

000
001
002
003

NEURAL BRIDGE PROCESSES

004 **Anonymous authors**
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Learning stochastic functions from partially observed context-target pairs is a fundamental problem in probabilistic modeling. Traditional models like Gaussian Processes (GPs) face scalability issues with large datasets and assume Gaussianity, limiting their applicability. While Neural Processes (NPs) offer more flexibility, they struggle with capturing complex, multi-modal target distributions. Neural Diffusion Processes (NDPs) enhance expressivity through a learned diffusion process but rely solely on conditional signals in the denoising network, resulting in weak input coupling from an unconditional forward process and semantic mismatch at the diffusion endpoint. In this work, we propose Neural Bridge Processes (NBPs), a novel method for modeling stochastic functions where inputs x act as dynamic anchors for the entire diffusion trajectory. By reformulating the forward kernel to explicitly depend on x , NBP enforces a constrained path that strictly terminates at the supervised target. This approach not only provides stronger gradient signals but also guarantees endpoint coherence. We validate NBPs on synthetic data, EEG signal regression and image regression tasks, achieving substantial improvements over baselines. These results underscore the effectiveness of DDPM-style bridge sampling in enhancing both performance and theoretical consistency for structured prediction tasks.

1 INTRODUCTION

Learning stochastic functions from partially observed context-target pairs is a fundamental problem in probabilistic modeling Rasmussen (2003); Garnelo et al. (2018b;a); Dutordoir et al. (2023); Franzese et al. (2023); Bonito et al. (2023); Mathieu et al. (2023); Chang et al. (2024); Dou et al. (2025); Hamad & Rosenbaum, playing a pivotal role in meta-learning Garnelo et al. (2018b;a), few-shot regression Kim et al. (2019), Bayesian optimization Dutordoir et al. (2023); Krishnamoorthy et al. (2023), and uncertainty-aware prediction tasks Chang et al. (2024); Dou et al. (2025); Hamad & Rosenbaum; Requeima et al. (2024). Such problems require models that not only generalize well across different tasks but also provide calibrated uncertainty estimates, particularly under scarce or incomplete data conditions. Gaussian Processes (GPs) Rasmussen (2003) have traditionally dominated this area due to their analytical tractability and clear uncertainty quantification. However, GPs inherently assume Gaussianity and exhibit cubic computational complexity with respect to data size, severely limiting their applicability in scenarios involving large datasets or inherently non-Gaussian functional distributions Snelson & Ghahramani (2005); Titsias (2009); Xu & Zeng (2024); Xu et al. (2024).

Neural Processes (NPs) Garnelo et al. (2018b;a); Kim et al. (2019); Louizos et al. (2019) have emerged as a compelling alternative, merging the flexibility of neural network models with the principled uncertainty quantification of stochastic processes. By parameterizing stochastic functions through neural architectures, NPs facilitate efficient inference and scalable learning, successfully tackling meta-learning and few-shot prediction tasks. However, standard NPs often struggle with limited expressivity and fail to capture complex multi-modal target distributions, motivating exploration into more powerful generative mechanisms.

NDPs Dutordoir et al. (2023) address this by modeling the input-output mapping as a learned diffusion process Ho et al. (2020), offering enhanced expressivity and sample diversity. Despite their promise in stochastic function modeling, NDPs rely on an unconditional forward process, which fundamentally limits the effectiveness of input supervision. Specifically, traditional NDPs treat inputs merely as conditional signals within the denoising network, passively injecting inputs during denoising without

leveraging the temporal structure of diffusion. This results in weak input coupling and a semantic mismatch at the diffusion endpoint.

In this work, we introduce Neural Bridge Processes (NBP), a novel diffusion-based generative framework that explicitly integrates input supervision throughout the entire diffusion trajectory. Unlike traditional NDPs, which inject conditioning inputs passively during denoising, NBPs reformulate the forward diffusion kernel to dynamically anchor the process with inputs x , ensuring that the generated outputs remain coherently guided toward the desired targets. This is achieved through a principled bridge coefficient γ_t , which progressively strengthens the influence of x as diffusion proceeds, enabling both strong gradient signals during training and guaranteed endpoint coherence. Additionally, NBPs incorporate a bridge correction term in the reverse process to maintain theoretical consistency between forward and reverse dynamics. Our approach provides a more structured and controllable generative path, leading to improved conditional generation accuracy and more faithful reconstructions, particularly in settings requiring strict adherence to input-output relationships. This idea shares conceptual similarities with recent advances in diffusion bridge modeling Zhou et al. (2023); Yue et al. (2023); Zheng et al. (2024); Li et al. (2023); Peluchetti (2023); He et al. (2024); Shi et al. (2023); Naderiparizi et al. (2025). However, our approach avoids the more complex and computationally intensive SDE-style diffusion bridges Song et al. (2020); Zhou et al. (2023), and instead extends the bridge concept to the DDPM Ho et al. (2020) framework through SNR-aware functional modeling, making it significantly easier to deploy and integrate into existing architectures.

We validate NBPs on synthetic data and real time series data consisting of electroencephalogram (EGG) measurements Zhang et al. (1995) and image regression tasks, achieving substantial improvements over baseline NDPs. These results underscore the effectiveness of DDPM-style bridge sampling in enhancing both performance and theoretical consistency for structured prediction tasks.

In summary, the core contributions of this paper are:

- We introduce **Neural Bridge Processes (NBPs)**, a new class of models for stochastic functions that introduces input-anchored diffusion trajectories via a principled bridge coefficient. This design ensures strong input supervision throughout the entire diffusion process, overcoming the weak coupling limitations of traditional NDPs and guaranteeing endpoint coherence.
- We extend the bridge concept to the DDPM framework using an SNR- and path-aware formulation, thereby avoiding the deployment complexity associated with SDE-based diffusion bridges. This makes NBPs both theoretically consistent and practically efficient, enabling seamless integration into existing architectures.
- We demonstrate the effectiveness of NBPs on synthetic data, EEG signal regression and image-based function regression benchmarks, achieving significant improvements in predictive accuracy and uncertainty calibration compared to state-of-the-art NDP baselines.

