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ABSTRACT

Clustering of graphs has been an attractive topic in recent years. Recent research
has focused on deep fusion graph clustering methods, i.e., fusing two different net-
work structures to enhance the performance of clustering by capturing both graph
structure information and node feature information. However, this approach is
constrained by the representativeness of the chosen neural network and the choice
of the fusion mechanism leads to an unpredictable degree of discretization of the
learned graph embeddings. It thus becomes crucial to obtain more compact graph
embeddings compatible with the clustering task. In this paper, we propose a new
end-to-end fusion, dual fusion autoencoder for graph clustering (DFAC) for deep
fusion networks. Our model makes full use of the topology and feature informa-
tion of the graph and is trained simultaneously by multiple components to obtain
better graph embedding. Benefiting from our design of a new dual fusion mech-
anism, this captures cross-modal good embeddings containing node topology and
node feature information. Such a design makes it learn relaxed k-means and per-
forms self-supervised training to improve the quality of graph embeddings while
reconstructing the graph structure. By optimizing the training process that is in
a unified framework, multiple components are mutually beneficial. Experimental
results on six publicly available datasets demonstrate the superiority of the pro-
posed method.

1 INTRODUCTION

Many real-world research problems rely on graph data mining skills.Typical applications include
community detection (Orgaz & Camacho, 2014), group segmentation (Kim et al., 2022), and func-
tional group discovery in enterprise social networks (Hu et al., 2016). However, the complexity of
graph structure poses a serious challenge, where the graph clustering task is one of the most impor-
tant research topics in the above problem. The purpose of graph clustering is to divide nodes in a
graph into disjoint groups.

Some traditional methods (e.g., k-means (MacQueen, 1967), DBSCAN (Ester et al., 1996), Graphs
(Donath & Hoffman, 1973), GMM (Zivkovic, 2004), etc.) only use the features of the nodes. There
are also graph-based models(e.g., spectral clustering (Li et al., 2019; Alshammari & Takatsuka,
2019))that only use graphical information and ignore the characteristics of the nodes. Although
some models (Zhang et al., 2019a) use both node features and graph structures, the high dimension-
ality of the data limits the performance of the model.

With the rise of deep learning, deep clustering methods have gradually come into the limelight.
Inspired by the structure of autoencoders, graph autoencoder is proposed for unsupervised repre-
sentation learning and graph clustering. It can handle more unsupervised tasks compared to GCN,
existing methods such as (Kipf & Welling, 2016b), (Hasanzadeh et al., 2019), (Li et al., 2022), (Shi
et al., 2020a), (Shi et al., 2020b) and (Ma et al., 2018). However, all of these methods suffer from
overfitting problems, resulting in learned embeddings that may not be suitable for the subsequent
graph clustering task, thus making graph clustering less effective. Therefore, the top priority is to
obtain better goal-oriented graph embeddings.

The emergence of attention mechanisms has brought a turning point to the aforementioned issues.
It can automatically capture the weights of adjacent nodes on target nodes through attention mecha-
nisms. Therefore, in this paper, we propose the deep fusion autoencoder for graph clustering (DFAC)
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that incorporates the graph attention mechanism. On the one hand, the encoder of this framework
consists of a deep fusion of autoencoder (AE) and graph attention network (GAT) networks to alle-
viate the over-smoothing problem. On the other hand, we newly designed a daul fusion mechanism.
Double fusion of graph embeddings from shallow to deep layers leads to better clustering results.
The decoder, during the model training process, learns the relaxed k-means while reconstructing the
topological graph information, and the graph embedding guides the optimization process by using
the clustering task as a soft label through a self-supervised training module. Our contributions are
as follows:

• We propose a multi-component specific architecture based on fusion networks for graph
clustering. Based on this, we propose a new dual fusion mechanism for fusing cross-modal
data.

• The learned embeddings of our model have good interpretability, making the model also a
qualified representation learning model. At the same time our model is end-to-end, which
means that multiple components are performed simultaneously, creating mutual benefits.

• Extensive experimental results on public datasets of different sizes show that we are at the
state-of-the-art in performance.

