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ABSTRACT

The intersection of machine learning and dynamical systems has generated con-
siderable interest recently. Neural Ordinary Differential Equations (NODEs) rep-
resent a rich overlap between these fields. In this paper, we develop a continuous-
time neural network approach based on Delay Differential Equations (DDEs). Our
model uses the adjoint sensitivity method to learn the model parameters and delay
directly from data. Our approach builds upon recent developments in NODEs and
extends earlier neural DDE models, which assume the delay is known a priori. We
rigorously justify our adjoint method and use numerical experiments to demon-
strate our algorithm’s ability to learn delays and parameters from data. Since the
delay is rarely known a. priori, our approach advances system identification of
DDEs from real-world data.

1 INTRODUCTION AND MOTIVATION

Neural ordinary differential equations (NODEs) have proven to be an efficient framework for various
problems in machine learning Chen et al. (2018). NODEs assume the map from input to target value
can be modeled using a learned ODE. They solve an ODE for the forward pass and use an adjoint
approach for backpropagation to update the network parameters. NODEs are a time and memory-
efficient model for various regression and classification tasks Dupont et al. (2019). We develop a
novel continuous-time machine learning approach based on delay differential equations (DDEs).

DDEs can model a wide range of phenomena: in computer networks, delays arise due to the trans-
mission time of information packets Yu et al. (2004); in gene expression dynamics, a delay occurs
due to the time taken for the messenger RNA to copy genetic code and transport macromolecules

1



Published as a conference paper at ICLR 2024

from the nucleus to the cytoplasm Busenberg & Mahaffy (1985); in population dynamics, the time
taken for a species to reach reproductive maturity introduces a delay Kuang (1993).

There has been recent progress in developing Neural DDEs (NDDEs), the DDE counterpart of
NODEs Anumasa & PK (2021), Zhu et al. (2021), Zhu et al. (2022), Zhu et al. (2023). For ex-
ample, Zhu et al. (2021) and Zhu et al. (2022) show that NDDEs can learn models from time series
data that NODEs struggle with. Our work extends Anumasa & PK (2021), Zhu et al. (2021), Zhu
et al. (2022), and Zhu et al. (2023), which assume the delay is known a priori (they can not learn
the delay). By contrast, we derive an adjoint equation that allows our model to learn the delay, pa-
rameters, and initial conditions from data. This difference makes our approach more applicable as a
system identification tool since the exact value of the delay is often unknown in practice.

In this paper, we propose a novel algorithm to learn the delay and parameters of an unknown DDE
using measurements of its solution. Our approach uses the adjoint sensitivity method (see Fig. 1),
which we review in section 3.1. We implement our algorithm using PyTorch Paszke et al. (2019).
We then establish the efficacy of our approach on demonstrative examples in section 4.

2 PROBLEM STATEMENT

A DDE with a single delay, τ > 0, can be written in the form:

ẋ(t) = f(x(t), x(t− τ), θ) t ∈ [0, T ]

x(t) = x0(t) t ∈ [−τ, 0],
(1)

where f : Rn × Rn × Rd → Rn. Here, x0 : [−τ, 0] → Rn is the DDE’s initial conditions *. Let
C2([0, T ],Rn) denote the set of C2 functions from [0, T ] to Rn. Our goal is to learn the parameters
θ and delay τ from measurements of x. We do this using a loss function J : C2([0, T ],Rn) → R+

— with running and terminal cost, ℓ, g : Rn → R+, respectively — of the form:

J(x(·)) =
∫ T

0

ℓ(x(t)) dt+ g(x(T )). (2)

We consider the following scenario: We have Ndata measurements, {x̃(tj)}Ndata−1
j=0 , of the solution

to an unknown DDE of the form of equation 1. Here, {tj}NData−1
j=0 are known and partition [0, T ]

(i.e., 0 = t0 < t1 < · · · < tNData−1
= T ). Finally, we assume the unknown DDE has a constant

initial condition given by x̃(t0); i.e., x(t) = x̃(t0) for t ∈ [−τ, 0] †. The main task of this paper is to
solve the following minimization problem:

Problem 1 Find

argmin
τ>0, θ∈Rd

J(x(·)) subject to

{
ẋ(t) = f

(
x(t), x(t− τ), θ

)
0 < t ≤ T

x(t) = x0, −τ ≤ t ≤ 0.