2 BACKGROUND: NEURAL PROCESSES

Neural Processes (NPs) Garnelo et al. (2018b;a); Kim et al. (2019); Louizos et al. (2019) combine the expressiveness of neural networks with the probabilistic reasoning of Gaussian Processes (GPs) Rasmussen (2003). While GPs offer principled uncertainty quantification, they suffer from poor scalability Snelson & Ghahramani (2005); Titsias (2009) and limited kernel flexibility Wilson et al. (2016); Liu et al. (2021). In contrast, Neural Networks (NNs) Schmidhuber (2015); Nielsen (2015) are highly flexible and scalable but lack inherent mechanisms for uncertainty modeling Blundell et al. (2015); Pearce et al. (2020); Gawlikowski et al. (2023). NPs address these limitations by modeling distributions over functions using a neural network-based framework. They approximate a stochastic process $F : X \rightarrow Y$ through finite-dimensional marginals, parameterized by a latent variable z to capture global uncertainty. Given context observations $(x_{\mathbb{C}}, y_{\mathbb{C}})$ and target inputs $x_{\mathbb{T}}$, NPs generate predictive distributions over $y_{\mathbb{T}}$ via a conditional latent model.

$$p(y_{\mathbb{T}}, z|x_{\mathbb{T}}, x_{\mathbb{C}}, y_{\mathbb{C}}) = p(z|x_{\mathbb{C}}, y_{\mathbb{C}}) \prod_{i=1}^{|T|} p(y_{\mathbb{T},i}|x_{\mathbb{T},i}, z) \quad (1)$$

108 Here, z encodes the uncertainty about the global structure of the underlying function. Training NPs
 109 uses amortized variational inference, optimizing an evidence lower bound (ELBO) on the conditional
 110 log-likelihood:
 111

$$112 \log p(y_{\mathbb{T}}|x_{\mathbb{C}}, y_{\mathbb{C}}, x_{\mathbb{T}}) \geq \mathbb{E}_{q(z|x_{\mathbb{C}}, y_{\mathbb{C}})} \left[\sum_{i \in \mathbb{T}} \log p(y_{\mathbb{T},i}|z, x_{\mathbb{T},i}) + \log \frac{p(z|x_{\mathbb{C}}, y_{\mathbb{C}})}{q(z|x_{\mathbb{C}}, y_{\mathbb{C}})} \right] \quad (2)$$

115 where $q(z|x_{\mathbb{C}}, y_{\mathbb{C}})$ is the variational posterior distribution parameterized by a neural network, and
 116 $p(z|x_{\mathbb{C}}, y_{\mathbb{C}})$ is the conditional prior. Additional information can be seen in Appendix.
 117

118 3 METHOD: NEURAL BRIDGE PROCESSES (NBP)

120 3.1 PROBLEM SETUP

122 We consider the standard meta-learning setting where a model observes a set of context points
 123 $x_{\mathbb{C}} = \{(x_i, y_i)\}_{i=1}^{N_c}$ and aims to predict the corresponding outputs $y_{\mathbb{T}} = \{y_j\}_{j=1}^{N_t}$ for a set of target
 124 inputs $x_{\mathbb{T}} = \{x_j\}_{j=1}^{N_t}$. Here, each task is assumed to be sampled from a distribution over functions,
 125 and the goal is to model the conditional distribution $p(y_{\mathbb{T}}|x_{\mathbb{C}}, x_{\mathbb{T}})$.
 126

127 3.2 REVIEW: NEURAL DIFFUSION PROCESSES (NDPs)

129 While Neural Processes (NPs) Garnelo et al. (2018b) effectively combine neural networks with
 130 stochastic processes for few-shot learning, their reliance on simple latent variable models limits their
 131 ability to capture complex, multimodal distributions. Neural Diffusion Processes (NDPs) Dutordoir
 132 et al. (2023) address this by introducing stochastic trajectories, modeling the mapping from inputs
 133 to outputs as a learned diffusion process Ho et al. (2020). This method significantly improves
 134 expressivity and sample diversity by leveraging the generative power of diffusion models Ho et al.
 135 (2020); Song et al. (2020); Dhariwal & Nichol (2021); Croitoru et al. (2023); Rombach et al. (2022);
 136 Podell et al. (2023); Peebles & Xie (2023), allowing for better modeling of complex distributions and
 137 more flexible conditional sampling.

138 Formally, given a function $f : \mathbb{R}^D \rightarrow \mathbb{R}$, an NDP learns a generative distribution over observed data
 139 pairs (x, y) , where inputs $x \in \mathbb{R}^{N \times D}$ and outputs $y = f(x) \in \mathbb{R}^N$. Unlike standard NPs, NDPs
 140 Dutordoir et al. (2023) do not explicitly require a partitioning into context and target sets during
 141 training; all points are jointly modeled. In supervised learning setting, the NDP modeling framework
 142 consists of two stochastic processes:

144 **Forward Diffusion Process.** Starting from observed clean data y_0 , the forward diffusion process
 145 gradually injects Gaussian noise into the outputs over T timesteps according to a predefined variance
 146 schedule $\{\beta_t\}$:

$$148 q(y_{1:T} | y_0) = \prod_{t=1}^T q(y_t | y_{t-1}), \quad q(y_t | y_{t-1}) = \mathcal{N}(y_t; \sqrt{1 - \beta_t} y_{t-1}, \beta_t I). \quad (3)$$

151 After T diffusion steps, the distribution of the outputs converges towards standard Gaussian noise,
 152 i.e., $y_T \sim \mathcal{N}(0, I)$.