2 RELATED WORK

2.1 DEEP CLUSTERING ALGORITHMS

Autoencoders have been widely used especially for unsupervised learning tasks. Deep Embedded
Clustering is the first unsupervised algorithm to apply autoencoder to clustering. The method uses
a stacked noise reduction autoencoder learning method to obtain a hidden representation of high-
dimensional data and then optimizes the autoencoder parameters using a defined KL loss. Many
subsequent methods have also applied similar structures (Yang et al., 2017; Caron et al., 2018).

Guo et al. (2017) argued that the defined clustering loss corrupts the feature space, resulting in
obtaining potential representations that are not feature representative, so they reincorporated the
decoder to optimize the reconstruction error and clustering loss. Since then, there have been an
increasing number of algorithms based on this deep clustering framework (Wang et al., 2018; Dizaji
et al., 2017). However, to the best of our knowledge, these algorithms do not apply to graph data.
For graph data, which requires careful mining of graph topology and node feature information, goal-
oriented clustering of graph data remains an open problem in the field

2.2 GRAPH EMBEDDING

Due to the rise of deep learning, the development of neural networks has also affected graph neural
networks. Traditional GNN networks assign weights to neighbor nodes obtained by considering
setting or learning (Igarashi et al., 2011; Hernández & Salinas, 2004), but the weighting problem
leads to the limitations of numerous algorithms, such as the inability to express the length of the ring
graph well resulting in the lack of information about the graph topology.

To solve this problem, the GCN structure emerged (Kipf & Welling, 2017), which mainly applies
convolutional operations to the graph structure. It assigns weights by graph topology specific infor-
mation, which is based on the degree of a node to find the edge weights. The higher the degree of
a node, the lower the weight of its edges connected to other nodes. This structure also leads to the
fact that GCN cannot assign different weights to each of its neighbors.

In the meantime, researchers have found that encoders composed of a single neural network tend to
overlook important information, and thus deep fusion networks have been proposed. Inspired by this
work of (Fu et al., 2019), (Bo et al., 2020) and (Tu et al., 2021) are the more representative works of
deep fusion networks in the field of graph clustering. Bo et al. (2020) first combines DNN and GCN
networks and utilizes delivery operators to achieve fusion at the coding level. Tu et al. (2021), on
the other hand, fused AE and GNN networks and designed a unique dynamic fusion mechanism to
realize fusion enhancement. However, these methods still impose bad limitations on the clustering
performance due to the defects of GCN and GNN itself.
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Figure 1: Flowchart of DFAC. Where A represents the structural information of the graph, X is the
node feature information in the graph. B process represents the relaxed k-means.

The graph attention network (Velickovic et al., 2017) was proposed to solve the above problem of
GCN, which can assign different weights to different nodes by Multi-head Attention, and relies
on pairs of neighboring nodes during training, rather than on specific network structures. And the
scalability is relatively good for directed graphs. It is more reasonable than GCN’s update weights
which are purely dependent on the graph structure.

3 METHOD

In this chapter, we first introduce the organization of our deep fusion network DFAC and then de-
scribe how slack k-mean clustering and self-supervised clustering lead to and iteratively optimize
graph embeddings, respectively. Finally, we summarize the entire framework and define the overall
loss(Our framework is shown in Fig 1).

3.1 NOTATIONS

This work mainly uses graph data. The graph is represented as G = (V,E,X,A), where the set
of nodes is denoted as V = {v1, v2......vn}, where vi represents the i-th node. The set of edges
between nodes is denoted as E = {eij}, and the edge between node i and node j is denoted as eij .
The topology of the graph G can be represented by the adjacency matrix A, where Aij = 1, eij ∈ E;
otherwise, Aij = 0. X = {x1, x2......, xn} is the node vi eigenvector attribute value. xi ∈ Rm.