3 METHODOLOGY

Unfortunately, solving problem 1 exactly is difficult. Therefore, we use an iterative approach based
on gradient descent. We accomplish this by employing the adjoint sensitivity method to obtain the
gradient of the loss with respect to the model parameters, θ, and the delay, τ .

Assumption 1 In this paper, we assume that the running cost ℓ, the vector field f , and the terminal
cost g are of class C1. We also assume that the map (θ, τ, t) → xθ,τ (t) (where xθ,τ is the solution
of equation 1 — when the delay is τ and the parameters are θ — at time t) is of class C2.

*Unlike an ODE, where the initial value is a prescribed value, a DDE’s initial condition is a function.
†This assumption simplifies our analysis but is not essential, see section 5.
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Figure 1: Schematic drawing of the adjoint method for computing gradients. The dashed red curve
on the upper half of the figure represents the computed solution to the original delay differential
equation ẋ(t) = f(x(t), x(t−τ), θ). We use the constant initial condition x(t) = x0 for t ∈ [−τ, 0].
The dashed blue curve on the bottom half represents the computed solution to the adjoint problem.

3.1 THE ADJOINT SENSITIVITY METHOD

To derive our result, we use an approach similar to the one for ODEs in Rihan (2021) and Ayed et al.
(2019), but tailored for DDEs. We begin by defining the Lagrangian,

L(x, λ) = J(x) +

∫ T

0

⟨λ(t), ẋ(t)− f(x(t), x(t− τ), θ)⟩dt.

Here, λ : [0, T ] → Rn is a Lagrange multiplier. We introduce λ due to the following observation:

Remark 1 Let x : [−τ, T ] → Rn be a solution to the DDE, equation 1. Then, for all continuous λ,
L(x, λ) = J(x). Hence,

∇θJ(x) = ∇θL(x, λ) and
∂J

∂τ
(x) =

∂L

∂τ
(x, λ).

Since J does not depend on λ, we can chose a λ that makes computing ∇θL and ∂L
∂τ more convenient.

Theorem 1 Let ẋ = f(x(t), x(t− τ), θ) be a DDE with constant initial condition x0(t) = x0, t ∈
[−τ, 0] and define the cost as in equation 2. Assume that f , g, ℓ, and the flow x(t) satisfy Assumption
1. Choose λ : [0, T ] → Rn to satisfy the following equation:

λ̇(t) = ∇xℓ (x(t))− [∂xf (x(t), x(t− τ), θ)]
T
λ(t)

−1t<T−τ (t) [∂yf (x(t+ τ), x(t), θ)]
T
λ (t+ τ) t ∈ [0, T ]

λ(T ) = −∇xg (x(T ))

(3)

Here, 1t<T−τ is the indicator function on the set (−∞, T −τ). Likewise, ∂xf , ∂yf , and ∂θf denote
the (Frechet) derivative of f with respect to its first, second, and third arguments, respectively. Then,
the derivatives of the cost function with respect to θ, τ and x0 are:

∇θJ = −
∫ T

0
[∂θf(x(t), x(t− τ), θ)]

T
λ(t) dt

∂J
∂τ =

∫ T−τ

0

〈
[∂yf(x(t+ τ), x(t), θ)]

T
λ(t+ τ), ẋ(t)

〉
dt

∇x0J = −λ(0)−
∫ τ

0
[∂yf (x(t), x0, θ)]

T
λ(t) dt

(4)

We prove this result in Appendix B.

3.2 PROPOSED ALGORITHM

We train a model to learn the delay and parameters of the DDE that generated the data. Algorithm 1
summarizes our approach. We begin with random initializations of θ and τ . Each epoch, we solve
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Algorithm 1: Learning delay and parameters from data

Input: {x̃(tj)}Ndata−1
j=0

Output: θ, τ
1 Initialization Set x0 = x̃(t0). Select random, initial values for θ, τ .
2 for i ∈ {1, . . . , Nepochs} do
3 Solve ẋ(t) = f(x(t), x(t− τ), θ) using the initial condition x(t) = x0, t ∈ [−τ, 0].
4 Compute J(x) and check for convergence. Break if converged.
5 Otherwise, solve for the adjoint, equation 3
6 Compute ∇θJ(x) and ∂J(x)/∂τ using equation 4.
7 Update θ and τ using ADAM.
8 end for

equation 1 and compute the loss using the model’s current θ and τ values. We then use this trajectory
to solve equation 3 backward in time to find the adjoint. Next, we use equation 4 to compute the
gradient of the loss. Finally, we use the Adam optimizer to update θ and τ Kingma & Ba (2014).
We repeat this for Nepochs epochs or until the loss drops below a user-specified threshold.

