
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEURAL BRIDGE PROCESSES

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning stochastic functions from partially observed context-target pairs is a
fundamental problem in probabilistic modeling. Traditional models like Gaussian
Processes (GPs) face scalability issues with large datasets and assume Gaussianity,
limiting their applicability. While Neural Processes (NPs) offer more flexibility,
they struggle with capturing complex, multi-modal target distributions. Neural
Diffusion Processes (NDPs) enhance expressivity through a learned diffusion
process but rely solely on conditional signals in the denoising network, resulting in
weak input coupling from an unconditional forward process and semantic mismatch
at the diffusion endpoint. In this work, we propose Neural Bridge Processes (NBPs),
a novel method for modeling stochastic functions where inputs x act as dynamic
anchors for the entire diffusion trajectory. By reformulating the forward kernel to
explicitly depend on x, NBP enforces a constrained path that strictly terminates at
the supervised target. This approach not only provides stronger gradient signals
but also guarantees endpoint coherence. We validate NBPs on synthetic data, EEG
signal regression and image regression tasks, achieving substantial improvements
over baselines. These results underscore the effectiveness of DDPM-style bridge
sampling in enhancing both performance and theoretical consistency for structured
prediction tasks.

1 INTRODUCTION

Learning stochastic functions from partially observed context-target pairs is a fundamental problem in
probabilistic modeling Rasmussen (2003); Garnelo et al. (2018b;a); Dutordoir et al. (2023); Franzese
et al. (2023); Bonito et al. (2023); Mathieu et al. (2023); Chang et al. (2024); Dou et al. (2025);
Hamad & Rosenbaum, playing a pivotal role in meta-learning Garnelo et al. (2018b;a), few-shot
regression Kim et al. (2019), Bayesian optimization Dutordoir et al. (2023); Krishnamoorthy et al.
(2023), and uncertainty-aware prediction tasks Chang et al. (2024); Dou et al. (2025); Hamad &
Rosenbaum; Requeima et al. (2024). Such problems require models that not only generalize well
across different tasks but also provide calibrated uncertainty estimates, particularly under scarce
or incomplete data conditions. Gaussian Processes (GPs) Rasmussen (2003) have traditionally
dominated this area due to their analytical tractability and clear uncertainty quantification. However,
GPs inherently assume Gaussianity and exhibit cubic computational complexity with respect to
data size, severely limiting their applicability in scenarios involving large datasets or inherently
non-Gaussian functional distributions Snelson & Ghahramani (2005); Titsias (2009); Xu & Zeng
(2024); Xu et al. (2024).

Neural Processes (NPs) Garnelo et al. (2018b;a); Kim et al. (2019); Louizos et al. (2019) have emerged
as a compelling alternative, merging the flexibility of neural network models with the principled
uncertainty quantification of stochastic processes. By parameterizing stochastic functions through
neural architectures, NPs facilitate efficient inference and scalable learning, successfully tackling
meta-learning and few-shot prediction tasks. However, standard NPs often struggle with limited
expressivity and fail to capture complex multi-modal target distributions, motivating exploration into
more powerful generative mechanisms.

NDPs Dutordoir et al. (2023) address this by modeling the input-output mapping as a learned diffusion
process Ho et al. (2020), offering enhanced expressivity and sample diversity. Despite their promise in
stochastic function modeling, NDPs rely on an unconditional forward process, which fundamentally
limits the effectiveness of input supervision. Specifically, traditional NDPs treat inputs merely as
conditional signals within the denoising network, passively injecting inputs during denoising without
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leveraging the temporal structure of diffusion. This results in weak input coupling and a semantic
mismatch at the diffusion endpoint.

In this work, we introduce Neural Bridge Processes (NBP), a novel diffusion-based generative frame-
work that explicitly integrates input supervision throughout the entire diffusion trajectory. Unlike
traditional NDPs, which inject conditioning inputs passively during denoising, NBPs reformulate
the forward diffusion kernel to dynamically anchor the process with inputs x, ensuring that the
generated outputs remain coherently guided toward the desired targets. This is achieved through
a principled bridge coefficient γt, which progressively strengthens the influence of x as diffusion
proceeds, enabling both strong gradient signals during training and guaranteed endpoint coherence.
Additionally, NBPs incorporate a bridge correction term in the reverse process to maintain theoretical
consistency between forward and reverse dynamics. Our approach provides a more structured and
controllable generative path, leading to improved conditional generation accuracy and more faithful
reconstructions, particularly in settings requiring strict adherence to input-output relationships. This
idea shares conceptual similarities with recent advances in diffusion bridge modeling Zhou et al.
(2023); Yue et al. (2023); Zheng et al. (2024); Li et al. (2023); Peluchetti (2023); He et al. (2024);
Shi et al. (2023); Naderiparizi et al. (2025). However, our approach avoids the more complex and
computationally intensive SDE-style diffusion bridges Song et al. (2020); Zhou et al. (2023), and
instead extends the bridge concept to the DDPM Ho et al. (2020) framework through SNR-aware
functional modeling, making it significantly easier to deploy and integrate into existing architectures.

We validate NBPs on synthetic data and real time series data consisting of electroencephalogram
(EGG) measurements Zhang et al. (1995) and image regression tasks, achieving substantial im-
provements over baseline NDPs. These results underscore the effectiveness of DDPM-style bridge
sampling in enhancing both performance and theoretical consistency for structured prediction tasks.

In summary, the core contributions of this paper are:

• We introduce Neural Bridge Processes (NBPs), a new class of models for stochastic
functions that introduces input-anchored diffusion trajectories via a principled bridge coeffi-
cient. This design ensures strong input supervision throughout the entire diffusion process,
overcoming the weak coupling limitations of traditional NDPs and guaranteeing endpoint
coherence.

• We extend the bridge concept to the DDPM framework using an SNR- and path-aware for-
mulation, thereby avoiding the deployment complexity associated with SDE-based diffusion
bridges. This makes NBPs both theoretically consistent and practically efficient, enabling
seamless integration into existing architectures.

• We demonstrate the effectiveness of NBPs on synthetic data, EEG signal regression and
image-based function regression benchmarks, achieving significant improvements in predic-
tive accuracy and uncertainty calibration compared to state-of-the-art NDP baselines.

2 BACKGROUND: NEURAL PROCESSES

Neural Processes (NPs) Garnelo et al. (2018b;a); Kim et al. (2019); Louizos et al. (2019) com-
bine the expressiveness of neural networks with the probabilistic reasoning of Gaussian Processes
(GPs) Rasmussen (2003). While GPs offer principled uncertainty quantification, they suffer from poor
scalability Snelson & Ghahramani (2005); Titsias (2009) and limited kernel flexibility Wilson et al.
(2016); Liu et al. (2021). In contrast, Neural Networks (NNs) Schmidhuber (2015); Nielsen (2015)
are highly flexible and scalable but lack inherent mechanisms for uncertainty modeling Blundell et al.
(2015); Pearce et al. (2020); Gawlikowski et al. (2023). NPs address these limitations by modeling
distributions over functions using a neural network-based framework. They approximate a stochastic
process F : X → Y through finite-dimensional marginals, parameterized by a latent variable z to
capture global uncertainty. Given context observations (xC, yC) and target inputs xT, NPs generate
predictive distributions over yT via a conditional latent model.

p(yT, z|xT, xC, yC) = p(z|xC, yC)

|T|∏
i=1

p(yT,i|xT,i, z) (1)
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Here, z encodes the uncertainty about the global structure of the underlying function. Training NPs
uses amortized variational inference, optimizing an evidence lower bound (ELBO) on the conditional
log-likelihood:

log p(yT|xC, yC, xT) ≥ Eq(z|xC,yC)

[∑
i∈T

log p(yT,i|z, xT,i) + log
p(z|xC, yC)

q(z|xC, yC)

]
(2)

where q(z|xC, yC) is the variational posterior distribution parameterized by a neural network, and
p(z|xC, yC) is the conditional prior. Additional information can be seen in Appendix.

