPS_env
env = OPS_env(stage=5, mode= "medium")
env.reset()
done = False
while not done:

action = env.action_space.sample()
observation, reward, done, info = env.step(action)
env.render()

Figure 5: Example code of the OPS environment.

API & sample usage. The optical and physical principle of the simulation is based on the Nonlinear-
Optics-Modeling package (Hult, 2007). The OPS environment is out of the box compatible with the
widely used OpenAI Gym API (Brockman et al., 2016). We show an example code of running
random agent on OPS environment as fig. 5.

Features of the OPS environment. We summarize the key features of the OPS environment as
follows:

3Real conducted time delay is τreal(t) = (τ1,real(t), τ2,real(t), ...). In which, 1st stage delay line τ1,real(t)
imposed to pulse-1 (E1), pulse-3 (E3) ... Then the 2nd stage delay line τ2,real(t) imposed to the previously 1st
stacked pulse E1,2.
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(a) Initial state: easy mode
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(b) Initial state: medium/hard mode
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(c) Target optimal state

Figure 6: Rendering examples of the state of (a) initial state for easy mode, (b) initial state for
medium or hard mode, (c) global optimal target state in a 2-stage OPS environment. The initial state
of the easy mode has almost sacked some parts of pulses, which is more closer to the target state.
The initial state of medium or hard mode is almost random and might be trapped into local optimum.

• Open source optical control environment. To the best of our knowledge, this is the first
open-sourced RL environment for optics control problems. The open-source licenses en-
able researchers to inspect the underlying code and to modify environments if required to
test new research ideas.

• Scalable and difficulty-adjustable scientific environment. Many of the recent RL environ-
ments (e.g. Atari) are easy to solve. In our OPS environment, the difficulty of the envi-
ronment is flexible. And the dimension of the action space is easy to scalable with stage
numberN . For theN -stage OPS environment, if we choose quite largerN with hard mode,
controlling the environment could become quite hard. If the hard scientific control problem
could be solved effectively, which would have a broader impact on many scientific control
problems.

• Realistic noise. In the hard mode of the OPS environment, we module the noise distribution
as the time-dependent function. It made the noise distribution of the testing environment is
different from the noise distribution of the training environment. This is more realistic for
noise-sensitive systems. It also increases the stochasticity of the environment.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

As a reference, we provide benchmark results for four state-of-the-art reinforcement learning algo-
rithms: PPO (Schulman et al., 2017), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018b).
We implement the algorithms using stable-baseline-3 (Raffin et al., 2019). The training procedure
for an RL agent is divided into a couple of episodes, each episode lasts for 200 steps. Other hyper-
parameters or each algorithm and training setting can be found in Appendix B.1. For each of the
experimental settings, we run ten random seeds and average the results.

3.2 RESULTS ON CONTROLLING 5-STAGE OPS ENVIRONMENT

In this section, we mainly report the results for the 5-stage OPS system, that stacked 25 = 32
pulses. For the results of the different stage OPS system, please check appendix B.2. In a 5-stage
OPS system, we evaluate all of the four algorithms in 3 difficulty modes of the environment: easy,
medium, and hard.

Training curve (plot for training reward per step w.r.t. iterations) of PPO, TD3, and SAC algorithms
has been shown in fig. 7(a) for easy mode, fig. 7(b) for medium mode, and fig. 7(c) for hard mode.
As can be seen, the performance of TD3 and SAC is similar and higher than PPO for all three
modes. For the difficulty mode of the environment, the convergence speed is slow down and the
final convergent value decreases with the increase of difficulty of the environment. As an example,
in easy mode, SAC converges to the reward value of−0.04 within 100,000 steps, but it takes 200,000
to converges to the reward value of −0.1 for hard mode.

After training the RL agents, we evaluated the performance in the testing environment. The final
return (stacked pulse power PN ) under different iterations on easy mode, medium mode, and hard
mode as shown in fig. 8(a), fig. 8(b), and fig. 8(c). As can be seen, although the training curve of the
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(a) Training curve: easy mode
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(b) Training curve: medium mode
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(c) Training curve: hard mode

Figure 7: Training curve for SAC, TD3, and PPO on 5-stage OPS environment for (a) easy mode, (b)
medium mode, and (c) hard mode. The dashed region shows the area within the standard deviation.
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(a) Testing curve: easy mode
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(b) Testing curve: medium mode
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(c) Testing curve: hard mode

Figure 8: Evaluation of the stacked pulse power PN (normalized) of testing environment for (a) easy
mode, (b) medium mode, and (c) hard mode.

medium mode (fig. 7(b)) and hard mode fig. 7(c) is a bit of similar, the evaluation curve on testing
environment of medium mode (fig. 8(b)) and hard mode fig. 8(c) is different. That is because the
hard mode has a different noise distribution for the training and test environment. That makes the
evaluation control on the testing environment for hard mode is slow to converge and achieved the
lower final return. Please see the detailed results of the evaluation in appendix B.3, and check the
animation video in supplementary video 1.

