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ABSTRACT

The framework of Language Games studies the emergence of languages in popula-
tions of agents. Recent contributions relying on deep learning methods focused on
agents communicating via an idealized communication channel, where utterances
produced by a speaker are directly perceived by a listener. This comes in contrast
with human communication, which instead relies on a sensory-motor channel,
where motor commands produced by the speaker (e.g. vocal or gestural articula-
tors) result in sensory effects perceived by the listener (e.g. audio or visual). Here,
we investigate if agents can evolve a shared language when equipped with a con-
tinuous sensory-motor system to produce and perceive signs, e.g. drawings. To
this end, we introduce the Graphical Referential Game (GREG) where a speaker
must produce a graphical utterance to name a visual referent object consisting of
combinations of MNIST digits while a listener has to select the corresponding
object among distractor referents, given the produced message. The utterances
are drawing images produced using dynamical motor primitives combined with a
sketching library. To tackle GREG we present CURVES: a multimodal contrastive
deep learning mechanism that represents the energy (alignment) between named
referents and utterances generated through gradient ascent on the learned energy
landscape. We, then, present a set of experiments showing that our method al-
lows the emergence of a shared, graphical language that generalizes to feature
compositions never seen during training. We also propose a topographic metric
to investigate the compositionality of emergent graphical symbols. Finally, we
conduct an ablation study illustrating that sensory-motor constraints are required
to yield interpretable lexicons.

1 INTRODUCTION

Understanding the emergence and evolution of human languages is a significant challenge that has
involved many fields, from linguistics to developmental cognitive sciences (Christiansen & Kirby,
2003). Computational experimental semiotics (Galantucci & Garrod, 2011) has seen some success
in modeling the formation of communication systems in populations of artificial agents (Cangelosi
& Parisi, 2002; Kirby et al., 2014). More specifically, Language Game models (Steels & Loetzsch,
2012), have been used to show how a population of agents can self-organize a culturally shared
lexicon without centralized coordination. Given the recent successes of artificial neural networks in
solving complex tasks such as image classification (Krizhevsky et al., 2012; He et al., 2015; 2016;
Dosovitskiy et al., 2021) and natural language understanding (Devlin et al., 2019; Radford et al.,
2019; Brown et al., 2020), many works have leveraged them to study the emergence of communica-
tion in groups of agents (Lazaridou & Baroni, 2020), mainly using multi-agent deep reinforcement
learning and language games (Nguyen et al., 2020; Mordatch & Abbeel, 2018; Lazaridou et al.,
2018; Portelance et al., 2021; Chaabouni et al., 2021). These advances have made it possible to
scale up language game models to environments where linguistic conventions are jointly learned
with visual representations of raw image perception, as well as to environments where emergent
communication is used as a tool to achieve joint cooperative tasks (Barde et al., 2022).

So far, most of these methods have considered only idealized symbolic communication channels
based on discrete tokens (Lazaridou et al., 2017; Mordatch & Abbeel, 2018; Chaabouni et al., 2021)
or fixed-size sequences of word tokens (Havrylov & Titov, 2017; Portelance et al., 2021). This
predefined means of communication is motivated by language’s discrete and compositional nature.
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But how can this specific structure emerge during vocalization or drawing, for instance? Although
fundamental in the investigation of the origin of language (Dessalles, 2000; Cheney & Seyfarth,
2005; Oller et al., 2019), this question seems to be neglected by recent approaches to Language
Games (Moulin-Frier & Oudeyer, 2020). We, therefore, propose to study how communication could
emerge between agents producing and perceiving continuous signals with a constrained sensory-
motor system.

Listener Referent

Game
Outcome

perceived by

utterance

command

Listener Context

Speaker Context
Speaker Referent 

sample perceived by

selects perceived by

SPEAKER

LISTENER

produces

Figure 1: The Graphical Referential Game: During the game, the speaker’s goal is to produce a motor
command c that will yield an utterance u in order to denote a referent rS sampled from a context R̃S . Following
this step, the listener needs to interpret the utterance in order to guess the referent it denotes among a context
R̃L. The game is a success if the listener and the speaker agree on the referent (rL ≡ rS).

Such continuous constrained systems have been used in the cognitive science literature as mod-
els of sign production to study the self-organization of speech in artificial systems (de Boer, 2000;
Oudeyer, 2006; Moulin-Frier et al., 2015). In this paper, we focus on a drawing sensory-motor
system producing graphical signs. The sensory-motor system is made of Dynamical Motor Primi-
tives (DMPs) (Schaal, 2006) combined with a sketching system (Mihai & Hare, 2021a) enabling the
conversion of motor commands into images. Drawing systems have the advantage of producing 2D
trajectories interpretable by humans while preserving the non-linear properties of speech models,
which were shown to ease the discretization of the produced signals (Stevens, 1989; Moulin-Frier
et al., 2015). We introduce the Graphical Referential Game: a variation of the original referential
game, where a Speaker agent (top of Figure 1) has to produce a graphical utterance given a single
target referent while a Listener agent (bottom of Figure 1) has to select an element among a context
made of several referents, given the produced utterance (agents alternate their roles). In this set-
ting, we first investigate whether a population of agents can converge on an efficient communication
protocol to solve the graphical language game. Then, we evaluate the coherence and compositional
properties of the emergent language, since it is one of the main characteristics of human languages.

