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ABSTRACT

Estimating free energy differences between molecular systems is fundamental for
understanding molecular interactions and accelerating drug discovery. Current
techniques use molecular dynamics to sample the Boltzmann distributions of the
two systems and of several intermediate “alchemical” distributions that interpo-
late between them. From the resulting ensembles, free energy differences can be
estimated by averaging importance weight analogs for multiple distributions. We
replace slow alchemical simulations with a fast-to-train flow model bridging two
systems. After training, we obtain free energy differences by integrating the flow’s
instantaneous change of variables when transporting samples between the two dis-
tributions. To map between molecular systems with different numbers of atoms,
we replace the previous solutions of simulating auxiliary “dummy atoms” by addi-
tionally training two autoencoders that project the systems to a same-dimensional
latent space in which our flow operates. A generalized change of variables formula
for trans-dimensional mappings motivates the use of autoencoders in our free en-
ergy estimation pipeline. We validate our approach on pharmaceutically relevant
ligands in solvent and results show strong agreement with reference values.

1 INTRODUCTION

Figure 1: Free energy difference as
the log ratio of two Boltzmann distribu-
tions’ normalizing constants, which are
intractable to compute.

Estimating free energy differences between two states of
a thermodynamic system allows to compare the relative
likelihoods of the two states (Chipot et al., 2007; Stoltz
et al., 2010). This task is fundamental in computational
chemistry, biology, and is extensively used in drug dis-
covery, where free energy differences inform which lig-
and is more likely to bind to a protein. In this paper, we
explore estimating free energy differences via a neural
mapping based on flow matching (Lipman et al., 2023;
Albergo et al., 2023; Liu et al., 2022) between the Boltz-
mann distributions of two molecular systems of interest.

In the free energy difference estimation problem (Figure
1), we are given two molecular systems, A and B, and
their unnormalized densities (energy functions) over their
3D structures. Their free energy difference is ∆F =
−kBT ln(ZB/ZA) where ZA and ZB are their normal-
izing constants. For example, in drug discovery, systems A and B could be two molecules bound to
the same protein. Their free energy difference, along with differences in solvent, determines their
binding affinities. Thus, having these estimates helps identify the strongest binder among candidates.

The common traditional approaches for such estimations are based on Free Energy Perturbation
(FEP). The FEP identity (Zwanzig, 1954) reduces estimating free energy differences to importance

∗Equal contribution.
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Figure 2: Left: Overview of approaches for estimating free energy differences between systems
A and B. Right: Traditional methods often materialize non-physical systems by the addition of
“dummy atoms” to be able to bridge between systems of different dimensions, which FreeFlow
avoids by mapping both systems to a fixed-dimensional latent space.

sampling between distributions A and B: the negative log of the average importance weights is the
free energy difference. For molecules, the distributions are sampled by running molecular dynam-
ics (MD) simulations. The convergence of this estimate depends on the variance of the importance
weights, which is large if there is insufficient overlap between distributions A and B. Thus, in prac-
tice, one turns to alchemical FEP (Bash et al., 1987; Mey et al., 2020) where a series (typically a
few tens) of “alchemical” molecular systems between systems A and B are simulated (see Figure 2).
Modeling these additional intermediate distributions yields a lower variance free energy difference
estimate at the cost of additional molecular dynamics simulation time.

Instead of using additional MD simulations to bridge distributions A and B, FreeFlow learns a neural
map to estimate free energy differences by observing density changes when transporting samples be-
tween systems. The goal is to overfit and run inference faster than MD-based FEP while maintaining
or improving accuracy. Previous work (Wirnsberger et al., 2020) used normalizing flows (Rezende
& Mohamed, 2016) with fixed input-output dimensionality, which does not accommodate systems
with different atom counts. We propose FreeFlow to map between distributions of arbitrary dimen-
sions by encoding systems into a lower-dimensional latent space and learning a flow model there
using flow matching. Fast-to-train autoencoders generate these latent spaces, making overfitting
a flow between them efficient. Once trained, free energy differences are computed by evaluating
density changes during transport. While this is trivial for equidimensional, invertible mappings,
FreeFlow involves changes in dimensionality, which we accommodate with a generalized change of
variables formula for “trans-dimensional” mappings.

