© ®©® N O o A~ W N =

- o

31

32

33
34

LAND: Lung and Nodule Diffusion for 3D Chest CT
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Abstract

This work introduces a new latent diffusion model to generate high-quality 3D
chest CT scans conditioned on 3D anatomical masks. The method synthesizes
volumetric images of size 256 x 256 x 256 at 1 mm isotropic resolution using a
single mid-range GPU, significantly lowering the computational cost compared to
existing approaches. The conditioning masks delineate lung and nodule regions,
enabling precise control over the output anatomical features. Experimental results
demonstrate that conditioning solely on nodule masks leads to anatomically incor-
rect outputs, highlighting the importance of incorporating global lung structure for
accurate conditional synthesis. The proposed approach supports the generation of
diverse CT volumes with and without lung nodules of varying attributes, providing
a valuable tool for training AI models or healthcare professionals. Code for LAND
is available at: https:/github.com/anonymous/LAND-3DCT.

1 Introduction

Deep learning in medical imaging is hindered by the scarcity of large, diverse datasets, constrained
by privacy concerns, costs, and the need for expert labeling. Synthetic data offers a promising
solution, with potential impact in critical areas such as lung cancer, the leading cause of cancer-
related deaths [3]]. Diffusion models [11] have emerged as the most powerful generative framework,
surpassing VAEs [[16] and GANSs [7] in realism and stability [5, [19]. However, scaling diffusion
models to large synthetic volumes such as CT scans remains challenging due to extreme computational
demands [14]. Recent methods have explored efficiency trade-offs. Previous Latent Diffusion Models
(LDMs) [22] for 3D synthesis use autoencoders for data compression, but are often limited in
resolution [21} [15]. PatchDDM [2] and WDM [l6] bypass autoencoders with subvolume or wavelet
representations but still require large GPU memory. NVIDIA’s LDM MAISI [8] attains the highest
resolution to date (512 x 512 x 768), but demands 49.7GB GPU memory, unaffordable for most
users.

We introduce LAND (Lung-And-Nodule-Diffusion), a memory-efficient latent diffusion model for 3D
chest CT synthesis. It generates 256° volumes at Imm resolution on a single 20GB GPU, uses lung
and nodule masks for anatomical conditioning, and controls nodule texture for realistic pathological
diversity. LAND combines computational efficiency with fine-grained anatomical control to achieve
state-of-the-art (SOTA) high-resolution volume synthesis with practical hardware requirements.

2 Method

LAND is a latent diffusion model comprising a 3D U-Net and a 3D VAE architecture (Fig.[I).

3D VAE A 3D VAE encodes input CT images into latent representations compressing 4x the
spatial resolution and expanding 4x the feature dimensionality: each 256 x 256 x 256 volume
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Figure 1: LAND uses a 3D VAE to encode CT volumes into a latent space, where a 3D U-Net performs
diffusion on the latent samples x, optionally conditioned on anatomical masks m (lungs/nodules).

is encoded as a 64 x 64 x 64 x 4 latent sample. We adopt a lightweight variant of the MAISI
architecture [8]], using 3 resolution levels with one residual block per level and the same number
of channels in both encoder and decoder. The VAE is trained using a combination of an L, loss
LMaEg, a perceptual similarity loss £y pps, an adversarial loss Lapy and a Kullback-Leibler term
Lxi: Lvag = EMAE(X, )A() + Lipips (X, )A() + LADV(X7 )A() + ,CKL((C/‘(X)), where x = D(S(X)) is the
reconstructed encoded-decoded volume. Lyag and Ly pps enforce numerical and perceptual fidelity
[25]], while Lk regularizes the latent space [[16] and Lapy prevents unrealistic artifacts (8} [7]].

3D U-Net The denoising network is a 3D U-Net with 5 resolution levels and two residual blocks per
level. Additive skip connections [2] reduce memory load while preserving spatial information. To
enhance conditional generation, cross-attention modules [22} [17] re-inject conditioning masks (if
any) at multiple resolution levels. Training uses velocity prediction [23]], enabling the U-Net to learn
denoising by estimating a linear combination of clean latent and added noise, which stabilizes training
and improves high-resolution synthesis [12, 23]. A linear noise schedule is applied, and training
follows a Min-SNR-~ loss weighting [9] to balance timestep contributions by signal-to-noise ratio:
Lnin-s\k = Y(SNRy)|[V¢(z¢, m) — v¢|, where z; is the noisy latent, m the conditioning mask, ()
the Min-SNR weight, and v, v; the target and predicted velocities. To ensure anatomical plausibility
in 3D, LAND can be conditioned on masks m covering lungs and nodules. Unlike prior 2D work [[17],
where nodule-only masks led to implausible nodule placements, our volumetric setting proposes
richer conditioning. Spatial and textural cues are encoded by assigning lungs a value of 0.5 and
nodules 1-5 (non-solid to solid). Masks are normalized to [0,1], downsampled four times via 3D max
pooling, concatenated with the noisy latent, and injected into U-Net cross-attention layers [22, [17].