3.2 DEEP FUSION NETWORK

3.2.1 FUSION NETWORK SUBNETWORK

In order to obtain graph embeddings in a unified framework, we developed the deep fusion network
as a graph encoder. The idea is to learn the hidden representation of the current node by focusing on
the neighbors of each node through GAT. At the same time, the value of attribute xi containing vi
node’s own feature vector will be obtained through AE. Therefore the most straightforward strategy
to deal with the neighbors of a node is to integrate the representation of the node with all its neigh-
bors equally. However different neighbor nodes have different importance, which leads to different
weights being given to them. Based on the Multi-head Attention mechanism GAT network can be
very good to strengthen the important neighbor node weights and weakening the useless neighbor
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node weights. The current node vi hidden representation is calculated as:

Zl+1
i = σ(

∑
j∈Ni

αijWzli) (1)

where αij is the attention factor indicating the importance of neighbor node vj to node vi and σ is a
nonlinear function. Zl+1

i denotes the output representation of node vi and Ni denotes the neighbors
of node vi. Next, we measure the importance of neighbor node vj in terms of both attribute value
and topological distance. The attention coefficient αij is obtained.

In terms of node attribute values, the αij can be expressed as a single-layer feedforward neural
network for

→
xi and

→
xj in series with a weight vector of

→
a ∈ R.

dij = a(W
→
xi,W

→
xj) (2)

Note that the coefficients are usually normalized between all neighbors vj ∈ Ni with the softmax
function, making them easy to compare between nodes.

αij = softmaxj(dij) =
exp(dij)∑

k∈Ni
exp(dik)

(3)

Next, the current target node needs to be represented by neighboring nodes from the topology. GAT
focuses only on the 1-hop neighboring nodes (first-order) of the current node (Velickovic et al.,
2017). Since graphs have complex structural relationships, we need higher-order neighboring node
relationships. We stack n layers of GAT so that the current node vi can store information about
higher-order neighbors. It can be expressed as:

H =
∑
j∈Ni

αijvj =
∑
j∈Ni

αij(x1, x2......, xn), xi ∈ Rm (4)

We choose to reconstruct the graph structure as part of the decoder, which uses the sigmoid function
to map (−∞,+∞) to the probability space. We minimize the reconstruction error by measuring the
difference between Ai and A′

i.

A′
i = sigmoid(ztz), Lr =

n∑
i=1

loss(Ai, A
′
i) (5)

Then there is AE which is the generalized feature extraction method where each layer of AE com-
putes the node features represented as follows,wl and bl are hyperparameters. Similar to Eq.(5), we
construct the loss function for AE, where A′

a is the graph representation after AE reconstruction.

Zl
ae = f(wlz

l−1 + bl), Lae =

n∑
i=1

||Aa −A′
a|| (6)

Thus the total reconstruction loss is:
LR = Lr + Lae (7)

3.2.2 DUAL EMBEDDED FUSION MECHANISMS

We apply a new fusion mechanism, which we name dual fusion. The advantage of this mechanism
is that it enables the fusion of cross-modal coding from both shallow and deep levels simultaneously
so that the learned representation can then adapt to two different kinds of information, i.e., the data
itself and the relationship between the data. The overall structure of encoder consists of two GAT
networks and an AE encoder network, we call it AGAT. And the dual fusion mechanism part consists
of the fusion mechanisms L and T. First we introduce the fusion mechanism L: shallow fusion.

Our GAT network and AE network have the same number of layers, we need to fuse the AE coding
of each layer to the GAT coding of the same layer used to increase the hidden features of the nodes.
ϵ is the learnability coefficient, which selectively determines the importance of the two sources
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of information based on the nature of the dataset. In this paper, ϵ was initialized to 0.5 and then
automatically adjusted using a gradient fitting method. This gives us the fusion embedding Zl

ag ∈
RN×d for each layer. Then we enter it as an input to the next layer of GAT.

Zl
ag = (1− ϵ)Zl + ϵZl

ae (8)

Next is the deep fusion process T. We are inspired by (Fu et al., 2019) to fuse the features that have
been independently encoded by the respective neural networks. First, we need to linearly fuse the
features obtained independently by each of them, similarly ζ is the learnable coefficient, initialized
to 0.5, where Za ∈ RN×d:

Za = (1− ζ)Z + ζZae (9)

Then we augment the data with the adjacency matrix of the graph, similar to a message-passing
operation. We get ZAa = AZa.