Empirically, we evaluate FreeFlow on the calculation of free energy differences between ligands.
We observe Spearman and Pearson correlations of up to 0.93 between our free energy difference
and the Free Energy Perturbation reference values.

Our key contributions include a simulation-free continuous normalizing flow training procedure
based on flow matching, which does not require constraints such as easy-to-compute Jacobian deter-
minants or fast invertibility. Additionally, we introduce a mapping method that translates between
arbitrarily sized systems via a same-dimensional latent space, avoiding dummy atoms and signifi-
cantly reducing the need for MD simulations compared to intermediate-window methods like Al-
chemical FEP. We further employ a generalized change of variables formulation to compute density
changes in trans-dimensional maps. Finally, we validate our approach using real-world pharmaceu-
tically relevant ligands with varying numbers of atoms.
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2 BACKGROUND

Flow Matching. Flow Matching (FM) (Lipman et al., 2023; Albergo et al., 2023; Liu et al., 2022) is
a simulation-free training framework for CNFs. Instead of integrating the ODE, FM directly trains
the vector field vθ(t, x) to match a target probability flow defined by a prescribed time-dependent
probability path pt(x). The objective minimizes the discrepancy between the model’s vector field
and the target vector field that transports pt(x) along the flow:

LFM(θ) = Et,x∼pt
∥ut(x)− vθ(t, x)∥22 , (1)

where ut(x) is the target vector field derived from the continuity equation. To construct more ex-
pressive probability paths pt(x), Conditional Flow Matching (CFM) (Lipman et al., 2023; Tong
et al., 2023) introduces a conditioning variable z and expresses pt(x) as a combination of simpler
distributions pt(x|z) such as Gaussians conditioned on z.

Free Energy Calculations in Molecular Systems. For two systems A and B with Boltzmann
distributions ρA = (1/ZA) exp(−βUA(x)) and ρB = (1/ZB) exp(−βUB(x)), the free energy dif-
ference (∆F ) between them is given by the log ration of their partition functions −kBT ln(ZB/ZA)
with kB the Boltzmann constant and T temperature. However, computing the partition functions di-
rectly is intractable and thus various estimators for ∆F have been proposed, such as the Free Energy
Perturbation (FEP) method of Zwanzig (1954):

Ex∼ρA
[exp(−β (UB(x)− UA(x)))] = exp(−β∆F ). (2)

While it is asymptotically exact, efficient convergence of the FEP estimator requires strong overlap
between the distributions ρA and ρB . This overlap can be increased by first transforming samples
from A to better overlap with B using an invertible mapping M to obtain the distribution ρB′ .
∆F can then be estimated through FEP between B′ and B, where the likelihoods ρB′ are obtained
through a change-of-variables from ρA to ρB′ . This is the Targeted FEP of Jarzynski (2002):

Ex∼ρA
[exp (−β(Φ(x)))] = exp(−β∆F ) (3)

with
ΦF (x) = UB(M(x))− UA(x)− β−1 log |det JM (x)| (4)

where JM is the Jacobian of the invertible map M . This leaves open the question of how the map
M is chosen. To address it, Wirnsberger et al. (2020) propose to learn a normalizing flow using a
neural network to maximize the overlap between B′ and B, providing a data-driven approach rather
than relying on hand-crafted maps.

3 METHOD

We aim to estimate the free energy difference ∆F between thermodynamic systems A and B with
equilibrium distributions ρA and ρB , and possibly different atom counts nA and nB . Given samples
x0 ∼ ρA and x1 ∼ ρB from molecular dynamics, we avoid intermediate alchemical simulations.
Instead, we overfit a fast neural map to transport samples via a lower-dimensional latent space,
estimating ∆F by averaging the induced density change.

