
Bayesian Kernelized Tensor Factorization as Surrogate
for Bayesian Optimization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Bayesian optimization (BO) mainly uses Gaussian processes (GP) with a stationary1

and separable kernel function (e.g., the squared-exponential kernel with automatic2

relevance determination [SE-ARD]) as the surrogate model. However, such lo-3

calized kernel specifications are deficient in learning complex functions that are4

non-stationary, non-separable and multi-modal. In this paper, we propose using5

Bayesian Kernelized Tensor Factorization (BKTF) as a new surrogate model for6

Bayesian optimization (BO) in a D-dimensional grid with both continuous and7

categorical variables. Our key idea is to approximate the underlyingD-dimensional8

solid with a fully Bayesian low-rank tensor CP decomposition, in which we place9

GP priors on the latent basis functions for each dimension to encode local consis-10

tency and smoothness. With this formulation, the information from each sample11

can be shared not only with neighbors but also across dimensions, thus fostering a12

more global search strategy. Although BKTF no longer has an analytical posterior,13

we efficiently approximate the posterior distribution through Markov chain Monte14

Carlo (MCMC). We conduct numerical experiments on several test functions with15

continuous variables and two machine learning hyperparameter tuning problems16

with mixed variables. The results show that BKTF offers a flexible and highly17

effective approach to characterizing and optimizing complex functions, especially18

in cases where the initial sample size and budget are severely limited.19

1 Introduction20

For many applications in science and engineering, such as emulation-based studies, experiment21

design, and automated machine learning, the goal is to optimize a complex black-box function f(x)22

in a D-dimensional space, for which we have limited prior knowledge. The main challenge in23

such optimization problems is that we aim to efficiently find the global optima, while the objective24

function f is often gradient-free, multimodal and computationally expensive to evaluate. Bayesian25

optimization (BO) offers a powerful statistical approach to these problems, particularly when the26

observation budgets are limited [1, 2, 3]. A typical BO framework consists of two components—a27

surrogate model and an acquisition function (AF)—to balance exploitation and exploration. The28

surrogate is a probabilistic model that allows us to estimate f(x) with uncertainty at a new location29

x, and the AF is used to determine which location to query next.30

Gaussian process (GP) regression is the most widely used surrogate for BO [3, 4], thanks to its31

appealing properties in providing analytical derivations and uncertainty quantification (UQ). The32

choice of kernel/covariance function is a critical decision in GP models; for multidimensional33

BO problems, perhaps the most popular kernel is the ARD (automatic relevance determination)—34

Squared-Exponential (SE) or Matérn kernel [4]. Although this specification has certain numerical35

advantages and can help automatically learn the importance of input variables, a key limitation is36

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

Figure 1: BO for a 2D function: (a) True function surface, where the global maximum is marked; (b)
Comparison between BO models using GP surrogates (with two AFs) and BKTF with 30 random
initial observations, averaged over 20 replications; (c) Specific results of one run, including the final
estimated mean surface for f , in which green dots denote the locations of the selected candidates,
and the corresponding AF surface.

that it implies/assumes that the underlying stochastic process is stationary and separable, and the37

value of the covariance function between two random points quickly goes to zero with the increase38

of input dimensionality. These assumptions can be problematic for complex real-world processes39

with long-range dependencies, because estimating the underlying function with a simple ARD kernel40

would require a large number of observations. A potential solution to address this issue is to use41

more flexible kernel structures. The additive kernel, for example, is designed to characterize a more42

“global” structure by restricting variable interactions [5]. However, in practice using additive kernels43

requires strong prior knowledge to determine the proper interactions and involves a large number44

of kernel hyperparameters to learn [6]. Another emerging solution is to use deep GP [7], such as in45

[8, 9]; however, learning deep GP often becomes a more challenging task due to the inference of46

latent layers. In addition, these GP related surrogates can be more deficient to tune when taking into47

account both continuous and categorical inputs.48

In this paper, we propose using Bayesian Kernelized Tensor Factorization (BKTF) as a flexible49

and adaptive surrogate model for BO in a D-dimensional Cartesian product space (i.e., grid) when50

D is relatively small (say D ≤ 10). BKTF is initially developed for modeling multidimensional51

spatiotemporal data with UQ, for tasks such as spatiotemporal kriging/cokriging [10, 11]. This52

paper adapts BKTF to the BO setting, and our key idea is to characterize the multivariate objective53

function f (x) = f (x1, . . . , xD) for a specific BO problem using the low-rank tensor CANDE-54

COMP/PARAFAC (CP) factorization with random basis functions. Unlike other basis-function55

models that rely on known/deterministic basis functions [12], BKTF uses a hierarchical Bayesian56

framework to achieve high-quality UQ in a more flexible way—GP priors are used to model the basis57

functions, and hyperpriors are used to model kernel hyperparameters in particular for the lengthscale58

that characterizes the scale of variation. In addition, BKTF also provides a natural solution for59

categorical variables, for which we can simply introduce an inverse-Wishart prior on the covariance60

matrix of the basis functions.61

Figure 1 shows the comparison between BKTF and GP surrogates when optimizing a bivariate62

function (D = 2) that is nonstationary, nonseparable, and multimodal. The details of this function63

and the BO experiments are provided in Appendix C. This 2D case clearly shows that GP surrogate64

is limited by the local kernel and becomes ineffective in finding the global solution, while BKTF65

offers superior flexibility and adaptability to characterize the multidimensional process from limited66

data. Unlike GP-based surrogate models, BKTF no longer has an analytical posterior; however,67

efficient inference and acquisition can be achieved through Markov chain Monte Carlo (MCMC)68

in an element-wise learning way, in which we update basis functions and kernel hyperparameters69

using Gibbs sampling and slice sampling, respectively [11]. For optimization, we first use MCMC70

samples to approximate the posterior distribution of the entire tensor and then naturally define the71

upper confidence bound (UCB) of the posterior as AF. This process is feasible for many real-world72

applications that can be studied in a discretized tensor product space, such as experimental design.73

2

We conduct extensive experiments on both standard optimization and ML hyperparameter tuning74

tasks. Our results show that BKTF achieves a fast global search for optimizing complex objective75

functions with limited initial data and budget.76

2 Bayesian optimization77

Let f : X = X1 × . . .×XD → R be a black-box function that could be nonconvex, derivative-free,78

and expensive to evaluate. BO aims to address the global optimization problem:79

x⋆ = argmax
x∈X

f(x). (1)

BO solves this problem by first building a probabilistic model for f(x) (i.e., surrogate model)80

based on initial observations and then using the predictive distribution to decide where in X to81

evaluate/query next. The overall goal of BO is to find the global optimum of the objective function82

using as few evaluations as possible. Most BO models rely on a GP prior for f(x) to achieve83

prediction and UQ:84

f(x) = f(x1, . . . , xD) ∼ GP (m (x) , k (x,x′)) , with xd ∈ Xd, d = 1, . . . , D, (2)
where k (·, ·) is a valid kernel/covariance function and m (·) is a mean function that can be generally85

assumed to be 0. Given a finite set of observation points {xi}ni=1 with xi =
(
xi1, . . . , x

i
D

)⊤
,86

the vector of function values f = (f(x1), . . . , f(xn))
⊤ has a multivariate Gaussian distribution87

f ∼ N (0,K), where K is the n×n covariance matrix. For a set of observed data Dn = {xi, yi}ni=188

with i.i.d. Gaussian noise, i.e., yi = f(xi) + ϵi where ϵi ∼ N (0, τ−1), GP gives an analytical89

posterior distribution of f(x) at an unobserved point x∗:90

f(x∗) | Dn ∼ N
(
kx∗X

(
K + τ−1In

)−1
y, k(x∗,x∗)− kx∗X

(
K + τ−1In

)−1
k⊤
x∗X

)
, (3)

where kx∗X = [k(x∗,x1), . . . , k(x
∗,xn)]

⊤ and y = (y1, . . . , yn)
⊤.91

Algorithm 1: Basic BO process.
Input: Initial dataset D0 and a trained

surrogate model; total budget N .
for n = 1, . . . , N do

Approximate the posterior distribution of
f using the surrogate model based on
Dn−1;

Find next evaluation point xn by
optimizing the AF;

Augment data Dn = Dn−1 ∪ {xn, yn},
update the surrogate model.

Based on the posterior distributions of f , one can92

compute an AF, denoted by α : X → R, for a93

new candidate x∗ and evaluate how promising x∗94

is. In BO, the next query point is often determined95

by maximizing a selected/predefined AF, i.e., xn+1 =96

argmaxx∈X α (x | Dn). Most AFs are based on the97

predictive mean and variance; for example, a com-98

monly used AF is the expected improvement (EI)99

[1]:100

αEI (x | Dn) = σ(x)φ

(
∆(x)

σ(x)

)
+|∆(x)|Φ

(
∆(x)

σ(x)

)
,

(4)
where ∆(x) = µ(x)− f⋆n is the expected difference between the proposed point x and the current101

best solution, f⋆n = maxx∈{xi}n
i=1

f(x) denotes the best function value obtained so far; µ(x) and102

σ(x) are the predictive mean and predictive standard deviation at x, respectively; and φ(·) and Φ(·)103

denote the probability density function (PDF) and the cumulative distribution function (CDF) of104

standard normal, respectively. Another widely applied AF for maximization problems is the upper105

confidence bound (UCB) [13]:106

αUCB (x | Dn, β) = µ(x) + βσ(x), (5)
where β is a tunable parameter that balances exploration and exploitation. The general BO procedure107

can be summarized as Algorithm 1.108

3 BKTF for Bayesian optimization109

3.1 Bayesian hierarchical model specification110

Before introducing BKTF, we first construct a D-dimensional grid space corresponding to111

the search space X , where Xd could be continuous, integer-valued, or categorical. We de-112

fine it on D sets {S1, . . . , SD} and denote the whole grid by
∏D

d=1 Sd: S1 × . . . × SD =113

3

{(s1, . . . , sD) | ∀d ∈ {1, . . . , D}, sd ∈ Sd}. For dimensions with integer-valued and categorical114

input, we consider Sd the set of corresponding discrete values. For dimensions with continuous input,115

the coordinate set Sd is formed by md interpolation points cdi that are distributed over the bounded116

interval Xd = [ad, bd], i.e., Sd =
{
cdi
}md

i=1
with cdi ∈ Xd. The size of Sd becomes |Sd| = md, and117

size of the entire grid space is
∏D

d=1 |Sd|. Note that we do not restrict Sd to be uniformly distributed.118

We assume the underlying function f as a stochastic process that is zero-centered. We randomly119

sample an initial dataset including n0 input-output data pairs D0 = {xi, yi}n0

i=1, where {xi}n0

i=1120

are located in
∏D

d=1 Sd, and this yields an incomplete D-dimensional tensor Y ∈ R|S1|×···×|SD|121

with n0 observed points. BKTF approximates the entire data tensor Y by a kernelized tensor CP122

decomposition:123

Y =

R∑
r=1

λr · gr
1 ◦ gr

2 ◦ · · · ◦ gr
D + E, (6)

whereR is a pre-specified tensor CP rank, λ = (λ1, . . . , λR)
⊤ denote weight coefficients that capture124

the magnitude/importance of each rank in the factorization, gr
d = [grd(sd) : sd ∈ Sd] ∈ R|Sd| denotes125

the rth latent factor for the dth dimension, entries in E are i.i.d. white noises following N (0, τ−1).126