Next, we need to calculate the autocorrelation coefficient S, where Sij ∈ RN×N measures the effect
of the j-th location on the i location. The more similar the feature representations of two locations
are, the greater the correlation between them.

Sij =
exp(ZAaZ

T
Aa)ij∑N

k=1 exp(ZAaZT
Aa)ik

(10)

Therefore we perform a correlation operation on ZAa to obtain the feature ZB = SZAa, ZB ∈
RN×d that takes into account the global sample correlation, we add the augmented data ZAa and
add coefficients to ZB to balance the performance and to encourage a smooth transfer of information
within the fusion mechanism:

Zeg = ηZB + ZAa (11)

Note that where η is the equilibrium coefficient. We initialize it to 0 and learn its weights when
training the network. Finally, we merge the feature Zag obtained from the shallow fusion process L
with the Zeg obtained from the deep fusion process T to complete the final coding fusion of AGAT.
ι is the learnable coefficient, initialized as 0.5.

Z̃ = (1− ι)Zag + ιZeg (12)

3.3 RELAXED k-MEANS AND SELF-SUPERVISED EMBEDDING

In this work (Zhang & Li, 2023), Zhang et al. proved that under certain conditions, relaxing k-means
can obtain the optimal partition with the inner product. They mainly proved that if the following
two assumptions hold, and only if xi and xj belong to two different clusters, xT

i xj = 0 is true, then
the relaxed k-means will give an ideal cluster partition. These two assumptions are: 1) For any two
data points xi and xj , xT

i xj ≥ 0 always holds. 2) Set λ(m)
i be the i-th largest eigenvalue of Q(m).

For any a and b, λ(a)
1 > λ

(b)
2 always holds.

So next we will introduce our variant based on relaxed k-means: relaxed k-means for the decoder
part. Set gij as an indicator. This indicator is used to determine whether the i-th point belongs to
the j-th class. Specifically, gij = 1 if the i-th point is assigned to the j-th cluster. otherwise, gij =
0. Clearly, k-means exploits an implicit assumption that the Euclidean distance can appropriately
describe the scatter of data points. We have gij ∈ {0, 1},

∑c
j=1 gij = 1.

Thus the problem to be solved by relaxed k-means can be expressed as follows, where {fj}cj=1
denotes centroids of c clusters.

minfi,gij

n∑
i=1

c∑
j=1

gij ||xi − fj ||22 (13)

Let gij be the i, j-th entry of matrix G and F = {f1, f2, ..., fc} ∈ Rdc. We need to minimize the
following objective function:

minF,G||XT − FGT ||2F , s.t.gvb ∈ {0, 1}, G1c = 1n (14)
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Inspired by the standardized graph Laplacian matrix in spectral clustering Eq.(13), G can be for-
mulated as follows. Where λ is the Lagrangian multiplier, z is the eigenvector, W represents the
connection weight and D represents the diagonal matrix which satisfies (D)ii =

∑n
j=1 gij = |ζi|.

D− 1
2 (D −W )D− 1

2 z = zλ, s.t.z0 = D− 1
2 1 (15)

G = V/D− 1
2 , s.t.V tV = I. (16)

I denotes the identify matrix. By substituting V for G, the objective of k-means can be derived as:

Lc = ||XT − FV T ||2F
= tr(XTX)− 2tr(XTV FT ) + tr(FV TV FT )

(17)

Deriving Lc, when the equation equals 0 gives:

▽FLc = −2XTV + 2FV TV = 0 (18)

After continuing the derivation, we obtain the following equation, and the loss of the relaxed k-
means part Lc is obtained.

F = FV TV = V XT (19)
Lc = tr(XTX)− tr(V TXXTV ) (20)

In the clustering problem, we consider that the clusters should be made more ”separated” from each
other and more ”tight” within the clusters. Therefore, we use a self-supervision method to optimize
the graph embeddings.

