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Abstract

Energy-Based Models (EBMs) have emerged as a powerful framework in the realm of
generative modeling, offering a unique perspective that aligns closely with principles
of statistical mechanics. This review aims to provide physicists with a comprehensive
understanding of EBMs, delineating their connection to other generative models such
as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and
Normalizing Flows. We explore the sampling techniques crucial for EBMs, including
Markov Chain Monte Carlo (MCMC) methods, and draw parallels between EBM concepts
and statistical mechanics, highlighting the significance of energy functions and partition
functions. Furthermore, we delve into state-of-the-art training methodologies for EBMs,
covering recent advancements and their implications for enhanced model performance and
efficiency. This review is designed to clarify the often complex interconnections between
these models, which can be challenging due to the diverse communities working on the topic.

1 Introduction

1.1 Generative models

The problem of description of data through a mathematical model is very old, being the basis of scientific
method. The set of measurements use to fulfill the role that contemporary data scientists now refer to
as a dataset. Presently, the model can take the form of an exceedingly complex neural network, but the
underlying extrapolation remains akin to P.S. Laplace’s famous deterministic statementLaplace (2012): "An
intellect which at a certain moment would know all forces [data] that set nature in motion [...] would be
uncertain and the future just like the past could be present before its eyes". One can easily extend this
reasoning, asserting that the more data one possesses, the more robust and detailed the model that can
be constructed atop them. This leads to enhanced predictions and greater stability concerning unforeseen
behaviors.
This line of thought was boosted in the previous century with the advent of automatic calculators, and the
velocity of development becomes astounding. For instance, consider the remarkable computational power
difference between your smartphone and the computer used for the Apollo program by NASA in the 1960s
1. Hence, the quest for data has become an indispensable aspect of contemporary science.
To delve deeper into this issue, let us construct a historical metaphor. One of the early modern achievements
in observational astronomy is Kepler’s laws. The genesis of such results is deeply rooted in a vast collection
of observational data amassed by T. Brahe 2. Kepler’s formulation was, in fact, motivated by the necessity
to explain these astronomical measurements. In a simplified analogy, we observe the dichotomy between
the "model," embodied by Kepler, and the "dataset," represented in this narrative by Brahe. Since the 17th
century, these two actors have played equally fundamental roles in the advancement of science, taking turns on

1https://www.linkedin.com/pulse/smartphone-today-has-more-computing-power-than-nasas-1960-offermann
2https://www.britannica.com/science/history-of-science/Tycho-Kepler-and-Galileo
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the stage with the same importance. Consider, for instance, the pivotal role played by Faraday’s experiments
in understanding electromagnetism Al-Khalili (2015), long before Maxwell’s laws. Or, conversely, the impact
of theory of Relativity3 way before its experimental confirmation.
In recent years, particularly during the 2000s, we have witnessed a profound paradigm shift represented
by the Big Data Era4. Thanks to the aforementioned technological advancements in computer science, the
volume of generated scientific (and not) data has dramatically increased, resulting from advancements in
simulation and storage capabilities. Furthermore, there has been a growing collection of data on human
activities, including images, text, sounds, and more.

Returning to the historical analogy, it is akin to Brahe suddenly providing Kepler with a thousand times
the amount of data that the latter was accustomed to. This shift posed a methodological problem in what
we now refer to as data science, and this is where the machine learning approach came into playFradkov
(2020). The models required to process Big Data had already been theoretically studied since the invention
of the perceptronMcCulloch & Pitts (1943). Their application was constrained by computational power in
the last century, but, as a peculiar example of convergent development, they became the primary tools in
the toolbox of data scientists in the 2000s, simultaneously to the appearance of Big Data on the stage.

There is indeed a discontinuity that deserves more attention: the increasing collection of data generated by
humans. The term Big Data is sometimes limited to images, sounds, videos, text, and metadata resulting
from human activities, not just on the internet. Unlike scientific measurements, having access to an extensive
quantity of information produced by humans opened Pandora’s box, prompting the natural question: can
we build artificial intelligence by leveraging Big Data? In other words, can we construct a machine capable
of generating data as humans do, by training it in some smart way? Data here is to be understood in a
broad sense, encompassing new theorems, art pieces, images, videos, and even novels.
Generative models represent, in this sense, the most recent breakthrough in technological advancement
towards intelligent-like machines. It is complicated to provide a general definition, and there are already
many available from different sources5. However, if we informally focus on those already known to the
general public, such as Generative Pre-Trained Transformers (GPT)6, the common traits of most definitions
are few. Firstly, generative models require a substantial amount of data for training, in addition to the
selection of a precise architecture, which goes far beyond the original perceptron. Secondly, the training is
probably not biologically inspired, i.e., we do not learn through backpropagationGrossberg (1987), which
is the most commonly used training technique in machine learning. For completeness, it is worth noting
that this thesis is still debated in neuroscienceLillicrap et al. (2020). Thirdly, a generative model is not
necessarily informative about the data distribution; for instance, ChatGPT could achieve astounding results
in text generation, but the training machine does not provide knowledge about some general features of text
generated by humans.
Returning to the historical metaphor: nowadays, we are able to build "BraheGPT," which can generate
and gather new plausible measurements about the orbits of planets in unobserved planetary systems after
training on observed data from the solar system. However, it is not Kepler; deductive reasoning is not
necessary to generate new data instances, although it remains fundamental to understanding the world. Von
Neumann would certainly adapt his famous statementDyson et al. (2004) about overfitting to modern data
science, cautioning against the ability to generate examples without a general picture.
Prominent data scientists, such as Yann LeCun, have recently emphasized that the use of interpretable
generative models is crucial for achieving a "unified world model for AI capable of planning"7. This thesis
becomes imperative in the realm of computational sciences, where qualitative generation alone is insufficient
as a benchmark to evaluate model performance. In sectors like Molecular Dynamics, Biochemistry, and
similar fields, the model must convey substantial information about the dataset. The generative models that
excel in terms of interpretability, which form the main focus of the present work, are precisely the Energy-
Based Models (EBMs). These models offer a unique advantage in their ability to provide insights into the
underlying mechanisms of the data they generate. In areas such as Molecular Dynamics and Biochemistry,

3https://www.britannica.com/science/relativity/Intellectual-and-cultural-impact-of-relativity
4https://medium.com/swlh/big-data-era-84b488491a8d
5https://www.nvidia.com/en-us/glossary/generative-ai/
6https://www.nytimes.com/2022/12/10/technology/ai-chat-bot-chatgpt.html
7https://www.zdnet.com/article/metas-ai-luminary-lecun-explores-deep-learnings-energy-frontier/
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where understanding the intricate relationships within the dataset is crucial, the interpretability of EBMs
stands out.
In adopting EBMs, researchers and practitioners gain not only the capacity to generate high-quality data
but also a clearer understanding of the factors influencing the generated outputs. This interpretability is
indispensable in domains where the model’s ability to convey meaningful information about the dataset
is paramount. As the pursuit of a unified world model for AI continues, the emphasis on interpretable
generative models, particularly EBMs, plays a pivotal role in bridging the gap between data generation and
comprehensive understanding.

1.2 A long story: from Boltzmann-Gibbs ensemble to the advent of EBMs

After providing a historical overview of generative models, this section is dedicated to exploring the origin
and development of Energy-Based Models (EBMs). As we delve into this discussion, it becomes evident
that the theoretical foundation of such generative models exists under different names at the intersection
of various fields, including statistical physics, probability theory, computer science, and sampling, among
others. In this section, we emphasize a historical perspective to shed light on the evolutionary trajectory of
EBMs. While we touch upon the overarching theories, more in-depth theoretical discussions are reserved for
subsequent chapters. We believe that this review serves as a valuable resource for readers across diverse fields
enabling them to construct a comprehensive understanding of what constitutes an Energy-Based Model by
tracing the genesis of this topic.
The first ingredient of the story is the Boltzmann-Gibbs measure, a fundamental concept in statistical
mechanics, and has its origins in the works of Ludwig Boltzmann and Josiah Willard Gibbs during the late
19th century. These two influential physicists independently contributed to the development of statistical
mechanics, providing a bridge between the microscopic behavior of particles and macroscopic thermodynamic
properties.
Ludwig Boltzmann made significant strides in understanding the statistical nature of gases, introducing what
is now known as the Boltzmann distributionBoltzmann (1868). Boltzmann’s statistical approach, which
related the statistical weight of different microscopic configurations to their entropy, laid the groundwork for
the probabilistic description of thermodynamic systems.
Josiah Willard Gibbs, in parallel with Boltzmann, extended these ideas to develop the canonical ensemble,
introducing what is commonly referred to as the Gibbs measureGibbs (1902). He provides a mathematical
framework for calculating thermodynamic properties based on the statistical distribution of particles in a
given system. The Boltzmann-Gibbs measure, which emerged from the synthesis of these ideas, describes
the probability distribution of particles in different energy states at thermal equilibrium at temperature T .
It has become a cornerstone of statistical mechanics, applicable to diverse physical systems, including gases,
liquids, and solids. We informally recall its definition: given the state of the system x ∈ Ω, where Ω is the
so-called phase space, and an energy function U : Ω → R+, we can express the associated probability density
function

ρ(x) ∝ e−βU(x) (1)

where β = 1/kBT , kB being the Boltzmann constant. A detailed mathematical description will be provided
in the next chapters.
The analysis of the impact of Boltzmann-Gibbs ensemble on physics would require a full monography per se;
for the sake of the present work, we directly advance to 1924, when E. Ising presented his PhD thesis8. The
so called Ising model is a fundamental mathematical model in statistical mechanics. It serves as a simplified
yet powerful representation of magnetic systems, particularly in understanding the behavior of spins in a
lattice Λ — for simplicity, we can imagine a graph with N nodes. In the Ising model, each lattice site is
associated with a magnetic spin, which can take two possible values, usually denoted as "up" or "down",
that is Ω = {−1, 1}N . The interactions between spins are typically modeled using a simple energy function,
namely

UIs(x) = −
∑
⟨ij⟩

Jijxixj − µ
∑

j

hjxj (2)

8https://www.hs-augsburg.de/~harsch/anglica/Chronology/20thC/Ising/isi_fm00.html
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Let us briefly clarify the notation: i, j ∈ Λ are indexes of sites in the lattice; ⟨ij⟩ indicates that the sum is
restricted to first neighbours and Jij is the strength of the interaction. The field hi instead individually acts
on each site and µ is just a constant that traditionally corresponds to magnetic moment. In laymen terms,
each magnetic spin interacts with its first neighbours and with an external field. The alignment of spins is
encouraged.
In considering equation 1 as associated to UIs, the primary focus is often on the behavior of the system as a
function of temperature. In a nutshell, at high temperatures, thermal fluctuations dominate, and the system
exhibits no long-range order. As the temperature decreases, there is a critical point at which the system
undergoes a phase transition, leading to spontaneous magnetization and the emergence of long-range order.
For some decades the interest for Ising model and its extensions was confined to physics. The motivation
for invoking such a model in the present work is the following: in the 80s a fundamental connection be-
tween Ising model and data science manifested through Hopfield networksHopfield (1982) and Boltzmann
machinesAckley et al. (1985). Both can be viewed as an Ising lattice where interactions are not confined to
first neighbors. Apart from the initial summation, which, for the former, extends to ∀i, j ∈ Λ rather than
just ⟨ij⟩, the energy function bears resemblance to equation 2. From a statistical physics standpoint, the
distinction between a Hopfield network and Boltzmann machines lies solely in the temperature value.
The purpose of the former is pattern recognition and associative memory tasks. A distinctive feature of Hop-
field networks is their proficiency in storing and retrieving patterns through symmetric connections between
neurons, that is Ising sites, in the network. In practice, when provided with a set of network configurations
yλ ∈ Ω representing patterns, denoted by λ = 1, . . . , n, one constructs the coupling J as follows:

Jij = 1
n

n∑
λ=1

yλ
i yλ

j (3)

This involves employing the Hebbian ruleHebb (1949) "neurons wire together if they fire together"Löwel &
Singer (1992), but further specificationsStorkey (1997) are available. This phase is commonly referred to as
the training of the network. Subsequently, one can define a retrieval iterative dynamics starting from any
configuration xk=0 ∈ Ω, as exemplified by the equation:

xk+1 = sgn(Jxk + h) k ∈ N (4)

Here, J represents the coupling matrix defined element-wise in equation 3, and h is a bias vector that
influences the preferences for ’up’ or ’down’. It is noteworthy that in a Hopfield network, there is no use of
the Boltzmann-Gibbs ensemble; the objective is to construct a dynamical system with prescribed attractors,
which are the minima of U(x) by design.
Boltzmann Machines share the same structure and energy function but the goal extends beyond the mere
retrieval of patterns; it is to model their overall distribution. To illustrate this concept, consider a finite set
of n natural images of cats and dogs. A meticulously designed Hopfield Network could perfectly retrieve
any of these examples. On the contrary, a trained Boltzmann Machine aspires to generate new instances
of cats and dogs, capturing, in a sense, the distribution of such images. The objective appears to be on a
different level of difficulty: although possibly big, the cardinality of the set of patterns is finite; the number of
possible variations of cats and dogs is not. Thus, one can immediately guess why the training and generation
phases (n.b. it is no more just a retrieval) are completely different w.r.t. Hopfield Networks. The take home
message is the hypothesis that the distribution of the given patterns can be described by a Boltzmann-Gibbs
ensemble associated to the energy of the Hopfield Network at temperature T .
It is convenient to consider Boltzmann Machines as a specific instance of Energy-Based Models, a term
introduced by Hinton et al. Teh et al. (2003), to describe both training and generation phases. EBMs
differ from Boltzmann Machines in the use of a generic parametric energy Uθ(x) instead of the usual choice
made for the latter. Here, θ ∈ Θ needs to be selected and trained so that the Boltzmann-Gibbs ensemble
ρθ associated with Uθ(x) "fits well" the distribution of the given patterns, which we refer to as ρ∗. After
training the EBM, the generative phase involves sampling equilibrium configurations from ρθ. Specifically,
a Boltzmann Machine corresponds to an EBM with the choice of U(x) as the energy of a Hopfield Network
and θ = J .
Despite their conceptual simplicity, both training and generation represent fundamental open problems that
intersect multiple research fields. In essence, sampling from a Boltzmann-Gibbs ensemble is a challenging
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task in general, and unfortunately, it is necessary even during the training phase. For this reason, the use of
Boltzmann Machines was limited to toy models until the proposal of the Contrastive Divergence algorithm
by Hinton Hinton (2002).
This procedure, along with its generalizations, made it possible to apply EBMs to practical problems.
Moreover, thanks to the adoption of a deep neural network Xie et al. (2016) as Uθ, the interest towards
this class of generative models critically increased and in 2010s the use of EBMs for state-of-the-art tasks
became standard. However, all that glitters is not gold. Despite its success in generating high-quality
individual samples, the use of Contrastive Divergence is known to be biased. For instance, it could happen
that individual images are correctly generated, but ensemble properties as the relative proportion of the two
species is incorrect. Although Hinton et al. originally claimed that this bias is generally small Carreira-
Perpinan & Hinton (2005), numerous counterexamples have been shown in the more than 20 years since
their original paper. The absence of novel paradigm shifts, coupled with the rise of alternative generative
models (e.g., diffusion-based ones Song et al. (2020b)), has reduced attention on EBMs and consequently on
Boltzmann Machines.
The main purpose of the present work is to review the main features of EBMs, in particular in relation with
generative modelling, sampling and Statistical Physics. The idea is to provide a useful orientation guide for
people coming from very different communities that would like to investigate such topics; we believe that a
resource of this kind could be beneficial to favor further developments in the field of energy-based modelling.
We will present instances of fruitful interplay between Physics and generative modelling throughout the next
sections.
The structure of the review will be the following:

• in Section 2 we define Energy-Based Models and we highlight the main difficulty related to its
training through cross-entropy minimization;

• in Section 3 we present a review of the principal generative models as opposed to EBMs. Then,
we conclude the section with a comparative scheme between all the presented models, i.e. EBMs,
Generative Adversarial Networks, Variational Auto-Encoders, Normalizing Flow and Diffusion-Based
Generative Models;

• in Section 4 we review the main MCMC methods used to sample from a Boltzmann-Gibbs ensemble,
hence used in the context of EBM training to generate the necessary sample used to perform gradient
descent on cross-entropy;

• in Section 5 we summarize the derivation of Boltzmann-Gibbs equilibrium ensemble, motivating the
importance of concepts as free energy in the context of statistical learning;

• in Section 6 we present the state of the art about EBM training, that is Constrastive Divergence
algorithm, and we highlight his limitation; in conclusion, we provide some references about recent
works trying to overcome the main issues of such procedure.