It should be particularly noted that both the coefficients {λr}Rr=1 and the latent basis functions127

{gr1, . . . , grD}Rr=1 are random variables. The function approximation for x = (x1, . . . , xD)
⊤ is:128

f(x) =

R∑
r=1

λrg
r
1 (x1) · · · grD (xD) =

R∑
r=1

λr

D∏
d=1

grd (xd) . (7)

For priors, we assume λr ∼ N (0, 1) for r = 1, . . . , R and use a GP prior on the latent factors for129

dimension d with continuous input:130

grd (xd) | lrd ∼ GP (0, krd (xd, x
′
d; l

r
d)) , for r = 1, . . . , R, (8)

where krd is a valid kernel function. In this paper, we choose a Matérn 3/2 kernel krd (xd, x
′
d; l

r
d) =131

σ2
(
1 +

√
3|xd−x′

d|
lrd

)
exp

(
−

√
3|xd−x′

d|
lrd

)
. We fix the kernel variance of krd as σ2 = 1, and only learn132

the lengthscale hyperparameters lrd, since the variances of the model can be captured by λ. One can133

also exclude λ but introduce variance σ2 as a kernel hyperparameter on one of the basis functions;134

however, learning kernel hyperparameters is computationally more expensive than learning λ. For135

simplicity, we can also assume the lengthscale parameters to be identical, i.e., l1d = . . . = lRd = ld,136

for each dimension d. The prior distribution for the corresponding latent factor gr
d is then a Gaussian137

distribution: gr
d ∼ N (0,Kr

d), where Kr
d is the |Sd| × |Sd| covariance matrix computed from krd.138

We place Gaussian hyperpriors on the log-transformed kernel hyperparameters to ensure positive139

values, i.e., log (lrd) ∼ N
(
µl, τ

−1
l

)
. For categorical input, we assume that the corresponding latent140

basis functions gr
d | Λd ∼ N

(
0,Λ−1

d

)
for r = 1, . . . , R, where the precision matrix Λd follows a141

Wishart prior with an identity scale matrix and |Sd| degrees of freedom, i.e., Λd ∼ W
(
I |Sd|, |Sd|

)
.142

For noise precision τ , we assume a conjugate Gamma prior τ ∼ Gamma (a0, b0). For dimensions143

with integer variables, we could model the covariance of the basis functions either using a kernel144

matrix or with an inverse-Wishart prior, depending on specific situations.145

For observations, we assume each yi in the initial dataset D0 follows a Gaussian distribution:146

yi
∣∣ {grd (xid)}, {λr}, τ ∼ N

(
f (xi) , τ

−1
)
. (9)

3.2 BKTF as a two-layer deep GP147

Here we show the representation of BKTF as a two-layer deep GP. The first layer characterizes148

the generation of latent functions {grd}Rr=1 for dimension d. For the second layer, if we consider149

{gr1, . . . , grD}Rr=1 as parameters and rewrite the functional decomposition in Eq. (7) as a linear function150

f (x; {λr}) =
∑R

r=1 λr
∏D

d=1 g
r
d (xd) with λr

iid∼ N (0, 1), we can marginalize {λr} and obtain a151

fully symmetric multilinear kernel/covariance function for any two data points x = (x1, . . . , xD)
⊤

152

and x′ = (x′1, . . . , x
′
D)

⊤:153

k
(
x,x′; {gr1, . . . , grD}Rr=1

)
=

R∑
r=1

D∏
d=1

grd (xd) g
r
d (x

′
d) . (10)

4

As can be seen, the second layer has a multilinear product kernel function parameterized by154

{gr1, . . . , grD}Rr=1. There are some properties to highlight: (i) the kernel is nonstationary since155

the value of grd(·) is location specific, and (ii) the kernel is nonseparable when R > 1. Therefore,156

this specification is very different from traditional GP surrogates, such as:157
GP ARD: k (x,x′) =

∏D
d=1 kd (xd, x

′
d) ,

kernel function is stationary and separable
Additive GP (2nd order): k (x,x′) =

∑D
d=1 k

1
d (xd, x

′
d) +

∑D−1
d=1

∑D
e=d+1 k

2
d (xd, x

′
d) k

2
e (xe, x

′
e) ,

kerenl is stationary and nonseparable
where all kernel functions are stationary with different hyperparameters (e.g., length scale and158

variance). Compared to the GP-based kernel specification, the multilinear kernel in Eq. (10) has a159

much larger set of hyperparameters and becomes more flexible and adaptive for the data. From a GP160

perspective, learning the hyperparameter in the kernel function in Eq. (10) will be computationally161

expensive; however, we can achieve efficient Bayesian inference of {λr, gr1, . . . , grD}Rr=1 under a162

kernelized tensor factorization framework.163

3.3 Model inference164

Unlike GP, BKTF no longer enjoys an analytical posterior distribution. Based on the aforementioned165

prior and hyperprior settings, we adapt the MCMC updating procedure in Ref. [10, 11] to an efficient166

Gibbs sampling algorithm for model inference. This allows us to accommodate observations that are167

not located in the grid space
∏D

d=1 Sd. The detailed derivation of the sampling algorithm is given in168

Appendix A. In terms of computational cost, we note that updating gr
d and kernel hyperparameters169

requires min
{
O(n3),O(|Sd|3)

}
in time. Sparse GP (such as [14]) could be introduced when n, |Sd|170

become large. See Appendix A, F for detailed discussion/comparison about computation complexity.171

3.4 Prediction and AF computation172

In each step of function evaluation, we run the MCMC sampling process K iterations for model173

inference, where the first K0 samples are taken as burn-in and the last K − K0 samples are174

used for posterior approximation. The predictive distribution for any entry f∗ in the defined grid175

space conditioned on the observed dataset Dn can be obtained by the Monte Carlo approximation176

p (f∗ | Dn,θ0) ≈ 1
K−K0

×
∑K

k=K0+1 p
(
f∗
∣∣∣ (gr

d)
(k)
,λ(k), τ (k)

)
, where θ0 = {µl, τl, a0, b0} is177

the set of all parameters used in hyperpriors. Although a direct analytical predictive distribution does178

not exist in BKTF, we can use MCMC samples to obtain the mean and variance of all points on the179

grid, thus offering an enumeration-based approach to define AF.180

We define a Bayesian variant of the UCB as the AF by approximating the predictive mean and variance181

(or uncertainty) in ordinary GP-based UCB with the values calculated from MCMC sampling.182

For every MCMC sample after burn-in, i.e., k > K0, we can estimate an output tensor F̃ (k)
183

over the entire grid space using the latent factors (gr
d)

(k) and the weight vector λ(k): F̃ (k)
=184 ∑R

r=1 λ
(k)
r (gr

1)
(k) ◦ (gr

2)
(k) ◦ · · · ◦ (gr

D)
(k). We can then compute the corresponding mean and185

variance tensors of the (K − K0) samples {F̃ (k)}Kk=K0+1, and denote the two tensors by U and186

V , respectively. The approximated predictive distribution at each point x in the space becomes187

f̃(x) ∼ N (u(x), v(x)). Following the definition of UCB in Eq. (5), we define Bayesian UCB188

(B-UCB) at location x as αB-UCB (x | D, β, gr
d,λ) = u(x) + β

√
v(x). The next search/query point189

can be determined via xnext = argmaxx∈{
∏D

d=1 Sd−Dn−1} αB-UCB (x).190

We summarize the implementation procedure of BKTF for BO in Appendix B (see Algorithm 2).191

Given the sequential nature of BO, when a new data point arrives at step n, we can start the MCMC192

with the last iteration of the Markov chains at step n− 1 to accelerate model convergence. The main193

computational and storage cost of BKTF is to interpolate and save the tensors F̃ ∈ R|S1|×···×|SD|194

over (K −K0) iterations for Bayesian AF estimation. This could be prohibitive when the MCMC195

sample size K or the dimensionality D becomes large. To avoid saving the tensors, in practice, we196

can simply use the maximum values of each entry over the (K −K0) iterations through iterative197

pairwise comparison. The number of samples after burn-in then implies the value of β in αB-UCB. We198

adopt this simple AF in our numerical experiments.199

5

A critical challenge in BKTF is that tensor size grows exponentially with the number of dimensions.200

To decrease the computational burden of enumeration-based AF, we also implement BKTF with201

random discretization—randomly selecting candidate points instead of reconstructing the whole202

space, denoted as BKTFrandom. BKTFrandom can be applied to functions with higher dimensions203

(e.g., D > 10). We discuss the comparison between BKTF and BKTFrandom in Experiments on test204

functions, see Section 5.1.205

4 Related work206

The key of BO is to effectively characterize the posterior distribution of the objective function207

from a limited number of observations. The most relevant work to our study is the Bayesian208

Kernelized Factorization (BKF) framework, which has been mainly used for modeling large-scale and209

multidimensional spatiotemporal data with UQ. The key idea is to parameterize the multidimensional210

stochastic processes using a factorization model, in which specific priors are used to encode spatial211

and temporal dependencies. Signature examples of BKF include spatial dynamic factor model212

(SDFM) [15], variational Gaussian process factor analysis (VGFA) [16], and Bayesian kernelized213

matrix/tensor factorization (BKMF/BKTF) [10, 11, 17]. A common solution in these models is to214

use GP prior to modeling the factor matrices, thus encoding spatial and temporal dependencies. In215

addition, for categorical dimensions, BKTF uses an inverse-Wishart prior to modeling the covariance216

matrix for the latent factors. A key difference among these methods is how inference is performed.217