We implement Algorithm 1 using PyTorch Paszke et al. (2019). We wrap the forward and back-
ward procedures in a torch.autograd.Function class. In the forward pass, we use a second-
order Runge–Kutta solver to calculate the predicted trajectory. In the backward pass, we use the
same DDE solver to calculate the adjoint by solving equation 3 backward in time. Our code then
computes and returns the gradient of the loss with respect to τ and θ.

In our implementation, we approximate the integral in the loss, equation 2, using a trapezoidal rule.
We use SciPy’s interpolate function to interpolate between the data points, {x̃(tj)}Ndata−1

j=0 .
We then evaluate this interpolation and the predicted trajectory at the quadrature points to compute
the quadrature rule. Our implementation is open-source and is available at https://github.
com/punkduckable/NDDE.

4 EXPERIMENTS AND NUMERICAL RESULTS

Here, we test Algorithm 1 by learning the parameters and the delay in a Logistic Delay Equation
model. We repeat this analysis on a Delay Exponential Decay model in Appendix A. For these
experiments, we use T = 10, g(x) = ∥x(T ) − x̃(T )∥22, and ℓ(x(t)) = ∥x(t) − x̃(t)∥22, where x̃
denotes the true solution to the hidden DDE (the data set consists of measurements of x̃). Further,
we generated all our datasets by solving the corresponding equation using the forward Euler method
with a step size of dt = 0.1. We use the resulting discretized solution (with 100 data points) as the
target dataset, {x̃(tj)}NData−1

j=1 , tj = j ∗ 0.1. Finally, we use the Adam optimizer with a learning
rate of 0.1, β1 = 0.9, and β2 = 0.999 Kingma & Ba (2014).

Logistic Delay Equation: The Logistic Delay Equation was first proposed to understand oscillatory
phenomena in ecology. It can model the dynamics of a single population growing toward saturation
Ruth & Gergely (2020). For this experiment, the true DDE is:

ẋ(t) = x(t) (1− x(t− 1)) , t ∈ [0, T ]

x(t) = 2 t ∈ [−τ, 0].

We use the model f (x, y, (θ1, θ2)) = θ0x(1− θ1y).

We initialize our model with θ0 = θ1 = 1.75 and τ = 1.75. We then use Algorithm 1 to learn
θ and τ . We use Nepochs = 1, 000 and set the loss threshold at 0.001. The loss drops below this
threshold after just 144 epochs. Table 1 reports the discovered values of θ0, θ1, and τ . Thus, our
approach identifies the correct parameters and τ values. Fig. 2b and 2a depict the loss landscape for
this model; they show that the loss has a sink around the true θ and τ values. Fig. 2a also exhibits
the path our algorithm takes as it trains. Finally, Fig. 3b shows that the target and final predicted
trajectories are closely aligned.
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Table 1: results for the Logistic Delay Equation with Nepochs = 144.

True parameters Discovered parameters

θ0 1 1.00325
θ1 1 1.00232
τ 1 0.99347

5 CONCLUSIONS

In this paper, we presented an algorithm to learn the time delay, parameters, and initial condi-
tion from data. Our approach employs the adjoint sensitivity method, suitably adapted for DDEs.
We provided a rigorous derivation of our methodology and validated the efficacy of our approach
through numerical experiments. In practice, the delay is rarely known a priori. Therefore, our con-
tribution represents a crucial advance in system identification for real-world systems governed by
delay differential equations.

There are many potential future research directions to extend our results. We would first like to
modify our approach to work with arbitrary initial conditions rather than constant functions. Doing
so requires introducing a second Lagrange multiplier, µ, which subsequently changes the adjoint
equations, equation 3. Second, from a numerical perspective, we want to understand how robust our
algorithm is to limited and noisy data. We would also like to understand how various initialization
schemes for θ and τ impact this robustness. Lastly, we want to develop theoretical error bounds for
the discovered delay and a generalization error for the learned model.
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A FURTHER EXPERIMENTAL RESULTS

(a) A semi-logarithmic plot of the loss as a function
of τ (with θ1 = θ2 = 1 fixed).