Our neural mapping consists of separate autoencoders (EA ◦DA) and (EB ◦DB) to map samples
between systems and a flow-based ODE v(x, t) between latent spaces. We then combine EA, the
flow, and DB to map system A to B.

3.1 FREE ENERGY DIFFERENCES VIA NEURAL MAPS

We seek a mapping f such that the pushforward distribution of ρA through f approximates ρB .
Traditional normalizing flows (Rezende & Mohamed, 2016) model f as a composition of invertible
mappings with the likelihoods computed via the change of variables (CoV) formula as

ρB(x1) = ρA(x0)

∣∣∣∣det(∂f

∂x

)∣∣∣∣−1

(5)

where x1 = f(x0) and ∂f
∂x is the Jacobian of f at x0. We denote such models discrete normaliz-

ing flows. For discrete NFs, free energy differences can then be estimated via TFEP by computing
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the expectation in Equation 3 with the map M given by the normalizing flow. However, normal-
izing flows requiring invertible components with efficiently-computable Jacobians might limit their
expressivity. Flow matching on the other can be used with arbitrary neural networks as the flow
model, and learn to map arbitrary distributions in simulation-free manner. It is thus an expressive
yet efficient alternative to discrete normalizing flows.

Using flow matching, we train our normalizing flow between the same-dimensional latent represen-
tations of the two systems learned by our autoencoders, which are low-dimensional and hence lead
to fast training, minimizing the objective

LCFM(θ) = Et∼U(0,1),(x0,x1)∼π(X0,X1),zt∼pt(EA(x0),EB(x1)) ∥vθ(zt, t)− (EB(x1)− EA(x0))∥22
(6)

where π denotes the optimal transport coupling between the datasets X0, X1 approximated with
mini-batches. Using OT couplings is advantageous as the learned vector field has straighter trajec-
tories which lead to lower integration error. In particular for free energy estimation, approximating
the OT map between ρA and ρB has been shown to result in paths with lower free energy, improving
the convergence of the ∆F estimate (Decherchi & Cavalli, 2023).

The flow model leads to an ordinary differential equation (ODE) which we can integrate through
time to transport the samples. For an ODE, the change in log-density w.r.t. time can be obtained
through the instantaneous change of variables (Chen et al., 2018) formula as

log ρ(x1) = log ρ(x0)−
∫ 1

0

tr

(
∂v(xt, t)

∂xt

)
dt (7)

which we use to obtain free energy difference estimates by employing the following generalized
energy difference to take the expectation over in Equation 3:

ΦF (x) = UB(x1)− UA(x0)− β−1

∫ 1

0

tr

(
∂v(xt, t)

∂xt

)
dt. (8)

3.2 AUTOENCODER CHANGE OF VARIABLES

We train our flow over a low-dimensional latent space, which enables fast training and allows
FreeFlow to map between systems with different numbers of atoms. This is opposed to previous
classical and ML solutions for estimating energy differences between systems of different dimen-
sionality, which commonly simulate additional dummy-atoms in the lower-dimensional system.

Concretely, we first train two separate autoencoders, consisting of the encoders EA, EB and the
decoders DA, DB for the two states A and B. As the autoencoders are not required to generalize,
we choose simple MLPs that map the flattened vectors of atom coordinates (ignoring the atom types)
to the latent space Z . In our experiments, we set this latent space to have 32 dimensions. We train
our autoencoders until the reconstruction MSE converges on training data since we will be using the
training data to estimate ∆F . We chose MLPs instead of more popular architectures for molecular
representation learning such as equivariant graph neural networks after validating their performance
on alanine dipeptide (see Figure 4). The MLP achieved a lower reconstruction error, while being 8x
faster in terms of training speed.

Given these autoencoders, the end-to-end mapping from A to B can then be expressed as
x1 = f(x0) = DB (ODE (EA(x0))) where ODE denotes integrating vθ(zt, t) starting from
z0 = EA(x0), i.e., z0 +

∫ 1

0
vθ(zt, t)dt.