2 Definition of EBM

In this Section, we provide the basic formal definition of Energy-Based Model. We will adopt the notation
and the presented assumption throughout the present work. First of all, the problem we consider can be
formulated as follows: we assume that we are given n ∈ N data points {x∗

i }n
i=1 in Rd drawn from an

unknown probability distribution that is absolutely continuous with respect to the Lebesgue measure on Rd,
with a positive probability density function (PDF) ρ∗(x) > 0 (also unknown). This is a standard problem
in statistical learning, where learning from data here refers to the ability to fit the data distribution and to
generate new examples. More precisely, our aim is to estimate ρ∗(x) via an energy-based model (EBM), i.e.
to find a suitable energy function in a parametric class, Uθ : Rd → [0, ∞) with parameters θ ∈ Θ, such that
the associated Boltzmann-Gibbs PDF

ρθ(x) = Z−1
θ e−Uθ(x); Zθ =

∫
Rd

e−Uθ(x)dx (5)
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is an approximation of the target density ρ∗(x). Actually, any probability density function can be written as
a Boltzmann Gibbs ensemble for a particular choice of U(x). The normalization factor Zθ is known as the
partition function in statistical physics Lifshitz & Pitaevskii (2013), see also Section 5, and as the evidence
in Bayesian statisticsFeroz & Hobson (2008).
Remark 2.1. Even if Uθ is known, an explicit analytical computation of the partition function is generally
unfeasable. If the dimension d is big enough, the integral defining Zθ cannot be computed using standard
quadrature methods. The only possibility is Monte-Carlo samplingLiu (2001). To employ such method, one
can express the partition function as an expectation E0 with respect to a chosen probability density function
ρ0, i.e.

Zθ = E0

[
e−Uθ

ρ0

]
(6)

The selected density must be known pointwise in Rd, including the normalization constant, and it should be
easy to sample from. If these conditions are met, one can compute the partition function by simply replacing
the expectation in equation 6 with the corresponding empirical average computed using samples drawn from
ρ0. Unfortunately, finding a probability density that satisfies these properties is challenging. For a general
choice that is not tailored to e−Uθ , the estimator is likely to be very poor, characterized by a very large, or
even infinite, coefficient of variation.

One advantage of EBMs is that they provide generative models that do not require the explicit knowledge
of Zθ. In Section 4 we will review some routines that can in principle be used to sample ρθ knowing only Uθ

– the design of such methods is an integral part of the problem of building an EBM.

To proceed we need some assumptions on the parametric class of energy:
Assumption 2.1. For all θ ∈ Θ:

1. Uθ ∈ C2(Rd); ∃L ∈ R+ : ∥∇∇Uθ(x)∥ ≤ L ∀x ∈ Rd;

2. ∃a ∈ R+and a compact set C ∈ Rd : x · ∇Uθ(x) ≥ a|x|2 ∀x ∈ Rd \ C.

The need for the first assumption will be discussed in Section 4: it is related to wellposedness and convergence
properties of the dynamics used for sampling, i.e. Langevin dynamics and its specifications. The second
assumption guarantees that Zθ < ∞ (i.e. we can associate a PDF ρθ to Uθ via equation 5 for any θ ∈ Θ).
We provide now two important definitions:
Definition 2.1 (Convexity). A function φ : Rd → (−∞, +∞] is convex if given 0 < λ < 1 and x1, x2 ∈ Rd

such that x1 ̸= x2, the following is true

φ (tx1 + (1 − t)x2) ≤ tφ (x1) + (1 − t)φ (x2) (7)

Definition 2.2 (Log-Concavity). A density function ρ with respect to Lebesgue measure on (Rd, Bd) is
log-concave if ρ = e−φ where φ is convex.

A non-convex function could have more than one local but not global minima; conversely, a non-log-concave
probability density could have more than local maxima, which are called modes. It is important to stress
that Assumption equation 2.1 does not imply that Uθ is convex (i.e. that ρθ is log-concave): in fact, we
will be most interested in situations where Uθ has multiple local minima so that ρθ is multimodal. We will
elaborate on the topic in Section 4. It is well known as for optimization problems, non-convex cases are the
most complicated. Similarly, sampling from a non-log-concave probability density function (PDF) can be
extremely challenging. Another assumption we will adopt is:
Assumption 2.2. Without loss of generality ∃θ∗ ∈ Θ : ρθ∗ = ρ∗, that is ρ∗ is in the parametric class of
ρθ.

The aims of EBMs are primarily to identify θ∗ and to sample ρθ∗ ; in the process, we will also show how to
estimate Zθ∗ .
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Example 2.1. Let us present a simple example to visualize the relation between convexity and log-concavity.
In Figure 1 we plot side by side the PDF of a Gaussian mixture in 1D and the associated potential

Uθ(x) = log
[
p exp

(
− (x − µ1)2

σ2
1

)
+ (1 − p) exp

(
− (x − µ2)2

σ2
2

)]
(8)

where θ = {p, µ1,2, σ1,2}. The specific values are p = 0.7, µ1 = 0, µ2 = 5, σ1 = 1 and σ2 = 0.5. It is clear
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Figure 1: Gaussian Mixture. Plot of PDF with sampled histogram and associated energy Uθ.

the correspondence between minima of Uθ(x) and maxima, that is modes, of ρ.
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2.1 Cross-entropy minimization

Once we defined an EBM, we need to measure its quality with respect to the data distribution. Possibly,
this would provide a way to train its parameters. Hence, we define some important quantities:
Definition 2.3. Consider two probability densities on Rd and absolutely continuous with respect to Lebesgue
measure, namely ρ1 and ρ2. We define

1. Cross Entropy
H(ρ1, ρ2) = −

∫
Rd

log ρ2(x)ρ1(x)dx (9)

2. Kullback-Leibler divergenceKullback & Leibler (1951)

DKL(ρ1 ∥ ρ2) =
∫
Rd

ρ1(x) log
(

ρ1(x)
ρ2(x)

)
dx (10)

3. Entropy
H(ρ1) = −

∫
Rd

log ρ1(x)ρ1(x)dx (11)

The KL divergence is a widely used estimator for the dissimilarity between probability measures. It satisfies
the non-negativity condition

DKL(ρ1 ∥ ρ2) ≥ 0, DKL(ρ1 ∥ ρ2) = 0 ⇐⇒ ρ1 = ρ2 a.e. (12)

However, it is not a proper distance since it is not symmetric and it does not satisfy triangular inequality.
The following trivial lemma relates the three quantities we introduced in Definition 2.3:
Lemma 2.1. The following equality holds for any choice of PDFs ρ1 and ρ2

H(ρ1, ρ2) = H(ρ2) + DKL(ρ2 ∥ ρ1) (13)

One can also use the cross-entropy of the model density ρθ relative to the target density ρ∗ as an estimate
of diversity between the two PDFs; in such case, 9 simplifies becoming

H(ρ∗, ρθ) = log Zθ +
∫
Rd

Uθ(x)ρ∗(x)dx (14)

Because of 13, the difference between the cross-entropy and the KL divergence is H(ρ∗), a term that depends
just on the data distribution. Hence, the optimal parameters θ∗ are solution of an optimization problem on
Θ, namely

θ∗ = arg min
θ∈Θ

DKL(ρ∗||ρθ) = arg min
θ∈Θ

H(ρ∗, ρθ), (15)

meaning that the entropy of ρ∗ plays no active role in solving such minimization problem. There is a subtle
issue in this reasoning: unlike KL divergence, the cross-entropy is not bounded from below, and in particular
H(ρ, ρ) := H(ρ) ̸= 0. That is, we should compute H(ρ∗) to estimate the minimum value of cross-entropy.
Unfortunately, most of the empirical estimators to be used when ρ∗ is known through samples suffer in high
dimensionAo & Li (2023). Solving equation 15 is equivalent to maximum likelihood method, a widely used
practice in parametric statisticsStigler (2007).
The use of cross-entropy avoids the very problematic computation of H(ρ∗), but in 14 the estimation of Zθ

is also needed. However, the most common routines for cross-entropy minimization are gradient-based: they
rely on the gradient of ∂θH(ρ∗, ρθ) and not on the cross-entropy itself. The former can be computed using
the identity ∂θ log Zθ = −

∫
Rd ∂θUθ(x)ρθ(x)dx, obtaining

∂θH(ρ∗, ρθ) =
∫
Rd

∂θUθ(x)ρ∗(x)dx −
∫
Rd

∂θUθ(x)ρθ(x)dx

:= E∗[∂θUθ] − Eθ[∂θUθ].
(16)

This is a crucial expression for the present work, and the consequence is immediate:
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Remark 2.2 (Fundamental problem for EBM training). Estimating ∂θH(ρ∗, ρθ) requires calculating the
expectation Eθ[∂θUθ]. In contrast E∗[∂θUθ] can be readily estimated on the data.

Typical training methods, e.g. based on the so-called Constrastive DivergenceHinton (2002) and its speci-
fications (see Subsection 6), resort to various approximations to calculate the expectation Eθ[∂θUθ]. While
these approaches have proven successful in many situations, they are prone to training instabilities that limit
their applicability. The cross-entropy is more stringent, and therefore better, than objectives like the Fisher
divergence used to train other generative models: for example, unlike the latter, it is sensitive to the relative
probability weights of modes on ρ∗ separated by low-density regions Song & Kingma (2021).

3 EBMs among generative models

In this section, our objective is to provide a brief overview of the other main generative models available
on the market, possibly in relation to Energy-Based Models. The aim is to construct a convenient general
framework for the reader, with detailed specifications not being the focus of this section. Let us establish a
general classification of the methods we will discuss. As outlined in the introduction, creating a generative
model involves developing a computational tool capable of generating new instances representative of a given
dataset. Taking the example of image generation, starting with a dataset of dogs, a generative model can
produce new images of dogs. Even in this simple example, determining whether a generated sample is
"good" or not can be far from obvious. A good generative model should possess two key properties: (1)
ease of training and (2) ease of generation. Unfortunately, demanding the best of all possible worlds is often
impractical, and a trade-off is frequently necessary to balance these two properties.
The concept of a generative model is relatively new and strictly related to the rise of Big Data. Before the
advent of modern computer science, generating data (for inference, modeling) was identified with collecting
measures. The advent of computer simulations laid the first stone towards generating data from a model.
Let us mention Fermi-Pasta-Ulam-TsingouFermi et al. (1955), which is usually referred to as one of the
first uses of computers to simulate a physical model. In statistics, this concept of generating data from a
given model is called "sampling" (see Section 4). The change of paradigm towards generating data from
data became possible when sufficient computational power and memory were available. Generative AI is
following a path similar to the internet: originally limited to academic purposes9, it now permeates everyday
life. Thanks, for instance, to Generative Pre-Trained Transformers (such as ChatGPT), we seem to be closer
to creating a machine capable of generating data, text, sounds, and more, as humans do. The debate about
artificial general intelligence capable of surpassing humans is already spreadingMorozov (2023); Fjelland
(2020); Federspiel et al. (2023).
We will now review the technical details of state-of-the-art generative models. At the end, we will also
highlight the relation with Energy-Based Models if applicable.