153 **Reverse Process.** Neural Diffusion Processes (NDPs) learn a conditional reverse process that
 154 denoises observations from Gaussian noise y_T to outputs y_0 , guided by an input x :

$$157 p_{\theta}(y_{0:T} | x) = p(y_T) \prod_{t=1}^T p_{\theta}(y_{t-1} | y_t, x), \quad (4)$$

160 with Gaussian transitions parameterized by a noise prediction model ϵ_{θ} :

$$161 p_{\theta}(y_{t-1} | y_t, x) = \mathcal{N}\left(y_{t-1}; \mu_{\theta}(y_t, t, x), \tilde{\beta}_t I\right). \quad (5)$$

162 where $\tilde{\beta}_t = \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t} \beta_t$, $\mu_\theta(y_t, t, x)$ is reparameterized as
 163

$$164 \quad 165 \quad \mu_\theta(y_t, t, x) = \frac{1}{\sqrt{1-\bar{\alpha}_t}} \left(y_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta(y_t, t, x) \right), \quad \bar{\alpha}_t = \prod_{s=1}^t (1-\beta_s) \quad (6)$$

166

167 **Training Objective.** NDPs employ a denoising score matching objective Hyvärinen & Dayan
 168 (2005); Song et al. (2021); Huang et al. (2021), training the noise model ϵ_θ by minimizing the
 169 discrepancy between predicted noise and actual noise $\epsilon \sim \mathcal{N}(0, I)$:

$$170 \quad 171 \quad \mathcal{L}_\theta = \mathbb{E}_{t,x,y_0,\epsilon} \left[\|\epsilon - \epsilon_\theta(y_t, t, x)\|_2^2 \right], \quad \text{with} \quad y_t = \sqrt{\bar{\alpha}_t} y_0 + \sqrt{1-\bar{\alpha}_t} \epsilon. \quad (7)$$

172

173 3.3 MOTIVATION

174 Traditional Neural Diffusion Processes (NDPs) treat inputs merely as conditional signals fed into
 175 the denoising network (e.g., via cross-attention or concatenation). This implicit conditioning suffers
 176 from two critical drawbacks:

- 178 • Weak coupling: The diffusion path is only loosely guided by inputs, as the forward process
 179 remains an unconditional Gaussian transition $q(y_t|y_{t-1})$.
- 180 • Endpoint mismatch: The diffusion endpoint y_T is arbitrary noise, bearing no semantic
 181 relationship to the input supervision x .

182

183 While NDPs have shown promise in generative modeling, their unconditional forward process
 184 fundamentally limits the efficacy of input supervision. Existing methods inject inputs passively
 185 during denoising, failing to exploit the temporal structure of diffusion. In this work, we propose
 186 Neural Bridge Processes (NBP), where inputs x act as dynamic anchors for the entire diffusion
 187 trajectory. By reformulating the forward kernel to explicitly depend on x , NBP enforces a constrained
 188 path that strictly terminates at the supervised target. This approach not only provides stronger gradient
 189 signals but also guarantees endpoint coherence—a property unattainable by traditional NDPs.

190 3.4 BRIDGE CONSTRUCTION

192 We first consider the case where the input and output share the same dimensionality. Given a function
 193 $f : \mathbb{R}^D \rightarrow \mathbb{R}^D$, our Neural Bridge Processes (NBPs) model a generative distribution over observed
 194 data pairs (x, y) , with inputs $x \in \mathbb{R}^{N \times D}$ and outputs $y = f(x) \in \mathbb{R}^{N \times D}$. NBPs construct a diffusion
 195 bridge between arbitrary initial outputs $y_0 = y$ and conditionally anchored endpoints characterized
 196 by the relationship between $\mathbb{E}[y_T]$ and x via modified transition kernels.

197 To achieve this, we introduce a time-dependent coefficient γ_t that explicitly controls the influence
 198 of the input x on the forward diffusion process at each timestep t , thereby enabling explicit path
 199 supervision in contrast to standard DDPMs.

200 The forward transition kernel is defined as:

$$202 \quad 203 \quad q(y_t|y_{t-1}, x) = \mathcal{N} \left(y_t; \underbrace{\sqrt{1-\beta_t} y_{t-1} + \gamma_t x}_{\text{Bridge-anchored mean}}, \beta_t I \right). \quad (8)$$

204

205 The bridge coefficient γ_t follows a principled design:

$$207 \quad 208 \quad \gamma_t = \frac{\text{SNR}_T}{\text{SNR}_t}, \quad \text{SNR}_t = \frac{\bar{\alpha}_t}{1-\bar{\alpha}_t}. \quad (9)$$

209 Similar to DDPM, the forward process in this bridge-style diffusion model allows sampling y_t at an
 210 arbitrary timestep t in closed form:

$$212 \quad 213 \quad y_t | y_0, x \sim \mathcal{N} \left(\sqrt{\bar{\alpha}_t} y_0 + \bar{\gamma}_t x, (1-\bar{\alpha}_t) I \right), \quad (10)$$

214 where the cumulative bridge coefficient is defined as

$$215 \quad \bar{\gamma}_t = \sum_{s=1}^t \gamma_s \sqrt{\frac{\bar{\alpha}_t}{\bar{\alpha}_s}}. \quad (11)$$

216 The term $\gamma_t x$ in Equation (8) acts as a guiding force that progressively pulls the diffusion trajectory
 217 toward the target endpoint. This formulation ensures the following behavior:
 218

219 • **Early Diffusion Phase** ($t \ll T$): $\text{SNR}_t \rightarrow +\infty \Rightarrow \gamma_t \rightarrow 0^+$. Process approximates
 220 standard diffusion:

$$221 \quad q(y_t | y_{t-1}, x) \approx \mathcal{N}(\sqrt{1 - \beta_t} y_{t-1}, \beta_t I) \quad (12)$$

223 • **Bridge Convergence Phase** ($t \rightarrow T$): $\text{SNR}_t \rightarrow \text{SNR}_T \Rightarrow \gamma_t \rightarrow 1$. The trajectory is
 224 increasingly guided toward the desired target to enforces endpoint attraction as shown in
 225 Equation (10):

$$226 \quad \mathbb{E}[y_T | y_0] = \sqrt{\bar{\alpha}_T} y_0 + \bar{\gamma}_T x \approx \bar{\gamma}_T x \quad (13)$$

227 where $\bar{\alpha}_T = \prod_{s=1}^T (1 - \beta_s) \approx 0$, and $\bar{\gamma}_T = \left(\sum_{s=1}^T \gamma_s \sqrt{\frac{\bar{\alpha}_T}{\bar{\alpha}_s}} \right)$ is a constant.