Thus, our neural map f involves changes of dimensionality, and evaluating its change of density
when mapping samples requires a generalization of the standard change of variables formula in
Equation 5. A simple way to see this is that the Jacobian for what we will proceed to term a trans-
dimensional mapping is a rectangular matrix (not square) and hence does not have a well-defined
determinant.

In obtaining a change of variables formulas for trans-dimensional mappings such as E : X 7→ Z
and D : Z 7→ X , we consider an autoencoder’s decoder manifold M = {D(z) : z ∈ Z} for which
the change of variables formula will hold. Since we overfit our autoencoder on samples and do not
require generalization to new data points, the points for which we evaluate the change of variables
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will lie in this manifold (assuming the size of the latent space and the expressivity of E and D are
sufficient for encoding our dataset). If E and D are each other’s inverse, then, for points on the
decoder manifold xm ∈ M, the decoder’s change of density between their projection z = E(xm)
and their projection’s fibers F(z) := {x ∈ X : z = E(x)} is (Köthe, 2023)

ρZ(z) = ρX (F(z))
√∣∣det(JT

DJD)
∣∣ (9)

where JD is the decoder’s Jacobian. For the encoder, for points on the decoder manifold and with
JE as the encoder’s Jacobian, the change of density is

ρX (x) = ρZ(z)
√∣∣det(JEJ⊤

E )
∣∣. (10)

These generalized change of variables formulae rescale a density by the mapping’s Jacobian (or
transposed Jacobian) volume (Ben-Israel, 1999): volJ =

√
det JTJ . For square Jacobians of maps

between same-dimensional spaces, volJ =
√
det JTJ = |det J | which recovers the scaling factor

of the standard change of variables formula (Equation 5).

3.3 FREEFLOW FREE ENERGY DIFFERENCE ESTIMATION

To obtain the change of variables between the two systems, we need to apply Equation 10 twice,
once for mapping XA to ZA with the encoder EA and once for mapping ZB to XB with the decoder
DB . We also integrate the instantenous change of variables over the latent continuous normalizing
flow for our architecture to calculate the generalized energy difference as:

ΨF (x) = UB (DB (fz (EA(x))))− UA(x)

− β−1

log
∣∣det (JEA

J⊤
EA

)∣∣− 1
2︸ ︷︷ ︸

CoV XA→ZA

+

∫ 1

0

tr

(
∂v(z(t), t)

∂z(t)

)
dt︸ ︷︷ ︸

CoV ZA→ZB

+ log
∣∣det (J⊤

DB
JDB

)∣∣− 1
2︸ ︷︷ ︸

CoV ZB→XB


(11)

To estimate the free energy difference between systems A and B, we proceed as follows for training
and inference:

Training. To train FreeFlow, we first run MD simulations for systems A and B to obtain sets of
samples XA from ρA and XB from ρB . Then we train the autoencoders (EA ◦ DA) on XA and
(EB ◦ DB) on XB . We encode both sets of samples into the latent space to obtain ZA and ZB .
Finally we train the flow model using flow matching between ZA and ZB , minimizing the objective
in Equation 6.

Inference. To obtain estimates, we encode the samples, integrate through the flow, and decode XA

to obtain approximate samples X̃B from ρB . We then compute Ψ(xA) for xA ∈ XA. Finally we use
the Ψ values to estimate ∆F with the TFEP estimator EA [exp(−βΨ(x)] = exp(−β∆F ).

4 EXPERIMENT - PHARMACEUTICALLY RELEVANT LIGANDS IN SOLVENT

We evaluate FreeFlow on a real-world use case commonly addressed by FEP: comparing the binding
free energies of ligands to a protein. It involves first estimating ∆F between two ligands in a solvent,
and then between the ligands bound to a protein. We focus on the first step using pharmaceutically
relevant ligands of varying sizes. We report further results in Appendix D, with Gaussian problems
and simpler physical systems before moving on to larger molecules.