3.1 Variational Autoencoders

As we can infer from the name, to present a variational autoencoder (VAE)Girin et al. (2020) we firstly need
to summarize what an autoencoder (AE) isHinton & Salakhutdinov (2006). Let us focus on Figure 2: it is
a Deep Neural Network (DNN) designed to replicate an input vector x ∈ Rd, after the application of two
NN in sequence. The left segment of the AE, known as the encoder e(x), generates a low-dimensional latent
representation z ∈ RL, with L ≤ d, at the bottleneck layer. The right segment, referred to as the decoder
d(z), endeavors to reconstruct x from z. During the training phase, the true output is compared with d(e(x))
in order to perform backpropagation and train the nets. During the test phase, x̂ is used as an estimated
value of x, that is x̂ ≈ x. An AE can be seen as a trainable compression protocol: once trained, encoder
and decoder are separate parts that can be used separately, for instance before and after a data transmission
procedure. In practice, their use is widely diffused in Machine Learning application: it is common to put
extra layers acting in the latent space, for instance for a supervised tasksBank et al. (2023). Up to this point,
everything operates deterministically: during testing, when the AE is provided with a specific input vector,
it consistently produces the corresponding output.
The subsequent specification of AE are the Variational AutoencodersKingma & Welling (2014). While in

9https://www.livinginternet.com/i/ii_arpanet.htm
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Figure 2: Representation of an autoencoder, taken from https://towardsdatascience.com/
understanding-variational-autoencoders-vaes-f70510919f73

AE we had two deterministic functions e(x) and d(z), in VAE encoder and decoder are two probabilistic
models: an inference model and a generative model. Despite this classification, VAE are usually referred to
as generative models in toto. Let us clarify in formulae the construction.
We consider the joint parametric probability density ρθ(x, z) on Rd × RL, where the parameters θ ∈ Θ are
the weights of a neural network (NN). Specifically, using the definition of joint PDF, we write

ρθ(x, z) = ρθ(x|z)ρ(z) (17)

The prior distribution ρ(z) is usually assumed to be a multivariate gaussian distribution N (z, 0L, IL), with
zero mean vector 0L and identity IL as covariance. The parametric conditional PDF ρθ(x|z) is the decoder
network and can be designed case by case: the simplest and traditional choice is a gaussian

ρθ(x|z) = N (x, µθ(z), diag{σ2
θ(z)}) (18)

with parametric mean µθ(z) and diagonal covariance matrix diag{σ2
θ(z)} (for instance modelled through

appropriate NN). Other possibilities have been studied to tackle different kind of data, for instance audioGirin
et al. (2019).
Following this formal definition, the marginal distribution of the data x will be

ρθ(x) =
∫
RL

ρθ(x|z)ρ(z)dz (19)

Similarly to EBM training, we need to select the optimal parameters θ∗ that minimize a selected measure
of discrepancy between the model and the true data distribution ρ∗, as usual known just through samples.
The procedure is analogous to equation 15: KL divergence is used to evaluate this diversity,

θ∗ = arg min
θ∈Θ

DKL(ρ∗(x) ∥ ρθ(x)) = arg max
θ∈Θ

E∗[log ρθ(x)] (20)

Differently from EBMs, the right-hand side is traditionally written as an expectation: it is the marginal
log-likelihood of the modelStigler (2007). It is just a matter of notation — the optimization objectives are
the same. When having a dataset X = {xi ∈ Rd}N

i=1, one could estimate the expectation via the empirical
average

∑N
i=1 log ρθ(xi)/N . However, the log-likelihood is defined via equation 19, and such an integral is

often analytically intractable. That is, one has no direct access to log ρθ(x) explicitly. The proposed solution
to overcome this issue is based on a variational approach. Let us present a crucial definition and a lemma:
Definition 3.1 (ELBO). Let F denote a variational family defined as a set of PDFs over the latent variables
z. For any q(z) ∈ F , the Evidence Lower Bound (ELBO) (also known as variational free energy)
L : Θ × F × Rd → R is defined as

L(θ, q(z); x) = Eq(z)[log ρθ(x, z) − log q(z)] (21)

10

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Under review as submission to TMLR

Lemma 3.1. The following properties hold true:

1. Decomposition of marginal log-likelihoodNeal & Hinton (1998).

log ρθ = L(θ, q(z); x) + DKL(q(z) ∥ ρθ(z|x)) (22)

2. Bound on marginal log-likelihood.

L(θ, q(z); x) ≤ log ρθ(x)
L(θ, q(z); x) = log ρθ(x) ⇐⇒ q(z) = ρθ(z|x)

(23)

Proof. The proof of (1) is trivial:

L(θ, q(z); x) + DKL(q(z) ∥ ρθ(z|x)) = Eq(z)[log ρθ(x, z) − log q(z)]

+ Eq(z)[log q(z) − log ρθ(z|x)] = Eq(z)

[
log
(

ρθ(x, z)
ρθ(z|x)

)]
= log ρθ(x)

(24)

where we used the definition of conditional probability and the fact that the expectation is computed in
the latent space. (2) is a direct consequence of equation 22 since the KL divergence is non-negative and
identically zero just when q(z) = ρθ(z|x).

Thanks to such results, an estimate of the log-likelihood can be obtained using the Expectation-Maximization
(EM) algorithmDempster et al. (1977): (E) step corresponds to solve the unconstrained variational problem
at fixed θ

q∗(z) = arg max
q∈F

L(θ, q(z); x) (25)

while (M) step to maximization of ELBO w.r.t. θ at fixed q(z). To be precise, the output of the (E) steps is
conditioned on x, which is q(z) = q(z|x). It can be theoretically proven that under suitable condition such
an algorithm converges to the optimum and satisfies the equality in equation 23.
For now there is no evident advantage: solving an explicit variational optimization problem can be unfeasible
as the computation of equation 19. But further simplifications are possible: in so-called fixed-form variational
inferenceHonkela et al. (2010), the variational family F is constrained to be any parametric family of PDFs
qλ(z|x) dependent on λ ∈ Λ; e.g. for the gaussian family qλ(z|x) = N (z; µ, Σ) we have λ = {µ, Σ}. The
advantage is that one can perform the (E) step as optimizing λ and not in a function class, and possibly find

λ∗ = arg max
λ

L(θ, λ; x) (26)

Since we have to deal with a dataset of N data point, we rewrite

L(θ, λ; X ) =
N∑

i=1
L(θ, λi; xi) (27)

and ideally perform gradient-based optimization routines both in (E) and (M) step. But we immediately
notice that optimizing the "local" λi for each sample if N is big is very impractical: for instance, for the
gaussian class in dimension d we should update N means and covariance matrices, that is Nd2(d + 1)/2
scalars.
Thus, a last assumption is necessary to practically train the generative model, leading to the so-called
amortized variational inference. It corresponds to assume that there exists a parametric map fϕ such that
λi = fϕ(xi). In this way, the definitive learning objective for EM algorithm is

L(θ, λ; X ) =
N∑

i=1
L(θ, ϕ; xi) =

N∑
i=1

Eqϕ(zi|xi)[log ρθ(xi, zi) − log qϕ(zi|xi)] (28)

Summarizing this first part, we started from the problem of training the decoder network ρθ(x|z) and we
had to face the issue of computing the marginal log-likelihood. Thanks to a reformulation of the problem, we

11
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could explicit an equivalent objective equation 28. Given qϕ(z|x), that is the approximation of the intractable
posterior ρθ(z|x), L(θ, λ; x) can be attacked via EM algorithm, i.e. alternatively optimizing θ and ϕ.
VAE approach can be seen as a particular case of amortized variational inference in which qϕ(z|x) is ap-
proximated via a neural network, which by analogy with AE is denoted as encoder network. Similarly to the
decoder network, a widely used choice is a gaussian, i.e.

ρϕ(z|x) = N (z, µϕ(x), diag{σ2
ϕ(x)}) (29)

where mean and covariance are modelled by a NN. The proposal to train a VAEKingma & Welling (2014) is
to perform gradient-based optimization on the joint set of parameters {θ, ϕ} with equation 28 as objective.
Since the encoder and decoder are in cascade, the joint training can be suboptimalHe et al. (2018) with
respect to the alternating routine in EM algorithm.
Despite this drawback, using the definition of KL divergence and conditional probability, we rewrite equa-
tion 28 as

L(θ, λ; X ) =
N∑

i=1
Eqϕ(zi|xi)[log ρθ(xi|zi)] −

N∑
i=1

DKL[qϕ(zi|xi) ∥ ρ(z)] (30)

The two summations can be easily interpreted: the first one is related to reconstruction accuracy and
measures the fidelity of encoding and decoding chain; the second one is a regularization term that forces the
posterior (encoder) to be close to the prior, which is a set of independent gaussians — ideally, each z entry
should encode an independent characteristic of the data.
Regarding the actual implementation of a gradient routine, the whole point of ELBO reformulation was the
intractability of the marginal likelihood. Thus, we have to ensure to not have the same issue for L. The
regularization term has an analytical expression for the usual mentioned choices for qϕ(z|x) and ρ(z) (e.g. if it
is the KL divergence between gaussian densities). Thus, the computation of the gradient of that summation
w.r.t. to θ or ϕ is not a problem for backpropagation algorithm (n.b. we are dealing with NN). On the
other hand, the first summation in analytically intractable: the only possibility is the use of a Monte Carlo
estimate using samples {z(r)i}R

r=1 drawn from qϕ(zi|xi). Sampling from a gaussian encoder is an easy task,
but unfortunately it is not a differentiable operation and it poses an obstacle to perform backpropagation
w.r.t. ϕ. The solution to this last issue is the following reparametrization trick:

z
(r)
i = µϕ(xi) + diag{σ2

ϕ(x)} 1
2 ϵ(r) ϵ(r) ∼ N (0L, IL) (31)

which allows to effectively compute the gradient w.r.t. ϕ. The resulting empirical estimate of L(θ, λ; X ) is

L̂(θ, λ; X ) =
N∑

i=1

1
R

R∑
i=r

log ρθ(xi|z(r)
i ) −

N∑
i=1

DKL[qϕ(zi|xi) ∥ ρ(z)], (32)

which is the objective for the joint optimization of θ and ϕ.
After some manipulation, we conclude that VAEs can be trained on log-likelihood objective. The main
strength appears to be the ease of generation, since for common choices of encoder and decoder such task
reduces to sample from a gaussian distribution. In fact, the main drawbacksWei et al. (2020); Oussidi &
Elhassouny (2018); Sengupta et al. (2020) of VAEs lays in the training phase. First of all, VAEs have several
hyperparameters (e.g., the choice of prior, a possible imbalanced weighting of the reconstruction and regular-
ization terms) that can significantly impact their performance. Finding the optimal set of hyperparameters
can be a challenging task. The assumed simple structure of the latent space in VAEs might not capture the
complex dependencies present in the data, limiting the expressiveness of the learned representations. Plus,
achieving perfect disentanglement remains a challenge. The latent variables might still be entangled, making
it challenging to control specific factors independently. Empirically, it is observed that VAEs sometimes
generate blurry samples or suffer from mode collapse, where the model focuses on capturing only a few
modes of the data distribution, neglecting others. In general it seems to be an issue related to their limited
capacity: they might struggle with capturing complex and high-dimensional data distributions effectively,
especially when compared to other generative models.

12



Under review as submission to TMLR

3.2 Generative Adversarial Networks

Generative adversarial networksGoodfellow et al. (2014) (GANs) are a class of generative models which take
inspiration from game theory. They consist of two neural networks (see Figure 3), namely a generator G
and a discriminator D, trained simultaneously through the so-called adversarial training. Given a dataset
X sampled from the unknown data distribution ρ∗, the generator is devoted to generate synthetic data that
ideally resembles the training data. On the other hand, the discriminator has to discern between fake and
true samples. In this sense, G and D are adversary: the generator aims to produce realistic data to fool
the discriminator, while the discriminator strives to correctly classify real and fake data. Thus, the training
ends when the discriminator becomes unable to effectively distinguish between real and generated samples.
Let us present the mathematical formulation: firstly we define a prior ρz(z), which is a PDF easy to sample

Figure 3: Scheme of the structure of GANs, taken from https://sthalles.github.io/intro-to-gans/.

from that serve to inject noise into the generator. The latter is a function Gθg
(z) that is fed with noise

and generate "fake" samples that should be similar to samples from ρ∗. The discriminator is a parametric
function Dθd

(x) that gives the probability that a sample x comes from the training set rather than have been
generated by G. Both θg and θd are parameters of a NN. The optimal weights are solution of the following
two-player minimax problem:

arg min
θg

arg max
θd

E∗[log Dθd
(x)] + Eρz

[log(1 − Dθd
(Gθg

(z)))] := arg min
θg

arg max
θd

V (G, D) (33)

We refer in the following to ρg(x) as the distribution of "fake" samples induced by the generator, that is such
that

Eρz
[log(1 − Dθd

(Gθg
(z)))] = Eρg

[log(1 − Dθd
(x))] (34)

The empirical idea to solve the minimax game is via an alternating algorithm:
Proposition 3.1. The optimization algorithm for a GAN is made by two alternating steps:

• Update of the discriminator
1. Sample {z(i)}N

i=1 (noise) from ρz and {x(i)}N
i=1 (data) from ρ∗.

2. Compute ∇θd
V (G, D) and perform gradient ascent to update θd.

• Update of the generator
1. Sample {z(i)}N

i=1 (noise) from ρz.
2. Compute ∇θg

V (G, D) and perform gradient descent to update θg.

This proposal is driven by common sense, but a more careful analysis of the minimax game is necessary to
ensure convergence of such algorithm. In order to characterize the solutions of this adversarial game, it is
necessary to search for the optima. The method of proof is: (1) classify solutions of optimization of D at
fixed G and viceversa and then (2) present a convergence result of the alternating game. Let us start from
the update of the discriminator:
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Theorem 3.1 (Existence of optimal discriminatorGoodfellow et al. (2014)). For G fixed, the optimal dis-
criminator D is

D∗
G = ρ∗(x)

ρ∗(x) + ρg(x) (35)

Proof. Using equation 33 and equation 34, we have

V (G, D) =
∫

Ω
(ρ∗(x) log Dθd

(x) + ρg(x)(1 − Dθd
(x)))dx (36)

The function y → a log(y)+ b log(1−y) achieve its maximum in (0, 1) at a/(a+ b) for (a, b) ̸= (0, 0). Applied
to the case in study, the discriminator can be defined just in Supp(ρ∗(x)) ∪ Supp(ρg(x)), hence concluding
the proof.

This lemma ensure that the gradient ascending will eventually reach a maximum, that is

C(G) = arg max
D

V (G, D) = E∗

[
ρ∗(x)

ρ∗(x) + ρg(x)

]
+ Eρg

[
ρg(x)

ρ∗(x) + ρg(x)

]
(37)

Now we need to characterize the solutions of the minimization problem arg minG C(G)
Theorem 3.2 (Existence of optimal generatorGoodfellow et al. (2014)). At fixed D = D∗

G, the optimal
generator G∗ induce a ρg such that ρg = ρ∗. At that point, C(G∗) = − log 4.

Proof. Regarding the last point, for ρg = ρ∗ we obtain D∗
G = 1/2, that inserted in C(G) gives exactly − log 4.

We need to test whether this is a global optimum: we can sum and subtract − log 4 to C(G) obtaining

C(G) = − log(4) + DKL

(
ρ∗

∥∥∥∥ ρ∗ + ρg

2

)
+ DKL

(
ρg

∥∥∥∥ ρ∗ + ρg

2

)
= − log(4) + 2 · JSD(ρ∗ ∥ ρg)

(38)

where JSD is the Jensen-Shannon divergenceManning & Schutze (1999). Such quantity has the same non-
negativity property of KL divergence, i.e. JSD(ρ∗ ∥ ρg) ≥ 0 and JSD(ρ∗ ∥ ρg) = 0 iff ρg = ρ∗. This proves
that ρg = ρ∗, or more precisely the corresponding generator G∗, is the global minimum for C(G).

To summarize, we have showed separate theoretical guarantees about convergence of gradient ascent and
descent. However, we need to show that alternating those two steps would eventually converge to the
global Nash equilibrium of the minimax game, i.e. ρ∗ = ρg. The result is summarized in the following
TheoremGoodfellow et al. (2014) of which omit the proof for the sake of brevity.
Theorem 3.3. If G and D have enough capacity, and at each step of the alternating algorithm, the dis-
criminator is allowed to reach its optimum given G, and ρg is updated so as to improve the criterion

E∗[log D∗
G(x)] + Eρg

[log(1 − D∗
G(x)] (39)

then ρg converges to ρ∗.