229 This introduces:

231 1). Stronger gradient signals: The bridge term $\gamma_t x$ directly propagates input supervision to every
 232 timestep of the forward process by Equation (8) and (10), thereby introducing x into the denoising
 233 network in a more theoretically consistent manner.
 234 2). Coherent trajectory optimization: The entire path $y_{0:T}$ is trained to satisfy both data fidelity (to
 235 y_0) and endpoint matching (to $\mathbb{E}[y_T] = \bar{\gamma}_T x$).
 236

237 **Forward Process** Given the starting point y_0 and target endpoint y_T , the forward process progressively
 238 adds noise and enforces the bridge constraint through the transition kernel:
 239

$$240 \quad q(y_{1:T} | y_0, x) = \prod_{t=1}^T q(y_t | y_{t-1}, x) \quad (14)$$

244 The single-step transition kernel is defined in Equation (8). After T diffusion steps, the distribution
 245 of the outputs converges to a Gaussian with mean x , i.e., $y_T \sim \mathcal{N}(\bar{\gamma}_T x, I)$.
 246

247 **Reverse Process with Bridge Correction** The reverse process employs a transition kernel that
 248 combines standard denoising with explicit bridge constraints to maintain consistency with the forward
 249 process:
 250

$$252 \quad p_\theta(y_{t-1} | y_t, x) = \mathcal{N} \left(y_{t-1}; \mu_\theta(y_t, x, t), \tilde{\beta}_t I \right) \quad (15)$$

254 The mean function is reparameterized into two key components that balance denoising and bridge
 255 correction:
 256

$$257 \quad \mu_\theta = \underbrace{\frac{1}{\sqrt{\alpha_t}} \left(y_t - \frac{\beta_t}{\sqrt{1 - \alpha_t}} \epsilon_\theta(y_t, x, t) \right)}_{\text{Denoising term}} + \underbrace{C_t(x)}_{\text{Bridge correction}} \quad (16)$$

261 where $\alpha_t = 1 - \beta_t$, and the bridge correction term $C_t(x)$ is derived as:
 262

$$264 \quad C_t(x) = -\frac{\gamma_t}{\sqrt{1 - \beta_t}} x. \quad (17)$$

267 Proofs can be seen in Appendix. The role of the bridge correction term $C_t(x)$ is to ensure that the
 268 mean of the reverse process remains consistent with the bridge constraint imposed in the forward
 269 process. Specifically, in the forward process, the term $\gamma_t x$ injects information from the input x into
 the diffusion trajectory. The reverse process compensates for this influence through $C_t(x)$.
 270

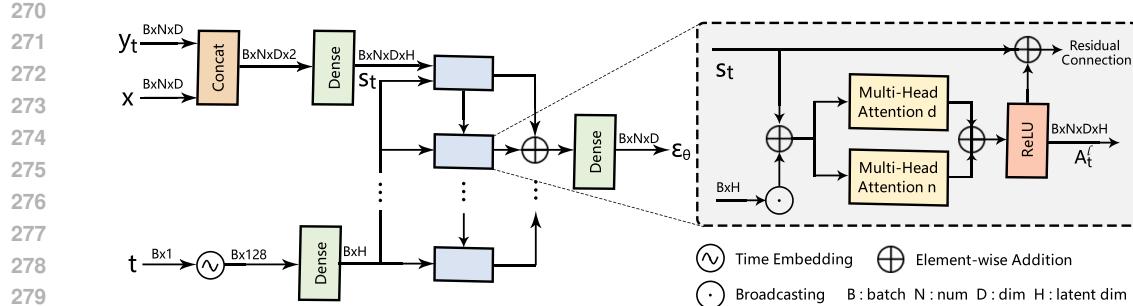


Figure 1: The noise model architecture employed at each step of the Neural Bridge Processes. The greyed-out box highlights the bi-dimensional attention block.

Training Objective The training objective for NBP_s minimizes the forward and reverse KL divergences, which is equivalent to minimizing the prediction error of the denoising network $\epsilon_\theta(y_t, x, t)$ and the forward noise characterized by Equation (10).

$$\mathcal{L}_\theta = \mathbb{E}_{t,x,y_0,\epsilon} [\|\epsilon_\theta(y_t, x, t) - \epsilon\|_2^2] \quad \text{with} \quad y_t = \sqrt{\bar{\alpha}_t} y_0 + \bar{\gamma}_t x + \sqrt{1 - \bar{\alpha}_t} \epsilon. \quad (18)$$

Proofs can be seen in Appendix. Here, $\epsilon \sim \mathcal{N}(0, I)$ represents the ground-truth noise added during the forward process. The reverse transition kernel's dependence on both y_t and x ensures theoretical consistency, as the bridge variable x is explicitly embedded in both the forward and reverse processes. This formulation guarantees that the learned reverse process remains properly coupled with the forward dynamics throughout the diffusion trajectory.

Conditional Sampling Procedure. At test time, NBP_s generate samples from the conditional distribution $p(y_0 | x, \mathcal{D})$, where $\mathcal{D} = (x_C \in \mathbb{R}^{M \times D}, y_{C,0} \in \mathbb{R}^{M \times D})$ denotes the observed context data.