Data Collection and Reference Values. We separately simulate each ligand in water at temperature
300 K for 400 ns with a step size of 2 fs using the OpenMM library (Eastman et al., 2017). We use
the implicit GBn2 solvation model (Nguyen et al.) with the gaff-2.11 force field (Wang et al.,
2004). We save a sample every 200 steps for a total of 1,000,000 samples from each ligand. The
reference values we use are free energy differences from the pmx library (Gapsys et al., 2020) which
were calculated using alchemical FEP (see Figure 2) and an explicit solvent potential. We use the
OpenMM bridge within the bgmol library (Noé-Group, 2020) to evaluate the energy functions. We
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(a) BACE (b) Galectin (c) CMET

(d) P38 (e) BACE Hunt (f) BACE P2

Figure 3: Estimated and reference ∆F values (kj/mol) between ligands in water, separated
based on the subset of the Protein-Ligand Benchmark they belong to. Each dot represents one pair,
with the x-axis denoting our estimates and the y-axis to the values calculated in the pmx library
(Gapsys et al., 2020). The color of each dot corresponds to the absolute difference between its
coordinates (red: higher, blue: lower), and the gray line is a linear regression fit to the points. We
report various correlation measures as well as the mean absolute difference (MAE) above each plot.

RMSD align each sample of the two ligands to a single reference before training the autoencoders
for 500 epochs each and the flow model for 200 epochs.

Figure 3 displays the agreement between the estimates we obtain and the reference values along with
the resulting R2 values, Pearson and Spearman correlations, and the mean absolute error between
the estimates and the reference values. We acknowledge the high absolute error of the method,
however, this can be attributed to some of the simplifications we made such as using an implicit
solvent potential. Nonetheless, FreeFlow shows a very strong agreement for four of the six subsets of
ligands with correlation coefficient greater than or equal to 0.8, which demonstrates its effectiveness
in obtaining free energy differences between arbitrary ligands. These results indicate that FreeFlow
can be beneficial in comparing relative binding free energies, an important real-world use case in
drug discovery, where good correlation to reference values is necessary for accurate comparisons.

5 CONCLUSION

In this paper, we proposed FreeFlow, a novel method for estimating free energy differences between
two systems by first encoding both systems into lower dimensional latent space, and training a flow
model via Flow Matching to bridge the two latent distributions. This leads to fast training through
the simulation-free regression objective of Flow Matching, and has the main benefit that free energy
differences between systems of different dimensions can be estimated without resorting to nonphys-
ical modifications such as dummy atoms. The trans-dimensional latent map not being invertible
makes the typical formulations of change of variables inapplicable, and we build on previous work
to solve this challenge by separating the change of variables among the three components of the
map. Using FreeFlow, we estimated the free energy differences between pairs of pharmaceutically
relevant ligands of various dimensionality in water, which represents one leg of the thermodynamic
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cycle commonly used to compare different molecules’ binding affinities to a protein, a critical task
in drug discovery.

We anticipate that as future work FreeFlow can be extended to the other leg of the thermodynamic
cycle, learning a mapping between two bound protein-ligand complexes. This considerably in-
creases the dimensionality of the problem but can be tackled by FreeFlow since the lower dimen-
sional latent flow would still be fast to train.
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A EXPERIMENTAL DETAILS

A.1 MODEL ARCHITECTURES

For the autoencoders, we implement both the encoders and the decoders as MLPs with four fully-
connected layers with Scaled Exponential Linear Unit (SELU) activations (Klambauer et al., 2017),
except for the final layer, which is linear to allow unbounded output values. Each hidden layer
contains 128 neurons.

We construct the flow model as an MLP as well. It takes as input the flattened latent coordinates
and the scalar time variable t, resulting in an input dimension of dlatent + 1. The flow model MLP
also consists of four hidden layers, each with 64 units, and uses the Scaled Exponential Linear Unit
(SELU) activation function (Klambauer et al., 2017) to promote self-normalizing properties in the
network.