SDFM and BKMF/BKTF are fully Bayesian hierarchical models and they rely on MCMC for model218

inference, where the factors can be updated via Gibbs sampling with conjugate priors; for learning219

the posterior distributions of kernel hyperparameters, SDFM uses the Metropolis-Hastings sampling,220

while BKMF/BKTF uses the more efficient slice sampling. On the other hand, VGFA uses variational221

inference to learn factor matrices, while kernel hyperparameters are learned through maximum a222

posteriori (MAP) estimation without UQ. Overall, BKTF has shown superior performance in modeling223

multidimensional spatiotemporal processes with high-quality UQ for 2D/3D spaces [11, 17].224

The proposed BKTF surrogate models the objective function—as a single realization of a random225

process—using low-rank tensor factorization with random basis functions. This basis function-226

based specification is closely related to multidimensional Karhunen-Loève (KL) expansion [18] for227

stochastic (spatial, temporal, and spatiotemporal) processes. Empirical analysis of KL expansion is228

also known as proper orthogonal decomposition (POD). With a known kernel/covariance function,229

truncated KL expansion allows us to approximate the underlying random process using a set of230

eigenvalues and eigenfunctions derived from the kernel function. Numerical KL expansion is often231

referred to as the Garlekin method, and in practice, the basis functions are often chosen as prespecified232

and deterministic functions [12, 19], such as Fourier basis, wavelet basis, orthogonal polynomials,233

B-splines, empirical orthogonal functions, radial basis functions (RBF), and Wendland functions234

(i.e., compactly supported RBF) (see, e.g., [20], [21], [22], [23]). However, the quality of UQ will be235

undermined as the randomness is fully attributed to the coefficients {λr}; in addition, these methods236

also require a large number of basis functions (or a large rank) to fit complex stochastic processes.237

Different from methods with fixed/known basis functions, BKTF uses a Bayesian hierarchical238

modeling framework to better capture the randomness and uncertainty in the data, in which GP priors239

are used to model the latent factors (i.e., basis functions are also random processes) on different240

dimensions, and hyperpriors are introduced on the kernel hyperparameters. Therefore, BKTF becomes241

a fully Bayesian version of multidimensional KL expansion for stochastic processes with unknown242

covariance from partially observed data, however, without imposing any orthogonal constraint on243

the basis functions. Following the analysis in section 3.2, BKTF is also a special case of a two-layer244

deep Gaussian process [24, 7], where the first layer produces latent factors for each dimension, and245

the second layer has a multilinear kernel parameterized by all latent factors.246

5 Experiments247

5.1 Optimization for benchmark test functions248

We test the proposed BKTF model for BO on seven benchmark functions that are used for global249

optimization problems [25], with dimension D ranging from 2 to 10. All selected standard functions250

are multimodal; detailed descriptions are given in Appendix D. In fact, we can visually see that251

the standard Damavandi/Schaffer/Griewank functions in Figure 7 (see Appendix D) indeed have a252

6

Figure 2: Optimization on benchmark test functions, where medians with 25% and 75% quartiles of
10 runs are compared.

low-rank structure. For each function, we assume the initial dataset D0 contains n0 = D observed253

data pairs, and we set the total number of query points to N = 80 for 4D Griewank and 6D Hartmann254

function, N = 200 for 10D Griewank, and N = 50 for others. We rescale the input search range to255

[0, 1] for all dimensions and normalize the output data using z-score normalization.256

Model configuration When applying BKTF to continuous test functions, we introduce md interpo-257

lation points for the dth dimension of the input space. The values of md used for each benchmark258

function are predefined and given in Table 1 (see Appendix D). Setting the resolution grid will require259

certain prior knowledge (e.g., smoothness of the function); and it also depends on the available260

computational resources and the number of entries in the tensor, which grows exponentially with md.261

In practice, we find that setting md = 10 ∼ 100 is sufficient for most problems. We set the CP rank262

R = 2, and for each BO function evaluation run 400 MCMC iterations for model inference where263

the first 200 iterations are taken as burn-in. We use Matérn 3/2 kernel as the covariance function for264

all the test functions.265

Note that for the 10D Griewank function, the grid-based models do not work, and only models built266

in continuous space and BKTFrandom can be performed. For BKTFrandom, in each evaluation we267

randomly select 20k points in the search space as candidates and choose the one with the best AF as268

the next evaluation location.269

Baselines We compare BKTF with the following BO methods that use GP as the surrogate model:270

(1) GP αEI and (2) GPgrid αEI: GP as the surrogate model and EI as the AF, in continuous space271 ∏D
d=1 Xd and Cartesian grid space

∏D
d=1 Sd, respectively; (3) GP αUCB and (4) GPgrid αUCB: GP272

as the surrogate model with UCB as the AF where β = 2, in
∏D

d=1 Xd and
∏D

d=1 Sd, respectively;273

(5) additive GP: the sum of two 1st-order additive kernels per dimension as the surrogate with EI274

as the AF, in continuous space. This baseline has the same number of latent functions as BKTF275

(R = 2) but in a sum-based manner; (6) deepGP: a two-layer fully-Bayesian deep GP with EI as the276

AF, implemented with the deepgp package1.277

Similar as the setting for BKTF, we use Matérn 3/2 kernel in all GP models. Given the computational278

cost, we only compare deepGP on 2D functions [9]. For AF optimization in GP αEI and GP αUCB, we279

first use the DIRECT algorithm [26] and then apply the Nelder-Mead algorithm [27] to further search280

if there exist better solutions. We also compare with SAASBO (Sparse Axis-Aligned Subspace) [28]281

with Hamiltonian Monte Carlo sampling, implemented using BoTorch [29], on the 6D Hartmann and282

10D Griewank functions.283

Results To compare the optimization performance of different models on the benchmark functions,284

we define the absolute error between the global optimum f⋆ and the current estimated global285

optimum f̂⋆, i.e.,
∣∣∣f⋆ − f̂⋆

∣∣∣, as the regret, and examine how regret varies with the number of function286

1https://CRAN.R-project.org/package=deepgp

7

https://CRAN.R-project.org/package=deepgp

evaluations. We run the optimization 10 times for every test function with a different set of initial287

observations. The results are summarized in Figure 2. We see that for the 2D functions Branin288

and Schaffer, BKTF clearly finds the global optima much faster than GP surrogate-based baselines.289

For Damavandi function, where the global minimum (f(x⋆) = 0) is located in a small sharp area290

while the local optimum (f(x) = 2) is located at a large smooth area (see Figure 7 in Appendix D),291

GP-based models are trapped around the local optima in most cases (i.e., regret = 2) and cannot292

jump out. In contrast, BKTF explores the global characteristics of the objective function over the293

entire search space and reaches the global optimum within 10 iterations of function evaluations.294

For higher dimensional Griewank and Hartmann functions, BKTF successfully arrives at the global295

optima under the given observation budgets, while GP-based comparison methods are prone to be296

stuck around local optima. We compare the regret at the last iteration in Table 2 (Appendix E.2),297

along with the average cost of evaluations. The enumeration-based GP surrogates, i.e., GPgrid αEI298

and GPgrid αUCB, perform a little better than direct GP-based search, i.e., GP αEI and GP αUCB on299

Damavandi function, but worse on others. This means that the discretization, to some extent, offers300

possibilities for searching all the alternative points in the space, since in each function evaluation,301

every sample in the space is equally compared solely based on the predictive distribution. Additive302

GP is comparable with R = 2 BKTF; while the results demonstrate that BKTF can be much more303

flexible than additive GP. As for BKTFrandom, we see that it can alleviate the curse of dimensionality304

and be applied for higher-dimensional problems that may not be performed with a grid but at the305

cost of more evaluation budgets, particularly it costs more iterations for lower-dimensional functions306

compared with BKTF.307

Overall, BKTF reaches the global optimum for every test function and shows superior performance308

for complex objective functions with a faster convergence rate. To intuitively compare the overall per-309

formance of different models across multiple experiments/functions, we further estimate performance310

profiles (PPs) [30] (see Appendix E.1), and compute the area under the curve (AUC) for quantitative311

analysis (see bottom right of Figure 2 and Table 2 in Appendix E.2). Our results show that BKTF312

obtains the best performance across all functions.313

Interpretable latent space. The sampled latent functions are interpretable and imply the under-314

lying correlations of the objective function. We illustrate the learned periodic (global) patterns in315

Appendix E.3. Effects of hyperpriors. Since we build a fully Bayesian model, the hyperparameters316

of the covariance functions can be updated automatically from the data likelihood and hyperprior.317

Note that in optimization scenarios where the observations are scarce, the prediction performance of318

BKTF highly depends on the hyperprior settings, i.e., θ0 = {µl, τl, a0, b0}. We discuss the effects of319

hyperpriors in Appendix E.4. Effects of rank. The only predefined model parameter is the model320

rank, all other model parameters and hyperparameters are sampled with MCMC. We discuss the321

effects of rank on the 2D nonstationary nonseparable function defined in Introduction (see Figure 1)322

in Appendix E.5. We see that BKTF is robust to rank specification and can find the global solution323

efficiently with rank set as 2, 4, 6 and 8.324

5.2 Hyperparameter tuning for machine learning325

In this section, we evaluate the performance of BKTF for automatic machine learning (ML) tasks.326

We compare different models to optimize the hyperparameters of two ML algorithms—random forest327

(RF) and neural network (NN)—on classification for the MNIST database of handwritten digits2328

and regression for the Boston housing dataset3. The tuning tasks involve both integer-valued and329

categorical parameters, and the details are given in the Appendix G. We treat those integer-valued330

dimensions as continuous and use a Matérn 3/2 kernel for the basis functions. Given the size of the331

hyperparameter space, we perform BKTFrandom for classification and BKTF for regression. We332

assume that the number of initial observations D0 equals the number of tuning hyperparameters.333

The total budget N is 20 for the classification task and 50 for the regression. We implement RF334

algorithms using the scikit-learn package and construct NN models by Keras with 2 hidden layers.335

All other model hyperparameters are set as the default values.336

Model configuration We treat all the integer hyperparameters as samples from a continuous337

space and then generate the corresponding Cartesian product space
∏D

d=1 Sd. One can interpret338

2http://yann.lecun.com/exdb/mnist/
3https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

8

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html

Figure 3: Comparison of hyperparameter tuning for ML tasks: (a) classification; (b) regression.