Early language game implementations (Steels, 1995; 2001) achieve communication convergence
by using contrastive methods to update association tables between object referents and utterances.
While recent works use deep learning methods to target high-dimensional signals they do not explore
contrastive approaches. Instead, they model interactions as a multi-agent reinforcement learning
problem where utterances are actions, and agents are optimized with policy gradients, using the
outcomes of the games as the reward signal (Lazaridou et al., 2017). In the meantime, recent models
leveraging contrastive multimodal mechanisms such as CLIP (Radford et al., 2021) have achieved
impressive results in modeling associations between images and texts. Combined with efficient
generative methods (Ramesh et al., 2021), they can compose textual elements that are reflected in
image form as the composition of their associated visual concepts. Inspired by these techniques, we
propose CURVES: Contrastive Utterance-Referent associatiVE Scoring, an algorithmic solution to
the graphical referential game. CURVES relies on two mechanisms: 1) The contrastive learning of an
energy landscape representing the alignment between utterances and referents and 2) the generation
of utterances that maximize the energy for a given target referent. We evaluate CURVES in two
instantiations of the graphical referential game: one with symbolic referents encoded by one-hot
vectors and another with visual referents derived from the multiple MNIST digits (LeCun et al.,
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1998). We show that CURVES converges to a shared graphical language that enables a population of
agents not only to name complex visual referents but also to name new referent compositions that
were never encountered during training.

Scope. The idea of using a sensory-motor system to study the emergence of forms of combi-
natoriality in language dates back to methods investigating the origins of digital vocalization sys-
tems (de Boer, 2000; Oudeyer, 2005; Zuidema & De Boer, 2009). Such studies were conducted in
the context of imitation games at the level of phonemes to observe the formation of speech utter-
ances (syllables, words) that were systematically composed from lower-level meaningless elements
(phonemes). This corresponded to the first level of compositionality within the notion of duality of
patterning (Hockett & Hockett, 1960). Yet, these works did not consider referential games and did
not study agents’ ability to compose meaningful words to denote referents, i.e. they did not address
the second level of the duality of patterning.

One of the goals of emergent communication research is to develop machines that can interact with
humans. As a result, a variety of referential game approaches ensure that the emergent language is as
close to natural language. This can be achieved by adding a supervised image captioning objective
to encourage agents to use natural language in order to solve their communicative tasks (Havrylov
& Titov, 2017; Lazaridou et al., 2017). Other methods use constraints such as memory restric-
tions (Kottur et al., 2017) to act as an information bottleneck to increase interpretability and compo-
sitionality. While we purposefully chose a graphical sensory-motor system to ease the visualization
of the emerging language, we do not inject prior knowledge or pressures to facilitate the emergence
of an iconic language. Our produced utterances are completely arbitrary. This fundamentally dif-
ferentiates our work from Mihai & Hare (2021b) that trains agents to communicate via sketches
replicating the visual referents they name. Note also that their drawing setup does not include dy-
namical motor primitives and utterances are directly optimized in image space. They, moreover,
allow gradients to back-propagate from listener to speaker while we use a decentralized approach.
Finally, they do not consider contrastive learning. To our knowledge, CURVES is the first contrastive
deep-learning algorithm successfully applied to a referential game.

There is a large body of work exploring the factors that promote compositionally in emerging lan-
guages (Kottur et al., 2017; Li & Bowling, 2019; Rodrı́guez Luna et al., 2020; Ren et al., 2020;
Chaabouni et al., 2020; Gupta et al., 2020). In this context, a crucial question is how to actually mea-
sure it in the first place (Mu & Goodman, 2021). To this end, (Choi et al., 2018) proposes to measure
communicative performances on unseen compositions of known objects as a way to evaluate compo-
sitionality. However, it has been shown that a good performance in this test may be achieved without
leveraging any actual compositionality in language (Andreas, 2019; Chaabouni et al., 2020). Thus,
others instead compute topographic similarities (Brighton & Kirby, 2006), measuring the correla-
tion between distances in the utterance space (distance between signs) and distances in the referents
space (such as the cosine similarity between the embeddings of objects) (Lazaridou et al., 2018). In
this paper we propose to do both and study 1) the generalization to unseen combinations of abstract
features and 2) topographic measures based on the Hausdorff distances between utterances denoting
composition and utterances denoting isolated features.

Contributions. This paper introduces:

• The Graphical Referential Game (GREG): a variation of the referential game to study the
formation of signs from a graphical sensory-motor system.

• CURVES: an algorithmic solution to GREG, consisting of a contrastive multimodal encoder
coupled with a generative model enabling the emergence of a graphical language.

• A study of CURVES’s generalization performances on compositions of features never seen
during training in a simplified control setting and a more perceptually challenging one.

• A complementary analysis of the compositionality of the emerging graphical language
measuring the Hausdorff distance between utterances denoting compositions and utterances
denoting their constituents.