(b) A plot of the log loss for various values of θ1 and
τ (with θ2 = 1 fixed). The red dots represent the
learned parameters after each epoch of Algorithm 1

Figure 2: Loss landscape for the Logistic Delay Equation experiment.

Delay Exponential Decay Equation: The Delay Exponential Decay Equation arises in the study of
cell growth, specifically when the cells need to reach maturity before reproducing Rihan & Bocharov
(200). For this experiment, the true DDE is:

ẋ(t) = −2x(t)− 2x(t− 1) t ∈ [0, T ]

x(t) = 2 t ∈ [−τ, 0]

For this experiment, we use the model:
f(x, y, θ) = θ0x+ θ1y.

We initialize our model with θ0 = θ1 = −3.0 and τ = 2.0. We then use Algorithm 1 to learn θ and
τ . Here, we use Nepochs = 1, 000 and a loss threshold of 0.001. The loss drops below this threshold
after 505 epochs. Table 2 reports the discovered values of θ0, θ1, and τ . Fig. 3a shows the final
predicted and target trajectories. Thus, our approach correctly identifies the model parameters and
can faithfully reproduce the target trajectory.

B PROOF OF THE ADJOINT EQUATION FOR DDES

In this appendix, we use an adjoint approach to derive an expression for the gradient of J with
respect to λ, τ , and x0.‡ First, we will consider the gradient with respect to θ. Fix (θ, τ, x0) ∈

‡In our experiments, for simplicity, we assume that x0 is known. However, this assumption is not necessary
as it is possible to learn this parameter from data. See equation 4.
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(a) Delay Exponential Decay equation. (b) Logistic Delay Equation

Figure 3: The final predicted (orange) and target (blue) trajectories in the two experiments.

Table 2: Results for the Delay Exponential Decay Equation with Nepochs = 505.

True parameters Discovered parameters

θ0 −2 −2.02428
θ1 −2 −2.01691
τ 1 0.99085

Rd × (0,∞) × Rn. Since ∇θJ(x) =
∑d

i=1 (∂J(x)/∂θi) ei, it suffices to consider the case when
θ ∈ R; we can extend to θ ∈ Rd case by applying R case component-wise. Throughout this proof,
we use results on Frechet differentiation; see Munkres (2018) or an equivalent reference.

Before we proceed, we need some assumptions and notation: To make clear that the solution x
depends on θ, we write xθ in place of x. Further, we assume that f , g, and ℓ are of class C1 (each
component function has continuous partial derivatives). Finally, we assume the map (θ, t) → xθ(t)
is of class C2 (each component function has continuous second-order partial derivatives).

Next, let us clarify our derivative notation. This proof involves derivatives of functions of the form
a : Rn → Rm, b : Rn → R, and c : R → R. We use the notation ∂xa(x) ∈ Rm×n to denote the
matrix of the (Frechet) derivative of a at x. If n = 1, we treat the m×1 matrix ∂xa(x) as a vector in
Rm. For the second class, we use the notation ∇xb(y) ∈ Rn to denote the gradient of b at y ∈ Rn.
Finally, for the third class, we use the notation ∂c(z)/∂z ∈ R to denote the (partial) derivative of c
with respect to z. Time derivatives are the one exception to this notation: we write ḣ(t) for the time
derivative h, regardless of whether h is real, vector, or matrix-valued.

With that cleared up, let us consider ∂J(xθ)/∂θ. Doing so reveals a problem, which subsequently
motivates the Lagrangian. Since the maps θ → xθ(T ) and u → g(u) are C1, they are differ-
entiable. Therefore, by the chain rule, the map θ → g (xθ(T )) is differentiable with gradient
⟨∇xg (xθ(T )) , ∂θxθ(T )⟩. Similarly, for each t ∈ [0, T ], the map θ → ℓ(xθ(t)) is differentiable
with gradient ⟨∇xℓ(xθ(t)), ∂θxθ(t)⟩. Critically, the components of the latter gradient are contin-
uous on [0, T ]. Therefore, we are justified in differentiating under the integral sign. In particular,
the map θ →

∫ T

0
ℓ(xθ(t)) dt must be differentiable with gradient

∫ T

0
⟨∇xℓ(xθ(t)), ∂θxθ(t)⟩ dt.