We reported the final return (combined pulse power PN ) of the training and testing environment on
the trained policy as table table 1. Please note that the training environment and testing environment
for easy and medium mode is similar, just like the classical Atari environment. The performance
differences are mainly caused by randomness. We showed that the performance difference between
the training and testing environment is much higher for hard mode. That is because of the different
noise behavior of the training and testing environment, which makes the control complicated.

Mode Evaluation on
which environment PPO TD3 SAC

easy training 0.7684 ± 0.0884 0.9580 ± 0.0189 0.9637 ± 0.0172
testing 0.7439 ± 0.0463 0.9541 ± 0.0177 0.9514 ± 0.0231

medium training 0.6210 ± 0.0828 0.9204 ± 0.0351 0.8945 ± 0.0501
testing 0.6182 ± 0.0229 0.9106 ± 0.0217 0.8833 ± 0.0838

hard training 0.5473 ± 0.0680 0.8524 ± 0.0380 0.8515 ± 0.0375
testing 0.4461 ± 0.0300 0.8130 ± 0.0215 0.8071 ± 0.0164

Table 1: Evaluation performance of PPO, TD3, and SAC on three ( easy, medium, hard) modes.
Final return PN on both the training environment and testing environment was evaluated.

3.3 RESULTS ON DIFFERENT STAGE EXPERIMENTS

We evaluated all of the four algorithms of the differentN -stage OPS environments with hard modes.
Figure 9(a) shows the training curve, and fig. 9(b) shows the testing curve of TD3 on different N -
stage OPS system. As can be seen, with the increase of stage number, the training convergence
became slower, and the final return PN became smaller.
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(a) Training curve: TD3 with hard mode
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(b) Testing curve: TD3 with hard mode

Figure 9: Comparison of the results on hard mode N -stage OPS environment with TD3 algorithms.
(a) shows the training curve; (b) shows the evaluation of final return PN of the testing environment.
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Figure 10: (a) Final return PN of different stage OPS on testing environment controlled with TD3 or
SAC. (b) Convergence steps for the training of TD3 and SAC on different stage OPS environments.

We also evaluated the trained TD3 and SAC on the different N stage testing environment, as shown
in fig. 10(a) and fig. 10(b). Figure 10(a) illustrated the final return PN under different stages OPS
and different difficulty modes. For 1-stage OPS, the final return PN could reach 1. That means
TD3 and SAC are able to search the global optimum for 1-stage OPS. But for 5-stage OPS with
hard mode, the SAC and TD3 only could achieve the 0.8 final return. That means the controlling
algorithms were trapped into a local optimum. In the real-world experiments, this case means the
20% energy loss. Figure 10(a) illustrated the training-convergence step for different stages OPS.
As the stage number increase, the number of steps to training convergence increases significantly,
which will slow down the training for higher stage OPS.

4 DISCUSSION

4.1 CONNECTIONS WITH REAL-WORLD EXPERIMENT

As far as we know, the previous real-world experiments of RL algorithms on the complicated OPS
system are not very successful. DQN or DDPG takes 4-hours to train a simple 1-stage OPS system,
and which takes 1-2 days to train a 4-stage OPS system (Tünnermann & Shirakawa, 2019). One
of the reasons for the slow training is because by deploying the RL algorithm in an optics system,
we need to convert optical signal to analog signal using photo-detector, then convert the analog
signal to digital signal using an analog-to-digital converter. These two conversions not only cost
some additional time to process the signal but also introduce some noises. For example, as shown
in fig. 8(c), TD3 algorithms almost take 300,000 steps to converge on 5-stage OPS environment.
If the real-world process time of the OPS system is 0.1s per interaction, the TD3 algorithm would
take more than 8 hours to train. Actually, the noise of the environment is much more complicated
than the simulation environment, though the simulation considers the time-dependent property of
the temperature drift. The longer training time made the temperature drift and noise more severe.
It also causes some additional energy costs in the real-world optical system. So the fast training
and noise-robust RL algorithms are critical to controlling tasks in optics, which is our main concern
about implementing OPS simulation environments. Please see the discussion about the real-world
and simulated experiments in appendix C.
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4.2 TRANSFER TRAINED POLICY

It is possible to transfer the trained policy between different simulating environments, even trans-
ferring from simulating environment to a real-world experiment. The major difference between the
simulation and real-world environments is the different noise levels. We conduct an experiment to
show the transferability between different noise levels.