We use the Adam optimizer (Kingma & Ba, 2017) with a learning rate of 10−3 for all models, and
set the batch size to 512 for all training runs as well as the mini-batch OT couplings within flow
matching to simplify the implementation.
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Figure 4: A comparison between the performance of the auto-encoder with different encoder archi-
tectures. The two models have roughly the same number of parameters and were trained for 500
epochs on alanine dipeptide conformations. It can be clearly seen that the MLP outperforms the
EGNN by almost an order of magnitude in terms of reconstruction error. Furthermore, the MLP-
based encoder is eight times faster than the EGNN-based one, which is extremely relevant for our
method.

A.2 FLOW MATCHING SETUP

We utilize OT couplings, approximated via mini-batches as proposed by Fatras et al. (2021), to con-
struct the coupling between samples from the source and target latent distributions. OT couplings
are advantageous because they lead to straighter transport paths, which can be integrated more effi-
ciently with lower numerical integration error (Tong et al., 2023; Klein et al., 2023). Additionally,
the use of OT couplings reduces the variance of the CFM objective since samples x0 ∼ ρ0 are more
likely to be coupled with nearby samples x1 ∼ ρ1, rather than with samples drawn uniformly from
ρ1. We then take the linear vector field ut = x1 − x0 as the regression target, and use Gaussian
probability paths with ρt(x) = N (x; (1− t)x0 + tx1, σ

2) where we set σ = 10−4.

B DERIVATION OF THE TARGETED FEP ESTIMATOR

As proposed in (Jarzynski, 2002), free energy differences can be estimated by mapping the source
distribution A to an approximation B′ of the target distribution B via the mapping M and doing
importance sampling from B′ to B. We now show that the equality in Equation 3 holds:

EA

[
e−βΦF

]
=

∫
A

ρA(x)e
−βΦF (x)dx (12)

=
1

ZA

∫
A

e−βUA(x)−βΦF (x)dx since ρA(x) =
e−βUA(x)

ZA
(13)

=
1

ZA

∫
A

e−βUA(x)−βUB(M(x))+βUA(x)+log |JM (x)|dx (14)

=
1

ZA

∫
A

e−βUB(M(x))|JM (x)|dx (15)

=
1

ZA

∫
B

e−βUB(y)dy after change-of-variables with y = M(x) (16)

=
ZB

ZA
(17)

= e−β∆F since ∆F = − log
ZB

ZA
. (18)
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(a) Equidimensional Gaussian ∆F Estimates (b) Transdimensional Gaussian ∆F Estimates

Figure 5: Convergence of the ∆F estimates between equidimensional and transdimensional Gaus-
sians. The solid lines and the shaded regions show the mean and standard deviation of the estimates
averaged over five runs.

C DERIVATION OF FREE ENERGY AS LOGARITHM OF PARTITION FUNCTION

Given the probability distribution ρ(x) = −βU(x)
Z with energy function U(x) and partition function

Z =
∫
x
e−βU(x) where β = 1

kT is the inverse temperature, we have the internal energy U of the
system

U =

∫
x

ρ(x)U(x) =

∫
x

e−βU(x)

Z
U(x) (19)

and entropy S defined as

S = −k

∫
x

ρ(x) ln(ρ(x)) = −k

∫
x

e−βU(x)

Z
ln

(
e−βU(x)

Z

)
. (20)

By algebraic manipulations and using the definitions above, we can obtain
S = kβU + k ln(Z). (21)

The Helmholtz free energy (F ) of a system is defined as
F = U − TS = U − T (kβU + k ln(Z)). (22)

If we then plug in the definitions above and simplify using β = 1
kT , we obtain

F = −kT ln(Z) (23)
which concludes the derivation of free energy as the logarithm of the partition function.

D ADDITIONAL EXPERIMENTS

D.1 GAUSSIAN DISTRIBUTIONS OF DIFFERENT DIMENSIONS

We demonstrate that our generalized change of variables framework can be applied to transdimen-
sional mappings, such as FreeFlow’s encoder and decoder. Additionally, we aim to demonstrate
the ability to bridge distributions with differing dimensionality. To address these two questions, we
construct simplified toy problems using Gaussian distributions, which can be easily compressed to
lower-dimensional spaces. These distributions allow us to compute the free energy difference an-
alytically for reference values. Specifically, for two Gaussians of arbitrary dimensionalities with
covariance matrices Σ1,Σ2, their free energy difference is the logarithmic ratio of their partition
functions:

∆F = log
Z2

Z1
= log

√
(2π)d2 det(Σ2)√
(2π)d1 det(Σ1)

=
1

2

(
(d2 − d1) log(2π) + log

(
det(Σ2)

det(Σ1)

))
.