Ideally, the theoretical treatment of Generative Adversarial Networks (GANs) concludes with the proof that
the proposed minimax game has a unique Nash equilibrium. This equilibrium corresponds to a generator
capable of sampling from ρ∗, making it indistinguishable from true samples by the discriminator, performing
no better than a random classifier with a probability of 1/2.
We now discuss the main drawbacksRadford et al. (2016); Salimans et al. (2016); Arjovsky & Bottou (2016)
of GANs. Firstly, practical application of Theorem 3.3 reveals immediate limitations. In practice, optimiza-
tion involving gradients is executed in parameter space on θg rather than in functional space on ρg. This
deviation introduces challenges, as a convex problem in probability space may become non-convex, espe-
cially when using deep neural networks to model G: in fact, the induced loss function becomes inherently
non-convex. Additionally, a numerical issue arises when attempting to find the perfect discriminator D∗

G

14



Under review as submission to TMLR

at a fixed G; backpropagation to train the generator (specifically because the term D(Gθg
(z))) may yield

gradients close to zero by definition at the beginning of training when the generator is very poor.
Regarding practical aspects, GAN training is notorious for its instability. Achieving the right balance be-
tween the generator and discriminator can be delicate, leading to oscillations during the training process
and making it difficult to converge to a stable solution. This instability often requires careful tuning of
hyperparameters, adding an extra layer of complexity to the training process. Additionally, GANs often
require large and diverse datasets for training to generalize well.
Also generating samples from a trained GAN poses significant challenges. A critical one is mode collapse,
where the generator tends to produce a limited set of outputs, neglecting the diversity present in the train-
ing data. This results in generated samples lacking variety and richness. Furthermore, GANs can be
computationally intensive, especially when dealing with high-resolution images or complex datasets. This
computational demand can be a hindrance for researchers and practitioners with limited resources, both in
terms of time and hardware. Ultimately, evaluating the performance of a GAN can be problematic. Com-
mon metrics like Inception Score and Frechet Inception Distance have limitations, and there is no universally
accepted metric for assessing the quality of generated samples. This lack of clear evaluation criteria makes
it challenging to compare different GAN models effectively.
Despite the mentioned issues, the adversarial paradigm represents an important concept in unsupervised
learning, in particular in relation with robustness of pre-trained generative modelsMadry et al. (2018), and
generally machine learning models.

3.3 Diffusion Models

Diffusion generative modelsSohl-Dickstein et al. (2015); Yang et al. (2023); Croitoru et al. (2023) typically
refer to a class of generative models that leverage the concept of diffusion processes. In the context of
generative models, diffusion processes involve the transformation of a simple distribution into a more complex
one over time. This transformation occurs through a series of steps, each representing a diffusion process. The
overarching idea is to initiate the process with a basic distribution, such as Gaussian noise, and iteratively
transform it to approximate the target distribution, often representing real data like images. In recent years
they have become state of the art in many domains of application, partially substituting GANsDhariwal
& Nichol (2021). In this section we provide a summary of the main common features of diffusion models,
without entering too much in details about every single specification currently available.
As for other generative models, the main ingredient is a dataset X = {xi}N

i=1 where xi are sampled from
an unknown target density ρ∗(x). We will assume X ⊂ Rd for simplicity. Both for VAEs and GANs, the
idea is to generate new samples from noise, that is respectively decoding from a gaussian in latent space, or
generate from noise via G in GANs. In diffusion models, the objective is again to push samples extracted
from a simple distribution, like a gaussian, towards the data distribution.
Since the main content of the following will be strictly related to stochastic calculusRogers & Williams
(2000), let us fix the notation. We will refer to Xt ∈ Rd as a stochastic process, that is a sequence of
random variables, where t ∈ R is the continuous time variable. Differently from deterministic processes, the
focus is on the distribution in law of Xt, namely ρ(x, t), and not on the single trajectory. As deterministic
trajectories can be solutions of ordinary differential equations (ODEs), a stochastic process can be solution
of a stochastic differential equation (SDE).
Proposition 3.2 (SDE and Fokker-Plank PDE). Given the drift µ : Rd ×R → Rd and the diffusion matrix
σ : Rd × R → Rd,d, let us consider the stochastic process Xt solution for t ∈ [0, T ] ⊂ [0, +∞] of the SDE

dXt = µ(Xt, t)dt + σ(Xt, t)dWt, X0 ∼ ρ0 (40)

where Wt is a Wiener process. Using Ito convention, the law of Xt, namely ρ(x, t), satisfies the Fokker-Planck
partial differential equation (PDE)

∂

∂t
ρ(x, t) = −∇ · [µ(x, t)ρ(x, t)] + ∆

[
σ(x, t)2

2 ρ(x, t)
]

, ρ(x, 0) = ρ0(x) (41)

This proposition is important to understand the relation between the single random process Xt and its
distribution in law. Let us present a simple example to clarify such connection.
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Example 3.1 (Wiener process). Let us consider the case µ(x, t) = 0 and σ(x, t) = 1 in d = 1, that
corresponds to the SDE

dXt = dWt (42)
The solution of the associated Fokker-Planck equation

∂ρ(x, t)
∂t

= 1
2

∂2ρ(x, t)
∂x2 , (43)

for a delta initial datum ρ(x, 0) = δ(x) is precisely

ρ(x, t) = 1√
2πt

e−x2/2t (44)

This is a gaussian density with variance proportional to t. That is, the initial concentrated density spreads
on the real line.

This brief summary about SDEs is sufficient to provide a consistent definition of generative diffusion model:
Definition 3.2 (Generative diffusion model). Let us consider the data distribution ρ∗ : Rd → R+ and a base
distribution ρ̄(x) : Rd → R+. Given a time interval [0, T ] ∈ [0, ∞], a generative diffusion model is an SDE
with fixed terminal condition

dXt = µ(Xt, t)dt + σ(Xt, t)dWt, X0 ∼ ρ̄, XT ∼ ρ∗ (45)

where Wt is a Wiener process.

This definition resembles concepts from stochastic optimal controlFleming & Rishel (2012): in fact, the
terminal condition is not sufficient to uniquely fix µ(Xt, t) and σ(Xt, t). Under this point of view, the
specification of a particular class of diffusion models reduces to a prescription on how to determine the drift
and the diffusion matrix. In the following we will summarize two highlighted methods present in literature.

Score-based diffusionSong et al. (2020b). To explain what is score-based diffusion we need the fol-
lowing preliminaries:
Definition 3.3. Given a PDF ρ(x), the score is the vector field

s(x) = ∇ log ρ(x) (46)

Proposition 3.3 (Naive score-based diffusion). For any ε > 0 and ρ0(x), the choice µ(x, t) = εs∗(x) =
ε∇ log ρ∗(x) and σ =

√
2ε in equation 45 satisfies the endpoint condition for T = ∞.

Proof. If we consider the Fokker-Planck PDE associated to equation 45 with the selected drift and variance,
we have

∂tρ(x, t) = ∇ · [−s∗(x)ρ(x, t) + ∇ρ(x, t)] = ∇ ·
[
ρ(x, t)∇ log

(
ρ(x, t)
ρ∗(x)

)]
(47)

By direct substitution, the stationary probability density ρ∗(x) is a solution. For uniqueness, we need to
prove that any solution of the PDE would converge to this solution. A formal argument is based on Jordan-
Kinderlehrer-Otto (JKO) variational formulation of Fokker-Planck equationJordan et al. (1998), interpreted
as a gradient flow in probability space with respect to Wasserstein-2 distance. An alternative way is the
following: for any solution ρ(x, t), we can compute the time derivative of the KL divergence between such
solution and ρ∗(x). If we define R = ρ/ρ∗:

d

dt
DKL(ρ ∥ ρ∗) = d

dt

∫
Rd

ρ log R dx =
∫
Rd

∂tρ log R dx +
∫
Rd

ρ

R
∂tR dx (48)

We can use Fokker-Planck equation to substitute ∂tρ and integrate by parts:

d

dt
DKL(ρ ∥ ρ∗) = d

dt

∫
Rd

ρ log R dx = −
∫
Rd

ρ|∇ log R|2 dx +
∫
Rd

ρ∗∂tR dx (49)
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We notice that ρ∗∂tR = ∇ · (ρ log R), hence that the second addend is zero by integration by parts. The
conclusion is that

d

dt
DKL(ρ ∥ ρ∗) = −

∫
Rd

ρ|∇ log R|2 dx ≤ 0, (50)

concluding the proof.

The result seems to say that we are able to build a diffusion generative models estimating the score of the
target. In a data driven context, ρ∗ is known just through data points and one has to face the problem of
estimating s∗. A possible approachHyvärinen & Dayan (2005) is score matching.
Definition 3.4 (Fisher divergence). Given two PDFs ρ(x) and π(x), the Fisher divergence is defined as

DF (ρ ∥ π) =
∫
Rd

ρ(x)∥∇ log ρ(x) − ∇ log π(x)∥2 dx (51)

Even if in some sense DF seems to measure some distance between two PDFs, it is very different from the
KL divergence, see following Remark.
Remark 3.1. By definition, both KL and Fisher divergence between two PDFs satisfy the non-negativity
property, i.e. they are strictly positive, and zero only when the densities are the same. DF does not depend
on normalization constants of the PDFs because of the gradients. This is a double-edged weapon: it is
apparently useful in high dimension, where the computation of normalization of a density is impractical (as
for instance the partition function for EBMs). But if the distribution is multimodal, the local nature of DF

is very insensible to global characteristics of the densities, as for instance the relative mass in each mode.
Let us consider a key example: the distributions we would like to compare are:

ρ1(x) = 0.5N (x, −5, 1)(x) + 0.5N (x, 5, 1),
ρ2(x) = σ(z)N (x, −5, 1) + (1 − σ(z))N (x, 5, 1)

(52)

where σ(z) = 1/(1 + e−z) is a sigmoid function. The two densities are bimodal gaussian mixture in 1D with
same means and variances; the second mixture is balanced with relative mass equal to 1/2. We would like
to compare DF (ρ1 ∥ ρ2) and DKL(ρ1 ∥ ρ2) as functions of z. In Figure 4 we plot the two divergences in
function of z. We estimate the expectations that define the two divergences using a Monte Carlo estimate,
namely

DF (ρ1 ∥ ρ2) ≈
N∑

i=1
∥∇ log ρ1(xi) − ∇ log ρ2(xi)∥2

DKL(ρ1 ∥ ρ2) ≈
N∑

i=1
log
[

ρ1(xi)
ρ2(xi)

] (53)

where xi ∼ ρ1(x). The minimum value is 0 and corresponds to z = 0, that is ρ1 = ρ2. The first difference
is that the values of DF are smaller of several order of magnitude — in general, this could be a problem in
practical implementations. Most importantly, the shape of the curve is very different. In this one dimensional
example we need N = 10000 to appreciate a similar growth, even if DF curve is more steep. For smaller N ,
DF is basically flat for z ̸= 0. This is related to the absence of points in low density regions, that is where
the integrand in DF gives a non-zero contribution.

In score matching, one propose a parametric score sθ, for instance a neural network, and train such model
to match the true score s∗. The loss on which the model is trained, using for instance gradient routines, is

L(sθ, ρ∗) = 1
2

∫
Rd

ρ∗∥sθ − ∇ log ρ∗∥2 dx = E∗[∥sθ∥2 + tr(Jxsθ)] + Cp (54)

where we integrated by parts, Cp = const does not depend on θ and Jx is the Jacobian with respect to x.
Denoting with ρθ one (n.b. not unique) PDF associated to sθ, the loss is evidently DF (ρ∗ ∥ ρθ). The right
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Figure 4: Comparison between KL divergence and Fisher divergence for the two bimodal gaussian mixtures
in equation 52. The variable z ∈ (0, ∞) is related to the relative mass of the two modes via a sigmoid
function σ(z) ∈ (0, 1); the plots for z < 0 are analogous by symmetry. Notice the different scales of the y
axes. The Monte Carlo estimation is performed using N = 100, 1000, 10000 samples.

hand side reformulation in equation 54 is crucial: the expectation E∗ can be estimated using data points at
our disposal, bypassing the problematic term ∇ log ρ∗.
Unfortunately, the naive score-based approach is plagued by two fundamental issues that make it impractical.
The first regards the score estimation itself: usually, data at our disposal comes from high density region of
ρ∗, that is the estimation of E∗, hence of the score, will be inaccurate outside such areas. The problem is
that the initial condition (e.g. noise) of the SDE is usually located far from data. An imprecise drift will
critically affect the generation process, leading to unpredictable outcomes. The second regards the difference
between the PDE and the practical implementation through equation 45. The generation problem is convex
in probability space, i.e. ρ∗ is the unique asymptotic stationary solution, but the rate of convergence of the
law of Xt is critically related to the particular ρ∗ in study, in particular in relation with multimodality and
slow mixing. We will discuss in details about this issue in Section 4.
The next step towards state-of-the-art score-based diffusion is the following lemmaAnderson (1982):
Lemma 3.2. Any SDE in the form

dXt = f(Xt, t)dt + g(t)dWt, X0 ∼ ρ1, XT ∼ ρ2 (55)

with solution Xt ∼ ρ(x, t) admits an associated reversed SDE

dXs = [f(Xs, s) − g(s)2∇ log ρ(x, s)]ds + g(s)dWs, XT ∼ ρ2, X0 ∼ ρ1 (56)

where ds is a negative infinitesimal time step and s flows backward from T to 0. By convention, equation 55
is also called forward SDE and equation 56 backward one.

Exploiting this result, we can define a score-based diffusion model:
Definition 3.5. A score-based generative model is the backward SDE equation 56, where ρ1 = ρ∗ and
ρ2 = ρ̄.

Apparently, the situation is even worse with respect to score matching: the score in equation 56 is related to
the law of Xt, i.e. it is time dependent and generally not analytically known — score estimation was already
an issue for s∗(x). The core idea in score-based diffusion is to extract information about ∇ log ρ(x, s) from
the forward process since the solutions of equation 55 and equation 56 have the same law, see Figure 5. By
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Figure 5: Schematic representation of forward and backward process in score-based diffusion. Image taken
from Song et al. (2020b).

Definition 3.5, the forward process brings data to noise and the model to be learned is a time dependent
parametric vector field sθ(x, t). The loss used during the forward process to learn the score is:

LSM (sθ(x, t)) = Et∼U(0,T )Eρ(x,t)[λ(t)∥sθ(x, t) − ∇ log ρ(x, t)∥2] (57)

where λ : [0, T ] → R+ is a positive scalar weight function and U(0, T ) is the uniform distribution in (0, T ).
After the same integration by parts used in equation 57, there is still the problem that computing the hessian
is expensive in high dimension, especially if sθ is a neural network. Several proposal to solve this issue have
been proposed and successfully exploited, such as denoising score matchingVincent (2011) or sliced score
matchingSong et al. (2020a). Another subtle issue is that generally the forward process would generate pure
noise for T = ∞ — one could be worried that the truncation at finite time would provide an imprecise
estimate of the score at that time scale, that is close to noise, and induce errors during the generative phase.
This problem is attacked by practitioners via several tricks but the theoretical results in this sense are not
complete.
Let us provide a brief interpretation of why score-based diffusion works better than naive score matching
(Proposition 3.3). Let us consider the simple case f(x, t) = 0 and g(t) = et; the resulting forward process is
perturbing data with gaussian noise at increasing variance scaleSong & Kingma (2021). That is, time scale
corresponds to amount of noise in this setup. We recall that the problem of naive score matching was the
lack of data in low density region for the target density. In score-based diffusion one use perturbed data to
populate those region and compute the score at each time scale that serves as bridge from ρ̄ and the target
ρ∗.