In our simulation environment, the noise level is dependent on the difficulty mode. Then we explore
the transferability of the trained policy between ”easy”, ”medium”, and ”hard” modes. We trained
the policy on ”hard” mode environment, then tested the trained policy on ”hard”, ”medium”, and
”easy” environment, as shown in fig. 11 (a). Transfer results of ”medium” trained policy and ”easy”
trained policy are shown in fig. 11 (b) and fig. 11 (c) respectively. As can be seen, We can perfectly
transfer the harder mode trained policy to easier mode environments. When the easier mode training
strategy is transferring to a harder mode environment, the performance may drop, and there is a jitter
in pulse energy. The possible reason is that, when transferring to the harder environment, the trained
policy could be trapped in the ”bad” local minimum closer to the initial point and easily affected by
noise.
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Figure 11: Demonstration of the transfer performance of the trained policy on (a) hard mode training
environment; (b) medium mode training environment; (c) easy mode training environment.

Figure 11 shows that it is possible to transfer the trained policy between different noise levels, but it is
more useful to train the policy in a harder environment than tested on the easier environment. Thus,
we could explore fast and robust controlling algorithms in more harder simulation environment
(with introducing more noise and more uncertainty in the simulation) then deploy the trained policy
to real-world physical systems.

4.3 FUTURE WORK

One important work is to explore fast and robust RL algorithms in the simulation environment then
deploy them to the real-world control system. Another important topic is that explore the additional
information about the function of the OPS (fig. 2) and incorporating it with RL controllers. For
controlling the optical system, we are not interested in ”generic” nonconvex problems, but rather,
optical systems (or other scientific control problems) typically provide us with much richer structural
information. So it is promising to incorporate additional structural information behind the function
of the optical control into the RL controllers.

5 CONCLUSION

In this paper, we introduce OPS – an open-sourced simulator for controlling the pulse stacking sys-
tem. To the best of our knowledge, this is the first open-sourced RL environment for optics control
problems. Then we evaluated the SAC, TD3, and PPO on our proposed simulation environment.
By providing an optical control simulation environment and RL benchmarks, we aim to encourage
exploration of the application of RL on optical control tasks and furtherly explore the RL controllers
in natural science. We believe that this work can promote the research on RL applications in optics
as well as benefit both the machine learning and the optics community.
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A ADDITIONAL INFORMATION OF OPTICAL PULSE STACKING

A.1 SYSTEM CONFIGURATION
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Figure 12: Configuration of optical pulse stacking (OPS) system. Only a 2-stage OPS system was
plotted for simplicity.

The configuration of the optical pulse stacking (OPS) system is shown in fig. 12. The source laser
delivers a train of periodic optical pulses. Given the base wave function of the laser pulse E(t) and
period T , each laser pulse in fig. 12 can be described as:

E1 = E(t), E2 = E(t+ T ), E3 = E(t+ 2T ), E4 = E(t+ 3T ). (5)

Then the laser pulses were sent to the n-stage OPS system. In each OPS time delay stacking module,
a time delay should be given to former pulses for every two consecutive pulse pairs.

The demonstration of each OPS time delay stacking module is shown in fig. 13. Please check
the animation in supplementary video 2. Figure 13(a) shows the initial state of the two pulses
before processing by this stage OPS time delay. Figure 13(b) ∼ fig. 13(e) show the (chronological)
procedures of stacking two pulses by imposing additional time delay. The former pulse E1 was
refracted by the splitter to undergo additional delay lines (vertical path between ”mirror” and ”time
delay controller and mirror” in fig. 13(a)). The latter pulse directly transmitted the splitter. If the
displacement of the additional delay line is d1, then the additional time delay imposed to E1 is
τ1 = d1/c, where c is the light speed. Thus, in experimental implementation, the time delay of the
pulse was imposed by additional delay line displacement. The value of the delay line displacement
is controlled by the RL controller.

