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Abstract

This work introduces a new latent diffusion model to generate high-quality 3D1

chest CT scans conditioned on 3D anatomical masks. The method synthesizes2

volumetric images of size 256× 256× 256 at 1 mm isotropic resolution using a3

single mid-range GPU, significantly lowering the computational cost compared to4

existing approaches. The conditioning masks delineate lung and nodule regions,5

enabling precise control over the output anatomical features. Experimental results6

demonstrate that conditioning solely on nodule masks leads to anatomically incor-7

rect outputs, highlighting the importance of incorporating global lung structure for8

accurate conditional synthesis. The proposed approach supports the generation of9

diverse CT volumes with and without lung nodules of varying attributes, providing10

a valuable tool for training AI models or healthcare professionals. Code for LAND11

is available at: https://github.com/anonymous/LAND-3DCT.12

1 Introduction13

Deep learning in medical imaging is hindered by the scarcity of large, diverse datasets, constrained14

by privacy concerns, costs, and the need for expert labeling. Synthetic data offers a promising15

solution, with potential impact in critical areas such as lung cancer, the leading cause of cancer-16

related deaths [3]. Diffusion models [11] have emerged as the most powerful generative framework,17

surpassing VAEs [16] and GANs [7] in realism and stability [5, 19]. However, scaling diffusion18

models to large synthetic volumes such as CT scans remains challenging due to extreme computational19

demands [14]. Recent methods have explored efficiency trade-offs. Previous Latent Diffusion Models20

(LDMs) [22] for 3D synthesis use autoencoders for data compression, but are often limited in21

resolution [21, 15]. PatchDDM [2] and WDM [6] bypass autoencoders with subvolume or wavelet22

representations but still require large GPU memory. NVIDIA’s LDM MAISI [8] attains the highest23

resolution to date (512 × 512 × 768), but demands 49.7GB GPU memory, unaffordable for most24

users.25

We introduce LAND (Lung-And-Nodule-Diffusion), a memory-efficient latent diffusion model for 3D26

chest CT synthesis. It generates 2563 volumes at 1mm resolution on a single 20GB GPU, uses lung27

and nodule masks for anatomical conditioning, and controls nodule texture for realistic pathological28

diversity. LAND combines computational efficiency with fine-grained anatomical control to achieve29

state-of-the-art (SOTA) high-resolution volume synthesis with practical hardware requirements.30

2 Method31

LAND is a latent diffusion model comprising a 3D U-Net and a 3D VAE architecture (Fig. 1).32

3D VAE A 3D VAE encodes input CT images into latent representations compressing 4× the33

spatial resolution and expanding 4× the feature dimensionality: each 256 × 256 × 256 volume34
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Figure 1: LAND uses a 3D VAE to encode CT volumes into a latent space, where a 3D U-Net performs
diffusion on the latent samples x, optionally conditioned on anatomical masks m (lungs/nodules).

is encoded as a 64 × 64 × 64 × 4 latent sample. We adopt a lightweight variant of the MAISI35

architecture [8], using 3 resolution levels with one residual block per level and the same number36

of channels in both encoder and decoder. The VAE is trained using a combination of an L1 loss37

LMAE, a perceptual similarity loss LLPIPS, an adversarial loss LADV and a Kullback-Leibler term38

LKL: LVAE = LMAE(x, x̂) + LLPIPS(x, x̂) + LADV(x, x̂) + LKL(E(x)), where x̂ = D(E(x)) is the39

reconstructed encoded-decoded volume. LMAE and LLPIPS enforce numerical and perceptual fidelity40

[25], while LKL regularizes the latent space [16] and LADV prevents unrealistic artifacts [8, 7].41

3D U-Net The denoising network is a 3D U-Net with 5 resolution levels and two residual blocks per42

level. Additive skip connections [2] reduce memory load while preserving spatial information. To43

enhance conditional generation, cross-attention modules [22, 17] re-inject conditioning masks (if44

any) at multiple resolution levels. Training uses velocity prediction [23], enabling the U-Net to learn45

denoising by estimating a linear combination of clean latent and added noise, which stabilizes training46

and improves high-resolution synthesis [12, 23]. A linear noise schedule is applied, and training47

follows a Min-SNR-γ loss weighting [9] to balance timestep contributions by signal-to-noise ratio:48

Lmin-SNR = γ(SNRt)|v̂t(zt,m)− vt|2, where zt is the noisy latent, m the conditioning mask, γ(·)49

the Min-SNR weight, and vt, v̂t the target and predicted velocities. To ensure anatomical plausibility50

in 3D, LAND can be conditioned on masks m covering lungs and nodules. Unlike prior 2D work [17],51

where nodule-only masks led to implausible nodule placements, our volumetric setting proposes52

richer conditioning. Spatial and textural cues are encoded by assigning lungs a value of 0.5 and53

nodules 1–5 (non-solid to solid). Masks are normalized to [0,1], downsampled four times via 3D max54

pooling, concatenated with the noisy latent, and injected into U-Net cross-attention layers [22, 17].55

3 Experimental Results56

Datasets and Evaluation Two publicly available datasets were used. LIDC-IDRI [1] includes57