The conditional sampling proceeds as follows. First, initialize the diffusion state with the known endpoint:

$$y_T = \gamma_T x + n, \quad n \sim \mathcal{N}(0, I). \quad (19)$$

For each diffusion timestep $t = T, \dots, 1$, perform the following steps:

- Sample the noisy context outputs using the forward diffusion bridge process:

$$y_{C,t} \sim \mathcal{N}(\sqrt{\bar{\alpha}_t} y_{C,0} + \bar{\gamma}_t x_C, (1 - \bar{\alpha}_t) I), \quad (20)$$

- Combine noisy target and context states at timestep t :

$$y_t = \{y_{T,t}, y_{C,t}\}, \quad x = \{x_T, x_C\}.$$

- Perform the reverse diffusion step with the learned backward kernel, incorporating the bridge correction:

$$y_{t-1} \sim \mathcal{N}(\mu_\theta(y_t, x, t), \tilde{\beta}_t I), \quad (21)$$

where

$$\mu_\theta(t) = \frac{1}{\sqrt{\bar{\alpha}_t}} \left(y_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(y_t, x, t) \right) + C_t(x). \quad (22)$$

Following the Repaint Lugmayr et al. (2022) strategy, at each diffusion timestep t , we repeat the forward perturbation of context points and the corresponding reverse denoising step multiple times before proceeding to the next timestep. Simulating this repeated scheme from $t = T$ down to $t = 1$ ensures that the context information is consistently reinforced throughout the diffusion trajectory, leading to more coherent and accurate conditional generation.

324 3.5 INPUT-OUTPUT DIMENSIONAL ALIGNMENT
325326 Real-world datasets often have mismatched input and output dimensions. To enable joint modeling
327 in the same space, we apply a fixed projection \mathcal{P} to map $x \in \mathbb{R}^{N \times D_x}$ to $x_a = \mathcal{P}(x) \in \mathbb{R}^{N \times D_y}$,
328 aligning it with $y \in \mathbb{R}^{N \times D_y}$. For example, in image regression, \mathcal{P} can add spatial or contextual
329 information to match RGB output dimensions.
330331 332 3.6 NOISE MODEL ARCHITECTURE
333334 To ensure that our model remains consistent with the structural properties of stochastic processes and
335 to guarantee fair experimental comparisons, we adopt the same noise model architecture as NDPs,
336 namely the Bi-Dimensional Attention Block Dutordoir et al. (2023), as shown in Figure 1. Due to
337 space limitations, we provide the detailed design in the Appendix.
338339 340 4 EXPERIMENTS
341342 4.1 BASELINE IMPLEMENTATION AND EVALUATION METRICS
343344 For a comprehensive comparison, we implement Neural Processes (NPs) Garnelo et al. (2018b),
345 Attentive Neural Processes (ANPs) Kim et al. (2019), and Convolutional Neural Processes (Con-
346 vNPs) Gordon et al. (2019) using the official NP-Family repository Dubois et al. (2020), with
347 all hyperparameters set to the recommended defaults. We further include Gaussian Neural Pro-
348 cesses (GNPs) Bruinsma et al. (2021) in our synthetic experiments. For Neural Diffusion Processes
349 (NDPs) Dutordoir et al. (2023), Geometric Neural Diffusion Processes (GEO-MNDPs) Mathieu
350 et al. (2023), and Score-Based Neural Processes (SNPs) Dou et al. (2025), we directly adopt their
351 official implementations. To ensure fairness, our Neural Bridge Process (NBP) employs the same
352 Bi-Dimensional Attention Block architecture and hyperparameter configurations as the baseline NDP.
353 Detailed implementation settings and additional related work are provided in the Appendix. All
354 models are retrained on the experimental datasets for consistent metric evaluation and visualization.
355 Experiments are conducted on a single NVIDIA RTX 4090 GPU.
356357 4.2 REGRESSION ON SYNTHETIC DATA
358359 We evaluate our method on synthetic 1D–3D regression tasks, using functions sampled from Gaussian
360 Processes (GPs) with either a Squared Exponential or Matérn-5/2 kernel. For each dimension D ,
361 the kernel lengthscale is set to $\ell = \sqrt{D}/4$, and Gaussian noise $\mathcal{N}(0, 0.05^2)$ is added to the outputs.
362 During training, we generate 2^{10} examples per epoch, and train for 400 epochs using batch size 32.
363 Each model is trained with its own architecture and optimization settings (details below). At test
364 time, the context set contains a random number of points between 1 and $10 \times D$, while the target set
365 always includes 50 points.
366367 The log-likelihood is estimated by fitting a multivariate Gaussian to 128 samples drawn from the
368 conditional distribution of the model. For our proposed method, we use a 4-layer transformer-style
369 architecture with 8 attention heads and 64-dimensional hidden layers. Diffusion noise is scheduled
370 over 500 timesteps with a cosine schedule ($\beta \in [3e-4, 0.5]$). The optimizer uses a peak learning rate
371 of 10^{-3} with warm-up (20 epochs) and cosine decay (200 epochs). All experiments use the same
372 evaluation batch size and sampling procedure for consistency. For input dimensions $D = 2, 3$, to
373 address the alignment issue discussed in Section 3.5, we directly define the projection operator \mathcal{P} in
374 Equation (20) as the mean of the input components. Meanwhile, the input x to the denoising network
 ϵ_θ remains unchanged.
375376 Table 2 shows that NBP consistently outperforms prior Neural Process variants across all input
377 dimensions. Notably, NBP maintains stable and accurate predictions in higher dimensions ($D = 2, 3$),
378 where performance of other models tends to degrade sharply. Figure 4 shows representative samples
379 generated by our model under the Squared Exponential (SE) kernel and the Matérn-5/2 kernel settings.
380