In OPS system, the 1st stage time-delay controller imposes the time delay τ1 on pulse E1 to stack
with pulse E2 to create the stacked pulses E1,2 = E(t+ τ1) +E(t+ T ). Similarly, After imposing
time delay, pulse E3 could be stacked with pulse E4 to create E3,4 = E(t+2T + τ1)+E(t+3T ).
In the 2nd stage OPS, the time delay τ2 was further imposed to E1,2 to make it stacking up with
E3,4 to create E1,2,3,4:

E1,2,3,4 = E(t+ τ1 + τ2) + E(t+ T + τ2) + E(t+ 2T + τ1) + E(t+ 3T ). (6)

If noise was ignored, when τ1 = T, τ2 = 2T , E1,2,3,4 achieved the maximum value 4E(t + 3T ).
Furtherly, for N -stage OPS system, 1st, 2nd, . . . , N -th time delay τ1, τ2, ..., τN matches to
20, 21, . . . , 2N−1 times of the pulse period T , the 2N pulses will be perfectly stacked, and the power
of the output pulse reaches the global maximum. In practice, noise can not be ignored, so the exact
value of time delay τ1, τ2, ..., τN could be adjusted according to the feedback.

A.2 REAL PHYSICAL SYSTEM

The real physical OPS system is shown in fig. 14. RL algorithm computes the value of each time
delay τ1, τ2, ..., τN and sends the values to each stage delay line controller. (RL controller connected
with the electric signal line of 1st, 2nd, 3rd delay line located at the bottom of the fig. 14.) Real-world
OPS control experiments are quite costly and slow.
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Figure 13: Demonstration of stacking two pulses with additional time delay. (a) shows the initial
state of the 2 pulses before stacking. (b)-(e) show the (chronological) procedure of the stacking 2
pulses with imposing additional time delay. The former (latter) pulse was plotted with purple (red).
The solid (transparent) plotted pulse shows the pulse position at the current (last) step. The arrow
denotes the shifting value of a pulse.

Figure 14: Real world optical pulse stacking system.

B ADDITIONAL EXPERIMENTS

B.1 EXPERIMENTAL SETTING

We evaluated the performance of PPO, TD3, and SAC in our OPS environment. For each of PPO,
TD3, and SAC, we performed hyperparameter search to achieve better performance. For the search,
we trained on 5-stage OPS environment with medium difficulty. Each of the hyperparameter sets
was repeated with 3 random seeds. For each algorithm, the best hyperparameter set was decided
based on the final performance in the testing environment. After the search, each of the best hyper-
parameter sets was used to run experiments with 10 different random seeds on all scenarios. The
hyperparameter range and selected value of TD3 can be found in table 2, hyperparameter range and
selected value of SAC can be found in table 3, and hyperparameter range and selected value of PPO
can be found in table 4.
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Hyperparameter Range Best-selected
Size of the replay buffer {1000,10000,100000} 10000
Step of collect transition before training {100, 1000, 10000} 1000
Unroll Length/n-step {1,10, 100} 100
Training epochs per update {1,10, 100} 100
Discount factor (γ) {0.98, 0.99, 0.999} 0.98
Noise type {’normal’, ’ornstein-uhlenbeck’, None} ’normal’
Noise standard value {0.1, 0.3, 0.5, 0.7, 0.9} 0.7
Learning rate {0.0001, 0.0003, 0.001,0.003,0.01} 0.001
Policy network hidden layer {1, 2, 3} 2
Policy network hidden dimension {64, 128, 256} 256
Optimizer Adam Adam

Table 2: TD3: ranges used during the hyperparameter search and the final selected values.

Hyperparameter Range Best-selected
Size of the replay buffer {1000,10000,100000} 10000
Step of collect transition before training {100, 1000, 10000} 1000
Unroll Length/n-step {1,10, 100} 1
Training epochs per update {1,10, 100} 1
Discount factor (γ) {0.98, 0.99, 0.999} 0.98
Generalized State Dependent Exploration (gSDE) {True, False} True
Soft update coefficient for ”Polyak update” (τ ) {0.002,0.005, 0.01, 0.02} 0.005
Learning rate {0.0001, 0.0003, 0.001,0.003,0.01} 0.001
Policy network hidden layer {1, 2, 3} 2
Policy network hidden dimension {64, 128, 256} 256
Optimizer Adam Adam

Table 3: SAC: ranges used during the hyperparameter search and the final selected values.