• An ablation study measuring how the motion primitives of the sensory-motor system shape
the emerging symbols.
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2 PROBLEM DEFINITION

Graphical referential game. We consider a group of two agents playing a fixed number of refer-
ential games, each time alternating their roles (speaker or listener). During a game, we first present
a context R of n objects, called referents to a speaker S and a listener L. At the beginning of each
game, the target r⋆ ∈ R is assigned to the speaker. Given this target referent r⋆, S produces an
utterance (u) to designate it. Based on the produced utterance u, L selects a referent (r̂) in R. The
game outcome o is a success if the selected referent (r̂) matches the target r⋆.

Referents. Referents are compositions of orthogonal vector features (one-hot vectors). Given
a set of m orthogonal features Fm, we define the set of all possible referents as
Rm = {

∑
f∈S f |S ⊆ Fm}. The subset of referents made of exactly k features are thus:

Rk
m = {

∑
f∈S f |S ⊆ Fm, |S| = k}. In our experiments, we fix m = 5.

From these orthogonal referents, we propose to generate objects made of digit images sampled
from the MNIST dataset (LeCun et al., 1998). More precisely, we define the stochastic mapping
Φ : Rm → R̃m that maps each feature f ∈ Fm to a digit class in the MNIST dataset. For each
feature in a referent, we sample a random instance from the corresponding class and randomly place
it on a 4 × 4 grid such that no number overlap. Note that the listener and speaker can perceive
different realizations of Φ, in this case, we say that they see different perspectives of the referents.
More precisely, the speaker perceives the context R as R̃S and its target r⋆ as r⋆S . Similarly, the
listener perceives the context R as R̃L and selects a referent r̂ among it.

We use this formalism to instantiate three settings of the Graphical Referential Game (GREG):

• one-hot: where referents are one-hot vectors r ∈ Rm.
• visual-shared: where referents are MNIST digits r ∈ R̃m and agents share the same per-

spective: R̃S = R̃L.
• visual-unshared where referents are MNIST digits r ∈ R̃m and agents have different per-

spectives of referents in their contexts R̃S ̸= R̃L.

Sensory-motor drawing system. Utterances are produced by a sensory-motor system
M : Rm → U ⊂ RD×D mimicking an arm drawing sketches displayed in Figure 2(a). The arm mo-
tion is derived from Dynamical Motor Primitives (DMPs) (Schaal, 2006). The DMP is parametrized
by a command vector c ∈ R20. It converts c into a 2-dimensional drawing trajectory T made of 10
coordinates T = {vi}i=0,...,9. This trajectory is then fed to a Differentiable Sketching model (Mi-
hai & Hare, 2021a) generating an D × D image (in our implementation, D = 52). See Suppl.
Section A.1 for additional implementation details of the Sensory-motor drawing system.

DMP

Sketch Lib.

(a) (b)

Figure 2: (a) Sketching sensory-motor system: The sensory-motor system imitates a robotic arm drawing
a sketch on a 2D plan. DMPs first convert a continuous command c into a sequence of coordinates T . This
trajectory is then rendered as a 52 × 52 graphical utterance thanks to a differentiable sketching library. (b)
Referent transformation: An example of a one-hot context R being transformed into two contexts R̃S and
R̃L by the stochastic transformation Φ. The two contexts are different perspectives of the same objects.

Objectives. This paper investigates how a group of two agents can agree on a shared compositional
language to denote referents, given a continuous sensorimotor system to produce utterances. Beyond
the game’s success, we evaluate the emerging language along two dimensions.

Coherence. First, we measure the coherence of the emerging lexicon. As utterances are 2-
dimensional paths, we compute similarities using the Hausdorff distance as it is known to capture
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geometric features of trajectories, in particular, their shape (Besse et al., 2015). The Hausdorff dis-
tance dH is the maximum distance from any coordinate in a trajectory to the closest coordinate in
the other: dH(T1, T2) = max{supv∈T1

d(v, T2), supv′∈T2
d(T1, v

′)}. In particular, we compute the
following metrics.

• Agents Coherence (A-coherence): For a given referent r with the same perspective for all
agents, measure the mean pairwise similarity between each agent’s utterance.

• Perspective Coherence (P-coherence): For a given agent and a given referent r, measure
the mean pairwise similarity between utterances produced from different perspectives

• Referents Coherence (R-coherence): For a given agent, measure the mean pairwise sim-
ilarity between utterances produced for different referents.

Compositionality. The second dimension of our evaluation explores the compositional properties
of the emerging language. To this end, we first evaluate the generalization performances of our
group to compositional referents never seen during training. More specifically, we train agents on
Rtrain = R1

5 (referents made of one feature) and test them on Rtest = R2
5 (referents made of two

features). For visuals about compositional referents, see Suppl. Section A.2. We use the success
rate SR to monitor the performances. However, a satisfactory success rate on this testing set does
not necessarily imply that the emerging language is in fact compositional (Chaabouni et al., 2020).

To complement this analysis, we estimate to what extent utterances denoting compositional referents
are actually made of utterances denoting their constituents. To this end, we introduce a topographic
score based on the Hausdorff distance ρ that quantifies how an utterance denoting a compositional
referent made of feature i and j (u(rij)) is actually closer to utterances denoting isolated features
u(ri) or u(rj) than the utterance naming other compositional referents (u(rxy), x ̸= i, y ̸= j). For
a detailed derivation of metric ρ, see Suppl. Section A.3.