378 4.3 REAL WORLD EXPERIMENTS
379380 4.3.1 EEG SIGNAL REGRESSION TASKS
381382 We evaluate the proposed Neural Bridge Processes (NBP) on a real-world electroencephalogram
383 (EEG) dataset regression task Zhang et al. (1995). The dataset comprises 7632 multivariate time
384 series, each consisting of 256 evenly sampled time steps recorded across seven electrode channels.
385 These EEG signals show strong temporal dynamics and cross-channel correlations, making them
386 ideal for evaluating multi-output meta-learning models like NBPs.
387388 To assess NBPs on correlated multi-output prediction and missing data, we randomly mask windows
389 in 3 of 7 channels and predict the missing values. Inputs are the concatenated temporal and channel
390 indices $\mathbf{x}_e = (i_t, i_c)$, and outputs are the voltage measurements \mathbf{y}_e . This evaluation is carried out
391 under three distinct experimental settings:392

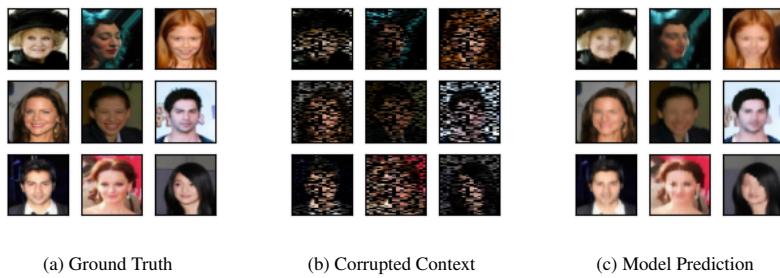
- **Interpolation:** Predicting missing values within the existing temporal span.

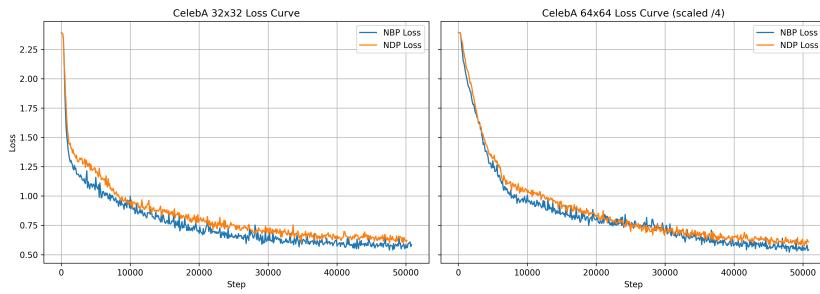
393 - **Reconstruction:** Predicting values from partially obscured temporal segments.

394 - **Forecasting:** Predicting future values beyond the observed temporal data.

395 Performance metrics employed include Mean Squared Error (MSE) and Negative Log-Likelihood
396 (NLL). As demonstrated in Table 1, the NBP consistently surpasses baseline methods across all three
397 scenarios, underscoring NBPs’ proficiency in capturing intricate temporal structures and cross-channel
398 dependencies inherent in EEG data.
399400 Table 1: Predictive NLL (\downarrow) and MSE (\downarrow) on EEG
401

Method	Inter.		Recon.		Forec.	
	NLL	MSE($\times 10^{-2}$)	NLL	MSE($\times 10^{-2}$)	NLL	MSE($\times 10^{-2}$)
NP	1.66	0.52	1.78	0.44	1.61	0.39
ANP	0.47	0.25	0.70	0.48	0.90	0.60
ConvNP	0.44	0.40	-2.43	0.40	-2.34	0.55
NDP	-2.46	0.18	-2.59	0.23	-2.69	0.38
SNP	-3.19	0.16	-3.30	0.18	-3.02	0.31
GEOMNDP	-2.48	0.18	-2.65	0.20	-2.84	0.34
NBP (Ours)	-3.35	0.16	-3.22	0.16	-3.51	0.29

421 Figure 2: Qualitative Results on CelebA 64×64 Image Regression Task: (a) Ground Truth, (b)
422 Corrupted Context, (c) Model Prediction. The task requires inferring the true image content based on
423 randomly corrupted context information and the spatial coordinates of target pixels.
424425 4.3.2 IMAGE REGRESSION TASK
426427 In this experiment, we apply Neural Bridge Processes (NBPs) to the image regression task, where the
428 objective is to predict pixel values based solely on their spatial coordinates normalized within the
429 range $[-2, 2]$. We conduct experiments using the CelebA dataset at resolutions of 32×32 and 64×64 .
430 The experimental setup, including hyperparameters, denoising network architecture, learning rate,
431 random seed, and other baseline configurations, strictly follows the standard configuration used by
432 NBPs for a fair comparison.
433