Therefore, the map θ → J(xθ) is differentiable with

∂J

∂θ
(xθ) = ⟨∇xg (xθ(T )) , ∂θxθ(T )⟩+

∫ T

0

⟨∇xℓ (xθ(t)) , ∂θxθ(t)⟩ dt.

Unfortunately, evaluating this expression requires knowing ∂θxθ(t) for each t ∈ [0, T ]. Deriving an
expression for this quantity is possible but non-trivial. Thankfully, we can address this problem by
adding zero to J in a clever way: this engenders the Lagrangian

L(xθ, λθ) = J(xθ) +

∫ T

0

⟨λθ(t), ẋθ(t)− f (xθ(t), xθ(t− τ), θ)⟩ dt. (5)
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Here, λθ : [0, T ] → Rn is a Lagrange multiplier. As we stated in remark 1, λθ can be any continuous
function. However, we restrict ourselves to λθ for which the map (θ, t) → λθ(t) is of class C1.

We can express the Lagrangian as a single integral using the formula for J :

L (xθ, λθ) =

∫ T

0

ℓ (xθ(t)) + ⟨λθ(t), ẋθ(t)− f (xθ(t), xθ(t− τ), θ)⟩ dt+ g (xθ(T )) (6)

We prove that L is differentiable with respect to θ and derive a formula for the corresponding gra-
dient. We already know that the maps θ →

∫ T

0
ℓ (xθ(t)) dt and θ → g (xθ(T )) are differentiable.

Now, fix t ∈ [0, T ] and consider the map θ → ⟨λθ(t), ẋθ(t)− f (xθ(t), xθ(t− τ), θ)⟩. To begin,
by assumption, the map θ → xθ(t) is of class C2. In particular, this means that the component
functions of the map θ → (xθ(t), xθ(t− τ), θ) ∈ Rn×Rn×R have continuous partials. Thus, this
map must be differentiable. Since we assume that f is also of class C1, it must be differentiable.
Therefore, by the chain rule, the map θ → f (xθ(t), xθ(t− τ), θ) is differentiable with

∂θf (xθ(t), xθ(t− τ), θ) = (∂xf(t)) ∂θxθ(t) + (∂yf(t)) ∂θxθ(t− τ) + ∂θf(t).

For brevity, let f(t) be an abbreviation of f(xθ(t), xθ(t − τ), θ). Since xθ is of class C2, the map
θ → ẋθ(t) must be differentiable as well. Further, since (t, θ) → xθ(t) is C2, the equality of mixed
partials tells us that

∂θẋθ(t) = ˙∂θxθ(t).

Finally, since λθ is of class C1, the component functions of both arguments of the inner prod-
uct ⟨λθ(t), ẋθ(t)− f (xθ(t), xθ(t− τ), θ)⟩ have continuous partial derivatives with respect to θ.
Therefore, the map θ → ⟨λθ(t), ẋθ(t)− f (xθ(t), xθ(t− τ), θ)⟩ must be differentiable with

∂

∂θ

〈
λθ(t), ẋθ(t)−f(t)

〉
=〈

∂θλθ(t), ẋθ(t)− f (xθ(t), xθ(t− τ), θ)
〉

+
〈
λθ(t), ˙∂θxθ(t)− (∂xf(t)) ∂θxθ(t)− (∂yf(t)) ∂θxθ(t− τ)− ∂θf(t)

〉
.

Crucially, since ẋθ(t) = f (xθ(t), xθ(t− τ), θ), the first term in this expression vanishes. Thus,

∂

∂θ

〈
λθ(t), ẋθ(t)−f(t)

〉
=〈

λθ(t), ˙∂θxθ(t)− (∂xf(t)) ∂θxθ(t)− (∂yf(t)) ∂θxθ(t− τ)− ∂θf(t)
〉
.