3 METHOD: NEURAL BRIDGE PROCESSES (NBP)

3.1 PROBLEM SETUP

We consider the standard meta-learning setting where a model observes a set of context points
xC = {(xi, yi)}Nc

i=1 and aims to predict the corresponding outputs yT = {yj}Nt
j=1 for a set of target

inputs xT = {xj}Nt
j=1. Here, each task is assumed to be sampled from a distribution over functions,

and the goal is to model the conditional distribution p(yT|xC, xT).

3.2 REVIEW: NEURAL DIFFUSION PROCESSES (NDPS)

While Neural Processes (NPs) Garnelo et al. (2018b) effectively combine neural networks with
stochastic processes for few-shot learning, their reliance on simple latent variable models limits their
ability to capture complex, multimodal distributions. Neural Diffusion Processes (NDPs) Dutordoir
et al. (2023) address this by introducing stochastic trajectories, modeling the mapping from inputs
to outputs as a learned diffusion process Ho et al. (2020). This method significantly improves
expressivity and sample diversity by leveraging the generative power of diffusion models Ho et al.
(2020); Song et al. (2020); Dhariwal & Nichol (2021); Croitoru et al. (2023); Rombach et al. (2022);
Podell et al. (2023); Peebles & Xie (2023), allowing for better modeling of complex distributions and
more flexible conditional sampling.

Formally, given a function f : RD → R, an NDP learns a generative distribution over observed data
pairs (x, y), where inputs x ∈ RN×D and outputs y = f(x) ∈ RN . Unlike standard NPs, NDPs
Dutordoir et al. (2023) do not explicitly require a partitioning into context and target sets during
training; all points are jointly modeled. In supervised learning setting, the NDP modeling framework
consists of two stochastic processes:

Forward Diffusion Process. Starting from observed clean data y0, the forward diffusion process
gradually injects Gaussian noise into the outputs over T timesteps according to a predefined variance
schedule {βt}:

q(y1:T | y0) =
T∏

t=1

q(yt | yt−1), q(yt | yt−1) = N (yt;
√

1− βt yt−1, βtI). (3)

After T diffusion steps, the distribution of the outputs converges towards standard Gaussian noise,
i.e., yT ∼ N (0, I).

Reverse Process. Neural Diffusion Processes (NDPs) learn a conditional reverse process that
denoises observations from Gaussian noise yT to outputs y0, guided by an input x:

pθ(y0:T | x) = p(yT )

T∏
t=1

pθ(yt−1 | yt, x), (4)

with Gaussian transitions parameterized by a noise prediction model ϵθ:

pθ(yt−1 | yt, x) = N
(
yt−1;µθ(yt, t, x), β̃tI

)
. (5)

3
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where β̃t =
1−ᾱt−1

1−ᾱt
βt, µθ(yt, t, x) is reparameterized as

µθ(yt, t, x) =
1√

1− βt

(
yt −

βt√
1− ᾱt

ϵθ(yt, t, x)

)
, ᾱt =

t∏
s=1

(1− βs) (6)

Training Objective. NDPs employ a denoising score matching objective Hyvärinen & Dayan
(2005); Song et al. (2021); Huang et al. (2021), training the noise model ϵθ by minimizing the
discrepancy between predicted noise and actual noise ϵ ∼ N (0, I):

Lθ = Et,x,y0,ϵ

[
∥ϵ− ϵθ(yt, t, x)∥22

]
, with yt =

√
ᾱty0 +

√
1− ᾱtϵ. (7)

3.3 MOTIVATION

Traditional Neural Diffusion Processes (NDPs) treat inputs merely as conditional signals fed into
the denoising network (e.g., via cross-attention or concatenation). This implicit conditioning suffers
from two critical drawbacks:

• Weak coupling: The diffusion path is only loosely guided by inputs, as the forward process
remains an unconditional Gaussian transition q(yt|yt−1).

• Endpoint mismatch: The diffusion endpoint yT is arbitrary noise, bearing no semantic
relationship to the input supervision x.

While NDPs have shown promise in generative modeling, their unconditional forward process
fundamentally limits the efficacy of input supervision. Existing methods inject inputs passively
during denoising, failing to exploit the temporal structure of diffusion. In this work, we propose
Neural Bridge Processes (NBP), where inputs x act as dynamic anchors for the entire diffusion
trajectory. By reformulating the forward kernel to explicitly depend on x, NBP enforces a constrained
path that strictly terminates at the supervised target. This approach not only provides stronger gradient
signals but also guarantees endpoint coherence—a property unattainable by traditional NDPs.

3.4 BRIDGE CONSTRUCTION

We first consider the case where the input and output share the same dimensionality. Given a function
f : RD → RD, our Neural Bridge Processes (NBPs) model a generative distribution over observed
data pairs (x, y), with inputs x ∈ RN×D and outputs y = f(x) ∈ RN×D. NBPs construct a diffusion
bridge between arbitrary initial outputs y0 = y and conditionally anchored endpoints characterized
by the relationship between E[yT ] and x via modified transition kernels.

To achieve this, we introduce a time-dependent coefficient γt that explicitly controls the influence
of the input x on the forward diffusion process at each timestep t, thereby enabling explicit path
supervision in contrast to standard DDPMs.

The forward transition kernel is defined as:

q(yt|yt−1, x) = N

yt;
√
1− βtyt−1 + γtx︸ ︷︷ ︸
Bridge-anchored mean

, βtI

 . (8)

The bridge coefficient γt follows a principled design:

γt =
SNRT

SNRt
, SNRt =

ᾱt

1− ᾱt
. (9)

Similar to DDPM, the forward process in this bridge-style diffusion model allows sampling yt at an
arbitrary timestep t in closed form:

yt | y0, x ∼ N
(√

ᾱt y0 + γ̄tx, (1− ᾱt)I
)
, (10)

where the cumulative bridge coefficient is defined as

γ̄t =

t∑
s=1

γs

√
ᾱt

ᾱs
. (11)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The term γtx in Equation (8) acts as a guiding force that progressively pulls the diffusion trajectory
toward the target endpoint. This formulation ensures the following behavior:

• Early Diffusion Phase (t ≪ T ): SNRt → +∞ ⇒ γt → 0+. Process approximates
standard diffusion:

q(yt|yt−1, x) ≈ N (
√
1− βtyt−1, βtI) (12)

• Bridge Convergence Phase (t → T ): SNRt → SNRT ⇒ γt → 1. The trajectory is
increasingly guided toward the desired target to enforces endpoint attraction as shown in
Equation (10):

E[yT |y0] =
√
ᾱT y0 + γ̄Tx ≈ γ̄Tx (13)

where ᾱT =
∏T

s=1(1− βs) ≈ 0 , and γ̄T =
(∑T

s=1 γs
√

ᾱT

ᾱs

)
is a constant.

This introduces:

1). Stronger gradient signals: The bridge term γtx directly propagates input supervision to every
timestep of the forward process by Equation (8) and (10), thereby introducing x into the denoising
network in a more theoretically consistent manner.

2). Coherent trajectory optimization: The entire path y0:T is trained to satisfy both data fidelity (to
y0) and endpoint matching (to E[yT ] = γ̄Tx).

Forward Process Given the starting point y0 and target endpoint yT , the forward process progres-
sively adds noise and enforces the bridge constraint through the transition kernel:

q(y1:T | y0, x) =
T∏

t=1

q(yt | yt−1, x) (14)

The single-step transition kernel is defined in Equation (8). After T diffusion steps, the distribution
of the outputs converges to a Gaussian with mean x, i.e., yT ∼ N (γ̄Tx, I).