3 CURVES - CONTRASTIVE UTTERANCE-REFERENT ASSOCIATIVE
SCORING

CURVES is an energy-based approach that relies on two mechanisms:

1. The contrastive learning of an energy landscape E(r, u) is defined as the cosine similarity
between utterance and referent embeddings.

2. The generation of an utterance that maximizes the energy for a given target referent r⋆S .

Agents modules and interactions. Each agent A ∈ {A1, A2} perceives utterances and ref-
erents using two distinct CNN encoders fA (for referents) and gA (for utterances)1. fA and gA
map referents and utterances in a shared d-dimensional latent space: fA(·, θfA) : Rm → Rd and
gA(·, θgA) : U → Rd such that zrA = fA(r) and zuA = gA(u), as displayed in Figure 3(a). The
agent then computes the energy landscape as: EA(r, u) = cos(fA(r), gA(u))

A given referential game unfolds as follows. Agents have randomly attributed roles, for instance,
A1 is the speaker A1 ← S and A2 is the listener A2 ← L. The speaker is given a context R̃S and a
target referent perceived as r⋆S to produce an utterance û intending to approach the utterance u⋆ that
maximizes ES(r

⋆
S , u). The listener observes û and selects referent r̂ in context R̃L that maximizes

EL = (r, û): 
û ≈ u⋆ = argmax

u∈U
ES(r

⋆
S , u) (utterance generation from speaker)

r̂ = argmax
r∈R̃L

EL(r, û) (referent selection from listener)
(1)

The outcome of the game is then o = 1[r̂=r⋆] − b where b is a baseline parameter representing the
mean success across previous games.

Contrastive representation learning in referential games. For a given context R, agents are ran-
domly assigned their roles and play n = |R| games. During these n games, roles are fixed and the
speaker agent successively selects each referent of the context R̃S as the target r⋆S . During interac-
tions, the speaker collects data {(riS , ui, oi)}i=1,...,n while the listeners observes {(ui, riL)}i=1,...,n.

1when referents are one-hot vectors fA is a fully-connected network. Parameters for both encoders are
given in Suppl. table 4.
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Figure 3: (a) Agents’s dual encoder architecture. Referents and utterances are mapped to a share latent
space. The energy between a referent r and an utterance u is computed as the cosine similarity between their
respective embeddings. (b) Cosine similarity matrix update from collected samples. Agents compute the
energy for all referents and utterances it collected to form the squared matrix ΣA. During contrastive updates
agents maximize blue circles and minimize white ones.

From the collected data each agent can compute the squared cosine similarity matrices ΣA whose el-
ements are (ΣA)i,j = EA(r

i
A, u

j) as shown in Figure 3(b). Contrastive updates are then performed
using the objective JA that applies Cross Entropy (CE) on the i-th row and i-th column of ΣA.

JA(ΣA, i) = [CE((ΣA)i,1:n, ei) + CE((ΣA)1:n,i, ei)]/2, (2)
ei being a one-hot vector of size n with value 1 at index i. Depending on the role of the agent, JA
is instantiated either as JS (speaker) or JL (listener). Thus, the speaker updates its representation
using the outcomes oi of the games (reinforcing the successful associations while decreasing the
unsuccessful ones):

minimize
θfS ,θgS

n∑
i=1

oiJS(ΣS , i) (3)

On the other hand, the listener needs to make sure that the selection matches the speaker’s referent
(Steels, 2015) and hence always increases associations (no matter the games’ outcomes):

minimize
θfL ,θgL

n∑
i=1

JL(ΣL, i) (4)

Note that in Eq. 4, riL is the target referent perceived by the listener. This means that the speaker
indicates the referent (as perceived by the listener) that they were naming at the end of the game. This
retroactive pointing mechanism was employed in both early language game implementations (Steels
& Kaplan, 1999) and more recent ones (Chaabouni et al., 2020; Portelance et al., 2021).

Speaker’s utterance optimization. We distinguish two utterance generation strategies:

• The descriptive generation: in which the speaker agent only considers the target referent
r⋆S to produce an utterance that maximizes the cosine similarity between the embeddings
of r⋆S and an utterance produced by our sensory system u = M(c) from motor command
c. Since M is fully differentiable, we inject the sensory-motor constraint in equation 1 and
seek for the optimal motor command c⋆ using gradient ascent:

c⋆ = argmax
c∈Rp

E(r⋆S ,M(c)) (5)

• The discriminative generation: in which the speaker also perceives the context R̃S dur-
ing production. This is achieved by finding the motor command that minimizes the cross
entropy given a target referent r⋆S and its context R̃S :

c⋆ = argmin
c∈Rp

CE(σS , er⋆S ) (6)

where σS is the vector with coordinates σSi = [E(ri,M(c))]ri∈R̃S
and er⋆S is the one-hot

vector of size |R̃S | with value 1 at the position of r⋆S in R̃S . This discriminative generation
process is only used at test time when investigating CURVES’s generalization capabilities.

6



Under review as a conference paper at ICLR 2023

4 EXPERIMENTS AND RESULTS

This section focuses first on CURVES’s training dynamics as agents interact in GREG before show-
casing its ability to generalize to compositional referents that were never seen during training. We,
then, evaluate the compositional structure of the emerging graphical language by providing visuals
of utterances and computing topographic scores defined in Section 2. Each of these studies is carried
out with one-hot, shared-visual, and unshared-visual referents as explained in Section 2. We finally
investigate the impact of motion primitives on the emerging language. Training and testing metrics
correspond to the mean and standard deviation computed from training pairs of agents on 10 seeds.