(7)

By inspection, each component of each argument of the inner product on the right side of equation 7
is continuous. Therefore, we are justified in differentiating under the integral. In particular, the map
θ → L(xθ, λθ) must be differentiable with gradient

∂

∂θ
L(xθ, λθ) =

∫ T

0

⟨∇xℓ(xθ(t)), ∂θxθ(t)⟩+
〈
λθ(t), ˙∂θxθ(t)

〉
− ⟨λθ(t), (∂xf(t)) ∂θxθ(t) + (∂yf(t)) ∂θxθ(t− τ) + ∂θf(t)⟩ dt (8)

+ ⟨∇xg (xθ(T )) , ∂θxθ(T )⟩ .

To proceed, we need to make a few simplifications to the expression above. We will focus on two
parts of the integrand, which we colored teal and violet. We begin with the teal portion of the
integrand. Using integration by parts,∫ T

0

〈
λθ(t), ˙∂θxθ(t)

〉
dt = ⟨λθ(T ), ∂θxθ(T )⟩ − ⟨λθ(0), ∂θxθ(0)⟩ −

∫ T

0

〈
λ̇θ(t), ∂θxθ(t)

〉
dt

= ⟨λθ(T ), ∂θxθ(T )⟩ −
∫ T

0

〈
λ̇θ(t), ∂θxθ(t)

〉
dt. (9)
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To get the second equality, note that xθ(0) = x0. Since x0 is a constant, ∂θxθ(0) = 0 ∈ Rn. We
can now move to the violet portion of the integrand. In particular,∫ T

0

⟨λθ(t), (∂yf(t)) ∂θxθ(t− τ)⟩ dt

=

∫ τ

0

⟨λθ(t), (∂yf(t)) ∂θxθ(t− τ)⟩ dt+

∫ T

τ

⟨λθ(t), (∂yf(t)) ∂θxθ(t− τ)⟩ dt

=

∫ T−τ

0

⟨λθ(t+ τ), (∂yf(t+ τ)) ∂θxθ(t)⟩ dt

=

∫ T

0

1t<T−τ (t) ⟨λθ(t+ τ), (∂yf(t+ τ)) ∂θxθ(t)⟩ dt. (10)

To get from the second to the third line, we observe that for t < τ , xθ(t − τ) = x0, which means
that ∂θxθ(t) = 0. Thus, the blue integral is zero. In the red integral, we redefine t as t − τ . In
equation 10, 1t<T−τ (t) is the indicator function of the set (−∞, T − τ ]. Substituting equation 9
and equation 10 into equation 8 gives

∂

∂θ
L(xθ, λθ) =

∫ T

0

⟨∇xℓ(xθ(t)), ∂θxθ(t)⟩ −
〈
λ̇θ(t), ∂θxθ(t)

〉
− ⟨λθ(t), (∂xf(t)) ∂θxθ(t)⟩+ 1t<T−τ (t) ⟨λθ(t+ τ), (∂yf(t+ τ)) ∂θxθ(t)⟩
+ ⟨λθ(t), ∂θf(t)⟩ dt

+ ⟨∇xg (xθ(T )) + λθ(T ), ∂θxθ(T )⟩

=

∫ T

0

〈
∇xℓ (xθ(t))− λ̇θ(t)− [∂xf(t)]

T
λθ(t)−

1t<T−τ (t) [fy(t+ τ)]
T
λθ(t+ τ), ∂θxθ(t)

〉
dt (11)

+
〈
∇xg (xθ(T )) + λθ(T ), ∂θxθ(T )

〉
+

∫ T

0

⟨λθ(t), ∂θf(t)⟩ dt.

Thus far, our only assumption about λθ is that the map (t, θ) → λθ(t) is C1. Hence, we are free to
choose any λθ. In particular, we can select λθ to satisfy the following differential equation:

λ̇θ(t) = ∇xℓ (xθ(t))− [∂xf (xθ(t), xθ(t− τ), θ)]
T
λθ(t)

−1t<T−τ [∂yf (xθ(t+ τ), xθ(t), θ)]
T
λθ(t+ τ)

λ(T ) = −∇xg (xθ(T ))

(12)

We refer to this choice of λθ as the adjoint. Substituting the adjoint into equation 11 gives

∂

∂θ
J(xθ) =

∂

∂θ
L(xθ, λθ) =

∫ T

0

⟨λθ(t), ∂θf (xθ(t), xθ(t− τ), θ)⟩ dt. (13)