Stochastic Interpolants. Another more recent class of diffusion-based generative models are the stochas-
tic interpolantsAlbergo & Vanden-Eijnden (2022). Let us immediately provide a definition of such objects:
Definition 3.6. Given two probability densities ρ1, ρ2 : Rd → R+, a stochastic interpolant between them
is a stochastic process Xt ∈ Rd such that

Xt = I(t, X0, X1) + γ(t)z t ∈ [0, 1] (58)

where:

• The function I is of class C2 on its domain and satisfy the following endpoint conditions

I(i, X0, X1) = Xi i = 0, 1 (59)

as well as

∃C1 < ∞ : |∂tI (t, X0, X1)| ≤ C1 |X0 − X1| ∀ (t, X0, X1) ∈ [0, 1] × Rd × Rd (60)
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• γ : [0, 1] → R is such that γ(0) = γ(1) = 0 and γ(t) > 0 for t ∈ (0, 1).

• The pair (X0, X1) is sampled from a measure ν that marginalizes on ρ0 and ρ1, that is ν(dX0,Rd) =
ρ0dX0 and ν(Rd, dX1) = ρ1dX1.

• The variable z is a Gaussian random variable independent from (X0, X1), i.e. z ∼ N (0d, Id) and
z ⊥ (X0, X1)

Let us focus on the case in which ρ0 = ρ̄ to be a simple base distribution (e.g. a Gaussian) and ρ1 = ρ∗,
that is the data distribution. Equation equation 58 means that if we sample a couple X0 ∼ ρ0 and X1 from
the dataset, the interpolant is a stochastic process that connects the two points. The objective is to build
a generative model that, in some sense, learns from the interpolants the way to map samples from ρ̄ to ρ∗.
The first important result in this sense is the followingAlbergo & Vanden-Eijnden (2022):
Proposition 3.4. The interpolant Xt is distributed at any time t ∈ [0, 1] following a time dependent density
ρ(x, t) such that ρ(x, 0) = ρ0 and ρ(x, 1) = ρ1, and also satisfies the following transport equation:

∂tρ + ∇ · (bρ) = 0 (61)

where the vector field b(x, t) is defined by a conditional expectation:

b(x, t) = E
[
Ẋt | Xt = x

]
= E [∂tI (t, X0, X1) + γ̇(t)z | Xt = X] (62)

Proof. Let g(k, t) = Eeik·Xt the characteristic function of ρ(x, t), that is

g(k, t) = Eeik·(I(t,X0,X1)+γ(t)z) (63)

If we compute the time derivative of g, we obtain

∂tg(k, t) = ik · m(k, t) (64)

where m(k, t) = E[(∂tI (t, X0, X1) + γ̇(t)z)eik·Xt ]. By definition of conditional expectation,

m(k, t) =
∫
Rd

E[(∂tI (t, X0, X1) + γ̇(t)z)eik·Xt | Xt = x]ρ(x, t)dx

=
∫
Rd

eik·xb(x, t)ρ(x, t)dx

(65)

where we used the definition of b. If we insert m(k, t) in equation 64 and we compute the Fourier anti-
transform, we immediately obtain equation 61 in real space.

Other properties of b can be proven, but for the sake of the present summary we will not delve into them.
As usual we can identify ρ̄ and ρ∗ as base and data distributions. Thanks to the previous Proposition we
can already define a diffusion-based generative model:
Lemma 3.3 (ODE Generative Model). Given Proposition 3.4 and ρ(x, 0) = ρ̄, the choice µ(Xt, t) = b(Xt, t)
and σ(Xt, t) = 0 in equation 45 satisfies the endpoint condition for T = 1.

Differently from score-based diffusion models, such ODE-based formulation does not involve stochasticity
during generation. In fact, the ODE Ẋt = b(Xt, t) can be interpreted as a Normalizing Flow (see Section
6) where the pushforward is defined via a transport PDE. Interestingly, the ODE formulation is formally
equivalent to an SDE formulation:
Lemma 3.4 (SDE Generative Model). For ε > 0, given Proposition 3.4, ρ(x, 0) = ρ̄ and the score s(x, t) =
∇ log ρ(x, t), the choice µ(Xt, t) = b(Xt, t)+εs(Xt, t) and σ(Xt, t) =

√
2ε in equation 45 satisfies the endpoint

condition for T = 1.
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Proof. Adding and subtracting the score to equation 61, we obtain for any ε > 0

∂tρ + ∇ · ((b + εs − εs)ρ) = 0 (66)

But sρ = ∇ρ, that is
∂tρ + ∇ · ((b + εs)ρ − ε∇ρ) = 0 (67)

Trivially, the solution of the PDE equation 67 is the law of a stochastic process solution of an SDE as in
equation 45.

We presented the proof as an example of the standard trick used to convert the diffusion term into a transport
term exploiting the score.
We defined the generative model, but similarly to score-based diffusion, we need to clarify how b and s are
learned in practice from data. For such purpose, we present the following result:
Proposition 3.5. The vector field b(x, t) is the unique minimizer of the following objective loss

Lb[b̂] =
∫ 1

0
E
(

1
2

∣∣∣b̂ (t, Xt)
∣∣∣2 − (∂tI (t, X0, X1) + γ̇(t)z) · b̂ (t, Xt)

)
dt (68)

Similarly, the the score s(x, t) the unique minimizer of the following objective loss

Ls[ŝ] =
∫ 1

0
E
(

1
2 |ŝ (t, Xt)|2 + γ−1(t)z · ŝ (t, Xt)

)
dt (69)

For the sake of the present summary, we will not present the proofAlbergo & Vanden-Eijnden (2022). The
take home message is that one can now propose two neural networks, namely bθ(x, t) and sθ′(x, t), and train
them through backpropagation using equation 68 and equation 69. The integrals are estimated using random
pairs (X0, X1) ∼ ν and times t ∼ U [0, 1]. As for score-based diffusion, we avoid delving into practical details
regarding the implementation of the neural networks. We emphasize the main message: it is feasible to
construct a diffusion model defined in a finite time interval that does not solely rely on the score function. In
fact, score-based diffusion can be viewed as a specific instance of stochastic interpolation or similar methods
(refer to Section 3.5 for more details).

Concerning practical aspects, the freedom in choosing the function I(t, X0, X1) as well as γ(t) can be chal-
lenging due to the absence of a general guiding principle. Unfortunately, the structure of the interpolant
and the implementation of bθ and sθ′ can significantly impact the efficient training of the model. Regarding
the generative phase, the SDE and ODE formulations are formally equivalent, but the practical choice is
not straightforward. From a numerical perspective, the primary issue lies in the time discretization and in-
tegration of the differential equations. The ODE is preferred since integration methods are more stable and
precise compared to those for SDEs; this allows for larger time steps and accelerated generation. This is also
a significant advantage of stochastic interpolants over score-based diffusion, which is SDE-based. However,
the presence of noise appears to be necessary as regularization: in layman’s terms, since b is learned and
possibly imperfect, any mismatch is "smoothed" in the SDE setting by the presence of noise. The value of ε
functions as a hyperparameter in this context.

In conclusion, stochastic interpolants provide a general framework closely related to other diffusion mod-
els, such as score-based diffusion, flow matchingLiu et al. (2022); Lipman et al. (2022), or Schrödinger
bridgeDe Bortoli et al. (2021). However, some common issues of diffusion-based generative models persist:
slow generation, dependence on hyperparameters and neural architectures, and data dependence are the
primary drawbacks.

3.4 Normalizing Flows

The fundamental idea underlying Normalizing FlowsTabak & Vanden-Eijnden (2010); Tabak & Turner (2013)
(NF) is very close to the usual in generative modelling: to transform samples from a straightforward base
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distribution, often a Gaussian, to data distribution. The main feature of NF is that the transformation is
performed through a series of invertible and differentiable transformations.

The core concept revolves around constructing a model capable of learning a sequence of invertible operations
that can map samples from a simple distribution to the target distribution. In particular, we recall the well-
known lemma:
Lemma 3.5. Let us consider a random variable Z ∈ Rd and its associated probability density function ρZ(z).
Given an invertible function Y = ϕ(Z) on Rd, the probability density function in the variable Y is defined
through

ρY (y) = ρZ(g−1(y))| det Jyφ−1(y)| = ρZ(ϕ−1(y))| det Jyϕ(ϕ−1(y))|−1 (70)
where ϕ−1 is the inverse of ϕ and Jy is the Jacobian w.r.t. y. The density ρY is also called pushforward
of ρZ by the function ϕ and denoted by ϕ#ρZ .

In generative modelling, ρZ is identified with the base distribution and its pushforward as the target, i.e.
data, distribution. The direction from noise to data is called generative direction, while the other way is
called normalizing direction — data are normalized, gaussianized, by the inverse of ϕ. The name Normalizing
Flow originates from the latter. In fact, the mathematical foundation of NF is reduced to Lemma 3.5.
The whole problem reduces to design the pushforward in a data driven setup, that is where we just have a
dataset X of samples from the target and no access to the analytic form of ρ∗. In order to link NF with other
generative models, let us denote with ϕθ with θ ∈ Θ the parametric map that characterizes the pushforward
ρθ = (ϕθ)#ρZ . In practice, this map is usually a neural network and ρθ will implicitly depend on it. The
optimal parameters θ∗ are chosen to be solution of the following optimization problem:

θ∗ = arg min
θ∈Θ

DKL(ρ∗(x) ∥ ρθ(x)) = arg max
θ∈Θ

E∗[log ρθ(x)] (71)

As already stressed, this formulation in term of maximum log-likelihood is equivalent to cross-entropy min-
imization for EBMs. As for VAEs, the analytical form of ρθ is not known: in NF it is implicitly defined
through the pushforward. This issue is attacked using Lemma 3.5 to rewrite the right hand side in equation 71
as

arg max
θ∈Θ

E∗[log ρθ(x)] = arg max
θ∈Θ

E∗[log ρZ(ϕ−1
θ (y)) + log | det Jyϕ−1(y)|] (72)

The likelihood of a sample under the base measure is represented as the first term, and the second term, often
referred to as the log-determinant or volume correction, accommodates the alteration in volume resulting
from the transformation introduced by the normalizing flows. After this manipulation every addend inside
the expectation is calculable — the map ϕ and the noise distribution ρZ are given (e.g. a gaussian). As usual,
the expectation can estimated via Monte Carlo using the finite dataset X at our disposal. Any gradient
based optimization routine can be then exploited to optimize θ. During training, the model adjusts the
parameters θ to bring the transformed distribution in close alignment with the true data distribution.

The main limitation in NF is that the pushforward map must be bijective for any θ. Not only that:

Figure 6: Schematic representation of Normalizing Flows, image taken from https://flowtorch.ai/users/.

both forward and inverse operations are required to be computationally feasible to perform generation and
normalization. Furthermore, the Jacobian determinant must be tractable to facilitate efficient computation.
These requests constrain the possible neural architectures that one can use to model ϕθ. The following
lemma provides a decisive tool in this sense.
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Implementation of Maximum Log-Likelihood

EBM Cross-Entropy Minimization
arg minθ∈Θ E∗[Uθ] + log Zθ

VAE
Latent Space

arg maxθ,θ′
∑N

i=1
1
R

∑R

i=r
log ρθ(xi|z(r)

i ) −
∑N

i=1 DKL[log qθ′ (zi|xi) ∥ ρ(zi)]

GAN Minimax Game
arg minθ arg maxθ′ E∗[log Dθ′ (x)] + Eρz [log(1 − Dθ′ (Gθ(z)))]

SBD or SI Implicit via Transport-Diffusion Equation
∂tρ(x, t) + ∇ · ((bθ(x, t) + εsθ′ (x, t))ρ(x, t) − ε∇ρ(x, t)) = 0

NF Volume Correction Factor
arg maxθ∈Θ E∗[log ρZ(ϕ−1

θ (y)) + log | det Jyϕ−1
θ (y)|]

Table 1: Comparison of implementation of maximum log-likelihood for different generative models.

Lemma 3.6. Let us consider a set of M bijective functions {fi}M
i=1. If we denote with f = fM ◦fM−1◦· · ·◦f1

their composition, one can prove that f is bijective and its inverse is

f−1 = f−1
1 ◦ · · · ◦ f−1

M−1 ◦ f−1
M (73)

Moreover, if we denote with xi = fi ◦ · · · ◦ f1(z) = f−1
i+1 ◦ · · · ◦ f−1

M and y = xM , we have

det Jyf−1(y) =
M∏

i=1
det Jyf−1

i (xi) (74)

Exploiting this factorization result, the strategy is to compose invertible building blocks (ϕθ)i to construct
a function ϕθ that is sufficiently expressive. In general, the architecture of Normalizing Flows encompasses
various transformations (see Figure 6), including simple operations like affine transformations and permu-
tations, as well as more complex functions such as coupling layers. Common flow architectures include
RealNVP, Glow, and Planar Flows, each introducing unique ways to parameterize and structure transfor-
mationsKobyzev et al. (2020).
Regarding drawbacks of NF, one significant limitation lies in the computational cost associated with training
NF, particularly as model complexity increases. The requirement for invertibility and the computation of
determinants of Jacobian matrices contributes to the time-consuming nature of training, especially in deep
architectures.

The architectural complexity of NF poses another challenge. Designing an optimal structure and tuning
parameters may prove challenging, necessitating experimentation and careful consideration. Moreover, they
may face challenges in scaling to extremely high-dimensional spaces, limiting their applicability in certain
scenarios. Despite their expressiveness, NF may struggle to capture extremely complex distributions, requir-
ing an impractical number of transformations to model certain intricate data distributions effectively.
Another degree of freedom is the choice of the base distribution ρZ , which can impact NF performance. Using
a base distribution that does not align well with the true data distribution may hinder the model’s ability to
accurately capture underlying patterns. Training NF is observed to be less stable compared to other genera-
tive models, requiring careful tuning of hyperparameters and training strategies to achieve convergence and
avoid issues like mode collapse. Lastly, interpreting the learned representations and transformations within
NF can be challenging, which is an obstacle for a straightforward comprehension of how the model captures
and represents information.