Reverse Process with Bridge Correction The reverse process employs a transition kernel that
combines standard denoising with explicit bridge constraints to maintain consistency with the forward
process:

pθ(yt−1|yt, x) = N
(
yt−1;µθ(yt, x, t), β̃tI

)
(15)

The mean function is reparameterized into two key components that balance denoising and bridge
correction:

µθ =
1

√
αt

(
yt −

βt√
1− ᾱt

ϵθ(yt, x, t)

)
︸ ︷︷ ︸

Denoising term

+ Ct(x)︸ ︷︷ ︸
Bridge correction

(16)

where αt = 1− βt, and the bridge correction term Ct(x) is derived as:

Ct(x) = − γt√
1− βt

x. (17)

Proofs can be seen in Appendix. The role of the bridge correction term Ct(x) is to ensure that the
mean of the reverse process remains consistent with the bridge constraint imposed in the forward
process. Specifically, in the forward process, the term γtx injects information from the input x into
the diffusion trajectory. The reverse process compensates for this influence through Ct(x).

5
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Figure 1: The noise model architecture employed at each step of the Neural Bridge Processes. The
greyed-out box highlights the bi-dimensional attention block.

Training Objective The training objective for NBPs minimizes the forward and reverse KL diver-
gences, which is equivalent to minimizing the prediction error of the denoising network ϵθ(yt, x, t)
and the forward noise characterized by Equation (10).

Lθ = Et,x,y0,ϵ

[
∥ϵθ(yt, x, t)− ϵ∥22

]
with yt =

√
ᾱty0 + γ̄tx+

√
1− ᾱtϵ. (18)

Proofs can be seen in Appendix. Here, ϵ ∼ N (0, I) represents the ground-truth noise added during
the forward process. The reverse transition kernel’s dependence on both yt and x ensures theoretical
consistency, as the bridge variable x is explicitly embedded in both the forward and reverse processes.
This formulation guarantees that the learned reverse process remains properly coupled with the
forward dynamics throughout the diffusion trajectory.

Conditional Sampling Procedure. At test time, NBPs generate samples from the conditional
distribution p(y0 | x,D), where D = (xC ∈ RM×D, yC,0 ∈ RM×D) denotes the observed context
data.

The conditional sampling proceeds as follows. First, initialize the diffusion state with the known
endpoint:

yT = γTx+ n, n ∼ N (0, I). (19)

For each diffusion timestep t = T, . . . , 1, perform the following steps:

• Sample the noisy context outputs using the forward diffusion bridge process:

yC,t ∼ N
(√

ᾱtyC,0 + γ̄txC, (1− ᾱt)I
)
, (20)

• Combine noisy target and context states at timestep t:

yt = {yT,t, yC,t}, x = {xT, xC}.

• Perform the reverse diffusion step with the learned backward kernel, incorporating the bridge
correction:

yt−1 ∼ N
(
µθ(yt, x, t), β̃tI

)
, (21)

where

µθ(t) =
1

√
αt

(
yt −

βt√
1− ᾱt

ϵθ(yt, x, t)

)
+ Ct(x). (22)

Following the Repaint Lugmayr et al. (2022) strategy, at each diffusion timestep t, we repeat the
forward perturbation of context points and the corresponding reverse denoising step multiple times
before proceeding to the next timestep. Simulating this repeated scheme from t = T down to t = 1
ensures that the context information is consistently reinforced throughout the diffusion trajectory,
leading to more coherent and accurate conditional generation.
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3.5 INPUT-OUTPUT DIMENSIONAL ALIGNMENT

Real-world datasets often have mismatched input and output dimensions. To enable joint modeling
in the same space, we apply a fixed projection P to map x ∈ RN×Dx to xa = P(x) ∈ RN×Dy ,
aligning it with y ∈ RN×Dy . For example, in image regression, P can add spatial or contextual
information to match RGB output dimensions.

3.6 NOISE MODEL ARCHITECTURE

To ensure that our model remains consistent with the structural properties of stochastic processes and
to guarantee fair experimental comparisons, we adopt the same noise model architecture as NDPs,
namely the Bi-Dimensional Attention Block Dutordoir et al. (2023), as shown in Figure 1. Due to
space limitations, we provide the detailed design in the Appendix.

4 EXPERIMENTS

4.1 BASELINE IMPLEMENTATION AND EVALUATION METRICS

For a comprehensive comparison, we implement Neural Processes (NPs) Garnelo et al. (2018b),
Attentive Neural Processes (ANPs) Kim et al. (2019), and Convolutional Neural Processes (Con-
vNPs) Gordon et al. (2019) using the official NP-Family repository Dubois et al. (2020), with
all hyperparameters set to the recommended defaults. We further include Gaussian Neural Pro-
cesses (GNPs) Bruinsma et al. (2021) in our synthetic experiments. For Neural Diffusion Processes
(NDPs) Dutordoir et al. (2023), Geometric Neural Diffusion Processes (GEOMNDPs) Mathieu
et al. (2023), and Score-Based Neural Processes (SNPs) Dou et al. (2025), we directly adopt their
official implementations. To ensure fairness, our Neural Bridge Process (NBP) employs the same
Bi-Dimensional Attention Block architecture and hyperparameter configurations as the baseline NDP.
Detailed implementation settings and additional related work are provided in the Appendix. All
models are retrained on the experimental datasets for consistent metric evaluation and visualization.
Experiments are conducted on a single NVIDIA RTX 4090 GPU.

4.2 REGRESSION ON SYNTHETIC DATA

We evaluate our method on synthetic 1D–3D regression tasks, using functions sampled from Gaussian
Processes (GPs) with either a Squared Exponential or Matérn-5/2 kernel. For each dimension D,
the kernel lengthscale is set to ℓ =

√
D/4, and Gaussian noise N (0, 0.052) is added to the outputs.

During training, we generate 210 examples per epoch, and train for 400 epochs using batch size 32.
Each model is trained with its own architecture and optimization settings (details below). At test
time, the context set contains a random number of points between 1 and 10×D, while the target set
always includes 50 points.

The log-likelihood is estimated by fitting a multivariate Gaussian to 128 samples drawn from the
conditional distribution of the model. For our proposed method, we use a 4-layer transformer-style
architecture with 8 attention heads and 64-dimensional hidden layers. Diffusion noise is scheduled
over 500 timesteps with a cosine schedule (β ∈ [3e−4, 0.5]). The optimizer uses a peak learning rate
of 10−3 with warm-up (20 epochs) and cosine decay (200 epochs). All experiments use the same
evaluation batch size and sampling procedure for consistency. For input dimensions D = 2, 3, to
address the alignment issue discussed in Section 3.5, we directly define the projection operator P in
Equation (20) as the mean of the input components. Meanwhile, the input x to the denoising network
ϵθ remains unchanged.

Table 2 shows that NBP consistently outperforms prior Neural Process variants across all input
dimensions. Notably, NBP maintains stable and accurate predictions in higher dimensions (D = 2, 3),
where performance of other models tends to degrade sharply. Figure 4 shows representative samples
generated by our model under the Squared Exponential (SE) kernel and the Matérn-5/2 kernel settings.
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4.3 REAL WORLD EXPERIMENTS

4.3.1 EEG SIGNAL REGRESSION TASKS

We evaluate the proposed Neural Bridge Processes (NBP) on a real-world electroencephalogram
(EEG) dataset regression task Zhang et al. (1995). The dataset comprises 7632 multivariate time
series, each consisting of 256 evenly sampled time steps recorded across seven electrode channels.
These EEG signals show strong temporal dynamics and cross-channel correlations, making them
ideal for evaluating multi-output meta-learning models like NBPs.

To assess NBPs on correlated multi-output prediction and missing data, we randomly mask windows
in 3 of 7 channels and predict the missing values. Inputs are the concatenated temporal and channel
indices xe = (it, ic), and outputs are the voltage measurements ye. This evaluation is carried out
under three distinct experimental settings:

• Interpolation: Predicting missing values within the existing temporal span.

• Reconstruction: Predicting values from partially obscured temporal segments.

• Forecasting: Predicting future values beyond the observed temporal data.

Performance metrics employed include Mean Squared Error (MSE) and Negative Log-Likelihood
(NLL). As demonstrated in Table 1, the NBP consistently surpasses baseline methods across all three
scenarios, underscoring NBPs’ proficiency in capturing intricate temporal structures and cross-channel
dependencies inherent in EEG data.