3 Experimental Results

Datasets and Evaluation Two publicly available datasets were used. LIDC-IDRI [1] includes
1,010 CT volumes with nodule masks and attribute ratings from four radiologists; for this study,
nodule textures scored 1-5 (1: Non-Solid, 2: Non-Solid/Mixed, 3: Part-Solid, 4: Solid/Mixed, 5:
Solid) were considered. From NLST [20], we selected 881 CT volumes with at least one nodule
annotation [[18] and generated the nodule masks using an ad-hoc U-Net. Lung regions in both datasets
were segmented with a pre-trained open-source U-Net [13]]. All scans were preprocessed as in [[6].
LIDC-IDRI was used for training, while the NLST subset provided unseen anatomical masks for
inference. Evaluation follows the protocol of previous SOTA models [[6], using Fréchet Inception
Distance (FID) [[10] for synthesis quality and MS-SSIM [24] for sample diversity. FID is computed
on 881 real and synthetic CT scans using a ResNet-50 pretrained on 23 medical imaging datasets [4];
lower FID indicates closer distributional alignment between real and synthetic samples. MS-SSIM is
computed on 10k synthetic pairs, with lower scores indicating higher diversity.

Implementation Details Training was performed on a single Nvidia Grid A100-20C (20 GB) GPU.
The 3D VAE was trained independently for 100 epochs with AdamW (learning rate 1 x 10~%, batch
size 1). The 3D U-Net was trained for 500k steps with AdamW (learning rate 1 x 1072, batch size
1). The diffusion process used 7' = 1000 timesteps with a linear noise schedule from 5; = 1 x 10~*
to B = 0.02. Inference uses the same number of steps to prioritize sample quality.



74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89

90

91
92
93
94
95

Unconditional Conditional

WDM LAND (ours) LAND nodule mask (ours) LAND nodule+lung mask (ours)
J % /4P ‘"
A [} / o

Figure 2: Comparison of unconditional (left) and conditional (right) CT generation using LAND and
baseline methods PatchDDM [2]] and WDM [6]]. Mask overlays are shown where applicable.

Mask Texture 1 Texture 2 Texture 3 Texture 4 Texture 5

Figure 3: LAND samples conditioned on nodule+lung+texture masks, with increasing texture scores.

Discussion We evaluate the unconditional LAND pipeline against WDM [[6]] and PatchDDM [2]], with
WDM using the official pre-trained weights and PatchDDM retrained for our task. Quantitatively,
LAND achieves the lowest FID (Table [T}Left), reflecting higher fidelity and semantic alignment
through its VAE latent space; WDM shows slightly higher MS-SSIM, indicating greater diversity
but potentially related to some unrealistic samples, while PatchDDM performs worst, likely due to
the inability to handle unregistered volumes. Qualitatively, LAND produces sharp, anatomically
consistent samples, WDM tends to appear slightly blurred, and PatchDDM exhibits higher levels
of noise and structural variability (Fig[2}Left). Note that LAND and WDM have similar inference
memory requirements, but only LAND can be trained on a single 20GB GPU, whereas WDM requires
double the memory. Differences in WDM performance compared to [6] likely stem from the differing
sample count used for the FID computation, as FID can be sensitive to sample count. Conditional
LAND experiments with masks—(1) nodules, (2) nodule+lung, and (3) nodule+lung+texture—show
improved FID when lungs are included, highlighting the importance of global context, while MS-
SSIM remains similar (Table[T}Right). Only nodule+lung masks (Fig[2}Right) ensure realistic nodule
placements. Nodule masks (without lung areas) may incorrectly lead to nodules outside the lungs.
Nodule+lung+texture masks further allow control over the synthetic nodule solidity (Fig[3).

Table 1: Comparison of LAND (ours) with SOTA methods. FID values are multiplied by 103.

Unconditional FID] FID| MS-| Mem/| | Conditional FID| FID| MS-| Mem/|
Method (LIDC) (NLST) SSIM (GB) | Method (LIDC) (NLST) SSIM (GB)
PatchDDM 31753 3764 0.39 19.61 | LAND nodule 452 582 03 752
WDM [6] 1524 32.66 0.27 7.27 | LAND nodule+lung 448 337 029 752
LAND 5.062 4.76 0.29 7.38 | LAND nodule+lung+texture 4.60  3.87 0.29 7.52

4 Conclusion

This paper presents LAND, a latent diffusion model that generates high-quality chest CT volumes
from anatomical masks. The method enables precise control of lung and nodule characteristics
while remaining efficient on a single mid-range GPU. Future work includes testing LAND synthetic
samples for tasks such as nodule classification and segmentation, extending the model with additional
clinically relevant features, and adding a mask generation module to enhance anatomical diversity.
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S Potential Negative Societal Impact

While the proposed approach offers useful tools for medical research and education, it also presents
potential risks that should be acknowledged. High-quality synthetic 3D chest CT scans could be
mistaken for real clinical data if not clearly labeled, which might lead to confusion or reduce trust in
medical imaging workflows. There is also a possibility that biases present in the training data could
be reflected or amplified in the generated outputs.

The proposed method enhances image quality and lowers computational cost without introducing
new misuse risks beyond those already known in generative modeling. Careful data governance, clear
labeling of synthetic content, and responsible use are important to minimize unintended negative
consequences.
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