(24)
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First, to validate the change of variables formulation, we let both system A and system B be 30-
dimensional zero-mean Gaussians with covariance matrices ΣA = I and ΣB = 0.5I . Then, to
evaluate the trans-dimensional mapping, we let system A and B be zero-mean Gaussians with iden-
tity covariance, but in 60 and 30 dimensions. For both tasks, we use a latent space of 16 dimensions,
and after sampling 50,000 samples from each distribution, we train the autoencoders for 100 and the
flow model for 200 epochs.

Figure 5 shows the histogram of the energy distributions and the convergence of the ∆F estimates
using FreeFlow. The convergence of the estimator towards the ground truth values empirically vali-
dates the use of the generalized energy difference of Equation 11 to bridge distributions of different
dimensions. Thus by the convergence of the estimate in Figure 5a, we first empirically validate our
modification of the generalized energy difference in Equation 11 between, and then by the conver-
gence in Figure 5b, we conclude that the formulation also holds for trans-dimensional mappings.
The estimate in Figure 5b exhibits a slight deviation in its mean from the true value. We believe to
be due to the transdimensional change of variables formula being an approximation. More specif-
ically, unless we can obtain a zero-loss autoencoder, there will be data points outside its decoder
manifold and the change of variables formula will not hold exactly for those values.

D.2 METASTABLE STATES OF ALANINE DIPEPTIDE

Figure 6: Pairwise distances for alanine dipep-
tide samples. D(·, ·) denotes the distribution of
pairwise distances between two sets with A,B,
the source and target systems, and M(A), the set
A is mapped to via FreeFlow.

We now evaluate if FreeFlow can be applied to
a small physical system simpler than the larger
molecules used in drug discovery tasks. For
this purpose, we estimate the free energy dif-
ference between two metastable states of the
small molecule alanine dipeptide. It is a small
(32 atoms) yet non-trivial molecule commonly
used as a benchmark in computational chem-
istry due to its well-known conformational dy-
namics. We distinguish the two metastable
states with respect to the dihedral angle ϕ, with
system A ϕ ∈ [−π, 0] ∪ [2.15, π] and system B
to ϕ ∈ (0, 2.15).

Using the OpenMM library (Eastman et al.,
2017), we simulate alanine dipeptide in vac-
uum for 400 ns with step size 2 fs and save the
state every 500 steps to obtain 400,000 sam-
ples in total, and then separate the source and
target distributions with respect to the angle
ϕ. In the end, we obtain 371,094 source and
28,906 target samples. For the reference free
energy difference, we use the values in (Inv-
ernizzi et al., 2022) obtained via OPES simula-
tions (Invernizzi, 2021) and estimations of the
ratio of the partition functions of the two states.

Figure 6 displays the distributions of pairwise distances between samples from A, B, and the esti-
mated samples M(A), where for two sets A and B, we define D(A,B) := {d(a, b) : a ∈ A, b ∈ B}
with d being the Euclidean distance. We observe a strong agreement between the pairwise distances
of samples from B among themselves, and the distances between B and the mapped samples M(A),
which is a desirable property for a flow model but not by itself sufficient to determine its accuracy.
Similar to Figure 5b, the estimated pairwise distributions show a deviation from the true values,
which we again attribute to the approximate nature of the trans-dimensional change of variables
formula. Nevertheless the accuracy of the flow model is further supported by the estimate we obtain
of 19.03± 1.69 kj/mol (averaged over five runs, ± standard deviation) compared to the reference of
20.87 kj/mol. We thus conclude that FreeFlow can be applied to physical systems.
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