432
433
434
435
436
437
438
439
440
441442
443
444
445
Figure 3: Comparison of NBP and NDP: NBPs consistently achieve lower loss values across the
majority of training iterations446
447
448
449
450
451
452
453
We evaluate the performance of NBPs under different levels of context sparsity and directly compare
their predictive accuracy with that of NDPs. The Mean Squared Error (MSE) results are summarized
in Figure 5, with detailed numerical values provided in Tables 4 and 5 in the Appendix. As shown
in Figure 5, the proposed NBP (orange) consistently achieves lower MSE across all context ratios
compared to the NDP baseline (blue). Moreover, NBPs exhibit smaller standard deviations, indicating
more stable and reliable predictions. All MSE values are computed by averaging over nine conditional
samples for each input, with pixel values normalized to the range $[0, 1]$. Figure 2 provides an
illustrative depiction of the image regression task setup.454
455
456
457
458
459
460
461
462
Under various observation conditions, NBPs consistently outperform NDPs by a substantial margin.
For example, at a context ratio of 0.02, NBPs achieve an MSE of 0.76 compared to 0.88 by NDPs on
CelebA 32×32 . This demonstrates NBPs’ enhanced capability to capture spatial dependencies and
deliver accurate predictions even from highly sparse context observations. This advantage extends to
higher resolutions: at the same context ratio (0.02) on CelebA 64×64 , NBPs achieve an MSE of 0.80
compared to NDPs’ 1.05, underscoring the scalability and robustness of our method. Furthermore,
Figure 3 visualizes the denoising score matching objective loss during training, illustrating that NBPs
consistently achieve lower loss values across the majority of training iterations. This result supports
the conclusion that the bridge-based training paradigm significantly enhances the effectiveness of
denoising diffusion probabilistic model (DDPM) path supervision.463
464
4.4 COMPUTATIONAL EFFICIENCY465
466
467
468
469
470
471
472
We observe in our experiments that, under consistent training settings—including the denoising
network architecture, learning rate, random seed, and other base hyperparameters—the proposed
NBP model and the baseline NDP consume approximately the same amount of time per epoch and in
total. This indicates that NBP does not introduce additional computational overhead. This efficiency
stems from the fact that NBP does not incorporate any extra architectural complexity. Instead, it
enhances the training signal through a coupling mechanism between the inputs and outputs in the
neural diffusion process (as described in Section 3). This coupling is implemented entirely at the
software level, without increasing the model’s structural depth or parameter count.473
474
5 CONCLUSION475
476
477
478
479
480
481
482
483
484
485
In this work, we introduced Neural Bridge Processes (NBPs), a diffusion-based framework for
stochastic function modeling that explicitly incorporates input supervision throughout the diffusion
trajectory. By reformulating the forward kernel with a principled bridge coefficient, NBPs address
the weak input coupling and endpoint mismatch of traditional Neural Diffusion Processes (NDPs),
ensuring stronger conditional guidance and better theoretical consistency. Unlike computationally
intensive SDE-based bridges, NBPs implement bridge corrections efficiently within the DDPM
framework using SNR- and path-aware modeling. Experiments on synthetic data, real-world EEG
time series, and image regression tasks demonstrate that NBPs significantly enhance predictive
accuracy and uncertainty calibration compared to state-of-the-art NDP baselines. These results
highlight the potential of NBPs for structured generative modeling, paving the way for future
extensions to high-dimensional, multi-modal, and control-oriented applications.

486 REFERENCES
487

488 Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
489 neural network. In *International conference on machine learning*, pp. 1613–1622. PMLR, 2015.

490 Lorenzo Bonito, James Requeima, Aliaksandra Shysheya, and Richard E Turner. Diffusion-
491 augmented neural processes. *arXiv preprint arXiv:2311.09848*, 2023.

492 Wessel P Bruinsma, James Requeima, Andrew YK Foong, Jonathan Gordon, and Richard E Turner.
493 The gaussian neural process. *arXiv preprint arXiv:2101.03606*, 2021.

494 Wessel P Bruinsma, Stratis Markou, James Requeima, Andrew YK Foong, Tom R Andersson, Anna
495 Vaughan, Anthony Buonomo, J Scott Hosking, and Richard E Turner. Autoregressive conditional
496 neural processes. *arXiv preprint arXiv:2303.14468*, 2023.

497 Paul E Chang, Nasrulloh Loka, Daolang Huang, Ulpu Remes, Samuel Kaski, and Luigi Acerbi.
498 Amortized probabilistic conditioning for optimization, simulation and inference. *arXiv preprint
arXiv:2410.15320*, 2024.

499 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
500 differential equations. *Advances in neural information processing systems*, 31, 2018.

501 Jooyoung Choi, Sungwon Kim, Yonghyun Jeong, Youngjune Gwon, and Sungroh Yoon. Ilvr: Condi-
502 tioning method for denoising diffusion probabilistic models. *arXiv preprint arXiv:2108.02938*,
503 2021.

504 Florinel-Alin Croitoru, Vlad Hondu, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models
505 in vision: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(9):
506 10850–10869, 2023.

507 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Advances
508 in neural information processing systems*, 34:8780–8794, 2021.

509 Hongkun Dou, Junzhe Lu, Zeyu Li, Xiaoqing Zhong, Wen Yao, Lijun Yang, and Yue Deng. Score-
510 based neural processes. *IEEE Transactions on Neural Networks and Learning Systems*, 2025.

511 Yann Dubois, Jonathan Gordon, and Andrew YK Foong. Neural process family. <http://yanndubs.github.io/Neural-Process-Family/>, September 2020.

512 Vincent Dutordoir, Alan Saul, Zoubin Ghahramani, and Fergus Simpson. Neural diffusion processes.
513 In *International Conference on Machine Learning*, pp. 8990–9012. PMLR, 2023.

514 Andrew Foong, Wessel Bruinsma, Jonathan Gordon, Yann Dubois, James Requeima, and Richard
515 Turner. Meta-learning stationary stochastic process prediction with convolutional neural processes.
516 *Advances in Neural Information Processing Systems*, 33:8284–8295, 2020.

517 Giulio Franzese, Giulio Corallo, Simone Rossi, Markus Heinonen, Maurizio Filippone, and Pietro
518 Michiardi. Continuous-time functional diffusion processes. *Advances in Neural Information
519 Processing Systems*, 36:37370–37400, 2023.

520 Marta Garnelo, Dan Rosenbaum, Christopher Maddison, Tiago Ramalho, David Saxton, Murray
521 Shanahan, Yee Whye Teh, Danilo Rezende, and SM Ali Eslami. Conditional neural processes. In
522 *International conference on machine learning*, pp. 1704–1713. PMLR, 2018a.

523 Marta Garnelo, Jonathan Schwarz, Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Eslami, and
524 Yee Whye Teh. Neural processes. *arXiv preprint arXiv:1807.01622*, 2018b.