Table 1: Predictive NLL (↓) and MSE (↓) on EEG

Method Inter. Recon. Forec.
NLL MSE(×10−2) NLL MSE(×10−2) NLL MSE(×10−2)

NP 1.66 0.52 1.78 0.44 1.61 0.39
ANP 0.47 0.25 0.70 0.48 0.90 0.60
ConvNP 0.44 0.40 -2.43 0.40 -2.34 0.55
NDP -2.46 0.18 -2.59 0.23 -2.69 0.38
SNP -3.19 0.16 -3.30 0.18 -3.02 0.31
GEOMNDP -2.48 0.18 -2.65 0.20 -2.84 0.34
NBP (Ours) -3.35 0.16 -3.22 0.16 -3.51 0.29

(a) Ground Truth (b) Corrupted Context (c) Model Prediction

Figure 2: Qualitative Results on CelebA 64×64 Image Regression Task: (a) Ground Truth, (b)
Corrupted Context, (c) Model Prediction. The task requires inferring the true image content based on
randomly corrupted context information and the spatial coordinates of target pixels.

4.3.2 IMAGE REGRESSION TASK

In this experiment, we apply Neural Bridge Processes (NBPs) to the image regression task, where the
objective is to predict pixel values based solely on their spatial coordinates normalized within the
range [−2, 2]. We conduct experiments using the CelebA dataset at resolutions of 32×32 and 64×64.
The experimental setup, including hyperparameters, denoising network architecture, learning rate,
random seed, and other baseline configurations, strictly follows the standard configuration used by
NDPs for a fair comparison.
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Figure 3: Comparison of NBP and NDP: NBPs consistently achieve lower loss values across the
majority of training iterations

We evaluate the performance of NBPs under different levels of context sparsity and directly compare
their predictive accuracy with that of NDPs. The Mean Squared Error (MSE) results are summarized
in Figure 5, with detailed numerical values provided in Tables 4 and 5 in the Appendix. As shown
in Figure 5, the proposed NBP (orange) consistently achieves lower MSE across all context ratios
compared to the NDP baseline (blue). Moreover, NBPs exhibit smaller standard deviations, indicating
more stable and reliable predictions. All MSE values are computed by averaging over nine conditional
samples for each input, with pixel values normalized to the range [0, 1]. Figure 2 provides an
illustrative depiction of the image regression task setup.

Under various observation conditions, NBPs consistently outperform NDPs by a substantial margin.
For example, at a context ratio of 0.02, NBPs achieve an MSE of 0.76 compared to 0.88 by NDPs on
CelebA 32× 32. This demonstrates NBPs’ enhanced capability to capture spatial dependencies and
deliver accurate predictions even from highly sparse context observations. This advantage extends to
higher resolutions: at the same context ratio (0.02) on CelebA 64×64, NBPs achieve an MSE of 0.80
compared to NDPs’ 1.05, underscoring the scalability and robustness of our method. Furthermore,
Figure 3 visualizes the denoising score matching objective loss during training, illustrating that NBPs
consistently achieve lower loss values across the majority of training iterations. This result supports
the conclusion that the bridge-based training paradigm significantly enhances the effectiveness of
denoising diffusion probabilistic model (DDPM) path supervision.

4.4 COMPUTATIONAL EFFICIENCY

We observe in our experiments that, under consistent training settings—including the denoising
network architecture, learning rate, random seed, and other base hyperparameters—the proposed
NBP model and the baseline NDP consume approximately the same amount of time per epoch and in
total. This indicates that NBP does not introduce additional computational overhead. This efficiency
stems from the fact that NBP does not incorporate any extra architectural complexity. Instead, it
enhances the training signal through a coupling mechanism between the inputs and outputs in the
neural diffusion process (as described in Section 3). This coupling is implemented entirely at the
software level, without increasing the model’s structural depth or parameter count.

5 CONCLUSION

In this work, we introduced Neural Bridge Processes (NBPs), a diffusion-based framework for
stochastic function modeling that explicitly incorporates input supervision throughout the diffusion
trajectory. By reformulating the forward kernel with a principled bridge coefficient, NBPs address
the weak input coupling and endpoint mismatch of traditional Neural Diffusion Processes (NDPs),
ensuring stronger conditional guidance and better theoretical consistency. Unlike computationally
intensive SDE-based bridges, NBPs implement bridge corrections efficiently within the DDPM
framework using SNR- and path-aware modeling. Experiments on synthetic data, real-world EEG
time series, and image regression tasks demonstrate that NBPs significantly enhance predictive
accuracy and uncertainty calibration compared to state-of-the-art NDP baselines. These results
highlight the potential of NBPs for structured generative modeling, paving the way for future
extensions to high-dimensional, multi-modal, and control-oriented applications.
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A TABLES AND FIGURES IN THE MAIN TEXT

Table 2: Mean test log-likelihood (↑) ± 1 standard error estimated over 128 test samples.

Squared Exponential Matérn- 52
Model D = 1 D = 2 D = 3 D = 1 D = 2 D = 3

ANP −4.79±0.05 −23.80±0.05 −23.80±0.04 −0.70±0.04 −17.22±0.02 −21.24±0.02
ConvCNP −6.40±0.07 −24.00±0.03 −23.80±0.02 −0.87±0.06 −17.50±0.03 −21.24±0.02
GNP 4.00±0.02 −19.60±0.02 −23.80±0.02 0.14±0.02 −15.70±0.02 −21.20±0.02
NDP 4.21±0.04 −13.39±0.05 −20.48±0.05 −0.13±0.02 −14.74±0.03 −20.66±0.05
SNP 4.27±0.02 −13.19±0.03 −20.24±0.04 0.01±0.02 −14.67±0.03 −20.59±0.05
GEOMNDP 4.22±0.05 −13.36±0.05 −20.45±0.05 −0.13±0.03 −14.73±0.03 −20.63±0.06
NBP (ours) 4.33±0.03 −13.15±0.05 −20.11±0.04 −0.05±0.02 −14.62±0.03 −20.51±0.03

(a) Squared Exponential kernel (b) Matérn-5/2 kernel

Figure 4: Function samples generated by NBP under two different GP kernels. In each plot, the black
solid line indicates the sample mean, blue lines are function samples, red circles represent the context
points, and green crosses denote the target points.

Figure 5: Comparison of reconstruction errors (MSE) between the NDP Base and our proposed NBP
on the CelebA dataset at resolutions of 32×32 and 64×64. The horizontal axis represents the context
ratio (i.e., the proportion of retained pixels), while the vertical axis shows the reconstruction error
in units of 10−2. Solid lines indicate the mean MSE across test samples, and the shaded regions
represent the standard deviation (Std), reflecting model uncertainty.
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B RELATED WORKS

B.1 NEURAL PROCESSES AND THEIR EXTENSIONS

Neural Processes (NPs) Garnelo et al. (2018b) combine the flexibility of neural networks with the
uncertainty modeling capabilities of stochastic processes, aiming to learn distributions over functions.
Conditional Neural Processes (CNPs) Garnelo et al. (2018a) extend this framework by conditioning
on observed context points to predict target outputs. Attentive Neural Processes (ANPs) Kim et al.
(2019) further enhance NPs by incorporating attention mechanisms, enabling the model to focus on
relevant context points for each target prediction. Despite these advancements, challenges remain in
capturing complex, multimodal distributions and ensuring consistency in posterior predictions. These
approaches have been successfully extended to various domains, including sequential modeling Singh
et al. (2019); Nguyen & Grover (2022); Bruinsma et al. (2023), convolutional architectures Gordon
et al. (2019); Foong et al. (2020), graph-based models Hu et al. (2023), and probabilistic predictive
models for large language models (LLMs) Requeima et al. (2024).