For the i-th sample and j-th category, we use Student’s t-distribution (van der Maaten & offrey
Hinton., 2008) as a measure of the similarity between the data representation zi and the category
centroid vector µj .where v is the degree of freedom of Student’s t-distribution, we take v = 1, and
qij is the probability of considering sample i to be assigned to category j.

qij =
(1 + ||zi − µj ||2/v)−

v+1
2∑

K(1 + ||zi − µk||2/v)−
v+1
2

(21)

On the other hand, We want to make the data representations closer to the category centers, to im-
prove the cluster cohesion, and therefore calculate the target distribution pij is the target distribution

defined as pij =
q2ij/Sj∑
j′ q

2
ij′/Sj′

. Sj is the summation of qij in the j-th category. Thus Sj =
∑

i qij .The

soft assignment of the fusion embedding of the subnetworks of AGAT is computed separately using
the formula above. We label the one obtained by the L fusion process as Ql and the one obtained
by T as Qt. At this point, we label all Q distributions uniformly as Q̃. In the target distribution P,
each value of Q̃ is squared and then normalized so that it ultimately has a higher confidence level.
To minimize the clustering loss, we construct the loss using the KL scatter:

Ls = KL(P ||Q̃) =
∑
i

∑
j

pij log
pij

(qij + qlij + qtij)/3
(22)

Eq. (22) represents the method’s simultaneous alignment of the dual fusion mechanism with the
soft assignment distribution of the fusion representations generated by its sub-networks L and T
processes with the robust target distribution. This forms a well-established self-supervised strategy
that effectively optimizes the fusion embedding. We will explore this part in depth in subsequent
ablation experiments.

3.4 JOINT EMBEDDING AND CLUSTERING

We co-optimize graph embedding and clustering learning by combining these multiple components
to learn together, defining the total objective function as

L = LR + αLc + βLs (23)

where α,β > 0 are the coefficients that control the balance between the two. It should be emphasized
that, since a central idea of unsupervised neural networks is to define the loss of training through
reconstruction, Lc and Ls provide a new way to train neural networks unsupervised.
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Algorithm 1 Deep attention embedded graph autoencoder (DFAC)
Input: Graph G with n nodes; Number of iterations Iter; Number of clusters k;Number of layers
La and dimensions of fusion network xn.
Output: Clustering results and hidden embedding Z̃.

The autoencoder is updated by minimizing LR to obtain the initial hidden embedding Z̃ of the
autoencoder and calculate the initial clustering center µ.

while max iterations< iter or convergence do
repeat:Update the P, Q̃, Z̃, µ and calculate L.

Update W by the gradient descent.
until:Converge or exceed the maximum iteration.
Cluster and clustering evaluation metrics obtained by relaxed k-means.

(a) Cora (b) Cite (c) Wiki

Figure 2: The variation of ACC and NMI on each data set for different values of α

4 EXPERIMENTS

4.1 PARAMETER SETTINGS

In our experiments, we chose a two-layer GAT encoder structure. Both activation functions of the
two layers are ReLU. α and β are two important parameters that can have a clear impact on the
experimental results. α is searched in the range {10−2, 10−1, 100, 101, 102, 103, 104, 105}. The
final choice is shown below Fig 2. β is chosen in the same way, here we choose 10. The maximum
number of training iterations is set to 200. After pre-training, the fine-tuning learning rate is set to
10−4. The maximum number of iterations for updating P is set to 30, and the maximum number of
internal iterations for updating the neural network is set to 5. The dimensionality of the embedding
layer is set to 128, the reason for this is that the embedding dimension may lead to slow convergence
of DFAC and difficult training if it is equal to the number of clusters. However, it has to be said that
the problem of choosing hyperparameters in similar experiments is still to be solved. All codes are
implemented by torch-1.13.1 on a server with four NVIDIA GeForce RTX 3080 GPUs.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

In our experiments, we evaluated the proposed algorithm on 6 popular public datasets, including
3 graph datasets (Cora (Sen et al., 2008), Cite (Sen et al., 2008), and Wiki (Yang et al., 2015b))
and 2 non-graph datasets (USPS (Hull, 1994), HHAR (Li et al., 2021)), and one dataset with larger
size (ogbn-arxiv (Hu et al., 2020)), see Table 1.For datasets with missing adjacency matrices, we
followed (Bo et al., 2020) and constructed the matrices using the heat kernel method.