Hyperparameter Range Best-selected
Unroll Length/n-step {128,256,512,1024,2048} 1024
Training epochs per update {1,5,10} 10
Clipping range {0.1,0.2,0.4} 0.2
Discount factor (γ) {0.98, 0.99, 0.999} 0.98
Entropy Coefficient {0, 0.001, 0.01, 0.1} 0.01
GAE (λ) {0.90, 0.95, 0.98, 0.99} 0.95
Value function coefficient {0.1,0.3,0.5,0.7,0.9} 0.5
Learning rate {0.0001, 0.0003, 0.001,0.003,0.01} 0.001
Gradient norm clipping {0.1, 0.5, 1.0, 5.0} 0.5
Policy network hidden layer {1, 2, 3} 2
Policy network hidden dimension {64, 128, 256} 256
Optimizer Adam Adam

Table 4: PPO: ranges used during the hyperparameter search and the final selected values.

B.2 RESULTS ON CONTROLLING OPS ENVIRONMENT

We reported the training curve (training reward w.r.t. iterations) and testing curve (return (stacked
pulse power PN ) w.r.t. testing iterations) on the 4-stage OPS environment in fig. 15, and on the
6-stage OPS environment in fig. 16. As can be seen, the performance of TD3 and SAC is higher
than PPO. Compared with fig. 15 (4-stage), and fig. 7 (5-stage) to fig. 16 (6-stage), with the increase
of stage number, the training convergence became slower, and the final return PN became smaller,
especially for medium mode and hard mode difficulty.
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(b) Medium mode: train curve
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(c) Hard mode: train curve
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(d) Easy mode: testing curve
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(e) Medium mode: testing curve
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(f) Hard mode: testing curve

Figure 15: 4-stage OPS experiments. Training reward was plotted for (a) easy mode, (b) medium
mode, and (c) hard mode. Evaluation of the stacked pulse power P4 (normalized) of testing envi-
ronment was plotted for (d) easy mode, (e) medium mode, and (f) hard mode.
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(a) Easy mode: train curve
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(b) Medium mode: train curve
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(c) Hard mode: train curve
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(d) Easy mode: testing curve
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(e) Medium mode: testing curve
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(f) Hard mode: testing curve

Figure 16: 6-stage OPS experiments. Training reward was plotted for (a) easy mode, (b) medium
mode, and (c) hard mode. Evaluation of the stacked pulse power P6 (normalized) of testing envi-
ronment was plotted for (d) easy mode, (e) medium mode, and (f) hard mode.

B.3 DEMONSTRATION OF THE CONTROLLING OPS ENVIRONMENT

Figure 17 shows the pulse trains on a 5-stage hard mode OPS system controlled by TD3 from the
random initial state. The animation of this process can be seen in supplementary video 1. It is seen
that TD3 algorithm could achieve (local) maximum power within 40 iterations.
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(a) Initial state
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(b) After 10 iterations
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(c) After 20 iterations
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(d) After 30 iterations
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(e) After 40 iterations
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(f) After 50 iterations

Figure 17: Demonstration of the controlling 5-stage OPS hard mode testing environment by TD3
algorithm after training. (a): initial state of pulses; (b) pulse state after 10 control iterations; (c)
pulse state after 20 control iterations; (d) pulse state after 30 control iterations; (e) pulse state after
40 control iterations; (e) pulse state after 50 control iterations.

C DISCUSSION

C.1 REAL-WORLD ENVIRONMENT AND SIMULATION ENVIRONMENT

Deploying the RL algorithm in the real-world optics system requires converting optical signal to
electrical analog signal using photo-detector (PD), then converting the analog signal to digital sig-
nal using an analog-to-digital converter (ADC). These two conversions cost some additional time to
process the signal and cause feedback delay. At a conservative estimate, the regular PD and ADC
processing takes 0.01s per step. Then it would be possible to implement deep reinforcement al-
gorithms on FPGAs to create control output by the feed of digital observation signal. In a proper
implementation, FPGA computing time would be less than 0.01s per step. Including signal convert-
ing, neural-network inference time, and time-delay of the optical-mirror driver (controller), the time
cost per control step is in the magnitude of 0.1s 4. But in our simulation system, we could speed up
the control step by at least 10 times (with GPUs). More importantly, for RL training on real-world
OPS systems, it needs to manually tune the optical devices when the optical beams are totally mis-
aligned caused by the exploring process of RL. The initial alignment of the complex OPS system is
usually tuned by experts to take several hours even several days, that the time-cost is depending on
the system complexity5. But in our simulation system, the initial alignment could be done by simply
”reset” the environment. So the value of the simulation environment can be summarized as:

• Faster control process than a real-world experiment.