B.2 DIFFUSION AND BRIDGE MODELS IN GENERATIVE MODELING

Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020) are powerful generative models
that approximate complex data distributions by reversing a progressive noising process. Conditional
Diffusion Models (CDMs) Choi et al. (2021); Zhang et al. (2023); Zhu et al. (2023) extend this
framework by incorporating auxiliary information, enabling conditional generation. More recently,
Denoising Diffusion Bridge Models (DDBMs) Zhou et al. (2023); Yue et al. (2023); Zheng et al.
(2024); Li et al. (2023); Peluchetti (2023); He et al. (2024); Shi et al. (2023); Naderiparizi et al.
(2025) have been proposed as a natural alternative. DDBMs introduce diffusion bridges—stochastic
processes that interpolate between two paired distributions given as endpoints—making them well-
suited for tasks such as image-to-image translation. However, existing DDBMs are primarily designed
to model transformations in data space and may fall short in fully capturing the stochastic nature of
functional mappings.

In this work, we avoid the complexity and computational overhead of SDE-based diffusion bridges.
Instead, we extend the bridge concept within the DDPM framework Ho et al. (2020) through SNR-
aware functional modeling. Since DDBMs address a different problem—focusing on generative
modeling—while our work centers on functional learning, a direct experimental comparison with the
original DDBM is not feasible.

B.3 GENERATIVE MODELS FOR FUNCTION MODELING

Recent work has explored the use of diffusion models for function modeling. Neural Diffusion
Processes (NDPs) Dutordoir et al. (2023) model distributions over functions by applying diffusion
processes in latent space, allowing the representation of complex, non-Gaussian function distribu-
tions. Geometric Neural Diffusion Processes Mathieu et al. (2023) further extend this approach by
incorporating geometric priors for infinite-dimensional modeling in non-Euclidean spaces. In parallel,
other generative modeling techniques such as Neural ODEs Chen et al. (2018); Norcliffe et al. (2021),
flow matching Lipman et al. (2022); Hamad & Rosenbaum, and score-based SDE methods Song
et al. (2020); Dou et al. (2025) are also being integrated into the Neural Processes (NP) framework
to enhance function modeling capabilities. In our experiments, we compared against open-source
methods, including score-based neural processes (SNP) Dou et al. (2025) and Geometric Neural
Diffusion Processes Mathieu et al. (2023), both of which demonstrated the empirical advantages of
our approach.

C FORMULATION OF THE DBP FRAMEWORK

C.1 DERIVATION OF EQUATION (10) IN THE MAIN TEXT

In our setting, the forward process also depends on x. Assume that y0 is the initial state, which may
correspond to y0 or another variable. For clarity, we assume y0 is the initial state and x is the target.

From yt−1 to yt:
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yt =
√

1− βtyt−1 + γtx+
√
βtϵt (23)

By recursively expanding:

yt =
√

1− βt

(√
1− βt−1yt−2 + γt−1x+

√
βt−1ϵt−1

)
+ γtx+

√
βtϵt

=
√
(1− βt)(1− βt−1)yt−2 +

(√
1− βtγt−1 + γt

)
x+ noise terms

(24)

Continuing this expansion, we obtain:

yt =

(
t∏

s=1

√
1− βs

)
y0 +

(
t∑

s=1

γs

t∏
k=s+1

√
1− βk

)
x+ noise terms (25)

Define ᾱt =
∏t

s=1(1− βs), then,

yt =
√
ᾱty0 +

(
t∑

s=1

γs

√
ᾱt

ᾱs

)
x+ noise terms (26)

We define the cumulative bridge coefficient γ̄t as

γ̄t =

t∑
s=1

γs

√
ᾱt

ᾱs
. (27)

The noise terms arise from the
√
βsϵs contributions at each step

noise terms =
√

βtϵt +
√
1− βt

√
βt−1ϵt−1 +

√
(1− βt)(1− βt−1)

√
βt−2ϵt−2

+ · · ·+
√
ᾱt/ᾱ1

√
β1ϵ1.

(28)

This can be written compactly as:

noise terms =
t∑

s=1

(√
βs

t∏
k=s+1

√
1− βk

)
ϵs.

Since the ϵs are independent, the total variance is the sum of the variances of each term:

Var(noise terms) =
t∑

s=1

βs

t∏
k=s+1

(1− βk).

we rewrite the variance:

Var(noise terms) =
t∑

s=1

βs
ᾱt

ᾱs
.

Using ᾱs =
∏s

k=1(1− βk), we can express βs as βs = 1− (1− βs) = 1− ᾱs

ᾱs−1
. Substituting this

in:

Var(noise terms) =
t∑

s=1

(
1− ᾱs

ᾱs−1

)
ᾱt

ᾱs
.

This simplifies to:

Var(noise terms) =
t∑

s=1

(
ᾱt

ᾱs
− ᾱt

ᾱs−1

)
.

This is a telescoping series:

Var(noise terms) =
(
ᾱt

ᾱ1
− ᾱt

ᾱ0

)
+

(
ᾱt

ᾱ2
− ᾱt

ᾱ1

)
+ · · ·+

(
ᾱt

ᾱt
− ᾱt

ᾱt−1

)
.
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Most terms cancel out, leaving:

Var(noise terms) = ᾱt

(
1

ᾱt
− 1

ᾱ0

)
.

Assuming ᾱ0 = 1 (since no steps have been applied at t = 0):

Var(noise terms) = 1− ᾱt.

The variance of the accumulated noise can be computed similarly to the DDPM framework and is
assumed to be: (1− ᾱt)I . Thus, Equation (10) in the main text has been proven.

C.2 DERIVATION OF EQUATION (16) AND (17) IN THE MAIN TEXT

C.2.1 THE REVERSE PROCESS POSTERIOR

The marginal distribution q(yt−1|y0, x) is:

q(yt−1|y0, x) = N (
√
ᾱt−1y0 + γ̄t−1x, (1− ᾱt−1)I) , (29)

where ᾱt =
∏t

s=1(1− βs) and γ̄t =
∑t

s=1 γs
√

ᾱt

ᾱs
.

The reverse process posterior is:

q(yt−1|yt, y0, x) ∝ q(yt|yt−1, x)q(yt−1|y0, x). (30)

This is a product of two Gaussians:

N (yt;Ayt−1 + b, σ2
1I)×N (yt−1;µ, σ

2
2I), (31)

where:

• A =
√
1− βt,

• b = γtx,

• σ2
1 = βt,

• µ =
√
ᾱt−1y0 + γ̄t−1x,

• σ2
2 = 1− ᾱt−1.

Assume
q(yt−1|yt, y0, x) = N (µ̃, β̃tI)

The mean of the product is:

µ̃ =

(
AT (yt − b)

σ2
1

+
µ

σ2
2

)(
ATA

σ2
1

+
1

σ2
2

)−1

. (32)

Substituting the values:

µ̃ =

(√
1− βt(yt − γtx)

βt
+

√
ᾱt−1y0 + γ̄t−1x

1− ᾱt−1

)(
1− βt

βt
+

1

1− ᾱt−1

)−1

. (33)

Simplify the denominator:

1− βt

βt
+

1

1− ᾱt−1
=

(1− βt)(1− ᾱt−1) + βt

βt(1− ᾱt−1)
=

1− ᾱt

βt(1− ᾱt−1)
, (34)

since ᾱt = (1− βt)ᾱt−1.