To generalize this to a vector valued θ, notice that if we replace θ with θi in equation 13, the integral
on the right is the i’th component of

∫ T

0
[∂θf (xθ(t), xθ(t− τ), θ)]

T
λθ(t) dt. Thus,

∇θJ (xθ(t)) =

∫ T

0

[∂θf (xθ(t), xθ(t− τ), θ))]
T
λθ(t) dt. (14)

With this established, let us now turn our attention to τ . As we did with θ, we will fix (θ, τ, x0) ∈
Rd × (0,∞)×Rn. We will also denote the solution, x, by xτ to make its dependence on τ explicit.
Using the same argument we used in the θ case, we introduce a Lagrange multiplier λτ : [0, T ] →
Rn with the restriction that the map (τ, t) → λτ (t) is of class C1:

L(xτ , λτ ) = J(xτ ) +

∫ T

0

⟨λτ (t), ẋτ (t)− f (xτ (t), xτ (t− τ), θ)⟩ dt (15)

We now argue that L is differentiable with respect to τ . We can reuse most of our argument
from the θ case with one caveat: we need to re-established the differentiability of the map

9
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τ → f(xτ (t), xτ (t − τ), θ) (for a fixed t). Before, we proved this by showing that each of f ’s
arguments is differentiable. By assumption, the maps τ → xτ (t) and τ → θ (the latter being a con-
stant) are differentiable. However, the second argument, xτ (t− τ), depends on τ both explicitly (in
its argument, t − τ ) and implicitly (because changing τ changes the DDE solution). However, this
map is the composition of the map τ → (τ, t−τ) with the map that sends (τ, t) to the solution of the
DDE at time t when the delay is τ . By assumption, both maps are C1 and thus differentiable. Hence,
by the chain rule, the map τ → xτ (t− τ) is differentiable with derivative ∂τxτ (t− τ)− ẋτ (t− τ).
Having established this map is differentiable, we can conclude (again by the chain rule) that the
map τ → f(xτ (t), xτ (t − τ), θ) is differentiable. We can now proceed exactly as in the θ case to
conclude that L is a differentiable function of τ . In particular,

∂L

∂τ
(xτ , λτ ) =

∫ T

0

⟨∇xℓ(xτ (t)), ∂τxτ (t)⟩+
〈
λτ (t), ˙∂τxτ (t)

〉
− ⟨λτ (t), (∂xf(t)) ∂τxτ (t) + (∂yf(t)) ∂τxτ (t− τ)− (∂yf(t)) ẋτ (t− τ)⟩ dt

(16)

+
〈
∇xg (xτ (T )) , ∂τxτ (T )

〉
.

We can treat the teal and violet portions of the integrand as we did before. Further, since xτ (t−τ) =
x0 for t < τ , the orange portion of the integrand is zero in [0, τ ]. Therefore,

∂L

∂τ
(xτ , λτ ) =

∫ T

0

〈
∇xℓ (xτ (t))− λ̇τ (t)− [∂xf(t)]

T
λτ (t)−

1t<T−τ (t) [fy(t+ τ)]
T
λτ (t+ τ), ∂τxτ (t)

〉
dt (17)

+
〈
∇xg (xτ (T )) + λτ (T ), ∂τxτ (T )

〉
+

∫ T

τ

⟨λτ (t), (∂yf(t)) ẋτ (t− τ)⟩ dt.

Thus, if we select λτ to satisfy the same adjoint equations as before, equation 12, then we conclude
(after a change of variables in the orange integral) that

∂J(xτ )

∂τ
=

∂L

∂τ
(xτ , λτ ) =

∫ T−τ

0

〈
[∂yf (xτ (t+ τ), xτ (t), θ)]

T
λτ (t+ τ), ẋτ (t)

〉
dt (18)

We can use a nearly identical argument to prove that J is a differentiable function of x0. Specifically,

∇x0
J(xx0

) = −λx0
(0)−

∫ τ

0

[f (xx0
(t), x0, θ)]

T
λx0

(t) dt. (19)

Here, λx0 also satisfies equation 12. Dropping the θ, τ , and x0 subscripts in equation 14, equa-
tion 18, and equation 19, respectively, gives equation 4. □
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