the candidate values for each hyperparameter as the interpolation points in the corresponding input339

dimension. The size of the spanned space
∏
Sd is 91× 46× 64× 10× 11× 2 and 91× 46× 13× 10340

for RF classifier and RF regressor, respectively; 91× 49× 31× 18× 3× 2 and 91× 49× 31 for341

NN classifier and NN regressor respectively. We set the tensor rank R = 4 for BKTF, set K = 400342

and K0 = 200 for MCMC inference, and use the Matérn 3/2 kernel for capturing correlations.343

Baselines In addition to GP surrogate-based GP αEI and GP αUCB, we also compare with a baseline344

method: random search (RS), and two non-GP models: particle swarm optimization (PSO) [31] and345

Tree-structured Parzen Estimator (BO-TPE) [32], which are common methods for hyperparameter346

tuning. We exclude grid-based GP models as sampling the entire grid becomes infeasible.347

Results We compare the accuracy for MNIST classification and MSE (mean squared error) for348

Boston housing regression both in terms of the number of function evaluations and still run the349

optimization processes ten times with different initial datasets D0. The results obtained by different350

BO models are given in Figure 3, and the final classification accuracy and regression MSE are351

compared in Table 5 (see Appendix H). For BKTF, we see from Figure 3 that the width between the352

two quartiles of accuracy and error decreases as more iterations are evaluated, and the median curves353

present better convergence rates compared to the baselines. Table 5 also shows that the proposed354

BKTF surrogate achieves the best final mean accuracy and regression error with small standard355

deviations. The results above demonstrate the advantage of BKTF as a surrogate.356

6 Conclusion357

This paper proposes to use Bayesian Kernelized Tensor Factorization (BKTF) as a new surrogate358

model for Bayesian optimization with mixed variables (both discrete/categorical and continuous)359

when the dimensionality is relatively small (e.g., say D < 10). Compared with traditional GP surro-360

gates, the BKTF surrogate is more flexible and adaptive to data thanks to the Bayesian hierarchical361

specification, which provides high-quality UQ for BO tasks. The tensor factorization model behind362

BKTF offers an effective solution to capture global/long-range correlations and cross-dimension cor-363

relations. The inference of BKTF is achieved through MCMC, which provides a natural solution for364

acquisition. Experiments on both test function optimization and ML hyperparameter tuning confirm365

the superiority of BKTF as a surrogate for BO. Moreover, the tensor factorization framework makes366

it straightforward to adapt BKTF to handle multivariate and functional output (see e.g., [33, 34]), by367

directly treating the output coordinates as part of the input. A limitation of BKTF is that we restrict368

BO to a grid search space in order to leverage tensor factorization; however, we believe that designing369

a compatible grid space based on prior knowledge is not a challenging task.370

There are several directions to be explored to make BKTF more scalable. Scalable GP solutions, such371

as sparse GP [14] and Gaussian Markov Random Field (GMRF) [35], can be introduced to reduce372

the inference cost when |Sd| becomes large. The current MCMC-based acquisition method requires373

explicit reconstruction of the whole tensor, which quickly becomes infeasible when D becomes large374

(e.g., D > 20). A natural question is whether it is possible to achieve efficient acquisition directly375

using the basis functions and the corresponding weights without explicitly constructing the tensors.376

This problem corresponds to finding/locating the maximum entry of a tensor given its low-rank377

decomposition (see e.g., [36]).378

This work aims to advance the field of probabilistic machine learning, particularly Bayesian opti-379

mization. Regardless of the model limitations, it has the potential of misuse for ML algorithms.380

9

References381

[1] Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.382

[2] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking383

the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE,384

104(1):148–175, 2015.385

[3] Robert B Gramacy. Surrogates: Gaussian Process Modeling, Design, and Optimization for the386

Applied Sciences. Chapman and Hall/CRC, 2020.387

[4] Christopher KI Williams and Carl Edward Rasmussen. Gaussian Processes for Machine388

Learning. MIT Press, Cambridge, MA, 2006.389

[5] David K Duvenaud, Hannes Nickisch, and Carl Rasmussen. Additive Gaussian processes.390

Advances in neural information processing systems, 24, 2011.391

[6] Mickael Binois and Nathan Wycoff. A survey on high-dimensional Gaussian process modeling392

with application to Bayesian optimization. ACM Transactions on Evolutionary Learning and393

Optimization, 2(2):1–26, 2022.394

[7] Andreas Damianou and Neil D Lawrence. Deep Gaussian processes. In International Conference395

on Artificial Intelligence and Statistics, pages 207–215, 2013.396

[8] Ali Hebbal, Loïc Brevault, Mathieu Balesdent, El-Ghazali Talbi, and Nouredine Melab.397

Bayesian optimization using deep gaussian processes with applications to aerospace system398

design. Optimization and Engineering, 22:321–361, 2021.399

[9] Annie Sauer, Robert B Gramacy, and David Higdon. Active learning for deep gaussian process400

surrogates. Technometrics, 65(1):4–18, 2023.401

[10] Mengying Lei, Aurelie Labbe, Yuankai Wu, and Lijun Sun. Bayesian kernelized matrix402

factorization for spatiotemporal traffic data imputation and kriging. IEEE Transactions on403

Intelligent Transportation Systems, 23(10):18962–18974, 2022.404

[11] Mengying Lei, Aurelie Labbe, and Lijun Sun. Bayesian complementary kernelized learning for405

multidimensional spatiotemporal data. arXiv preprint arXiv:2208.09978, 2022.406

[12] Noel Cressie, Matthew Sainsbury-Dale, and Andrew Zammit-Mangion. Basis-function models407

in spatial statistics. Annual Review of Statistics and Its Application, 9:373–400, 2022.408

[13] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine409

Learning Research, 3(Nov):397–422, 2002.410

[14] Joaquin Quinonero-Candela and Carl Edward Rasmussen. A unifying view of sparse approxi-411

mate Gaussian process regression. The Journal of Machine Learning Research, 6:1939–1959,412

2005.413

[15] Hedibert Freitas Lopes, Esther Salazar, and Dani Gamerman. Spatial dynamic factor analysis.414

Bayesian Analysis, 3(4):759–792, 2008.415

[16] Jaakko Luttinen and Alexander Ilin. Variational Gaussian-process factor analysis for modeling416

spatio-temporal data. Advances in Neural Information Processing Systems, 22:1177–1185,417

2009.418

[17] Mengying Lei, Aurelie Labbe, and Lijun Sun. Scalable spatiotemporally varying coefficient419

modeling with bayesian kernelized tensor regression. arXiv preprint arXiv:2109.00046, 2021.420

[18] Limin Wang. Karhunen-Loeve expansions and their applications. London School of Economics421

and Political Science (United Kingdom), 2008.422

[19] Holger Wendland. Scattered Data Approximation, volume 17. Cambridge university press,423

2004.424

10

[20] Rommel G Regis and Christine A Shoemaker. A stochastic radial basis function method for the425

global optimization of expensive functions. INFORMS Journal on Computing, 19(4):497–509,426

2007.427

[21] Gregory Beylkin, Jochen Garcke, and Martin J Mohlenkamp. Multivariate regression and428

machine learning with sums of separable functions. SIAM Journal on Scientific Computing,429

31(3):1840–1857, 2009.430

[22] Christopher K Wikle and Noel Cressie. A dimension-reduced approach to space-time kalman431

filtering. Biometrika, 86(4):815–829, 1999.432

[23] Mathilde Chevreuil, Régis Lebrun, Anthony Nouy, and Prashant Rai. A least-squares method433

for sparse low rank approximation of multivariate functions. SIAM/ASA Journal on Uncertainty434

Quantification, 3(1):897–921, 2015.435

[24] Alexandra M Schmidt and Anthony O’Hagan. Bayesian inference for non-stationary spatial436

covariance structure via spatial deformations. Journal of the Royal Statistical Society: Series B437

(Statistical Methodology), 65(3):743–758, 2003.438

[25] Momin Jamil and Xin-She Yang. A literature survey of benchmark functions for global439

optimization problems. arXiv preprint arXiv:1308.4008, 2013.440

[26] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. Lipschitzian optimization without441

the lipschitz constant. Journal of optimization Theory and Applications, 79(1):157–181, 1993.442

[27] John A Nelder and Roger Mead. A simplex method for function minimization. The computer443

journal, 7(4):308–313, 1965.444

[28] David Eriksson and Martin Jankowiak. High-dimensional bayesian optimization with sparse445

axis-aligned subspaces. In Uncertainty in Artificial Intelligence, pages 493–503. PMLR, 2021.446

[29] Maximilian Balandat, Brian Karrer, Daniel Jiang, Samuel Daulton, Ben Letham, Andrew G Wil-447

son, and Eytan Bakshy. Botorch: A framework for efficient monte-carlo bayesian optimization.448

Advances in neural information processing systems, 33:21524–21538, 2020.449

[30] Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance450

profiles. Mathematical programming, 91(2):201–213, 2002.451

[31] Jun Tang, Gang Liu, and Qingtao Pan. A review on representative swarm intelligence algorithms452

for solving optimization problems: Applications and trends. IEEE/CAA Journal of Automatica453

Sinica, 8(10):1627–1643, 2021.454

[32] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-455

parameter optimization. Advances in neural information processing systems, 24, 2011.456

[33] Dave Higdon, James Gattiker, Brian Williams, and Maria Rightley. Computer model calibration457

using high-dimensional output. Journal of the American Statistical Association, 103(482):570–458

583, 2008.459

[34] Shandian Zhe, Wei Xing, and Robert M Kirby. Scalable high-order gaussian process regression.460

In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2611–2620.461

PMLR, 2019.462

[35] Havard Rue and Leonhard Held. Gaussian Markov random fields: theory and applications.463

Chapman and Hall/CRC, 2005.464

[36] Anastasiia Batsheva, Andrei Chertkov, Gleb Ryzhakov, and Ivan Oseledets. Protes: probabilistic465

optimization with tensor sampling. Advances in Neural Information Processing Systems, 36:808–466