3.5 Comparison and EBMs

In this section, we present a summarized comparison of EBMs and the other generative models. First of
all, the main similarity is the objective: maximize the log-likelihood is the general aim. In Table 1 we
present how this task is instantiated case by case. In generative models, there exists an inherent trade-
off between the model’s ability to generate data and its alignment with real-world data. Essentially, the
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Generation Evaluation
EBM MCMC Energy function
VAE Sampling from gaussian Fidelity of encoding-decoding
GAN Generator Discriminator

SBD (or SI) SDE (or ODE) Score (or vector field)
NF pushforward map Fidelity of Normalizing Flow

Table 2: Generation and evaluation for Generative Models.

paradigm followed in each optimization step involves two key stages: (1) the generation of data using a fixed
model, and (2) the evaluation of the model’s performance by comparing the generated ("fake") data with the
actual dataset. This dual-step process is universally applicable, albeit with variations in implementation.
It represents an interpretation of generative models as a balance between their discriminative and sampling
capabilities. For conciseness, Table 2 provides a summary of specific details for each generative model. The
primary distinction among the Generative Models under examination lies in the manner in which they learn.
In Normalizing Flows (NFs) and Generative Adversarial Networks (GANs), the focus is on directly learning
a deterministic mapping from data to noise. Stochasticity enters the picture primarily through the selection
of an initial datum for generation. Conversely, in Variational Autoencoders (VAEs), diffusion models, and
Energy-Based Models (EBMs), generation is intrinsically linked to a sampling routine (such as Stochastic
Differential Equations for Score-Based Diffusion). This disparity has its advantages and disadvantages: while
deterministic generation can be more efficient, any inaccuracies in the learned generator, stemming from finite
dataset sizes, tend to be amplified. Empirically, this mirrors the rationale behind employing SDEs rather
than ODEs in stochastic interpolants: a noisy evolution serves as a regularizer. However, the magnitude of
noise becomes a critical hyperparameter in diffusion models, as does the structure within latent space for
VAEs. Currently, there is no universally applicable recipe for determining the best generative model for a
specific problem.

The bidirectional nature of generative models (from noise or latent space to data, and vice versa) is a note-
worthy common characteristic, except in the case of GANs, where the generation model lacks invertibility.
Interestingly, it appears that more recent generative models, such as Score-Based Diffusion, enhance fidelity
by leveraging information acquired during the "noising" process—transforming data into noise. To explore
this perspective, the utilization of tools native to Mathematical Physics, particularly those related to stochas-
tic processes, has proven necessary, suggesting that a meticulous examination of Generative Models through
the lens of physical processes could be crucial for future advancements.

Now, let’s delve into a more detailed mathematical comparison, with a focus on Energy-Based Models
(EBMs). Specifically, we demonstrate how, in certain cases, other generative models can be interpreted as
EBMs:

• For GANs, if the discriminator is Dθ′(x) ∝ e−Uθ′ (x), we immediately recover the term E∗[Uθ]. The
training of the generator correspond to learn a perfect sampler, and resemble the use of machine
learning to improve MCMC in computational scienceSong et al. (2017).

• For SBD and SI, if the score is modelled by sθ′(x, t) ∝ −∇Uθ′(x) the law of the process solution of
the SDE is a Boltzmann-Gibbs ensemble by construction. Thus, the strong analogy is related to the
constrained structure imposed to the law of the bridging process between the noise and the data,
forced to be a BG ensemble. Regarding the loss, since the model is trained on Fisher divergence or
on the interpolants, there is no direct analogy between the losses.

• For NFs, if ϕθ is the map associated to a flow that brings X0 ∼ ρZ(ϕ−1
θ (x)) ∝ e−Uθ(x) to X1 ∼ ρ∗,

then the term E∗[Uθ] present in EBMs is analogous to E∗[log ρZ(ϕ−1
θ (y)) for NFs. In practice, if the

composition of ρZ with the normalizing flow can be written as an EBM, there is no difference between
the models. This is of course not true in general — it is not given that for any θ, a composition of
the inverse map ϕ−1

θ and ρZ can be always associated to an EBM parameterized via Uθ.
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• For VAEs the situation is a bit more intricate because of the ELBO reformulation. A possible
interpretation towards EBMs is to think about encoder and decoder as a forward and backward
processes from data to a latent space (possibly independent features, similarly to gaussian noise).
One could imagine ρθ(xi|z(r)

i ) and qθ′(zi|xi) as EBMs that have to match with some constraint on
the z space. In fact, the original EM steps represent an alternating optimization, where θ is not
related to θ′. In this sense, VAEs tries to match the forward and backward processes, similarly to
SBD where they are the same by construction of the score.

A fitting metaphor for generative models is to liken them to bridges connecting a "simple" source, such as
noise, to real data. Just like constructing a physical bridge, building a generative model requires under-
standing the abutments. In the realm of data science, this translates to conducting statistical analysis of
the dataset on one side, and selecting the appropriate noise source on the other. Additionally, modifying
the docking configuration where the bridge is anchored—equivalent to data preprocessing—is often neces-
sary. This step is crucial, akin to using the correct coordinates to describe a physical system. For instance,
molecular configurations may not be easily trainable in standard three-dimensional space due to numerous
implicit structural constraints.

Once the groundwork is laid, constructing the bridge begins. Just like real roads, different paths are tailored
for different canyons, and similarly, for different data structures. Whether the bridge is bidirectional or not
depends on the specific requirements. The key takeaway is always to maximize the log-likelihood between
the model and the data distribution, ensuring that the bridge effectively connects the source to the desired
destination.

4 EBMs and sampling

The challenge of sampling from the Boltzmann-Gibbs (BG) ensemble arises in statistical mechanics, par-
ticularly when dealing with complex systems at equilibrium. This ensemble encapsulates the probability
distribution of states for a system with numerous interacting particles at a given temperature. The primary
obstacle in that context lies in the exponential number of possible states and intricate dependencies among
particles, rendering brute-force methods impractical for large systems. A similar difficulty is encountered
during EBM training, since the computation of the expectation Eθ requires the ability to sample from a
Boltzmann-Gibbs density.

Let us restrict to the case in which the energy U(x) is defined on Rd, that corresponds to continuous states
in Statistical Physics. Any proposed techniques to efficiently sample from ρBG(x) = exp(−U(x))/Z can rely
just on U(x) or on its derivatives, even if the computation of many iterated derivatives can be expensive
in high dimension. The estimation of the partition function or the shape of the energy landscape are in
general unknown — on the contrary, they are the unknowns. Methods as rejecting samplingCasella et al.
(2004) cannot be used since one has usually access to U(x) and not to the normalized density ρBG(x). Since
the advent of computational science, sampling has been attacked with many methods — a complete and
exhaustive review of the existent methods would lead us off-topic. In this Section, we will highlight three
common routines for sampling from a BG enseble: Metropolis-Hastings and Unadjusted Langevin Algorithm,
and lastly Metropolis Adjusted Langevin Algorithm, a sort of fusion of the first two.
Let us better define the mathematical setting. We consider a space Ω ⊆ Rd and a discrete sequence
(tk)k≥0 ⊂ N. Then, we consider Xtk

:= Xk to be a stochastic process in Ω and discrete time. For the
sake of simplicity we will always consider absolutely continuous densities with respect to Lebesgue measure.

Definition 4.1 (Informal). Sampling from a BG ensemble consists in defining the process Xk such that
∃T > 0, not necessarily unique, for which XT ∼ exp(−U(x))/Z.

Once we manage to define such a process, and implement it in practice, we have solved the problem of
sampling from a BG ensemble. A possible implicit way to define such stochastic process is via a transition
kernel. Suppose we are interested in the law of the process X at time k + 1, that we denote ρ(Xk+1) with
an abuse of notation (n.b. analogous of ρ(x, t) in the context of SDEs and Fokker-Planck equation). By
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definition of conditional probability, there exists a function T : Ωn+1 → R+ such that

ρ(Xk+1) =
∫

Ωd

T (Xk+1|Xk, . . . , X0)ρ(Xk, . . . , X0)
n∏

i=0
dXi (75)

This equation asserts that any property, uniquely defined by the law ρ(Xk+1) of the system at time k + 1,
depends on the system’s state at any k ≥ 0. Generally, this strict constraint is relaxed by imposing Marko-
vianityStroock (2013), which is the property of the transition kernel to depend solely on the present state
Xk and not on previous states, i.e.

T (Xk+1|Xk, . . . , X0) = T (Xk+1|Xk) := T (Xk, Xk+1) (76)

The sequence (Xk)n ≥ 0 is called a Markov chain if the associated transition kernel is Markovian. The
question now is how to design such a chain to solve the sampling problem. Traditionally, it is simpler to
identify a transition kernel for which ρBG(x) is the unique stationary distribution, i.e., ρ(Xk) = ρBG(x) for
any n > T in Definition 4.1. Moreover, the integral definition equation 75 is not suitable for applications
since one usually evolves Xk and not its law. Typically, it is required that T is associated with an explicit
time evolution for the process, namely an explicit mapping Xk+1 = F (Xk).

For historical reasons, let us present the most famous procedure to build the required sampling stochastic
process, namely the Metropolis-Hastings algorithmMetropolis et al. (1953); Hastings (1970). Such techniques
stand out as a foundational Markov chain Monte Carlo (MCMC)Andrieu et al. (2003) method. Here, we
provide its definition and a sketch of the proof of its properties.
Definition 4.2 (Metropolis-Hastings (MH) algorithm). Let us consider an initial condition X0 ∼ ρ0(x),
where ρ0(x) simple to sample from (e.g. Gaussian or uniform). Let us consider a conditional probability
distribution g(Xk+1|Xk), also called proposal distribution, defined on the state space Ω and let ρBG(x) =
exp(−U(x))/Z the BG ensemble we would like to sample from. Starting at n = 0, we define a Markov chain
Xk via the following repeated steps:

1. Given Xk, generate a proposal X
(p)
k+1 using the time evolution prescribed by T .

2. Compute the acceptance ratio

A(X(p)
k+1, Xk) = arg min

{
1,

ρBG(X(p)
k+1)g(Xk|X(p)

k+1)
ρBG(Xk)g(X(p)

k+1|Xk)

}
(77)

3. Sample a real number u ∼ U [0, 1]. If u < A(Xk, X
(p)
k+1), accept the proposal and set Xk+1 = X

(p)
k+1;

otherwise, refuse the move and set Xk+1 = Xk. Then, increment n to n + 1.

Proposition 4.1. The Markov chain Xk defined via MH algorithm has ρBG(x) as unique stationary distri-
bution, i.e.

ρBG(x) =
∫

Ωd

TMH(x|x′)ρBG(x′)dx′, ∀x, x′ ∈ Ω (78)

where TMH(x|x′) is the transition kernel of MH algorithm.

Proof. We have show that (1) ρBG(x) is a stationary distribution and (2) it is unique. Regarding (2) we
advocate to geometric ergodicityMengersen & Tweedie (1996). We present the proof of property (1): firstly,
it is equivalent to detailed balance conditionRobert et al. (1999)

ρBG(x)TMH(x, x′) = ρBG(x′)TMH(x′, x) ∀x, x′ ∈ Ω (79)

The transition kernel is by definition

TMH(x, x′) = g(x′|x)A(x′, x) + δ(x − x′)
(

1 −
∫

Ω
A(x, s)g(s|x)ds

)
(80)
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where the first addend takes into account the case of accepted move, while the second of the rejected one.
Actually, for x = x′ the detailed balance condition is trivially true. Then, for x ̸= x′ we compute the left
hand side of equation 79

ρBG(x)TMH(x, x′) = ρBG(x)g(x′|x)A(x′, x)

= ρBG(x)g(x′|x) arg min
{

1,
ρBG(x′)g(x|x′)
ρBG(x)g(x′|x)

}
= arg min {ρBG(x)g(x′|x), ρBG(x′)g(x|x′)}

(81)

The right hand side is symmetric with respect to swap of x with x′, hence concluding the proof.

In practice, convergence is considered achieved when the acceptance ratio is consistently close to 1. In such
cases, every newly generated proposal can be regarded as an independent sample obtained from ρBG.

Despite its popularity, the Metropolis-Hastings algorithm has some limitations. It is sensitive to the choice
of the proposal distribution g and its parameters, and improper tuning may result in inefficient exploration.
For instance, in the so-called random walk setting, g is chosen to be a Gaussian transition kernel, and its
variance is a critical hyperparameter in this case. Moreover, the algorithm generates correlated samples,
impacting the independence of successive samples and hindering accurate estimation even after convergence.
Convergence may be slow in high-dimensional spaces, requiring numerous iterations. In such setups, the
algorithm’s performance is influenced by the initial state, and initial points far from the basin of the target
may impede efficient exploration, leading to an acceptance rate close to zero. Another issue pertains to
multimodal distributions, especially those with widely separated modes. They pose a significant challenge
for the Metropolis-Hastings algorithm because, depending on the choice of g, jumps between modes can be
very rare and may necessitate a very long chain to practically observe convergence.
The second class of Markov chain we would like to review are the Langevin-based algorithms. The basic idea
is very close to the definition of naive score-based diffusion in Proposition 3.3. For the sake of simplicity let
us fix the state space Ω = Rd.
Proposition 4.2. Let us denote with dWt a Wiener process. Under Assumption 2.1, namely

∃a ∈ R+and a compact set C ∈ Rd : x · ∇U(x) ≥ a|x|2 ∀x ∈ Rd \ C, (82)

the Langevin SDE
dXt = −∇U(x)dt +

√
2dWt X0 ∼ ρ0 (83)

have a global solution in law and is ergodic Oksendal (2003); Mattingly et al. (2002); Talay & Tubaro (1990).
For any initial condition ρ0(x) such solution is ρBG(x).

Given this result, one can define a Markov chain based on the time discretization of such SDE and use it for
samplingParisi (1981). Such procedure is commonly named Unadjusted Langevin Algorithm (ULA)Roberts
& Tweedie (1996).
Definition 4.3 (ULA). Given a time step h > 0 and a set of i.i.d. gaussian variables {ξk} ∼ N (0d, Id),
the Unadjusted Langevin Algorithm (ULA) is the Markov chain defined as

Xk+1 = Xk − h∇Uθk
(Xk) +

√
2h ξk, X0 ∼ ρθ0 , (84)

for k ∈ N.