Thus:

µ̃ =

(√
1− βt(yt − γtx)

βt
+

√
ᾱt−1y0 + γ̄t−1x

1− ᾱt−1

)
βt(1− ᾱt−1)

1− ᾱt
. (35)
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Now, expand the numerator:

µ̃ =

√
1− βt(1− ᾱt−1)

1− ᾱt
(yt − γtx) +

βt(
√
ᾱt−1y0 + γ̄t−1x)

1− ᾱt
. (36)

This can be rewritten as:

µ̃ =

√
1− βt(1− ᾱt−1)

1− ᾱt
yt +

βt
√
ᾱt−1

1− ᾱt
y0 +

(
βtγ̄t−1

1− ᾱt
−

√
1− βt(1− ᾱt−1)γt

1− ᾱt

)
x. (37)

The variance β̃t is derived as:

β̃t =

(
1− βt

βt
+

1

1− ᾱt−1

)−1

=
βt(1− ᾱt−1)

1− ᾱt
. (38)

C.2.2 REPARAMETERIZATION OF y0 (SIMILAR TO DDPM)

From the forward process, we can express yt as:

yt =
√
ᾱty0 + γ̄tx+

√
1− ᾱtϵ, (39)

where ϵ ∼ N (0, I). Solving for y0:

y0 =
yt − γ̄tx−

√
1− ᾱtϵ√

ᾱt
. (40)

Substitute y0 into the Reverse Process Mean µ̃

The derived mean µ̃ is:

µ̃ =

√
1− βt(1− ᾱt−1)yt + βt

√
ᾱt−1y0 + (βtγ̄t−1 −

√
1− βt(1− ᾱt−1)γt)x

1− ᾱt
. (41)

Substitute y0:

µ̃ =

√
1− βt(1− ᾱt−1)yt + βt

√
ᾱt−1

(
yt−γ̄tx−

√
1−ᾱtϵ√

ᾱt

)
+ (βtγ̄t−1 −

√
1− βt(1− ᾱt−1)γt)x

1− ᾱt
.

(42)

Simplify the Expression:

1. Combine yt Terms:
√
1− βt(1− ᾱt−1)yt +

βt
√
ᾱt−1yt√
ᾱt

1− ᾱt
=

(√
1− βt(1− ᾱt−1) +

βt√
1−βt

)
yt

1− ᾱt
,

=
yt√
1− βt

(43)

where we used ᾱt = ᾱt−1(1− βt), so
√
ᾱt−1/

√
ᾱt = 1/

√
1− βt.

2. Combine x Terms:

−βt
√
ᾱt−1γ̄t√
ᾱt

+ βtγ̄t−1 −
√
1− βt(1− ᾱt−1)γt

1− ᾱt
x

△
= C(t)x (44)

3. Noise (ϵ) Term:

−βt
√
ᾱt−1

√
1− ᾱtϵ√

ᾱt(1− ᾱt)
= − βt√

1− βt

√
1− ᾱt

ϵ. (45)

Then, the mean can be written as:

µ̃ =
1√

1− βt

(
yt −

βt√
1− ᾱt

ϵ

)
+ C(t)x. (46)

which proves the Equation (16) in the main text.
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C.2.3 CALCULATION OF C(t)

From Equation (44),

C(t) =
−βt

√
ᾱt−1γ̄t√
ᾱt

+ βtγ̄t−1 −
√
1− βt(1− ᾱt−1)γt

1− ᾱt
. (47)

Using
√
ᾱt =

√
ᾱt−1

√
1− βt, we first compute:

− βt
√
ᾱt−1γ̄t√

ᾱt−1

√
1− βt

+ βtγ̄t−1 = − βtγ̄t√
1− βt

+ βtγ̄t−1. (48)

Next, using the relation γ̄t = γt +
√
1− βtγ̄t−1 (since γ̄t =

∑t
s=1 γs

√
ᾱt

ᾱs
= γt +

√
ᾱt

ᾱt−1
γ̄t−1 =

γt +
√
1− βtγ̄t−1), we simplify:

− βtγ̄t√
1− βt

+ βtγ̄t−1 = −βt(γt +
√
1− βtγ̄t−1)√

1− βt

+ βtγ̄t−1 = − βtγt√
1− βt

− βtγ̄t−1 + βtγ̄t−1

= − βtγt√
1− βt

.

(49)

Thus, the final bridge correction term is:

Ct(x) =
− βtγt√

1−βt
−
√
1− βt(1− ᾱt−1)γt

1− ᾱt
x = −βt + (1− βt)(1− ᾱt−1)√

1− βt(1− ᾱt)
γtx. (50)

Using
√
ᾱt =

√
ᾱt−1

√
1− βt, we obtain the simplified form:

C(t)x = − γt√
1− βt

x. (51)

Substitute γt =
SNRT

SNRt
= ᾱT (1−ᾱt)

ᾱt(1−ᾱT ) :

C(t) = − 1√
1− βt

· ᾱT (1− ᾱt)

ᾱt(1− ᾱT )
. (52)

In essence, the role of C(t) is to correct the contribution of x during the reverse process, ensuring
that the generative procedure properly incorporates the bridging information.

C.3 DERIVATION OF EQUATION (18) IN THE MAIN TEXT

We derive the NBP loss Lθ = Et,y0,x,ϵ

[
∥ϵθ(yt, x, t)− ϵ∥22

]
in Equation (18) in the main text directly

from the Evidence Lower Bound (ELBO).

The log-likelihood of the data y0 is lower-bounded by:

log pθ(y0|x) ≥ Eq(y1:T |y0,x)

[
log

pθ(y0:T |x)
q(y1:T |y0, x)

]
= ELBO, (53)

where:

• pθ(y0:T |x) is the reverse (generative) process.

• q(y1:T |y0, x) is the forward (noising) process.
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1. The ELBO decomposes into:

ELBO = Eq(y1:T |y0,x)

[
log p(yT |x) +

T∑
t=2

log
pθ(yt−1|yt, x)
q(yt|yt−1, x)

+ log
pθ(y0|y1, x)
q(y1|y0, x)

]

= Eq(y1:T |y0,x)

[
log

p(yT |x)
q(yT |y0, x)

+

T∑
t=2

log
pθ(yt−1|yt, x)
q(yt−1|yt, y0, x)

+ log pθ(y0|y1, x)

] (54)

The key term is the sum of KL divergences between pθ(yt−1|yt, x) and q(yt−1|yt, y0, x):

Eq(y1:T |y0,x)

[
T∑

t=2

DKL(q(yt−1|yt, y0, x)∥pθ(yt−1|yt, x))

]
(55)

The KL divergence term between q(yt−1|yt, y0, x) and pθ(yt−1|yt, x) is:

DKL(q∥pθ) ∝ ∥µθ(yt, t, x)− µ̃(yt, y0, x)∥2. (56)

where µθ(yt, t, x)− µ̃(yt, y0, x) are the means of q(yt−1|yt, y0, x) and pθ(yt−1|yt, x), respectively.

2. Sample from q(yt|y0, x): Using the forward process properties by Equation (10) in the main text,
we can write:

yt =
√
ᾱty0 + γ̄tx+

√
1− ᾱtϵ, ϵ ∼ N (0, I) (57)

This allows sampling yt directly from y0, x and ϵ.

3. Rewrite q(yt−1|yt, y0, x) by Equation (46):

µ̃t(yt, y0, x) =
1√

1− βt

(
yt −

βt√
1− ᾱt

ϵ

)
+ C(t)x. (58)

4. Reparameterize µθ(yt, t, x): Assume pθ(yt−1|yt, x) predicts µ̃t:

µθ(yt, t, x) =
1√

1− βt

(
yt −

βt√
1− ᾱt

ϵθ(yt, t, x)

)
+ C(t)x (59)

Here, ϵθ(yt, t, x) is a neural network predicting the noise ϵ.

5. Final Noise-Prediction Loss: The KL terms simplify to a weighted L2 loss on the noise:

Et,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

∥ϵ− ϵθ(yt, t, x)∥2
]

(60)

Dropping the weighting (as in DDPM) gives the simplified loss:

L = Et,y0,x,ϵ

[
∥ϵ− ϵθ(yt, t, x)∥2

]
, (61)

where:

• t ∼ Uniform(1, T ),

• yt =
√
ᾱty0 + γ̄tx+

√
1− ᾱtϵ.

This proves Equation (18) in the main text, and the denoising network ϵθ(yt, t, x) is self-consistent
with respect to the condition on x.