823, 2023.467

11

Appendix468

Contents (Appendix)469

A Model inference 12470

A.1 Sampling latent functions . 12471

A.2 Sampling kernel hyperparameters . 13472

A.3 Sampling Λd for latent functions on categorical inputs 13473

A.4 Sampling weight vector . 14474

A.5 Sampling model noise precision . 14475

B Algorithm of BKTF for BO 15476

C Optimization for the 2D nonstationary and nonseparable function 15477

C.1 Data generation . 15478

C.2 Experimental setting . 15479

C.3 Results . 15480

D Benchmark test functions 17481

E Supplementary results on benchmark test functions 19482

E.1 Performance profiles . 19483

E.2 Quantitative comparison . 20484

E.3 Interpretation of results . 21485

E.4 Effects of hyperpriors . 22486

E.5 Effects of rank . 23487

F Comparison of computational complexity 24488

G Hyperparameter tuning for machine learning 25489

H Supplementary results on ML hyperparameter tuning 26490

A Model inference491

Assume an observation dataset Dn = {xi, yi}ni=1, we exploit an efficient element-wise Gibbs492

sampling algorithm for model inference.493

A.1 Sampling latent functions494

Given the Gaussian prior and Gaussian likelihood of the latent factors gr
d, their posterior distributions495

are still Gaussian. Let yir = yi −
∑R

h=1
h ̸=r

λh
∏D

d=1 g
h
d

(
xid
)

and yr = [y1r , . . . , y
n
r]

⊤ ∈ Rn for496

r = 1, . . . , R. Every yr generates a D-dimensional tensor Yr ∈ R|S1|×···×|SD| in the Cartesian497

product space
∏D

d=1 Sd. We define a binary tensor O with the same size of Y indicating the locations498

of the observation data, where o (xi) = 1 for i ∈ [1, n], and other values are zero. The posterior of499

12

gr
d is given by500

p (gr
d | −) = N

(
gr
d

∣∣∣ [µr
d]

∗
,
(
[Λr

d]
∗)−1

)
, (11)

where501

[µr
d]

∗
=
(
[Λr

d]
∗)−1

τ (Y r(d) ⊛O(d)

)λr 1⊗
h=D
h̸=d

gr
h

︸ ︷︷ ︸
a∈R|Sd|

, (12)

502

[Λr
d]

∗
= τ diag

O(d)

λr 1⊗
h=D
h̸=d

gr
h

2

︸ ︷︷ ︸
b∈R|Sd|

+(Kr
d)

−1
. (13)

Y r(d) and O(d) are mode-d unfoldings of Yr and O, respectively, with the size of |Sd| ×503

(
∏D

h=1
h ̸=d

|Sh|). Note that the vector term a in [µr
d]

∗ and b in [Λr
d]

∗, which are only relevant to504

the n observations and corresponding function values, can be computed element-wise instead of505

using matrix multiplication and Kronecker product. The point-wise computation can dramatically506

reduce the computational cost, especially for a relatively large D, since in such case the number of507

observations in BO can be much smaller compared to the number of samples in the entire grid space,508

i.e., n≪
∏D

d=1 |Sd|.509

A.2 Sampling kernel hyperparameters510

We update the kernel lengthscale hyperparameters lrd from their marginal posteriors by integrating511

out the latent factors. Let [yr]d = Od vec
(
Y r(d)

)
∈ Rn, where Od ∈ Rn×(

∏D
d=1 |Sd|) is a binary512

matrix obtained by removing the rows corresponding to zeros in vec
(
O(d)

)
from I∏D

d=1 |Sd|. When513

sampling the posteriors for kernel hyperparameters under a given d and r, their marginal likelihoods514

only relate to [yr]d. The log marginal likelihood of lrd, for example, is:515

log p ([yr]d | lrd) ∝ −1

2
([yr]d)

⊤
Σ−1

[yr]d|lrd
[yr]d −

1

2
log det

(
Σ [yr]d|lrd

)
∝ τ2

2
([yr]d)

⊤
H
(
[Λr

d]
∗)−1

H⊤ [yr]d︸ ︷︷ ︸
c

−1

2
log det

(
[Λr

d]
∗)− 1

2
log det (Kr

d) ,

(14)

where H = Od

(
λr
⊗1

h=D
h̸=d

gr
h ⊗ I(|Sd|)

)
∈ Rn×|Sd| and Σ [yr]d|lrd = HKr

dH
⊤ + τ−1In. The516

term c in Eq. (14) is a scalar that can be computed with u⊤u, where u = (Lr
d)

−1
a is a vector517

of length |Sd|; Lr
d = chol

(
[Λr

d]
∗) is the Cholesky factor matrix of [Λr

d]
∗. This means that the518

complicated term c can also be calculated element-wise, and it leads to a fast learning process. With519

the marginal likelihood and predefined log-normal hyperpriors, we can get the marginal posteriors520

of the kernel hyperparameters straightforwardly; and we update them by using the slice sampling521

algorithm presented in [17].522

A.3 Sampling Λd for latent functions on categorical inputs523

For latent factors in dimensions with categorical variables/inputs, we sample the precision hyperpa-524

rameter Λd in its prior distribution from a Wishart distribution:525

Λd | − ∼ W
((

GdG
⊤
d + I |Sd|

)−1

, |Sd|+R

)
. (15)

13

A.4 Sampling weight vector526

Every observed data point has the following distribution:527

yi ∼ N

(
R∑

r=1

λr

D∏
d=1

grd
(
xid
)
=

[
D∏

d=1

g1d
(
xid
)
, . . . ,

D∏
d=1

gRd
(
xid
)]

λ, τ−1

)
, i = 1, . . . , n. (16)

Let g (xi) =
(∏D

d=1 g
1
d

(
xid
)
, . . . ,

∏D
d=1 g

R
d

(
xid
))⊤

∈ RR and y = (y1, . . . , yn)
⊤ ∈ Rn; we then528

have y ∼ N
(
G̃

⊤
λ, τ−1In

)
, where G̃ = [g(x1), . . . , g(xn)] ∈ RR×n. The posterior of λ follows529

a Gaussian distribution530

p (λ | −) ∼ N
(
µ∗

λ, (Λ
∗
λ)

−1
)
, (17)

where531

µ∗
λ = τ (Λ∗

λ)
−1

G̃y, (18)
532

Λ∗
λ = τG̃G̃

⊤
+ IR. (19)

A.5 Sampling model noise precision533

For precision τ , we have a Gamma posterior534

p (τ | −) = Gamma (τ | a∗, b∗) , (20)

where535

a∗ = a0 +
1

2
n, (21)

536

b∗ = b0 +
1

2

n∑
i=1

(
yi −

R∑
r=1

λr

D∏
d=1

grd
(
xid
))2

. (22)

14

B Algorithm of BKTF for BO537

Algorithm 2: BKTF for BO
Input: Initial dataset D0.
for n = 1 to N do

for k = 1 to K do
for r = 1 to R do

for d = 1 to D do
Draw kernel lengthscale hyperparameter lrd or precision hyperparameter Λd;
Draw latent factors (gr

d)
(k);

end for
end for
Draw model noise precision τ (k);
Draw weight vector λ(k);
if k > K0 then

Compute and collect F̃ (k)
.

end if
end for
Compute mean U and variance V of {F̃ (k)};
Compute αB-UCB (x | Dn−1, β) as a tensor;
Find next xn = argmaxx αB-UCB (x | Dn−1, β);
Augment the data Dn = Dn−1 ∪ {xn, yn}.

end for

538

C Optimization for the 2D nonstationary and nonseparable function539

C.1 Data generation540

The function in Figure 1(a) of the paper (see Section 1 Introduction) is a modification of the case541

study used in [11]. It is a 40 × 40 2D process generated in a [1, 2]× [−1, 0] square, with542

Y (x1, x2) = (cos (4 [f1(x1) + f2(x2)]) + sin (4 [f1(x2)− f2(x1)])− 1)

× exp

(
−(x1 − 0.5)2 +

(x2 − 1)2

5

)
, (23)

where f(x1) = x1 (sin 2x1 + 2), f(x2) = 0.2x2
√

99(x2 + 1) + 4, x1 ∈ [1, 2], x2 ∈ [−1, 0]. This543

is a nonstationary, nonseparable, and multimodel function, with the global maximum f(x⋆) = 0.6028544

at x⋆ = (1.75,−0.55).545

C.2 Experimental setting546

We randomly select n0 = 30 data points as the initial data and run 50 iterations (i.e., budget)547

of evaluation for optimization. To compare different surrogates, we run the optimization for 20548

replications with different initial datasets. For the proposed BKTF surrogate, we place Matérn 3/2549

kernel functions on the latent factors, set the rank R = 4, and run 1000 MCMC samples for model550

inference where the first 600 samples are burn-in. For comparison of BO methods, we consider551

typical GP surrogate with both EI and UCB (β = 2) as the AF, denoted by GP αEI and GP αUCB552

respectively, and use the same Matérn 3/2 kernel for GP surrogate.553

C.3 Results554

Figure 1(b) in Section 1 Introduction of the paper shows the medians along with the 25% and 75%555

quantiles of the optimization results from 20 runs. We see that GP αEI and GP αUCB cannot find the556

global optimum in most cases, and they easily get stuck in the lower left flat area which contains557

easily find local optima. Figure 1(c) illustrates the estimation surface of the function and the estimated558

AF surface from one run. It is clear that BKTF can capture global correlations with limited data. The559

15

Figure 4: Optimization on the 2D function (Eq. 23): Posterior distributions of model hyperparameters
learned by BKTF.

Figure 5: Optimization on the 2D function (Eq. 23): Mean of latent factors sampled by BKTF.

search points contain areas of almost every peak in the true function, and the peaks of its AF surface560

also reflect the peak area in f .561

Figure 4 shows the approximated posterior distributions of model parameters in BKTF. Figure 5 and562

Figure 6 illustrate the posterior mean and the last 20 MCMC samples of the latent factors, respectively.563

Samples of the latent factors in panels (a) and (b) of Figure 6 explain the uncertainty learned by564

BKTF for this optimization problem.565

16

(a) MCMC samples for latent factors (d = 1).

(b) MCMC samples for latent factors (d = 2).

Figure 6: Optimization on the 2D function (Eq. 23): The last 20 MCMC samples of the latent factors
in the two dimensions learned by BKTF.

D Benchmark test functions566

We summarize the characteristics of the benchmark functions tested in Table 1. Figure 7 shows567

the functions with 2-dimensional inputs together with the 2D Griewank function. The functional568

expressions and more detailed features of these test functions are provided in the following.569

17

Table 1: Summary of the studied benchmark functions.
Function D Search space md Characteristics

Branin 2 [−5, 10]× [0, 15] 14 3 global minima, flat
Damavandi 2 [0, 14]2 71 multimodal, global minimum located in small area
Schaffer 2 [−10, 10]2 11 multimodal, global optimum located close to local minima

Griewank
3 [−10, 10]3 11 multimodal, many widespread and regularly distributed
4 [−10, 10]4 11 local optima

10 [−10, 10]10 -

Hartmann 6 [0, 1]6 12 multimodal, multi-input

Figure 7: Examples of the tested benchmark functions.