1,010 CT volumes with nodule masks and attribute ratings from four radiologists; for this study,58

nodule textures scored 1–5 (1: Non-Solid, 2: Non-Solid/Mixed, 3: Part-Solid, 4: Solid/Mixed, 5:59

Solid) were considered. From NLST [20], we selected 881 CT volumes with at least one nodule60

annotation [18] and generated the nodule masks using an ad-hoc U-Net. Lung regions in both datasets61

were segmented with a pre-trained open-source U-Net [13]. All scans were preprocessed as in [6].62

LIDC-IDRI was used for training, while the NLST subset provided unseen anatomical masks for63

inference. Evaluation follows the protocol of previous SOTA models [6], using Fréchet Inception64

Distance (FID) [10] for synthesis quality and MS-SSIM [24] for sample diversity. FID is computed65

on 881 real and synthetic CT scans using a ResNet-50 pretrained on 23 medical imaging datasets [4];66

lower FID indicates closer distributional alignment between real and synthetic samples. MS-SSIM is67

computed on 10k synthetic pairs, with lower scores indicating higher diversity.68

Implementation Details Training was performed on a single Nvidia Grid A100-20C (20 GB) GPU.69

The 3D VAE was trained independently for 100 epochs with AdamW (learning rate 1× 10−4, batch70

size 1). The 3D U-Net was trained for 500k steps with AdamW (learning rate 1× 10−5, batch size71

1). The diffusion process used T = 1000 timesteps with a linear noise schedule from β1 = 1× 10−472

to βT = 0.02. Inference uses the same number of steps to prioritize sample quality.73
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Figure 2: Comparison of unconditional (left) and conditional (right) CT generation using LAND and
baseline methods PatchDDM [2] and WDM [6]. Mask overlays are shown where applicable.

Figure 3: LAND samples conditioned on nodule+lung+texture masks, with increasing texture scores.

Discussion We evaluate the unconditional LAND pipeline against WDM [6] and PatchDDM [2], with74

WDM using the official pre-trained weights and PatchDDM retrained for our task. Quantitatively,75

LAND achieves the lowest FID (Table 1-Left), reflecting higher fidelity and semantic alignment76

through its VAE latent space; WDM shows slightly higher MS-SSIM, indicating greater diversity77

but potentially related to some unrealistic samples, while PatchDDM performs worst, likely due to78

the inability to handle unregistered volumes. Qualitatively, LAND produces sharp, anatomically79

consistent samples, WDM tends to appear slightly blurred, and PatchDDM exhibits higher levels80

of noise and structural variability (Fig.2-Left). Note that LAND and WDM have similar inference81

memory requirements, but only LAND can be trained on a single 20GB GPU, whereas WDM requires82

double the memory. Differences in WDM performance compared to [6] likely stem from the differing83

sample count used for the FID computation, as FID can be sensitive to sample count. Conditional84

LAND experiments with masks—(1) nodules, (2) nodule+lung, and (3) nodule+lung+texture—show85

improved FID when lungs are included, highlighting the importance of global context, while MS-86

SSIM remains similar (Table 1-Right). Only nodule+lung masks (Fig.2-Right) ensure realistic nodule87

placements. Nodule masks (without lung areas) may incorrectly lead to nodules outside the lungs.88

Nodule+lung+texture masks further allow control over the synthetic nodule solidity (Fig.3).89

Table 1: Comparison of LAND (ours) with SOTA methods. FID values are multiplied by 103.
Unconditional FID↓ FID↓ MS-↓ Mem↓ Conditional FID↓ FID↓ MS-↓ Mem↓
Method (LIDC) (NLST) SSIM (GB) Method (LIDC) (NLST) SSIM (GB)
PatchDDM [2] 317.53 376.4 0.39 19.61 LAND nodule 4.52 5.82 0.3 7.52
WDM [6] 15.24 32.66 0.27 7.27 LAND nodule+lung 4.48 3.37 0.29 7.52
LAND 5.062 4.76 0.29 7.38 LAND nodule+lung+texture 4.60 3.87 0.29 7.52

4 Conclusion90

This paper presents LAND, a latent diffusion model that generates high-quality chest CT volumes91

from anatomical masks. The method enables precise control of lung and nodule characteristics92

while remaining efficient on a single mid-range GPU. Future work includes testing LAND synthetic93

samples for tasks such as nodule classification and segmentation, extending the model with additional94

clinically relevant features, and adding a mask generation module to enhance anatomical diversity.95
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5 Potential Negative Societal Impact96

While the proposed approach offers useful tools for medical research and education, it also presents97

potential risks that should be acknowledged. High-quality synthetic 3D chest CT scans could be98

mistaken for real clinical data if not clearly labeled, which might lead to confusion or reduce trust in99

medical imaging workflows. There is also a possibility that biases present in the training data could100

be reflected or amplified in the generated outputs.101

The proposed method enhances image quality and lowers computational cost without introducing102

new misuse risks beyond those already known in generative modeling. Careful data governance, clear103

labeling of synthetic content, and responsible use are important to minimize unintended negative104

consequences.105
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