In our experiments, we compared 14 algorithms with our approach:k-means (MacQueen, 1967),
Graph-encoder (Tian et al., 2014), Deep Walk (Perozzi et al., 2014), DNGR (Cao et al., 2016),
TADW (Yang et al., 2015a), GAE (Kipf & Welling, 2016a), ARGE (Pan et al., 2018), ARVGE (Pan
et al., 2018), AGC (Zhang et al., 2019b), DAEGC (Wang et al., 2019), EGAE (Zhang & Li, 2023),
SDCN (Bo et al., 2020), DFCN (Tu et al., 2021), S3GC (Devvrit et al., 2022). In this paper, three
metrics, clustering accuracy (ACC), normalized mutual information (NMI) and adjusted rand index
(ARI), are used to verify the performance of various models.
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Table 1: Information of dataset

Dataset Nodes Features Clusters Links

Cora 2708 1433 7 5429
Cite 3312 3703 6 4732
Wiki 2405 4973 17 17981
USPS 9298 256 10 *
HHAR 10299 561 6 *
Ogbn-arxiv 169343 128 40 1166243

Table 2: clustering results(%)

Methods Cora Cite Wiki USPS HHAR Ogbn-arxiv
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

k-means 49.62 31.78 22.92 54.00 30.80 26.96 38.82 43.01 14.89 66.80 62.60 54.61 60.00 58.90 45.10 17.60 21.60 7.40
Graph-Encoder 32.29 8.99 1.25 21.97 2.81 1.00 18.34 18.18 0.98 35.10 10.00 11.39 38.95 12.83 9.77 8.99 13.03 3.01
DeepWalk 50.03 36.70 28.81 36.18 3.01 10.22 37.34 30.14 17.05 47.56 27.11 18.80 46.18 34.63 25.58 16.84 24.11 11.08
DNGR 41.90 31.84 14.21 32.59 18.01 4.30 37.58 35.84 17.95 43.15 32.30 21.00 39.17 33.01 18.90 * * *
TADW 54.55 38.20 28.00 51.52 30.87 28.47 31.01 25.07 4.23 51.20 42.00 24.19 50.31 37.01 22.20 * * *

ARGE 63.91 43.19 35.00 57.31 34.96 33.01 38.01 34.17 10.09 62.09 45.40 30.80 59.02 44.03 30.00 * * *
ARVGE 62.33 44.00 36.01 50.30 22.12 23.06 38.34 32.81 10.63 61.79 44.10 27.26 60.00 39.83 34.05 * * *
GAE 58.18 40.39 32.88 37.91 17.04 18.25 32.83 28.59 6.18 63.11 60.0 49.92 62.00 54.03 41.50 21.01 22.03 10.91
AGC 68.92 53.86 —— 67.00 41.13 —— 47.65 45.28 —— 67.25 49.16 —— 66.99 50.00 —— * * *
DAEGC 68.95 34.78 36.82 66.29 38.91 40.03 49.10 28.05 32.80 73.62 71.10 63.30 75.00 68.50 59.90 30.40 40.21 23.51
EGAE 71.53 48.47 50.26 66.58 40.11 40.99 51.19 47.47 33.07 74.97 70.70 65.26 78.53 69.22 60.63 33.10 39.20 24.90
S3GC 73.22 58.87 54.42 67.81 44.11 49.28 48.99 43.20 35.16 72.04 64.10 59.89 77.00 65.03 59.00 35.00 46.30 27.00
SDCN 71.48 46.30 40.33 66.30 39.91 40.10 51.21 40.13 30.91 78.11 79.62 71.70 84.00 80.00 72.70 34.02 40.00 22.14
DFCN 72.16 50.89 49.10 69.51 43.52 45.53 51.08 39.85 33.07 79.40 82.70 75.45 86.01 81.38 76.13 34.70 41.97 26.09
DFAC 74.18 58.91 53.24 69.75 44.40 45.58 53.05 48.69 35.15 79.91 83.29 74.10 88.01 82.05 77.93 35.08 45.00 27.12

The results of the experiments on the three datasets are shown in Table 2. We can see that our method
clearly outperforms all baselines in most of the evaluation metrics. This proves that just using node
features and topology information of the graph leads to poor performance. In contrast, DFAC makes
full use of both information to achieve consensus representation learning, which greatly improves
the clustering performance. DFAC not only realizes the dynamic interaction between the graph
structure and node attributes but also employs a new self-supervised strategy that provides precise
guidance for network training. For example, on the Wiki dataset, ACC improves by about 2% and
NMI improves by about 2%. It should be noted that * in the table represents the algorithm calculation
process exceeding memory.