D BACKGROUND: NEURAL PROCESSES

Neural Processes (NPs) Garnelo et al. (2018b;a); Kim et al. (2019); Louizos et al. (2019) com-
bine the expressiveness of neural networks with the probabilistic reasoning of Gaussian Processes
(GPs) Rasmussen (2003). While GPs offer principled uncertainty quantification, they suffer from poor
scalability Snelson & Ghahramani (2005); Titsias (2009) and limited kernel flexibility Wilson et al.
(2016); Liu et al. (2021). In contrast, Neural Networks (NNs) Schmidhuber (2015); Nielsen (2015)
are highly flexible and scalable but lack inherent mechanisms for uncertainty modeling Blundell et al.
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(2015); Pearce et al. (2020); Gawlikowski et al. (2023). NPs address these limitations by modeling
distributions over functions using a neural network-based framework. They approximate a stochastic
process F : X → Y through finite-dimensional marginals, parameterized by a latent variable z to
capture global uncertainty. Given context observations (xC, yC) and target inputs xT, NPs generate
predictive distributions over yT via a conditional latent model.

p(yT, z|xT, xC, yC) = p(z|xC, yC)

|T|∏
i=1

p(yT,i|xT,i, z) (62)

To ensure computational efficiency and order-invariance, NPs introduce three main components:
1. Encoder h: Maps each context input-output pair (xi, yi) to a representation space, producing
representations ri = h(xi, yi).

2. Aggregator a: Combines the encoded inputs into a single, permutation-invariant global representa-
tion r. This is typically done by averaging the representations:r = a(ri) =

1
|C|
∑

i∈C ri. This global
representation r parameterizes the latent distribution z ∼ N (µ(r), Iσ(r)).

3. Decoder g: Predicts the target outputs yT = g(xT, z), conditioned on the latent variable z and the
target inputs xT.

Here, z encodes the uncertainty about the global structure of the underlying function. Training NPs
uses amortized variational inference, optimizing an evidence lower bound (ELBO) on the conditional
log-likelihood:

log p(yT|xC, yC, xT) ≥ Eq(z|xC,yC)

[∑
i∈T

log p(yT,i|z, xT,i) + log
p(z|xC, yC)

q(z|xC, yC)

]
(63)

where q(z|xC, yC) is the variational posterior distribution parameterized by a neural network, and
p(z|xC, yC) is the conditional prior.

E NDP REVIEW

Formally, given a function f : RD → R, an NDP learns a generative distribution over observed data
pairs (x, y), where inputs x ∈ RN×D and outputs y = f(x) ∈ RN . Unlike standard NPs, NDPs
Dutordoir et al. (2023) do not explicitly require a partitioning into context and target sets during
training; all points are jointly modeled. In supervised learning setting, the NDP modeling framework
consists of two stochastic processes:

Forward Diffusion Process. Starting from observed clean data y0, the forward diffusion process
gradually injects Gaussian noise into the outputs over T timesteps according to a predefined variance
schedule {βt}:

q(y1:T | y0) =
T∏

t=1

q(yt | yt−1), q(yt | yt−1) = N (yt;
√

1− βt yt−1, βtI). (64)

After T diffusion steps, the distribution of the outputs converges towards standard Gaussian noise,
i.e., yT ∼ N (0, I).

Reverse Process. Neural Diffusion Processes (NDPs) learn a conditional reverse process that
denoises observations from Gaussian noise yT to outputs y0, guided by an input x:

pθ(y0:T | x) = p(yT )

T∏
t=1

pθ(yt−1 | yt, x), (65)

with Gaussian transitions parameterized by a noise prediction model ϵθ:

pθ(yt−1 | yt, x) = N
(
yt−1;µθ(yt, t, x), β̃tI

)
. (66)
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where β̃t =
1−ᾱt−1

1−ᾱt
βt, µθ(yt, t, x) is reparameterized as

µθ(yt, t, x) =
1√

1− βt

(
yt −

βt√
1− ᾱt

ϵθ(yt, t, x)

)
, ᾱt =

t∏
s=1

(1− βs) (67)

Training Objective. NDPs employ a denoising score matching objective Hyvärinen & Dayan
(2005); Song et al. (2021); Huang et al. (2021), training the noise model ϵθ by minimizing the
discrepancy between predicted noise and actual noise ϵ ∼ N (0, I):

Lθ = Et,x,y0,ϵ

[
∥ϵ− ϵθ(yt, t, x)∥22

]
, with yt =

√
ᾱty0 +

√
1− ᾱtϵ. (68)

Conditional Sampling Procedure. At test time, NDPs draw samples from the conditional distribu-
tion p(yT,0 | xT, D), where D = (xC ∈ RM×D, yC,0 ∈ RM ) is the context observations.

The conditional sampling proceeds as follows. First, sample the initial target noise: yT,T ∼ N (0, I).
For each diffusion timestep t = T, . . . , 1, proceed with:

• Sample the noisy version of the context points using the forward diffusion process:

yC,t ∼ N
(√

ᾱtyC,0, (1− ᾱt)I
)
, (69)

• Form the combined dataset at time t by collecting the union of noisy targets and noisy
contexts:

yt = {yT,t, yC,t}, x = {xT, xC}. (70)

• Perform the reverse denoising step by sampling from the learned backward kernel:

yt−1 ∼ N
(

1
√
αt

(
yt −

βt√
1− ᾱt

ϵθ(yt, t, x)

)
, σ2

t I

)
, where αt = 1− βt. (71)

Method Endpoint Match Path Consistency
NDP (Baseline) Implicit Weak
NBP (Ours) ✓ ✓

Table 3: Comparison of generation properties.

F NOISE MODEL ARCHITECTURE

To ensure that our model remains consistent with the structural properties of stochastic processes and
to guarantee fair experimental comparisons, we adopt the same noise model architecture as NDPs,
namely the Bi-Dimensional Attention Block Dutordoir et al. (2023).

As decsribed in Figure 1, this architecture is designed to encode two key symmetries:

• Exchangeability over data points: the model should be equivariant to permutations of the
dataset ordering. That is, shuffling the order of inputs in the context or target set should not
affect the output distribution.

• Invariance over input dimensions: the prediction should be unaffected by reordering of
input features (e.g., swapping the order of columns in a tabular dataset).

To accommodate both properties, the Bi-Dimensional Attention Block operates over a tensor st ∈
RN×D×H representing the latent representation of paired inputs (x, yt) and timestep t. Each block
consists of two multi-head self-attention (MHSA) mechanisms:

• MHSAN : acts across the dataset axis N , propagating information across data points;

• MHSAD: acts across the input dimension axis D, capturing interactions between features.
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The output of each block at layer ℓ is computed as:

A
(ℓ)
t (s

(ℓ−1)
t ) = A

(ℓ−1)
t + σ

(
MHSAN (s

(ℓ−1)
t ) + MHSAD(s

(ℓ−1)
t )

)
,

where σ denotes a ReLU activation, and A
(0)
t = 0, s(0)t = st is the output of the preprocessing stage.

Each Bi-Dimensional Attention Block maintains equivariance under permutations of data and feature
dimensions:

Proposition 1 (Equivariance (Dutordoir et al., 2023, Prop. 4.1)) Let πN and πD be permutations
over dataset and feature axes respectively. Then,

πD ◦ πN ◦At(s) = At(πD ◦ πN ◦ s), ∀s ∈ RN×D×H .

The final noise model ϵθ is obtained by summing outputs across all Bi-Attention layers, followed by
an aggregation over the input dimension axis to remove dependence on feature order. This leads to:

Proposition 2 ( Equivariance (Dutordoir et al., 2023, Prop. 4.2)) Let πN , πD be permutations as
above. Then,

πN ◦ ϵθ(xt, yt, t) = ϵθ(πN ◦ πD ◦ xt, πN ◦ yt, t).

By directly encoding these properties into the noise model architecture, NDPs and NBPs ensure
that the predicted outputs {y1t , . . . , yNt } at each timestep t form an exchangeable set of random
variables, consistent with the Kolmogorov Extension Theorem (KET). This is critical for defining a
valid stochastic process over functions.