(1) Branin function (D = 2)

f(x1, x2) =

(
x2 −

5.1

4π
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10, (24)

where x1 ∈ [−5, 10] and x2 ∈ [0, 15]. It is a smooth but multimodal function with global minima570

f(x∗) = 0.3978873 at three input points x∗ = (−π, 12.275), (π, 2.275), (3π, 2.425).571

(2) Damavandi function (D = 2)

f(x1, x2) =

[
1−

∣∣∣∣ sin[π(x1 − 2)] sin[π(x2 − 2)]

π2(x1 − 2)(x2 − 2)

∣∣∣∣5
] [

2 + (x1 − 7)2 + 2(x2 − 7)2
]
, (25)

where xd ∈ [0, 14]. This is a multimodal function with the global minimum f(x∗) = 0 at x∗ = (2, 2).572

(3) Schaffer function (D = 2)

f(x1, x2) = 0.5 +
sin2

√
x21 + x22 − 0.5

[1 + 0.001 (x21 + x22)]
2 , (26)

where xd ∈ [−10, 10]. The global minimum value is f(x∗) = 0 at x∗ = (0, 0). One characteristic573

of this function is that the global minimum is located very close to the local minima.574

(4) Griewank function (D = 3, 4, 10)

f(x) = 1 +

D∑
d=1

x2d
4000

−
D∏

d=1

cos

(
xd√
d

)
, (27)

where xd ∈ [−10, 10]. This is a multimodal function with global minimum f(x∗) = 0 at x∗ = (0, 0).575

(5) Hartmann function (D = 6) A nonseparable function with multidimensional inputs and576

multiple local minima.577

f(x) = −
4∑

j=1

cj exp

(
−

6∑
d=1

ajd(xd − bjd)
2

)
, (28)

18

where578

A = [ajd] =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

 , c = [cj] =

 1
1.2
3
3.2

 ,

B = [bjd] =

0.1312 0.1696 0.5569 0.0124 0.8283 0.5586
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2833 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

 ,
(29)

xd ∈ [0, 1]. The 6-dimensional case has 6 local minima, and the global minimum is f(x∗) =579

−3.32237 at x∗ = (0.20169, 0.150011, 0.476874, 0.275332, 0.311652, 0.657301).580

Note that all these minimization problems can be easily transformed as a maximization optimization581

problem, i.e., max−f(x).582

E Supplementary results on benchmark test functions583

E.1 Performance profiles584

When computing the performance profiles (PPs), i.e., Dolan-Moré curves [30], we consider the585

number of function evaluations to find the global optimum as the performance measure. Specifically,586

let tp,a denote the number of evaluations used by method/solver a to reach the global solution in587

experiment p (a lower value is better). The value is equal to Np + 100 if the method cannot find the588

global optimum with Np being the given observation budget for experiment p. The performance ratio589

γp,a =
tp,a

min{tp,a : a ∈ A}
, (30)

where A represents the set that includes all comparing models, and the performance profile for each590

method is the distribution of p (γp,a ≤ ρ) in terms of a factor ρ. We set ρ = 1 : Nmax + 1, where591

Nmax = maxNp is the largest observation budget assumed for the compared experiments. We define592

the problem set {P | ∀p ∈ P} as the 10 runs for every function and draw the performance profiles593

of each model, also set P as the 70 experiments in the 7 tested functions and estimate the overall594

performance profiles.595

We show the obtained PPs across test functions (i.e., overall PPs) in Figure 2 (bottom right) for596

illustration (see Section 5.1 of the paper); the results of all the tested functions are shown below in597

Figure 8. Note we only compute PPs for the methods that compared on all test functions, i.e., deepGP598

and SAASBO are not considered.599

Table 2 gives the AUC (area under the curve) values of these curves, where the AUC of the overall600

performance profiles is taken as the metric to compare the overall performances. As can be seen,601

BKTF obtains the best performance across all the considered functions. In addition, for most of602

the test functions, the AUC of grid-based baseline models is comparable with those of continuous603

GP-based models, suggesting that discretization of the continuous space is feasible to simplify the604

optimization problem.605

19

Figure 8: Performance profiles on the standard test functions.

E.2 Quantitative comparison606

We compare the last step regret, average costs of evaluations, and AUC of PPs of different methods607

on benchmark test functions in Table 2.608

20

Table 2: Optimization on test functions: regret when n = N (mean ± std.) / Average costs of
evaluations / AUC of PPs.

f(x) GP GP GPgrid GPgrid additive BKTF BKTF deepGP SAAS
(D) αEI αUCB αEI αUCB GP random BO

B (2)

regret
0.01 0.01 0.31 0.24 0.05 0.00 0.00 0.02 -
± ± ± ± ± ± ± ±

0.01 0.01 0.62 0.64 0.09 0.00 0.00 0.02

Cost ≈ 44 ≈ 42 ≈ 23 ≈ 36 ≈ 100 ≈ 47 ≈ 4 ≈ 47 -

AUC 32.14 32.14 44.86 42.29 2.14 43.40 48.44 - -

D (2)

regret
2.00 2.00 1.60 2.00 2.00 0.60 0.00 3.00 -
± ± ± ± ± ± ± ±

0.00 0.00 0.80 0.00 0.00 0.92 0.00 0.007

Cost - - - - - ≈ 48 ≈ 5 - -

AUC 12.17 12.17 19.95 17.10 12.17 37.05 49.82 - -

S (2)

regret
0.02 0.02 0.10 0.09 0.03 0.00 0.00 0.08 -
± ± ± ± ± ± ± ±

0.02 0.02 0.15 0.07 0.03 0.00 0.00 0.04

Cost ≈ 36 ≈ 44 > 50 > 50 ≈ 43 ≈ 54 ≈ 22 > 50 -

AUC 41.73 39.51 31.74 29.74 37.00 44.60 48.80 - -

G (3)

regret
0.14 0.25 0.23 0.22 0.10 0.00 0.00 - -
± ± ± ± ± ± ±

0.14 0.10 0.13 0.12 0.09 0.00 0.00

Cost > 100 > 100 > 100 > 100 > 100 ≈ 47 ≈ 43 - -

AUC 48.90 47.69 47.69 47.69 47.69 50.44 50.78 - -

G (4)

regret 0.10 0.19 0.38 0.27 0.13 0.00 0.00 - -
± ± ± ± ± ± ±

0.07 0.12 0.19 0.17 0.11 0.00 0.00

Cost > 100 > 100 > 100 > 100 > 100 ≈ 87 ≈ 68 - -

AUC 79.32 77.61 77.61 77.61 78.17 80.01 80.40 - -

H (6)

regret
0.12 0.07 0.70 0.79 0.48 1e-5 0.00 - 0.19
± ± ± ± ± ± ± ±

0.07 0.07 0.70 0.61 0.17 1e-5 0.00 0.48

Cost > 100 > 100 > 100 > 100 > 100 ≈ 154 ≈ 60 - > 100

AUC 78.11 78.11 79.18 78.11 78.11 78.55 80.78 - -

G (10)

regret
0.36 0.38 - - 0.25 0.00 - - 0.14
± ± - - ± ± ±

0.07 0.10 - - 0.30 0.00 0.10

Cost > 200 > 200 - - > 150 ≈ 124 - - > 200

AUC 197.55 197.55 - - 199.38 200.77 - - -

Overall AUC 186.49 185.75 188.80 187.59 185.40 196.40 199.51 - -
Best results are highlighted in bold fonts. B: Branin; D: Damavandi; S: Schaffer; G: Griewank; H: Hartmann.

E.3 Interpretation of results609

The basis functions learned by BKTF are interpretable. For example, Figure 9 shows the latent factors610

(r = 1) obtained at the last iteration of function evaluation in one run on 3D Griewank function.611

We see that BKTF can learn the periodicity (global structure) of the function benefited from the612

low-rank modeling. On the other hand, a stationary and separable GP cannot, other than using a613

specific kernel function such as the periodic kernel, which however requires strong prior knowledge614

to set the periodicity kernel hyperparameter.615

21

Figure 9: Examples of latent factors learned by BKTF on 3D Griewank function.

Figure 10: Effects of hyperpriors on Branin function: Optimization with different hyperpriors.

E.4 Effects of hyperpriors616

We compare the optimization performance on Branin function with different hyperprior settings in617

Figure 10 as an example to illustrate the effects of hyperpriors. Specifically, we compare the optimiza-618

tion results under several hyperprior assumptions of µl, when τ−1
l is set as 0.5. As can be seen, BKTF619

is not able to reach the global minimum with too small or too large mean assumptions (comparable to620

[0, 1]) on the kernel lengthscales l, for example in the cases where µl = {log (0.05), log (2)}. In con-621

trast, it finds the global optimum after 4 iterations of function evaluations when µl = log (0.5), see the622

purple line. These imply the importance of hyperprior selection. The reason is that in the first several623

evaluations, since the observations are rare, the prior basically determines the exploration-exploitation624

balance and guides the search process.625

Figure 11 shows the approximated posterior distributions for kernel hyperparameters and model noise626

variance when τ−1
l = 0.5, µl = log (0.5). We see that for the re-scaled input space and normalized627

function output, the sampled length scales are around half of the input domain. Such settings are628

reasonable to capture the correlations between the observations and are also interpretable.629

The effects of hyper-priors on other functions are similar, and we choose an appropriate setting630

relevant to the input range. The hyper-prior on τ impacts the uncertainty of the latent factors, for631

example a large model noise assumption allows more variances in the factors. The role of {a0, b0}632

becomes more important when the objective function is complex that BKTF cannot well describe the633

function with limited observations. Generally, we select the priors that make the noise variances not634

quite large, such as the results of τ−1 shown in Figure 4 and Figure 11. An example of the uncertainty635

provided by BKTF is explained in Appendix C (see Figure 6).636

22

Figure 11: Effects of hyperpriors on Branin function: Posterior probability distributions of length-
scales and model noise variance when τ−1

l = 0.5, µl = log(0.5).