4.3 ABLATION STUDY

We first explored the impact of each module on the overall model performance. We replace the GAT
with the GCN autoencoder, denoted as DFAC-GCN; remove the self-supervision module, denoted
as DFAC-selfOE; and replace the relaxed k-means with the GMM clustering, DFAC-GMM, respec-
tively. From the results Table 3, we can see that the self-supervision module has a limited impact on
the algorithm as a whole. Among them, DFAC-GMM has the worst result. Therefore the relaxed
k-means part plays the biggest role in the overall algorithm.

We then included further exploration of the deep fusion network to investigate the practical use-
fulness of our proposed new fusion mechanism. We refer to the experimental model using only
the shallow fusion mechanism as DFAC-L, and the experimental model using only the deep fusion
mechanism as DFAC-T. From the results Fig 3(a)-(f), it seems that our new mechanism that unifies
the deep and shallow fusion mechanisms works better, and the DFAC-T that applies the deep fusion
mechanism is more effective in comparison to the two.

Finally, as in Fig 3(g)(h), we delved into the effect of using soft assignment distribution for different
numbers of sub-networks under the self-supervised mechanism. We use DFAC-one to represent the
application of soft assignment distribution to AGAT’s Z̃, and DFAC-all to represent the application
of soft assignment distribution to all sub-networks including the embedding of AE and GAT. If
set to DFAC all, the impact on performance is not significant, and it will increase computational
complexity, so we set it to the configuration in DFAC.
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(a) Cora (b) cite (c) Wiki (d) USPS

(e) HHAR (f) Ogbn-arxiv (g) Wiki (h) HHAR

Figure 3: An in-depth exploration of the parts of the model based on the ablation experimental setup.

Table 3: Ablation study results(%)

Methods Cora Cite Wiki
ACC NMI ARI ACC NMI ARI ACC NMI ARI

DFAC-GCN 69.60 49.87 45.62 64.88 37.72 36.66 49.59 46.43 31.41
DFAC-selfOE 72.34 52.93 50.16 66.73 39.40 41.18 52.26 46.34 33.40
DFAC-GMM 66.40 51.84 44.23 64.53 37.89 38.33 47.10 44.60 26.84

DFAC 74.18 58.91 53.24 69.75 44.40 45.58 53.05 48.69 35.15

4.4 VISUALIZATION OF THE CLUSTERING PROCESS

In Fig 4, in order to visually verify the effectiveness of DFAC, we show the real data of the dataset,
the graph-embedded data with α, β = 0, and the graph-embedded data after normal clustering,
respectively. DFAC can better reveal the inherent clustering structure among the data.

(a) Raw features of Cora (b) DFAC α, β = 0 (c) DFAC (d) Raw features of Wiki (e) DFAC α, β = 0 (f) DFAC

Figure 4: Clustering Visualization Process and the Effect of Parameters

5 CONCLUSION

In this paper, we propose a new end-to-end multi-component architecture known as DFAC. We
leverage the graph structure and node attributes to obtain the hidden coding of the nodes through the
AGAT deep fusion network with a dual fusion mechanism in a unified framework. Based on this,
using a self-optimization module and relaxed k-means further induces the neural network to produce
graph embeddings suitable for a particular clustering model. This approach encodes more consis-
tent and discriminative information from both sides to construct robust target distributions, which
effectively improves the quality of graph embeddings. Numerous experimental results demonstrate
the clustering performance of DFAC. In the future, we plan to further improve our method to adapt
it to multimodal graph clustering.
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