Do agents converge to a shared graphical language? Figure 4 displays the training performances
of a group of two agents interacting in GREG. For each referent type, the group reaches a perfect
success rate of SR = 1. Moreover, a group starts to converge when inter-agent and inter-perspective
coherence distances decrease. This correlation is proof of emergent communication as it indicates
that agents start agreeing on signs to denote referents. Finally, the constant (for one-hot referent)
and increasing (for visual referents) values of the R-coherence suggest that agents use distinct signs
to name referents.

(a) (b) (c)

Figure 4: Training success rate (SR) and Coherence distances (a) one-hot referents (b) visual-shared refer-
ents (c) visual-unshared referents.

An example of an emerging lexicon describing visual referents produced by agents trained on un-
shared perspectives can be visualized in Figure 5. Other visualizations for one-hot and shared visual
referents are available in Suppl. Section B.2. We also provide illustrations of P-coherence in Suppl.
Section B.3.

Figure 5: Instance of an emerging lexicon. Utterances are produced by a pair of agents trained with unshared
perspectives (1 seed). The perspective for each referent is chosen randomly.

Are agents able to generalize to compositional referents? Table 1 exposes the generalization
performances of group of agents evaluated on referents r ∈ R2

5. During an evaluation, the context
is exhaustive and contains all the combinations of 2 features: |R| = 10. We compare the success
rates to a random baseline where the listener always selects the referent r̂L randomly no matter
the utterance (SRrandom = 0.1). We also introduce a 1-feature baseline where the speaker produces
an utterance u that only denotes one of the two features contained in r⋆S and the listener randomly
selects one of the four combinations containing the communicated feature (SR1-feat = 0.25). The
success rates for all referent types are significantly higher than the baseline values suggesting that
agents are indeed able to communicate about compositional referents. Generalization performances
are nearly perfect with one-hot referents but they decrease in visual settings. This performance gap
can be explained by the extra difficulty of adding inter-perspective variability to the multi-agent
interaction dynamic during the contrastive learning of referent representations. The better success
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rates obtained in auto-learning (where a single agent plays both the speaker and the listener roles)
provided in Suppl. Section B.1 seem to corroborate this hypothesis. Surprisingly, we observe that
success rates for descriptive (Eq. 5) and discriminative (Eq.6) generation are very similar. This sug-
gests that optimizing utterances so as to minimize their energy between non-targeted compositional
referents (r ∈ R, r ̸= r⋆) does not improve generalization performances.

Referents Descriptive SR Discriminative SR
One-hot 0.99± 0.01 0.99± 0.01

Visual-shared 0.57± 0.04 0.56± 0.03
Visual-unshared 0.39± 0.02 0.40± 0.02

Table 1: Generalization performances. Success rates evaluated on exhaustive context |R| = 10 with
referents r ∈ R2

5 for both generative (Eq. 5) and discriminative (Eq.6) utterance generation.

Is the emerging language compositional? To investigate the compositionality of ut-
terances we propose the topographic maps displayed in Figure 6. Each point in a topo-
graphic map is an utterance naming a compositional referent r ∈ R2

5 and has coordinate
(dH(u(ri), ·), dH(u(rj), ·)). If utterances naming the composition of two features are indeed
the compositions of the utterances used to denote each of the isolated features, we expect
them to land in the bottom left of the topographic maps. Figure 6 shows that some ut-
terances for compositional referents are indeed close in Haussdorf distance to the utterances
denoting the isolated constituent features (Figure 6(b)) but others are not (Figure 6(a)).
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Figure 6: Topographic map examples for a single seed in unshared-visual referents setting (a) Correspond-
ing to the worst topographic score ρ = −0.113 (b) Corresponding to the best topographic score ρ = 0.203.
Each utterance names a compositional referent and is colored in blue if it contains feature i, orange if it contains
feature j, green if it contains both, and black if it contains none.

Figure 7: Matrix of compositions. Blue
frames represent utterances generated for a
perspective in R1

5, other utterance denote the
corresponding compositions in R2

5

Unfortunately, the feature maps do not allow us to draw
strong conclusions about the composition properties of
the emerging language. It is hard to tell if agents are
indeed composing utterances or if the Haussdorf dis-
tance simply does not capture compositionality. This
seems to be verified by additional topographic maps pro-
vided in Suppl. Section B.4. In particular, the topo-
graphic maps for one-hot referents (Figure 19) indicate
that strong generalization performances can be achieved
by producing utterances that are not necessarily close to
the isolated feature utterances. This difficulty in evaluat-
ing compositionality can be experienced visually thanks
to Figure 7 which displays a matrix of composition for
unshared-visual referents. More instances of composi-
tion matrices are available in Suppl. Section B.5.

Are representations compositional? Finally, if compositionality is visually hard to analyze in
graphical space, it seems to be much more apparent in the utterance and referent embedding spaces.

8



Under review as a conference paper at ICLR 2023

Figure 8 shows that the embeddings for compositional referents as well as the embedding of the ut-
terances naming them are indeed close to the embeddings of their constituents. This is not surprising
since this is the space in which our energy landscape is learned.