Under Assumption 2.1, the Unadjusted Langevin Algorithm (ULA) is ergodic and possesses a unique global
solution. An advantage over the Metropolis-Hastings (MH) algorithm is that the chain is uniquely defined
via U(x), and no proposal distribution is necessary. However, it is well-known that ULA represents a biased
implementation of Langevin dynamicsWibisono (2018). For a nonzero time step, the global solution is
ρbias ̸= ρBG. Let us illustrate this point with a simple example.
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Example 4.1. Let U(x) = (x − µ)T Σ−1(x − µ)/2 + log[det(2πΣ)]/2, that is BG ensemble is a gaussian with
mean µ and covariance matrix Σ. The associated Langevin SDE is also known as Ornstein-Uhlenbeck (OU)
processUhlenbeck & Ornstein (1930), having a linear drift as peculiarity:

dXt = −Σ−1(Xt − µ)dt +
√

2dWt. (85)

It is possible to write an explicit solution using Ito integral, namely

Xt − µ ∼ e−tΣ−1
(X0 − µ) + Σ 1

2

(
Id − e−2tΣ−1

) 1
2

Z (86)

for any t ≥ 0 and where Z ∼ N (0d, Id) indipendently from X0. It means that the law of the process converges
exponentially fast to N (µ, Σ). The associated ULA is

Xk+1 − µ =
(
Id − hΣ−1) (Xk − µ) +

√
2hξk. (87)

and the corresponding solution in law is

Xk − µ ∼ Ak
h (X0 − µ) +

√
2h
(
Id − A2

h

)− 1
2
(
Id − A2k

h

) 1
2 Z (88)

where Ah = Id − hΣ−1. Naming λmin(Σ) > 0 the minimum eigenvalue of the covariance matrix, for
0 < h < λmin(Σ) we have limk→∞ Ak

h = 0. Thus, for k → ∞

Xk
d−→ µ +

√
2h
(
Id − A2

h

)− 1
2 Z (89)

This means that the limiting measure for ULA is not ρBG, but

ρbias(x) = N

(
µ, Σ

(
Id − h

2 Σ−1
)−1

)
(x) (90)

This example illustrates that the Unadjusted Langevin Algorithm (ULA) exhibits bias even for a very
simple target density. This phenomenon has been recently analyzed mathematicallyWibisono (2018). The
physical interpretation is that detailed balance is broken by construction. Let us elaborate on this point:
in Proposition 3.2, we demonstrated how a Stochastic Differential Equation (SDE) can be associated with
a Partial Differential Equation (PDE). The specific case studied in this section was previously analyzed in
Proposition 3.3. Specifically, the Boltzmann-Gibbs (BG) density is the unique minimizer of the Kullback-
Leibler (KL) divergence functional DKL(ρ ∥ ρGB). Moreover, the Fokker-Plank PDE corresponds to the
gradient flow in P(Rd) with respect to the 2-Wasserstein distance W2Jordan et al. (1998). If we split
equation 84 in two substeps

Xk+ 1
2

= Xk − h∇U(Xk)

Xk+1 = Xk+ 1
2

+
√

2εξk

(91)

we can associate each of them to a precise operation in probability space. In particular, denoting with ρi

the law of Xi, we obtain

ρk+ 1
2

= (Id − h∇U)#ρk

ρk+1 = N (0d, 2hId) ⋆ ρk+ 1
2

(92)

We recall the decomposition of the Kullback-Leibler (KL) divergence as DKL(ρ ∥ ρGB) = −H(ρ, ρGB)−H(ρ).
In equation 92, the first step involves the forward discretization of gradient descent on −H(ρ, ρGB) = Eρ[U ],
while the second step represents the exact gradient flow for negative entropy in probability space. Therefore,
ULA is also referred to as the Forward-Flow method in probability space. The bias arises because the forward
gradient descent does not correspond, in probability space, to the adjoint of the flow at iteration k + 1/2.
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One possible solution is to use forward-backward combinations, referring to proximal algorithmsParikh et al.
(2014). In particular, the Forward-Backward (FB) implementation for Langevin dynamics would be

ρk+ 1
2

= (Id − h∇U)#ρk

ρk+1 = arg min
ρ∈P

{
−H(ρ) + 1

2ϵ
W2

(
ρ, ρk+ 1

2

)2
} (93)

Similarly, the Backward-Forward (BF) version

ρk+ 1
2

=
(
(Id + h∇U)−1)

# ρk

ρk+1 = expρ
k+ 1

2

(
−h∇ log ρk+ 1

2

) (94)

where exp is the exponential map. Unfortunately, both FB and BF are not implementable in practice, except
for the trivial case of gaussian initial data and target ρBG. The heat flow (the step k + 1/2) is the most
problematic since it concerns steps in probability space. Neither forward (n.b. beyond one iteration) nor
backward are usable. As a side note, one could imagine to directly perform a single forward or backward
step on the KL divergence. Unfortunately, the encountered issues are the same one has for the heat flow,
i.e. the hard task appears to be the actual implementation of forward or backward routines in probability
space. In conclusion, ULA appears to be the simplest time discretization of Langevin dynamics, since it
is practically implementable in general, hence very used for sampling from a BG ensemble. However, it is
known to be biased and other methods are studied to eliminate, or at least reduce, such bias.
One possibility we would like to review is Metropolis Adjusted Langevin AlgorithmGrenander & Miller
(1994) (MALA), which represents a sort of hybrid between MH and ULA.
Definition 4.4 (MALA). Metropolis Adjusted Langevin Algorithm is a particular case of MH algorithm 4.2
where the proposal distribution is the transition kernel associated to ULA equation 84, namely (for x ∈ Rd)

g(x′ | x) = 1
(2πh) d

2
exp

(
− 1

4h
∥x′ − x + hU(x)∥2

2

)
(95)

On the other hand, one can interpret MALA as a corrective measure for the breakdown of detailed balance in
ULA. While the Metropolis-Hastings algorithm inherently respects detailed balance, implying that MALA
becomes asymptotically unbiased for a large number of iterations as k → ∞, certain challenges persist.
A primary concern is the sensitivity to the choice of the step size h during the discretization of Langevin
dynamics, significantly influencing the efficiency of sampling. When h is too small, it can lead to poor
exploration and potentially a very low acceptance rate, while an excessively large h can lead to instability
of the chain. Determining an optimal h lacks a general rule, contributing to MALA introducing bias in
samples, particularly evident when the target distribution features sharp peaks or multimodal structures.
This bias introduces potential inaccuracies in statistical estimates.

In practical applications, MALA may exhibit random walk behavior, especially when step sizes are inade-
quately tuned, resulting in inefficient exploration and sluggish convergence. The algorithm’s performance
is further contingent on the choice of initial conditions, and beginning far from high-probability regions
may necessitate a considerable number of iterations for meaningful exploration. Additionally, MALA may
struggle to adapt to changes in the geometry of the target distribution, particularly when facing varying
curvatures or strong anisotropy.

While various more advanced algorithms exist, they often build upon the foundational concepts discussed in
this section. Notable among them is Hamiltonian (or Hybrid) Monte CarloDuane et al. (1987) (HMC), an
advanced MCMC method inspired by Hamiltonian mechanics. HMC utilizes fictitious Hamiltonian dynamics
to propose new states, enhancing exploration, especially in high-dimensional systems. Gibbs samplingGeman
& Geman (1984), another MCMC approach, iteratively samples from conditional distributions given cur-
rent variable values on a single dimension, proving effective, particularly in high-dimensional spaces. Parallel
Tempering, or Replica ExchangeSwendsen & Wang (1986), involves running multiple chains at different tem-
peratures concurrently, with periodic swaps between neighboring chains to facilitate improved exploration.
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In general, most methods aim to find a chain that produces independent samples from a Boltzmann-Gibbs
ensemble, particularly when run for extended periods. A critical issue is measuring the effective bias due to
the truncation at finite time of the chain, posing challenges for convergence towards the asymptotic ρBG.
Unfortunately, few general results are available, and they are often limited to specific BG ensembles, such
as Gaussian or log-concave densities. This becomes particularly problematic in the context of Energy-Based
Models (EBM), as outlined in Remark 2.2, where sampling from a BG distribution is required at each step
of parameter optimization.

5 EBMs and physics

In this section, we provide a review of the Boltzmann-Gibbs ensemble in relation to Statistical Physics,
covering its derivation in equilibrium. The purpose of this treatment is to motivate the specific structure of
EBMs, which could be particularly useful for reader’s not familiar with Statistical Ensembles.

The first step involves the derivation of the Boltzmann-Gibbs ensemble. Here, we present a derivation based
on information theoryJaynes (1957a;b), offering a posteriori physical interpretation of the quantities we will
manipulate. Alternative methods of proof are also availableGallavotti (1999). Consider a physical system
whose state is uniquely determined by a variable x ∈ Ω ⊆ Rd, where Ω is often referred to as phase space. The
connection with information theory is linked to the fundamental problem of Statistical Physics: describing
a system as a statistical ensemble, i.e., identifying an observation of x as a sample from an underlying
PDF ρ. Like classical statistics, ρ contains a wealth of information about the system, particularly its global
properties.

In Physics, this dichotomy translates into the microscopic versus macroscopic realms. Let’s envision a simple
thought experiment: picture a large city where each of the N inhabitants is given a fair coin, with the coin’s
state represented by our variable x ∈ {−1, 1}N . Twice a day, everyone has to flip their coin. If we were
omniscient, there would be a way to predict the state x with no error (i.e., the microscopic state) and derive
any global (macroscopic) property, such as the sum or product of the state values at each flipping event, with
no error. However, in reality, nobody could achieve this; we rely on statistics, the central limit theorem, and
so forth. In other words, we know the probability density ρ(x) from which the process is a sampled event.
For instance, if N is large enough, we expect the average of the state vector to be 0 for any flipping event,
and we can deduce so directly from ρ.

In Statistical Physics, each coin represents a component of a system, such as a particle in a gas, for which
a direct measurement of x is unattainable. The goal is to determine ρ so that standard statistical tools
can be used to analyze global properties. The challenge that makes Statistical Physics more complex than
the simple example above is that the dynamics of individual components can be unknown and inaccessible.
Additionally, interactions between components can make the identification of ρ challenging, even if the
underlying microscopic dynamics are known.

To address this issue, we recognize that, before formulating any physical model, we need some motivated
assumptions—constraints or information—regarding how the system should behave, at least on a macroscopic
level. This is the bare minimum; without any information about a system, it is impossible to provide any
meaningful analysis. Thus, adopting a claim of epistemic modesty, one can state that we aim to select the
model compatible with such constraints that maximizes our ignorance about the system. The mathematical
translation of such idea is the Principle of Maximum Entropy.

Assumption 5.1 (Principle of Maximum Entropy). Let us consider the unknown ρ : Ω → R+ that describes
the probability distribution of the states. We assume ρ to be absolutely continuous w.r.t. Lebesgue measure
without loss of generality. Given a vector field F : Ω → Rd, Λ ∈ Rd and a PDF π, a set of constraints is
any component-wise (in)equality

Ik[π] :=
∫

Ω
Fk(x)π(x)dx ≤k Λk k = 1, . . . , d (96)
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where the symbol ≤k can be an equality or inequality. The Principle of Maximum Entropy is

ρ = arg max
π∈P(Ω)

Ik[π]≤kΛk

H(π) (97)

where H(ρ) is the usual differential entropy, cfr. equation 11.

This variational formulation identify the "ignorance" about the system with the entropy associated to ρ. It
has been proven that the entropy can be characterized in an axiomatic wayAczél et al. (1974), so that the
definition of differential entropy is unique with respect to certain properties. For the sake of the present
treatment, let us motivate the Maximum Principle with a simple example.
Example 5.1 (Maximum principle on an interval). Let us consider an interval Ω = [a, b] ⊂ R, with
Vol(Ω) =

∫ b

a
dx. Moreover, the only constraint is that ρ can be normalized and is positive. Thus, we

have I0[π] =
∫ b

a
ρ(x)dx = 1 and

ρ = arg max
π∈P(Ω)

I0[π]=1, π>0

H(π) (98)

We can use Lagrange multipliers to solve a constrained optimization problem, solving the unconstrained
optimization of the Lagrangian

J(π) := H(π) + λ0

(∫ b

a

π(x)dx − 1
)

(99)

To find stationary points we can compute the first variational derivative with respect to π and finding its
roots, namely solutions of

δJ(π)
δπ

= − log π − 1 + λ0 = 0 (100)

that is ρ(x, λ0) = exp(λ0 − 1). To find λ0 we can substitute ρ(x, λ0) into the constraint, yielding λ0 =
1 − log(b − a). In conclusion, ρ(x) = 1/(b − a), which also satisfies the positivity request. We have just to
check that such stationary point is a maximum. The second variation of J(π) evaluated in the stationary
point is

δ2J(π)
δπ2

∣∣∣
π=ρ

= − 1
ρ(x) < 0 (101)

Hence, we conclude that ρ(x) is a maximum. If Ω is discrete such derivation can be easily generalized.
The interpretation is straightforward: imagine that Ω is the event space for some random process. Without
any knowledge, the simplest possible model is the one that associates the same probability to all the possible
outcomes.

At this point we have all the ingredients to present the derivation of Boltzmann-Gibbs ensemble.
Proposition 5.1 (Boltzmann-Gibbs ensemble from Maximum Entropy principle). Given U(x) that satisfies
Assumption 2.1 and a constant Ū , the Boltzmann-Gibbs ρBG = eλ1U(x)/Z, where λ1 > 0, is the unique
solution of the variational maximization problem equation 97 where the set of constraints is

I0[π] :=
∫

Ω
π(x)dx = 1

I1[π] :=
∫

Ω
U(x)π(x)dx = Ū

(102)

Proof. The proof proceeds similarly to Example 5.1. The constrained optimization problem equation 97 is
associated to the unconstrained one

ρ = arg max
π∈P(Ω)

J(π) := arg max
π∈P(Ω)

H(π) + λ0

(∫
Ω

π(x)dx − 1
)

+ λ1

(∫
Ω

U(x)π(x)dx − Ū

)
. (103)
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where λ0, λ1 are Lagrange multiplier. We compute the first variational derivative and find its roots

δJ(π)
δπ

= − log π(x) − 1 + λ0 + λ1U(x) = 0 (104)

That is, ρ(x) = exp(λ0 + λ1U(x) − 1). This means that λ0 can be incorporated in the normalization factor,
namely the partition function Z−1 = exp(λ0 − 1), and determined via the constraint I0[ρ] = 1. While λ1 is
implicitly determined by I1. To check that such solution is a maximum, we compute the second variation
obtaining a result analogous to equation 101.

The remaining issue is the identification of λ1 with β = 1/kBT , related to temperature T and Boltzmann
dimensional constant kB = 1.23 × 10−28 J · K−1. The reason is that if we interpret the Boltzmann-Gibbs
ensemble with an equilibrium ensemble, the derivation via Maximum Entropy principle must be coherent
with ThermodynamicsAdkins (1983). A complete survey on such field would lead the present treatment
off-topic. The take home message is related to a different interpretation of the unconstrained optimization
problem equation 103, namely

δ

δπ

(
H(π) + λ0

∫
Ω

π(x)dx + λ1

∫
Ω

U(x)π(x)dx

)
= 0 (105)

In particular, the following lemma holds true:
Lemma 5.1. Maximum Entropy principle and its variational formulation are equivalent to

• Constrained minimization of energy functional Ū =
∫

Ω U(x)π(x)dx.

• Constrained minimization of Helmholtz Free Energy functional F = Ū − TH(π), where T > 0 is the
usual thermodynamic temperature.

Proof. The proof is just related to a redefinition of the Lagrange multipliers. For the minimization of energy,
one define λ′

1 = −1/λ1 and λ′
0 = −λ0/λ1, where the sign is just a convention, obtaining

δ

δπ

(
λ′

1H(π) + λ′
0

∫
Ω

π(x)dx +
∫

Ω
U(x)π(x)dx

)
= 0 (106)

While for the Helmholtz Free Energy, we have just to impose the thermodynamics constraintFermi (2012)
∂F/∂S = −T , that is λ1 = −1/T .