E.5 Effects of rank637

Under a fully Bayesian treatment, kernel hyperparameters of BKTF are automatically sampled by638

MCMC with proper priors; the only selected parameter is the model rank. We test the effects of rank639

specification for the proposed BKTF surrogate on the 2D nonstationary nonseparable function defined640

in Section 1 Introduction (see Figure 1 and Appendix C). We use the same experiment settings as in641

Appendix C, i.e., 30 initial observations and 50 budget.642

The results are given in Figure 12 and 13, where we compare the optimization performance of BKTF643

with rank R = {2, 4, 6, 8} and two GP-based surrogate models: GP αEI and GP αUCB. To clearly644

illustrate the results, we only show the comparison on one run. In Figure 12, we compare the regret645

from different models, and in Figure 13 we compute and compare the mean CRPS (continuous ranked646

probability score) on the unobserved points.647

CRPS is a widely applied metric for evaluating the performance of UQ for probabilistic models. With648

Gaussian likelihoods, CRPS can be defined as:649

CRPS = − 1

n′

n′∑
i=1

σi

[
1√
π
− 2ψ

(
fi − ŷi
σi

)
− fi − ŷi

σi

(
2Φ

(
fi − ŷi
σi

)
− 1

)]
, (31)

where n′ is the number of unknown points in the defined space, i.e., n′ =
∏D

d=1md − n, ŷi and650

σi are the approximated posterior mean and std. for the ith data point, respectively, fi denotes the651

true value for the ith point, and ψ (·) and Φ (·) are the PDF (probability density function) and CDF652

(cumulative distribution function) of standard normal, respectively.653

We see that BKTF successfully finds the global optimum with rank from 2 to 8, and obtains better654

(lower) CRPS values than GP baseline surrogates during the search processes. These results indicate655

that the proposed fully Bayesian framework is robust to the rank setting and can avoid overfitting.656

23

Figure 12: Effects of rank specification on the test function defined in Introduction (see Appendix C,
Eq. 23): Comparison of optimization performance.

Figure 13: Effects of rank specification on the test function defined in Introduction (see Appendix C,
Eq. 23): Comparison of CRPS.

F Comparison of computational complexity657

We compare the computational complexity of BKTF, BKTFrandom and the baseline methods applied658

on test functions in Table 3, where n is the number of observations, md is the number of interpo-659

lation points for the dth dimension, and nrandom denotes the number of candidates we selected in660

BKTFrandom, which is 20k in the conducted experiments.661

As can be seen, theoretically the proposed model BKTF/BKTFrandom has the lowest computational662

complexity.663

24

Table 3: Comparison of model complexity.
Model Complexity

GP αEI O
(
n3
)

GP αUCB O
(
n3
)

GPgrid αEI O
((∏D

d=1md

)3)
GPgrid αUCB O

((∏D
d=1md

)3)
additive GP O

(
n3
)

BKTF min
{
O
(
n3
)
,O
(∑D

d=1m
3
d

)}
BKTFrandom O

(
n3random

)
deepGP O

((∏D
d=1md

)3)

G Hyperparameter tuning for machine learning664

Table 4 lists all the hyperparameters in the tuning tasks.665

Table 4: Hyperparameters of the tested ML algorithms.
Dataset Algorithm Hyperparameters Type Search space

MNIST

RF classifier

no. of estimators integer [10, 100]
max depth integer [5, 50]

max features integer [1, 64]
min samples split integer [2, 11]
min samples leaf integer [1,11]

criterion categorical gini, entropy

NN classifier

neurons integer [10, 100]
batch size integer [16, 64]

epochs integer [20, 50]
patience integer [3, 20]

optimizer categorical adam, rmsprop, sgd
activation categorical relu, tanh

Boston housing

RF regressor

no. of estimators integer [10, 100]
max depth integer [5, 50]

max features integer [1, 13]
min samples split integer [2, 11]

NN regressor
neurons integer [10, 100]

batch size integer [16, 64]
epochs integer [20, 50]

25

H Supplementary results on ML hyperparameter tuning666

We summarize the final accuracy obtained with different BO methods for MNIST classification and667

the final MSE for the regression task in Table 5.668

Table 5: Final accuracy for (a) MNIST classification and MSE for (b) Boston housing regression.
(a) MNIST (b) Boston housing

RF classifier NN classifier RF regressor NN regressor

RS 96.09 ± 0.05 97.59 ± 0.37 26.10 ± 0.45 40.43 ± 3.91
PSO 95.84 ± 0.14 97.54 ± 0.51 26.07 ± 0.44 44.40 ± 6.29
GP αEI 96.10 ± 0.07 98.04 ± 0.05 26.19 ± 0.45 38.46 ± 3.31
GP αUCB 96.06 ± 0.05 97.46 ± 0.64 26.34 ± 0.35 36.78 ± 1.91
BO-TPE 96.10 ± 0.06 97.52 ± 0.06 26.27 ± 0.31 36.40 ± 4.72
BKTF - - 25.03 ± 0.18 30.84 ± 1.13
BKTFrandom 96.38 ± 0.04 98.16 ± 0.09 - -
The values are presented as mean ± std. Best results are highlighted in bold fonts.

26

NeurIPS Paper Checklist669

1. Claims670

Question: Do the main claims made in the abstract and introduction accurately reflect the671

paper’s contributions and scope?672

Answer: [Yes]673

Justification: Please see Abstract and Section Introduction for more details.674

Guidelines:675

• The answer NA means that the abstract and introduction do not include the claims676

made in the paper.677

• The abstract and/or introduction should clearly state the claims made, including the678

contributions made in the paper and important assumptions and limitations. A No or679

NA answer to this question will not be perceived well by the reviewers.680

• The claims made should match theoretical and experimental results, and reflect how681

much the results can be expected to generalize to other settings.682

• It is fine to include aspirational goals as motivation as long as it is clear that these goals683

are not attained by the paper.684

2. Limitations685

Question: Does the paper discuss the limitations of the work performed by the authors?686

Answer: [Yes]687

Justification: We discuss the limitations in Section 6 Conclusion.688

Guidelines:689

• The answer NA means that the paper has no limitation while the answer No means that690

the paper has limitations, but those are not discussed in the paper.691

• The authors are encouraged to create a separate "Limitations" section in their paper.692

• The paper should point out any strong assumptions and how robust the results are to693

violations of these assumptions (e.g., independence assumptions, noiseless settings,694

model well-specification, asymptotic approximations only holding locally). The authors695

should reflect on how these assumptions might be violated in practice and what the696

implications would be.697

• The authors should reflect on the scope of the claims made, e.g., if the approach was698

only tested on a few datasets or with a few runs. In general, empirical results often699

depend on implicit assumptions, which should be articulated.700

• The authors should reflect on the factors that influence the performance of the approach.701

For example, a facial recognition algorithm may perform poorly when image resolution702

is low or images are taken in low lighting. Or a speech-to-text system might not be703

used reliably to provide closed captions for online lectures because it fails to handle704

technical jargon.705

• The authors should discuss the computational efficiency of the proposed algorithms706

and how they scale with dataset size.707

• If applicable, the authors should discuss possible limitations of their approach to708

address problems of privacy and fairness.709

• While the authors might fear that complete honesty about limitations might be used by710

reviewers as grounds for rejection, a worse outcome might be that reviewers discover711

limitations that aren’t acknowledged in the paper. The authors should use their best712

judgment and recognize that individual actions in favor of transparency play an impor-713

tant role in developing norms that preserve the integrity of the community. Reviewers714

will be specifically instructed to not penalize honesty concerning limitations.715

3. Theory Assumptions and Proofs716

Question: For each theoretical result, does the paper provide the full set of assumptions and717

a complete (and correct) proof?718

Answer: [Yes]719

27

Justification: We illustrate methodology and technical details of the proposed model in720

Section 3 BKTF for Bayesian optimization and Appendix A Model inference.721

Guidelines:722

• The answer NA means that the paper does not include theoretical results.723

• All the theorems, formulas, and proofs in the paper should be numbered and cross-724

referenced.725

• All assumptions should be clearly stated or referenced in the statement of any theorems.726

• The proofs can either appear in the main paper or the supplemental material, but if727

they appear in the supplemental material, the authors are encouraged to provide a short728

proof sketch to provide intuition.729

• Inversely, any informal proof provided in the core of the paper should be complemented730

by formal proofs provided in appendix or supplemental material.731

• Theorems and Lemmas that the proof relies upon should be properly referenced.732

4. Experimental Result Reproducibility733

Question: Does the paper fully disclose all the information needed to reproduce the main ex-734

perimental results of the paper to the extent that it affects the main claims and/or conclusions735

of the paper (regardless of whether the code and data are provided or not)?736

Answer: [Yes]737

Justification: We illustrate detailed information for experiment implementation in Section 5738

Experiments and Appendices C-G.739

Guidelines:740

• The answer NA means that the paper does not include experiments.741

• If the paper includes experiments, a No answer to this question will not be perceived742

well by the reviewers: Making the paper reproducible is important, regardless of743

whether the code and data are provided or not.744

• If the contribution is a dataset and/or model, the authors should describe the steps taken745

to make their results reproducible or verifiable.746

• Depending on the contribution, reproducibility can be accomplished in various ways.747

For example, if the contribution is a novel architecture, describing the architecture fully748

might suffice, or if the contribution is a specific model and empirical evaluation, it may749

be necessary to either make it possible for others to replicate the model with the same750

dataset, or provide access to the model. In general. releasing code and data is often751

one good way to accomplish this, but reproducibility can also be provided via detailed752

instructions for how to replicate the results, access to a hosted model (e.g., in the case753

of a large language model), releasing of a model checkpoint, or other means that are754

appropriate to the research performed.755

• While NeurIPS does not require releasing code, the conference does require all submis-756

sions to provide some reasonable avenue for reproducibility, which may depend on the757

nature of the contribution. For example758

(a) If the contribution is primarily a new algorithm, the paper should make it clear how759

to reproduce that algorithm.760

(b) If the contribution is primarily a new model architecture, the paper should describe761

the architecture clearly and fully.762

(c) If the contribution is a new model (e.g., a large language model), then there should763

either be a way to access this model for reproducing the results or a way to reproduce764

the model (e.g., with an open-source dataset or instructions for how to construct765

the dataset).766

(d) We recognize that reproducibility may be tricky in some cases, in which case767

authors are welcome to describe the particular way they provide for reproducibility.768