Referents Embeddings Utterances Embeddings
R[0]
R[1]
R[2]
R[3]
R[4]
R[0, 1]

Figure 8: T-sne of utterance and referent embeddings. Embeddings are computed for 100 perspectives.
Training conditions are unshared visual referents. Additional t-snes are provided in Suppl. Section B.6

What is the impact of sensory-motor constraints on the emergent lexicon? We conduct an ab-
lation study where the speaker directly optimizes the utterance in image space (without u = M(c)
in Eq. 5 & Eq. 6). As reported by the training and testing performances in table 2, the pair of agents
succeed during training and their generalization performances are on par with pairs producing utter-
ances with DMPs. Crucially, the emerging lexicons, displayed in figure 9, look like noisy pixel maps
and therefore have no geometrical structure. This prevents any coherence or compositionality analy-
sis and reinforces the interest in incorporating motor constraints into the utterance generation system.

Figure 9: Emerging lexicon without motion primitives.
Utterances naming referents with unshared perspectives.

SRtrain SRtest

One-hot 0.99± 0.01 0.96± 0.02
Visual 0.99± 0.01 0.41± 0.02

Table 2: Training and generalization suc-
cess without DMPs. Utterances are gener-
ated in descriptive mode, and visual refer-
ents are seen from different perspectives.

5 DISCUSSION AND FUTURE WORK

This work formalizes GREG: a new referential game where two agents must communicate via a
continuous sensory-motor system imitating a robotic arm drawing sketches. To tackle GREG, we
propose CURVES: a contrastive representation learning algorithm inspired by early language game
contrastive implementation that scales to high dimensional signals. CURVES allows a group of two
agents two converge on a shared graphical language in contexts where referents are one-hot vectors
or images of MNIST digits. The representations that agents learn enable them to communicate about
compositional referents never encountered during training. Our ablation study shows that motor
constraints in the utterance generation system are required to facilitate the emergence of structured
lexicons. Despite the visualizable nature of graphical signs, compositions of utterances are hard
to identify. Our proposed analysis based on the Hausdorff distance could not allow us to draw
systematic conclusions. On the other hand, compositions are salient in the space of embeddings.

Future work may look into finding other metrics or evaluation strategies to investigate the composi-
tion of utterances in more depth. An analysis of the impact of the sensory-motor constraints on the
topology of graphical signs could also provide valuable insight into the factors facilitating the emer-
gence of a compositional graphical language. CURVES is agnostic to the modality used to represent
utterances. As such, it could tackle other sensory-motor systems. The central element of CURVES
lies in the contrastive learning of utterance-referent associations. In our implementation, we optmize
utterances by maximizing this energy via gradient ascent. Much like CLIP opened many avenues
for multi-modal generation, we could plug in more complex generative strategies such as diffusion
models (Rombach et al., 2021; Saharia et al., 2022). Finally, more realistic visual referents and the
impact of training larger groups of agents on generalization could be investigated in GREG.

9
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6 REPRODUCIBILITY STATEMENT

We ensure the reproduciblity of the experiments presented in this work by providing our code. Addi-
tional information regarding the methods and hyper-parameters can be found in Suppl. Section A.4.
Information about our derived metrics can also be found in Suppl. Section A.3. We ensure to display
the variance of our experimental results by using 10 random seeds, reporting the standard deviation.
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ceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 1597–1607. PMLR, 13–18 Jul 2020. URL https:
//proceedings.mlr.press/v119/chen20j.html.

Dorothy L Cheney and Robert M Seyfarth. Constraints and preadaptations in the earliest stages of
language evolution. 2005.

Edward Choi, Angeliki Lazaridou, and Nando de Freitas. Multi-agent compositional communication
learning from raw visual input. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=rknt2Be0-.

Morten H. Christiansen and Simon Kirby. Language evolution: consensus and controversies.
Trends in Cognitive Sciences, 7(7):300–307, 2003. ISSN 1364-6613. doi: https://doi.org/10.
1016/S1364-6613(03)00136-0. URL https://www.sciencedirect.com/science/
article/pii/S1364661303001360.

10

https://openreview.net/forum?id=swiyAeGzFhQ
https://openreview.net/forum?id=swiyAeGzFhQ
https://arxiv.org/abs/1508.04904
https://arxiv.org/abs/1508.04904
https://aclanthology.org/2020.acl-main.407
https://aclanthology.org/2020.acl-main.407
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://openreview.net/forum?id=rknt2Be0-
https://www.sciencedirect.com/science/article/pii/S1364661303001360
https://www.sciencedirect.com/science/article/pii/S1364661303001360


Under review as a conference paper at ICLR 2023

Bart G. de Boer. Self-organization in vowel systems. J. Phonetics, 28:441–465, 2000.

Jean-Louis Dessalles. Aux origines du langage. Hermès-science, 2000.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Bruno Galantucci and Simon Garrod. Experimental semiotics: A review. Frontiers in Human
Neuroscience, 5, 2011. ISSN 1662-5161. doi: 10.3389/fnhum.2011.00011. URL https:
//www.frontiersin.org/articles/10.3389/fnhum.2011.00011.