• Easy to ”reset” (and initial align) the environment, while it takes a lot of works to reset or
initial align a real-world experiment.

• It is safer and cheaper. In real-world experiments, it has potential risk when the optical
beams are totally misaligned, because refracted light is non-predictable and may shed on
experimenters.

4With expensive high-speed PD, AD/DA cards, and optical mirror driver, as well as efficient FPGA imple-
mentation, the control-speed time would be reduced to 0.01s. But it will increase the budget of the devices.

5We cannot detect any stacking signal when the optical beams are totally misaligned. So the RL algorithms
would fail. It needs to align manually in this scenario.
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C.2 REAL-WORLD EVALUATION

The impact of the simulation must be valued by the real measurement. Part of the correctness of
our simulation has been evaluated by the simplified beam combining experiments (Tünnermann &
Shirakawa, 2019; Yang et al., 2020). Specifically, Tünnermann & Shirakawa (2019) implemented an
simple real experiment and the same simulation, the authors found the simulation is valuable. Our
simulation and experimental settings are complicated than Tünnermann & Shirakawa (2019), but
the physics behind them is the same. Actually, if we set stage number =1, our simulation is almost
the same as Tünnermann & Shirakawa (2019). We will do detailed real experiments and justification
in the near future.

C.3 POTENTIAL IMPACT AND ADDITIONAL RELATED WORKS

Machine learning community. High-dimensional real-world reinforcement learning problems are
extremely challenging(Dulac-Arnold et al., 2019). In our simulation environment, if we choose
a quite large N-stage number with hard mode, controlling the environment could become high-
dimensional and difficult. Few recent works studied the distribution shift in RL(Agarwal et al.,
2021; Du et al., 2019b). In the hard mode of the OPS environment, the noise distribution of the test-
ing environment is different from the noise distribution of the training environment. Therefore our
simulation environment is beneficial to solve the hard and realistic reinforcement learning problems.
In recent years, statistical procedures have been developed to promote low-dimensional structures
using convex relaxations, rather than directly solving the nonconvex problems (Chen & Chi, 2018;
Chi et al., 2018). As shown in fig. 2, we know the function of the OPS objective (if ignoring noise).
The function typically provides us with much richer structural information and physical constraints.
So it is possible to explore the additional information about the function of the OPS and incorpo-
rating it with RL algorithms. In many of the real-world cases, we are not interested in ”generic”
nonconvex problems, but rather, we focus on more specific nonconvex control with physical con-
strain or some known objective function (Miryoosefi et al., 2019). Exploring the nonconvex and
periodic objective of OPS would benefit the real-world RL problems that including some structural
information.

Optics community. High pulse energy lasers can be used in laser accelerators, large-scale material
processing, and medicine (Fermann & Hartl, 2013). Optical (coherent) pulse stacking is one of the
easiest and promising ways to scale the pulse energy (Tünnermann & Shirakawa, 2017). However,
the conventional control algorithms for OPS are not very effective (Du et al., 2019a). RL methods are
able to control this kind of multi-dimensional and nonlinear environment. Similar to our OPS con-
trol system, all of the optical control problems are affected by the nonlinearity and periodicity of the
light inference (as shown in fig. 2), including coherent optical inference (Wetzstein et al., 2020) and
linear optical sampling (Dorrer et al., 2003), which can be used for precise measurement, industrial
manufacturing, and scientific research. We believe our simulation is one of the important and typical
optical control environments. Beyond OPS, RL methods have the potential to drive the next gener-
ation of optical laser technologies even the next generation of scientific control technologies(Genty
et al., 2020). This is because many phenomena in optics are nonlinear and multidimensional, with
noise-sensitive dynamics that are extremely challenging to model using conventional methods.

18


	Introduction
	Simulation environment
	Physics of the simulation
	Control objective and noise
	Reinforcement learning environment

	Experiments
	Experimental setup
	Results on controlling 5-stage OPS environment
	Results on different stage experiments

	Discussion
	Connections with real-world experiment
	Transfer trained policy
	Future work

	Conclusion
	Additional Information of Optical Pulse Stacking
	System configuration
	Real physical system

	Additional Experiments
	Experimental setting
	Results on controlling OPS environment
	Demonstration of the controlling OPS environment

	Discussion
	Real-world environment and simulation environment
	Real-world Evaluation
	Potential Impact and additional Related works