Remark 5.1 (Free Energy in EBM training). In Section 2.1 we presented the training procedure for an EBM
as the KL divergence minimization. If ρθ is in the same class of ρ∗, the global minimum in probability space
corresponds to ρθ = ρ∗, i.e. KL divergence equal to zero since by definition DKL(ρθ ∥ ρθ) = 0. However, if
we expand the such identity, we have

log Zθ + β

∫
Rd

Uθ(x)ρθ(x)dx − H(ρθ) = 0 (107)

where we used equation 14, and restored β in front of Uθ (n.b. we put kB = 1 and T = 1 in Section 2.1).
If we identify Fθ = − log Zθ, we immediately notice that equation 107 is the definition of Helmholtz Free
Energy. In fact, the convergence of the training corresponds to have reached the equilibrium. The equality
F = Ū − TH(π) is not true out of equilibrium — the KL divergence DKL(ρθ ∥ ρ∗) is zero iff ρθ = ρ∗.
Moreover, it is even more clear the statement of Lemma 5.1: since

log Zθ + min
π∈P(Ω)

I0[π]=1, ρθ>0

[β
∫
Rd

Uθ(x)pi(x)dx − H(π)] = 0 (108)

and F = Ū − TH(π), at equilibrium F is necessarily minimized in correspondence of F [ρθ] = − log Zθ.
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The requested compatibility between Thermodynamics and the Maximum Entropy principle in Lemma 5.1
represents the final ingredient needed to define the Boltzmann-Gibbs probability density associated with a
system at equilibrium with a thermal reservoir at temperature T . For the purpose of this review, it would
be beneficial to elaborate on the physical significance of EBM. Assuming we are dealing with an equilibrium
ensemble, we presume that the parameters θ in the energy Uθ have already been determined. Similar
to a physical gas where particles move within an energy landscape, different datasets or even individual
data points can be envisioned as snapshots of an evolving physical system. The crucial aspect is that
from a statistical perspective, the average energy Ū associated with the EBM must remain constant, with
fluctuations suppressed as the number of components increases. An example of dynamics consistent with such
a constraint is Langevin dynamics. The connection with sampling and Physics becomes evident: sampling
is the process of relaxationEvans et al. (2009) towards equilibrium. Utilizing our understanding of nature
entails designing sampling routines capable of facilitating such relaxation.

We introduced the concept of free energy as a thermodynamic quantity minimized at equilibrium by the
Boltzmann-Gibbs ensemble. Generally, computing free energy is a extensively studied problem in Chem-
istryJorgensen (1989), spanning from organic Chemistry to protein foldingDinner et al. (2000). However,
the concept of free energy appears ubiquitous, extending into seemingly disparate contexts far from compu-
tational chemistry, such as autoencodersHinton & Zemel (1993), lattice field theoryNicoli et al. (2021), and
neuroscienceFriston (2009). Invariably, it is associated with some equilibrium principle, often directly linked
to the use of a generalization of the Boltzmann-Gibbs ensemble.

The importance of free energy can be readily understood: the expected value of any observable at
equilibrium can be computed if we have access to the normalization constant of the Boltzmann-Gibbs
ensemble, which is the partition function Z = e−F . However, as demonstrated in Section 2.1, computing
the partition function, and consequently the free energy, is exceedingly complex using standard Monte
Carlo methods for systems with many degrees of freedom, roughly corresponding to dimension d for
EBM training. Among the various proposed advanced methodsStoltz et al. (2010), the utilization of the
Jarzynski identityJarzynski (1997) stands out a very notable tool. Recently, an application of such re-
sult for improving the training of EBMs has been proposed, see Carbone et al. (2024) for a detailed treatment.

6 State of the art: Contrastive Divergence and beyond

In this section we summarize the most common algorithm used for EBM training, namely Contrastive Diver-
gence. For readers convenience, we fix the notation: in the following, ρθ(x) = ρθ(t)(x) = exp(−Uθ(t)(x))/Zθ

is the EBM we aim to train. As we showed in Section 2, training an EBM reduces to perform gradient-based
optimization on cross-entropy. After some manipulation, the gradient of H(ρ∗, ρθ) reduces to

∂θH(ρ∗, ρθ) = E∗[∂θUθ] − Eθ[∂θUθ] := −D. (109)

As we stressed in Remark 2.2, the main issue is the estimation of Eθ[∂θUθ]. An analytical computation
is outreach for a generic Uθ, as well as the use of numerical spline methods which are impractical in high
dimension. The only possibility is to generate a set of N samples {Xi}N

i=1 distributed as ρθ(t) and exploit a
Monte Carlo integration, namely

Eθ[∂θUθ] ≈ 1
N

N∑
i=1

∂θUθ(Xi) Xi ∼ ρθ (110)

We stress that such generation is required at each optimization step of θ. The basic idea is to couple a
gradient-based routine with a Markov Chain Liu (2001) devoted to the generation of the needed samples
(see Section 4 for a detailed description of sampling). Without loss of generality, we present the state-of-the-
art algorithm using Unadjusted Langevin algorithm (ULA) Parisi (1981) as the sampler.

As mentioned, a problem encountered by standard sampling routines (such as ULA) is related to multi-
modality; that is, for fixed θ and a general initial condition X̄ ∼ π̄ for the Markov Chain, there are no
general results on the convergence rate towards the desired equilibrium X ∼ ρθ. However, if one were to
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choose a smart initial condition, such an issue is alleviated. For instance, in the ideal case where we could
sample from an initial distribution ρ̄ very close to ρθ. In this sense, the naive approach in which the sampling
routine restarts from the same "simple" distribution, like a Gaussian, for every optimization step, is not well
adapted to EBM training. The question then arises: how to select an appropriate initial condition?

The idea of Contrastive DivergenceHinton (2002) (CD) and Persistent Contrastive DivergenceTieleman
(2008) (PCD) in their original formulation is to use the unknown data distribution ρ∗ as the initial condition
for Markov Chain sampler. This is feasible since we have the dataset; that is, we could simply extract some
data points from it and use them as the initial condition of the sampler at every optimization step. To
better analyze the two routines, we present CD and PCD in Algorithms 1 and 2, where ULA is chosen as
the sampling routine.

Algorithm 1 Contrastive divergence (CD) algorithm
1: Inputs: data points X = {xi

∗}n
i=1 in Rd; energy model Uθ; optimizer step opt(θ, D) using θ and the

empirical gradient D; initial parameters θ0; number of walkers N ∈ N0 with N < n; total duration
K ∈ N; ULA time step h; P ∈ N.

2: for k = 1, . . . , K − 1 do
3: for i = 1, ..., N do
4: Xi

0 = RandomSample(X )
5: for p = 0, ..., P − 1 do
6: Xi

p+1 = Xi
p − h∇Uθk

(Xi
p) +

√
2h ξi

p, ξi
p ∼ N (0d, Id) ▷ ULA

7: end for
8: end for
9: D̃k = N−1∑N

i=1 ∂θUθk
(Xi

P ) − n−1∑n
i=1 ∂θUθk

(xi
∗) ▷ empirical gradient

10: θk+1 = opt(θk, D̃k) ▷ optimization step
11: end for
12: Outputs: Optimized energy UθK

; set of walkers {Xi
P }N

i=1

Algorithm 2 Persistent contrastive divergence (PCD) algorithm
1: Inputs: data points X = {x∗

i }n
i=1 in Rd; energy model Uθ; optimizer step opt(θ, D) using θ and the

empirical CE gradient D; initial parameters θ0; number of walkers N ∈ N0 with N < n; total duration
K ∈ N; ULA time step h.

2: Xi
0 = RandomSample(X ) for i = 1, . . . , N .

3: for k = 1, . . . , K − 1 do
4: D̃k = N−1∑N

i=1 ∂θUθk
(Xi

k) − n−1∑n
i=1 ∂θUθk

(xi
∗) ▷ empirical gradient

5: θk+1 = opt(θk, D̃k) ▷ optimization step
6: for i = 1, ..., N do
7: Xi

k+1 = Xi
k − h∇Uθk

(Xi
k) +

√
2h ξi

k, ξi
k ∼ N (0d, Id) ▷ ULA

8: end for
9: end for

10: Outputs: Optimized energy UθK
; set of walkers {Xi

K}N
i=1.

Let us clarify the notation. Each X used for the estimation of the gradient of cross-entropy is named
a "walker". Each walker is indexed by a superscript, and the function RandomSample(X ) performs a
random extraction of N points from X . In CD, the chain for sampling is reinitialized at data at every
cycle; in PCD, as for the name, the chain is "persistent", meaning it starts from the data just at the
first iteration — after each optimization step, the sampling routine restarts from the samples found at the
previous iteration. Traditionally, x∗ is referred to as "positive" samples, while the samples from ρθ are termed
"negative", especially in the community of Boltzmann Machines. The adjective "Contrastive" originates from
the minus sign between expectations in equation 109: the contribution of negative and positive samples
to the variation of cross-entropy is indeed opposite. In fact, the ODE associated to gradient descent on
cross-entropy minimization is

θ̇ = Eθ[∂θUθ] − E∗[∂θUθ] (111)
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This equation can be interpreted as gradient descent on the energy per positive sample and gradient ascent
for the energy per negative sample. It corresponds to increasing the probability of data points in the dataset
and decreasing it for the samples obtained from the chain. Stationarity is reached when ρ∗ = ρθ, so that
generated points belong to the same distribution as true data points.

The natural question that arises concerns the convergence of the algorithms. To simplify the treatment, we
do not analyze the algorithms for a finite set of walkers, but we study the time evolution of the probability
distribution of the walkers ρ̌(t, x). Ideally, this should remove any possible spurious bias from the analysis
and permit an easier analytical study. We can write down an equation that mimics the evolution of the PDF
of the walkers in the CD algorithm in the continuous-time limit. This equation reads:

∂tρ̌ = α∇ ·
(
∇Uθ(t)(x)ρ̌ + ∇ρ̌

)
− ν(ρ̌ − ρ∗), ρ̌(t = 0) = ρ∗ (112)

with fixed α > 0 and where the parameter ν > 0 controls the rate at which the walkers are reinitialized
at the data points: the last term in equation 112 is a birth-death term that captures the effect of these
reinitializations. The solution to this equation is not available in closed from (and ρ̌(t, x) ̸= ρθ(t)(x) in
general), but in the limit of large ν (i.e. with very frequent reinitializations), we can showDomingo-Enrich
et al. (2021) that

ρ̌(t, x) = ρ∗(x) + ν−1α∇ ·
(
∇Uθ(t)(x)ρ∗(x) + ∇ρ∗(x)

)
+ O(ν−2). (113)

As a result, the gradient of cross-entropy equation 109 is∫
Rd

∂θUθ(t)(x)(ρ∗(x) − ρ̌(t, x))dx

= −ν−1
∫
Rd

∂θUθ(t)(x)∇ ·
(
Uθ(t)(x)ρ∗(x) + ∇ρ∗(x)

)
dx + O(ν−2)

= ν−1
∫
Rd

(
∂θ∇Uθ(t)(x) · ∇Uθ(t)(x) − ∂θ∆Uθ(t)(x)

)
ρ∗(x)dx + O(ν−2)

(114)

The leading order term at the right hand side is precisely ν−1 times the gradient with respect to θ of the
Fisher divergence

1
2

∫
Rd

|∇Uθ(x) + ∇ log ρ∗(x)|2ρ∗(x)dx

= 1
2

∫
Rd

[
|∇Uθ(x)|2 − 2∆Uθ(x) + |∇ log ρ∗(x)|2

]
ρ∗(x)dx

(115)

where ∆ denotes the Laplacian and we used∫
Rd

∇Uθ(x) · ∇ log ρ∗(x)ρ∗(x)dx =
∫
Rd

∇Uθ(x) · ∇ρ∗(x)dx = −
∫
Rd

∆Uθ(x)ρ∗(x)dx (116)

This confirms the known fact that the CD algorithm effectively performs GD on the Fisher divergence rather
than the cross-entropyHyvarinen (2007), similarly to score matching.
Regarding PCD, the associated PDE is equation 112 with ν = 0. Again, the solution ρ̌(t, x) ̸= ρθ(t)(x)
in general, thus for any finite α, we have Eρ̌[∂θUθ] ̸= Eθ[∂θUθ]. In other words, one cannot be sure to
perform true gradient descent on cross-entropy — if we were able to estimate the loss, we could observe
non-monotonic behavior. Extensions of standard PCD exploit an initial condition different from ρ∗ for the
persistent chain, but such approach is plagued by the same issue regarding the convergence rate towards
equilibrium.
The takeaway message is that from an analytical standpoint, neither CD nor PCD actually perform a
gradient-based optimization of cross-entropy. One important issue is that the presence of bias is related
to time scales, in PCD regarding the length of the Markov Chain for sampling, and in CD also for the
reinitialization frequency. Even if they are widely adopted in practice, the presence of such criticality even
in an ideal setup is far from optimal and critically links the applicability of EBMs to the particular situation
under study.
The concluding key remark is the following: generating single samples is not problematic in the context of
CD or PCD, but, because of the properties of Fisher divergence, the global mass distribution could happen to
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be incorrectly inferred, in particular in presence of well separated modes in the target probability ensemble.
Alternative approaches for EBM training based on Jarzynski identity have been proposed in Carbone et al.
(2024), where a detailed comparison with CD and PCD and numerical experiments are widely discussed.

7 Conclusion

In conclusion, Energy-Based Models (EBMs) represent a versatile approach within the landscape of gen-
erative modeling, offering significant insights and applications, especially pertinent to the field of physics,
and towards an interpretable generative artificial intelligence. This review has provided a detailed explo-
ration of the fundamental principles and methodologies underlying EBMs, emphasizing their synergy with
statistical mechanics. By elucidating the connections between EBMs and other generative models such as
Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Normalizing Flows, we
have highlighted the unique advantages and challenges associated with each framework. Then, the sampling
techniques necessary for effective EBM implementation, including Markov Chain Monte Carlo (MCMC)
methods, have been thoroughly examined. The parallels drawn between EBM concepts and statistical me-
chanics principles, particularly through the lens of energy functions and partition functions, underscore the
natural alignment of EBMs with physical systems and processes.

Moreover, we have reviewed the state-of-the-art training methodologies for EBMs, as Constrastive Learn-
ing, also mentioning recent innovations that enhance model performance, stability, and efficiency. These
advancements are crucial for addressing the inherent difficulties in training EBMs, such as energy function
optimization and mode collapse. A significant focus of this review has been on bridging the gaps between
the diverse communities that contribute to the development and application of generative models. The inter-
disciplinary nature of EBMs means that insights from physics, computer science, and machine learning are
all essential for a comprehensive understanding and effective utilization of these models. By clarifying the
complex interconnections between these fields, we aim to foster a more cohesive and collaborative approach
to EBM research and application.

In summary, EBMs offer a robust framework for generative modeling, with implications for both theoretical
research and practical applications. We hope this review serves as a valuable resource for physicists and
other researchers, providing clarity and insight into the multifaceted world of Energy-Based Models and
encouraging further exploration and collaboration across disciplines.
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