Abhinav Gupta, Cinjon Resnick, Jakob Foerster, Andrew Dai, and Kyunghyun Cho. Composi-
tionality and capacity in emergent languages. In Proceedings of the 5th Workshop on Repre-
sentation Learning for NLP, pp. 34–38, Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.repl4nlp-1.5. URL https://aclanthology.org/2020.
repl4nlp-1.5.

Serhii Havrylov and Ivan Titov. Emergence of language with multi-agent games: Learning to com-
municate with sequences of symbols. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fer-
gus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/
paper/2017/file/70222949cc0db89ab32c9969754d4758-Paper.pdf.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. 2015 IEEE International Conference on
Computer Vision (ICCV), pp. 1026–1034, 2015.

Kaiming He, X. Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2016.

Charles F Hockett and Charles D Hockett. The origin of speech. Scientific American, 203(3):88–97,
1960.

Simon Kirby, Tom Griffiths, and Kenny Smith. Iterated learning and the evolution of language.
Current Opinion in Neurobiology, 28:108–114, 2014.
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SUPPLEMENTARY MATERIAL

This Supplementary Material provides additional derivations, implementation details and results.
More specifically:

• Section A provides supplementary implementation details in the form of:
– Images of testing set of visual referents;
– Topographic score derivation;
– Training procedures and hyperparameters;
– Pseudo-code.

• Section B provides supplementary results:
– Auto-comprehension generalization performances;
– Additional Lexicons;
– Utterances examples across perspectives illustrating coherence;
– Topographic maps & scores;
– Composition matrix examples;
– T-SNEs of embeddings;

A SUPPLEMENTARY METHODS

A.1 SENSORY-MOTOR SYSTEM

Dynamic Motion Primitives. This subsection provides additional details about the implementation of
the Dynamical Movement Primitives use to produce 2-dimensional trajectories. Our drawing system
consists of a 2-dimensional system that mimics the motion of a pen in a plan. Each of the x and y
positions of the pen is controlled by a DMP starting at the center of the image and parameterized
by 10 weights. These weights are the parameters of the motion of a one-dimensional oscillator that
generates a smooth trajectory of 10 points. The parameters of the two DMPs are given in table 3.

Parameter Value

Number of weights 10

Delta time 0.1

Number of points 10

Weights range [-500, 500]

Position Init. 0
Table 3: DMP parameters for each of the two coordinate motions

Sketching Library. Trajectories obtained with the DMPs are then mapped to a 52x52 grid which is
converted to an image with the raster and softor functions of the sketching library Mihai &
Hare (2021a). The drawing thickness parameter is fixed to 1e− 2.
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A.2 TESTING SET

Figure 10 displays examples of compositional referents made of 2 features.

1

Figure 10: Perspective instances of the testing set R2
5.

A.3 TOPOGRAPHIC SCORE

To evaluate the compositionality of the emerging language we define the topographic score:

ρij = ||(O, hij)||2 − ||(O, hk)||2 with k = argmink∈{i,j}||hk, hij ||2) (7)

It is obtained by computing the Hausdorff distance between the utterances denoting compositional
referents with respect to both the utterance denoting the single feature i (dH(u(ri), ·))and the one
denoting the single feature j (dH(u(rj), ·)). To derive our metric, we define 4 groups of utterances
denoting compositional referents.

• u(rij) the utterances for referent made of feature i and j.
• u(rxj , x ̸= i) the utterances denoting referent made by composing feature j with any other

feature different than i
• u(riy, y ̸= j) the utterances denoting referent made by composing feature i with any other

feature different than j
• u(rxy) the utterance denoting all other compositional referents inR2

5.

and compute their Hausdorff distances to u(ri) and u(rj). As displayed in Figure 11, if utterances
u(rij) are compositional we expect them to be at the same time close to u(ri) and close to u(rj) and
hence to land in the bottom left corner of the distance graph. Moreover, they should be closer to the
origin than u(rxj) and u(riy). To quantify to what extent it is the case we compute the barycenter
of each group hi, hj , hij and hxy and compute ”how closer to the origin” is the compositional
barycenter hij compared to its closest barycenter using equation 7.

Figure 11: Idealized mapping of utterances denoting compositional referents in the plan representing distances
to utterances naming isolated features i and j.
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A.4 TRAINING PROCEDURE AND HYPERPARAMETERS

Agents have two separate encoders based on the same model architecture described in Table.4.
Each agent performs association updates with a single step of gradient descent, using its own Adam
optimizer with a learning rate of 1e−4. To allow faster convergence, agents perform an association
update between an abstract referent r⋆A and an utterance u by using a batch of 64 perspectives
{Φ(r⋆A)}i∈[1,64]. From a cognitive science perspective, this is comparable to an agent ”walking
around” an object to better understand how different perceptions relate to the same object. From
a computer science perspective, this is similar to the self-supervised framework of SimCLR (Chen
et al., 2020), where agents learn representation by contrastively aligning the embeddings of an input
with these of the same transformed input.