G MORE DETAILS FOR EXPERIMENTS

G.1 BASELINE IMPLEMENTATION AND EVALUATION METRICS

To provide a comprehensive comparison, we implement NPs Garnelo et al. (2018b) , ANPs Kim
et al. (2019), and ConvNPs Gordon et al. (2019) using the official NP-Family repository Dubois et al.
(2020), with all hyperparameters set to the recommended default values. For NDP Dutordoir et al.
(2023), we directly utilize the official repositories. Meanwhile, to ensure a fair comparison, our NBP
model adopts the same Bi-Dimensional Attention Block architecture and hyperparameters as the
baseline NDP. The implementation details are provided in the supplementary materials. All models
are retrained on the experimental datasets to ensure consistent metric evaluation and visualization.
We evaluate model performance using two primary metrics: Mean Squared Error (MSE) and Negative
Log-Likelihood (NLL). All experiments are conducted on a single NVIDIA RTX 4090 GPU.

G.2 DETAILS OF EEG DATASET REGRESSION TASK

The EEG dataset used in this experiment consists of recordings from 122 subjects, including both
alcoholic and control groups. Each subject underwent either single or double stimulus conditions,
during which neural responses were recorded using 64 scalp electrodes. Each trial lasted for 1 second
with a sampling rate of 256 Hz, and up to 120 trials were recorded per subject.

For our study, we focus on signals from 7 frontal electrodes: FZ, F1, F2, F3, F4, F5, and F6. This
selection yields a total of 7,632 multivariate time series, each comprising 256 time steps across 7
channels. These signals exhibit strong temporal dynamics and inter-channel correlations, making
the dataset well-suited for evaluating the generalization and modeling capabilities of multi-output
meta-learning models. The data is publicly available from the UCI Machine Learning Repository,
with collection details described in Zhang et al. (1995). Figure 6 illustrates the signals recorded from
these seven channels for a single trial of one subject.

Subjects were split into training, validation, and test sets on a per-individual basis. The validation
and test sets each contain 10 subjects, with the remainder assigned to the training set. All trials from
each subject form a single meta-task, enabling task-level generalization evaluation.

Within each trial, we randomly select 3 out of the 7 channels and mask partial segments of these
channels to simulate missing data. This setup supports evaluation across the following three tasks:
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Figure 6: the signals recorded from these seven channels for a single trial of one subject.

Interpolation: Recovering locally missing values within the observed time range.

Reconstruction: Reconstructing entire masked regions of a target channel using the remaining
channels as context.

Forecasting: Extrapolating future signal trajectories based on current observations.

Each input is represented as an index vector xe = (it, ic), where it denotes the time step and ic the
channel index. The corresponding output is the voltage signal ye.

All models were trained for 1,000 iterations on the training set. Evaluation metrics include Mean
Squared Error (MSE) and Negative Log-Likelihood (NLL). The Neural Bridge Process (NBP)
employs a 5-layer Bi-Dimensional Attention Block with hidden dimension 64 and 8 attention heads.
The model was trained using a fixed random seed of 42 to ensure reproducibility.

For models incorporating diffusion-based generation (such as DNP and NBP), we adopt a cosine noise
schedule with the following parameters: βstart = 0.0003, βend = 0.5, and 500 diffusion timesteps.
These settings are applied consistently across the forward and reverse processes in all diffusion-based
models. Additional training hyperparameters are as follows:

• For NBP and DNP base, the learning rate was set to 2 · 10−5;

• Other models used default learning rates as recommended in prior literature;

• All models operated on input sequences of 256 time steps.

The evaluation results, summarized in Table 1 of the main text, demonstrate that NBP consistently
outperforms existing baseline models across all three tasks, highlighting its superior modeling
capacity for highly correlated multichannel temporal data.

G.3 DETAILS OF IMAGE REGRESSION TASK

We provide detailed information on the image regression task using Neural Bridge Processes (NBPs).
The task involves predicting pixel intensities based on their spatial coordinates, which are normalized
to the range [−2, 2]. We use the CelebA dataset at resolutions of 32× 32 and 64× 64.

Our experimental protocol—including the denoising network architecture, training schedule, opti-
mizer configuration, and random seed—closely follows the setup used for Neural Diffusion Processes

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 4: CelebA 32 × 32 Results for NDP Base and NBP (Ours) in 10−2 MSE Units

Context Ratio Retained Pixels NDP Base NBP (Ours)
MSE Mean MSE Std MSE Mean MSE Std

0.1 96 1.7011 0.7221 1.4206 0.6958
0.2 197 0.8831 0.5214 0.7694 0.4008
0.3 312 0.4482 0.2724 0.4055 0.2157
0.4 412 0.2809 0.1511 0.2416 0.1091
0.5 512 0.2496 0.1251 0.2066 0.1062
0.6 570 0.1769 0.0793 0.1406 0.0573
0.7 714 0.1450 0.0729 0.1185 0.0579
0.8 832 0.0997 0.0518 0.0821 0.0373
0.9 913 0.0969 0.0527 0.0793 0.0392

Table 5: CelebA 64 × 64 Results for NDP Base and NBP (Ours) in 10−2 MSE Units

Context Ratio Retained Pixels NDP Base NBP (Ours)
MSE Mean MSE Std MSE Mean MSE Std

0.1 432 2.3763 1.3563 2.0189 1.2632
0.2 872 1.0546 0.6718 0.8615 0.5174
0.3 1276 0.7530 0.4283 0.6078 0.3132
0.4 1628 0.5115 0.2626 0.4432 0.1826
0.5 2080 0.4973 0.3144 0.4078 0.2548
0.6 2392 0.4160 0.2496 0.3587 0.1801
0.7 2788 0.3405 0.1985 0.3097 0.1694
0.8 3100 0.3215 0.1875 0.2838 0.1461
0.9 3492 0.2706 0.1579 0.2584 0.1177

(NDPs), ensuring a fair and consistent comparison. The core architecture of the NBP model consists
of 7 layers, each with hidden dimension 64 and 8 attention heads. Sparse attention is not used in
these experiments.

Training Configuration. The model is trained for 10 epochs using a batch size of 32. The optimizer
follows a warmup and decay schedule:

• Initial learning rate: 2.0× 10−5

• Peak learning rate: 1.0× 10−3

• End learning rate: 1.0× 10−5

• Warmup: 20 epochs, decay over 200 epochs

• EMA decay rate: 0.995

Diffusion Settings. We employ a cosine beta schedule with the following parameters for the forward
and reverse processes:

• βstart = 0.0003

• βend = 0.5

• Number of timesteps: 500

Evaluation Protocol. Each prediction is averaged over 9 conditional samples during testing. The
evaluation batch size is set to 9, with 128 samples drawn per image for final averaging. All pixel
values are normalized to the [0, 1] range. The model was trained and evaluated with a fixed random
seed of 42.

Loss Function. We adopt the ℓ1 loss for training the denoising objective.

Results and Analysis. Tables 2 and 3 in the main text report the quantitative performance under
various levels of context sparsity. NBPs consistently outperform NDPs across settings. For example,
at a context ratio of 0.02 on CelebA 32× 32, NBPs achieve an MSE of 0.76 compared to 0.88 by
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NDPs. This trend persists at higher resolutions: on CelebA 64× 64, NBPs achieve an MSE of 0.80
compared to NDPs’ 1.05 under the same sparse context condition.

This performance gain is attributed to NBPs’ novel design, wherein the forward diffusion kernel is
explicitly conditioned on the input coordinates. This conditioning acts as a structural constraint across
the diffusion trajectory, ensuring that the trajectory remains anchored to the input while steering
toward the supervised target.

H CODE CONTRIBUTION

The full implementation of the Neural Bridge Processes (NBP) framework is provided in the supple-
mentary materials to ensure reproducibility and to facilitate further evaluation by reviewers.

I STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs) were used solely for polishing and editing the text of this manuscript.

J LIMITATIONS

The current evaluation focuses exclusively on EEG and image regression tasks. Future work will ex-
plore the applicability of the proposed method to a broader range of domains, including spatiotemporal
modeling, control, and scientific data analysis.
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