In the case of closed-source models, it may be that access to the model is limited in769

some way (e.g., to registered users), but it should be possible for other researchers770

to have some path to reproducing or verifying the results.771

5. Open access to data and code772

28

Question: Does the paper provide open access to the data and code, with sufficient instruc-773

tions to faithfully reproduce the main experimental results, as described in supplemental774

material?775

Answer: [Yes]776

Justification: We provide the code for the 2D test function in supplementary material.777

Guidelines:778

• The answer NA means that paper does not include experiments requiring code.779

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/780

public/guides/CodeSubmissionPolicy) for more details.781

• While we encourage the release of code and data, we understand that this might not be782

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not783

including code, unless this is central to the contribution (e.g., for a new open-source784

benchmark).785

• The instructions should contain the exact command and environment needed to run to786

reproduce the results. See the NeurIPS code and data submission guidelines (https:787

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.788

• The authors should provide instructions on data access and preparation, including how789

to access the raw data, preprocessed data, intermediate data, and generated data, etc.790

• The authors should provide scripts to reproduce all experimental results for the new791

proposed method and baselines. If only a subset of experiments are reproducible, they792

should state which ones are omitted from the script and why.793

• At submission time, to preserve anonymity, the authors should release anonymized794

versions (if applicable).795

• Providing as much information as possible in supplemental material (appended to the796

paper) is recommended, but including URLs to data and code is permitted.797

6. Experimental Setting/Details798

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-799

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the800

results?801

Answer: [Yes]802

Justification: We specify the experimental setting and implementation details in Section 5803

Experiments and Appendices C-G.804

Guidelines:805

• The answer NA means that the paper does not include experiments.806

• The experimental setting should be presented in the core of the paper to a level of detail807

that is necessary to appreciate the results and make sense of them.808

• The full details can be provided either with the code, in appendix, or as supplemental809

material.810

7. Experiment Statistical Significance811

Question: Does the paper report error bars suitably and correctly defined or other appropriate812

information about the statistical significance of the experiments?813

Answer: [Yes]814

Justification: We repeat the experiments certain times and report the mean with std. results815

in Figure 1, 2, 3, and Table 2, 5.816

Guidelines:817

• The answer NA means that the paper does not include experiments.818

• The authors should answer "Yes" if the results are accompanied by error bars, confi-819

dence intervals, or statistical significance tests, at least for the experiments that support820

the main claims of the paper.821

• The factors of variability that the error bars are capturing should be clearly stated (for822

example, train/test split, initialization, random drawing of some parameter, or overall823

run with given experimental conditions).824

29

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,825

call to a library function, bootstrap, etc.)826

• The assumptions made should be given (e.g., Normally distributed errors).827

• It should be clear whether the error bar is the standard deviation or the standard error828

of the mean.829

• It is OK to report 1-sigma error bars, but one should state it. The authors should830

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis831

of Normality of errors is not verified.832

• For asymmetric distributions, the authors should be careful not to show in tables or833

figures symmetric error bars that would yield results that are out of range (e.g. negative834

error rates).835

• If error bars are reported in tables or plots, The authors should explain in the text how836

they were calculated and reference the corresponding figures or tables in the text.837

8. Experiments Compute Resources838

Question: For each experiment, does the paper provide sufficient information on the com-839

puter resources (type of compute workers, memory, time of execution) needed to reproduce840

the experiments?841

Answer: [Yes]842

Justification: All the experiments can be performed with a 16-core 2.40 GHz CPU and 32843

GB RAM.844

Guidelines:845

• The answer NA means that the paper does not include experiments.846

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,847

or cloud provider, including relevant memory and storage.848

• The paper should provide the amount of compute required for each of the individual849

experimental runs as well as estimate the total compute.850

• The paper should disclose whether the full research project required more compute851

than the experiments reported in the paper (e.g., preliminary or failed experiments that852

didn’t make it into the paper).853

9. Code Of Ethics854

Question: Does the research conducted in the paper conform, in every respect, with the855

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?856

Answer: [Yes]857

Justification: The research conducted in this paper conform with the NeurIPS code of ethics.858

Guidelines:859

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.860

• If the authors answer No, they should explain the special circumstances that require a861

deviation from the Code of Ethics.862

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-863

eration due to laws or regulations in their jurisdiction).864

10. Broader Impacts865

Question: Does the paper discuss both potential positive societal impacts and negative866

societal impacts of the work performed?867

Answer: [Yes]868

Justification: This paper presents work whose goal is to advance the field of probabilistic869

Machine Learning, particularly Bayesian Optimization. We discussed such impacts in870

Section 6 Conclusion.871

Guidelines:872

• The answer NA means that there is no societal impact of the work performed.873

• If the authors answer NA or No, they should explain why their work has no societal874

impact or why the paper does not address societal impact.875

30

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses876

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations877

(e.g., deployment of technologies that could make decisions that unfairly impact specific878

groups), privacy considerations, and security considerations.879

• The conference expects that many papers will be foundational research and not tied880

to particular applications, let alone deployments. However, if there is a direct path to881

any negative applications, the authors should point it out. For example, it is legitimate882

to point out that an improvement in the quality of generative models could be used to883

generate deepfakes for disinformation. On the other hand, it is not needed to point out884

that a generic algorithm for optimizing neural networks could enable people to train885

models that generate Deepfakes faster.886

• The authors should consider possible harms that could arise when the technology is887

being used as intended and functioning correctly, harms that could arise when the888

technology is being used as intended but gives incorrect results, and harms following889

from (intentional or unintentional) misuse of the technology.890

• If there are negative societal impacts, the authors could also discuss possible mitigation891

strategies (e.g., gated release of models, providing defenses in addition to attacks,892

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from893

feedback over time, improving the efficiency and accessibility of ML).894

11. Safeguards895

Question: Does the paper describe safeguards that have been put in place for responsible896

release of data or models that have a high risk for misuse (e.g., pretrained language models,897

image generators, or scraped datasets)?898

Answer: [Yes]899

Justification: This work has the potential of misuse for machine learning algorithms. How-900

ever the current model has certain limitations on applying for high-dimensional problems,901

thus such risks are low. We mentioned such risks in the last paragraph in Section 6 Conclu-902

sion.903

Guidelines:904

• The answer NA means that the paper poses no such risks.905

• Released models that have a high risk for misuse or dual-use should be released with906

necessary safeguards to allow for controlled use of the model, for example by requiring907

that users adhere to usage guidelines or restrictions to access the model or implementing908

safety filters.909

• Datasets that have been scraped from the Internet could pose safety risks. The authors910

should describe how they avoided releasing unsafe images.911

• We recognize that providing effective safeguards is challenging, and many papers do912

not require this, but we encourage authors to take this into account and make a best913

faith effort.914

12. Licenses for existing assets915

Question: Are the creators or original owners of assets (e.g., code, data, models), used in916

the paper, properly credited and are the license and terms of use explicitly mentioned and917

properly respected?918

Answer: [Yes]919

Justification: We include the URLs for the datasets we used in this work.920

Guidelines:921

• The answer NA means that the paper does not use existing assets.922

• The authors should cite the original paper that produced the code package or dataset.923

• The authors should state which version of the asset is used and, if possible, include a924

URL.925

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.926

• For scraped data from a particular source (e.g., website), the copyright and terms of927

service of that source should be provided.928

31

• If assets are released, the license, copyright information, and terms of use in the929

package should be provided. For popular datasets, paperswithcode.com/datasets930

has curated licenses for some datasets. Their licensing guide can help determine the931

license of a dataset.932

• For existing datasets that are re-packaged, both the original license and the license of933

the derived asset (if it has changed) should be provided.934

• If this information is not available online, the authors are encouraged to reach out to935

the asset’s creators.936

13. New Assets937

Question: Are new assets introduced in the paper well documented and is the documentation938

provided alongside the assets?939

Answer: [Yes]940

Justification: We submit partial of the code in supplementary material and select a license941

when submitting the paper.942

Guidelines:943

• The answer NA means that the paper does not release new assets.944

• Researchers should communicate the details of the dataset/code/model as part of their945

submissions via structured templates. This includes details about training, license,946

limitations, etc.947

• The paper should discuss whether and how consent was obtained from people whose948

asset is used.949

• At submission time, remember to anonymize your assets (if applicable). You can either950

create an anonymized URL or include an anonymized zip file.951

14. Crowdsourcing and Research with Human Subjects952

Question: For crowdsourcing experiments and research with human subjects, does the paper953

include the full text of instructions given to participants and screenshots, if applicable, as954

well as details about compensation (if any)?955

Answer: [NA]956

Justification: This paper does not involve crowdsourcing nor research with human subjects.957

Guidelines:958

• The answer NA means that the paper does not involve crowdsourcing nor research with959

human subjects.960

• Including this information in the supplemental material is fine, but if the main contribu-961

tion of the paper involves human subjects, then as much detail as possible should be962

included in the main paper.963

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,964

or other labor should be paid at least the minimum wage in the country of the data965

collector.966

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human967

Subjects968

Question: Does the paper describe potential risks incurred by study participants, whether969

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)970

approvals (or an equivalent approval/review based on the requirements of your country or971

institution) were obtained?972

Answer: [NA]973

Justification: This paper does not involve crowdsourcing nor research with human subjects.974

Guidelines:975

• The answer NA means that the paper does not involve crowdsourcing nor research with976

human subjects.977

• Depending on the country in which research is conducted, IRB approval (or equivalent)978

may be required for any human subjects research. If you obtained IRB approval, you979

should clearly state this in the paper.980

32

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions981

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the982

guidelines for their institution.983

• For initial submissions, do not include any information that would break anonymity (if984

applicable), such as the institution conducting the review.985

33

	Introduction
	Bayesian optimization
	BKTF for Bayesian optimization
	Bayesian hierarchical model specification
	BKTF as a two-layer deep GP
	Model inference
	Prediction and AF computation

	Related work
	Experiments
	Optimization for benchmark test functions
	Hyperparameter tuning for machine learning

	Conclusion
	Model inference
	Sampling latent functions
	Sampling kernel hyperparameters
	Sampling TEXT for latent functions on categorical inputs
	Sampling weight vector
	Sampling model noise precision

	Algorithm of BKTF for BO
	Optimization for the 2D nonstationary and nonseparable function
	Data generation
	Experimental setting
	Results

	Benchmark test functions
	Supplementary results on benchmark test functions
	Performance profiles
	Quantitative comparison
	Interpretation of results
	Effects of hyperpriors
	Effects of rank

	Comparison of computational complexity
	Hyperparameter tuning for machine learning
	Supplementary results on ML hyperparameter tuning