Layer Activation

Conv2D(filters=8, stride=2, padding=1) ReLU

Conv2D(filters=16, stride=2, padding=1) ReLU

Conv2D(filters=32, stride=2, padding=0) ReLU

Linear(128) ReLU

Linear(32) None
Table 4:

Model architecture used for both the referent and utterance Encoders. (when referents are one-hot
vectors, the 3 Conv2D layers are replaced by a Linear layer with ReLu activation)

While the drawing pipeline is fully differentiable, it is highly sensitive to local minima. Thus, we
solve equation 5 in the descriptive case or equation 6 in the discriminative scenario by simultane-
ously performing gradient descent on a batch of 64 randomly initialized command vectors over 100
iterations, using a newly initialized Adam optimizer each time with a learning rate of 1e−2.
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A.5 PSEUDO-CODE

Algorithm 1 Speaker’s Utterances

Require: perceived referents R̃S , speaker’s referent encoder fS , speaker’s utterance encoder gS ,
sensory-motor system M
Zr ← fS(R̃S)
c ∼ Uniform()
for i in range(Nproduction) do

US ←M(c)
Zu ← gS(U)
S ← simcos(Zr, Zu)
L ← mean(diag(S)) ∗ (−1)
GD step on c to minimize L

end for
Return M(c)

Algorithm 2 Listener’s Selections & Binary Outcomes

Require: perceived referents R̃L, produced utterances US , listener’s referent encoder fL, listener’s
utterance encoder gL
Zr ← fL(R̃L)
Zu ← gL(US)
S ← simcos(Zr, Zu)
t← argmax(S, axis=1)
o← 0
for i in range(Nreferents) do

oi ← 1[ti=i]

end for
Return o

Algorithm 3 Agents’s Association Losses

Require: perceived referents R̃A, produced utterances UA, outcomes o, agent’s referent encoder
fA, agent’s utterance encoder gA
Zr ← fA(R̃A)
Zu ← gA(UA)
S ← simcos(Zr, Zu)
L0 ← CE(S, reduction=False)
L1 ← CE(S⊤, reduction=False)
L ← (L0 + L1)/2
if A = ”S” then
L ← (L · o)/Nreferents

else
L ← (L · 1)/Nreferents

end if
Return L
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B SUPPLEMENTARY RESULTS

B.1 AUTO-COMPREHENSION GENERALIZATION PERFORMANCES

Ref. Auto Social

One-hot 0.997± 0.005 0.991± 0.015

Visual-shared 0.862± 0.034 0.559± 0.027

Visual-unshared 0.425± 0.016 0.388± 0.02

Table 5: Descriptive Success Rate

Ref. Auto Social

One-hot 0.997± 0.005 0.992± 0.009

Visual-shared 0.812± 0.019 0.567± 0.034

Visual-unshared 0.466± 0.019 0.404± 0.019

Table 6: Descriminative Success Rate

We define the Auto performance metric as the communicative success rate, on test set, for language
games involving a single agent playing as both the speaker and listener. We compare Auto and Social
performances (the latter involving pairs of different agents, as done until now) in Tables 6 & 5.

B.2 ADDITIONAL LEXICONS

R[0]R[0] R[1]R[1] R[2]R[2] R[3]R[3] R[4]R[4]

A0A0A0A0A0

A1A1A1A1A1

Figure 12: Instance of an emerging lexicon. (Visual-shared).

R[0]R[0] R[1]R[1] R[2]R[2] R[3]R[3] R[4]R[4]

A0A0A0A0A0

A1A1A1A1A1

Figure 13: Instance of an emerging lexicon. (One-hot).

18



Under review as a conference paper at ICLR 2023

B.3 UTTERANCES EXAMPLES ACROSS PERSPECTIVES ILLUSTRATING COHERENCE.

The following figures illustrate the P-coherence and A-coherence of an emerging lexicon (Visual-
unshared) by displaying, for each referent in R1, the descriptive utterance produced for 10 random
perspectives.

A0

A1

Figure 14: Utterances examples for referent 0.

A0

A1

Figure 15: Utterances examples for referent 1.

A0

A1

Figure 16: Utterances examples for referent 2.

A0

A1

Figure 17: Utterances examples for referent 3.

A0

A1

Figure 18: Utterances examples for referent 4.
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B.4 TOPOGRAPHIC MAPS & SCORES
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Figure 19: Topographic maps and their associated topographic scores for each combination of features with
one-hot referents
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B.4.2 VISUAL - SHARED PERSPECTIVES
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Figure 20: Topographic maps and their associated topographic scores for each combination of features with
shared-visual referents
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B.4.3 VISUAL - UNSHARED PERSPECTIVES
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Figure 21: Topographic maps and their associated topographic scores for each combination of features with
unshared-visual referents
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B.5 COMPOSITION MATRIX EXAMPLES (VISUAL - UNSHARED PERSPECTIVES)
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Figure 22: Instances of descriptive utterances for referents from R1 (blue frames) and R2.
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B.6 T-SNES OF EMBEDDINGS (VISUAL - UNSHARED PERSPECTIVES)

B.6.1 R2 REFERENTS & DESCRIPTIVE UTTERANCES
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Figure 23: T-sne of referent and descriptive utterance embeddings. Embeddings are computed for 100
perspectives of referents from R2. Training conditions are unshared visual referents.
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B.6.2 R2 REFERENTS & DISCRIMINATIVE UTTERANCES
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Figure 24: T-sne of referent and discriminative utterance embeddings. Embeddings are computed for 100
perspectives of referents from R2. Training conditions are unshared visual referents.
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