525 Jakob Gawlikowski, Cedrique Rovile Njieutcheu Tassi, Mohsin Ali, Jongseok Lee, Matthias Humt,
526 Jianxiang Feng, Anna Kruspe, Rudolph Triebel, Peter Jung, Ribana Roscher, et al. A survey of
527 uncertainty in deep neural networks. *Artificial Intelligence Review*, 56(Suppl 1):1513–1589, 2023.

528 Jonathan Gordon, Wessel P Bruinsma, Andrew YK Foong, James Requeima, Yann Dubois, and
529 Richard E Turner. Convolutional conditional neural processes. *arXiv preprint arXiv:1910.13556*,
530 2019.

540 Hussen Abu Hamad and Dan Rosenbaum. Flow matching neural processes. In *ICLR 2025 Workshop*
 541 *on Deep Generative Model in Machine Learning: Theory, Principle and Efficacy*.
 542

543 Guande He, Kaiwen Zheng, Jianfei Chen, Fan Bao, and Jun Zhu. Consistency diffusion bridge
 544 models. *arXiv preprint arXiv:2410.22637*, 2024.

545 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in*
 546 *neural information processing systems*, 33:6840–6851, 2020.

547

548 Junfeng Hu, Yuxuan Liang, Zhencheng Fan, Hongyang Chen, Yu Zheng, and Roger Zimmermann.
 549 Graph neural processes for spatio-temporal extrapolation. In *Proceedings of the 29th ACM SIGKDD*
 550 *Conference on Knowledge Discovery and Data Mining*, pp. 752–763, 2023.

551 Chin-Wei Huang, Jae Hyun Lim, and Aaron C Courville. A variational perspective on diffusion-based
 552 generative models and score matching. *Advances in Neural Information Processing Systems*, 34:
 553 22863–22876, 2021.

554

555 Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
 556 *Journal of Machine Learning Research*, 6(4), 2005.

557 Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol
 558 Vinyals, and Yee Whye Teh. Attentive neural processes. *arXiv preprint arXiv:1901.05761*, 2019.

559

560 Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-
 561 box optimization. In *International Conference on Machine Learning*, pp. 17842–17857. PMLR,
 562 2023.

563 Bo Li, Kaitao Xue, Bin Liu, and Yu-Kun Lai. Bbdm: Image-to-image translation with brownian
 564 bridge diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and*
 565 *pattern Recognition*, pp. 1952–1961, 2023.

566

567 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 568 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

569

570 Haitao Liu, Yew-Soon Ong, Xiaomo Jiang, and Xiaofang Wang. Deep latent-variable kernel learning.
 571 *IEEE Transactions on Cybernetics*, 52(10):10276–10289, 2021.

572

573 Christos Louizos, Xiahao Shi, Klamer Schutte, and Max Welling. The functional neural process.
 574 *Advances in Neural Information Processing Systems*, 32, 2019.

575

576 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool.
 577 Repaint: Inpainting using denoising diffusion probabilistic models. In *Proceedings of the*
 578 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 11461–11471, 2022.

579

580 Emile Mathieu, Vincent Dutordoir, Michael Hutchinson, Valentin De Bortoli, Yee Whye Teh, and
 581 Richard Turner. Geometric neural diffusion processes. *Advances in Neural Information Processing*
 582 *Systems*, 36:53475–53507, 2023.

583

584 Saeid Naderiparizi, Xiaoxuan Liang, Berend Zwartenberg, and Frank Wood. Constrained generative
 585 modeling with manually bridged diffusion models. In *Proceedings of the AAAI Conference on*
 586 *Artificial Intelligence*, volume 39, pp. 19607–19615, 2025.

587

588 Tung Nguyen and Aditya Grover. Transformer neural processes: Uncertainty-aware meta learning
 589 via sequence modeling. *arXiv preprint arXiv:2207.04179*, 2022.

590

591 Michael A Nielsen. *Neural networks and deep learning*, volume 25. Determination press San
 592 Francisco, CA, USA, 2015.

593

594 Alexander Norcliffe, Cristian Bodnar, Ben Day, Jacob Moss, and Pietro Liò. Neural ode processes.
 595 *arXiv preprint arXiv:2103.12413*, 2021.

596

597 Tim Pearce, Felix Leibfried, and Alexandra Brintrup. Uncertainty in neural networks: Approximately
 598 bayesian ensembling. In *International conference on artificial intelligence and statistics*, pp.
 599 234–244. PMLR, 2020.

594 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 595 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.
 596

597 Stefano Peluchetti. Diffusion bridge mixture transports, schrödinger bridge problems and generative
 598 modeling. *Journal of Machine Learning Research*, 24(374):1–51, 2023.

599 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 600 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 601 synthesis. *arXiv preprint arXiv:2307.01952*, 2023.

602

603 Carl Edward Rasmussen. Gaussian processes in machine learning. In *Summer school on machine*
 604 *learning*, pp. 63–71. Springer, 2003.

605 James Requeima, John Bronskill, Dami Choi, Richard Turner, and David K Duvenaud. Llm
 606 processes: Numerical predictive distributions conditioned on natural language. *Advances in*
 607 *Neural Information Processing Systems*, 37:109609–109671, 2024.

608

609 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 610 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-*
 611 *ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

612 Jürgen Schmidhuber. Deep learning in neural networks: An overview. *Neural networks*, 61:85–117,
 613 2015.

614

615 Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
 616 bridge matching. *Advances in Neural Information Processing Systems*, 36:62183–62223, 2023.

617

618 Gautam Singh, Jaesik Yoon, Youngsung Son, and Sungjin Ahn. Sequential neural processes. *Advances*
 619 *in Neural Information Processing Systems*, 32, 2019.

620

621 Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. *Advances*
 622 *in neural information processing systems*, 18, 2005.

623

624 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 625 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 626 *arXiv:2011.13456*, 2020.

627

628 Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of
 629 score-based diffusion models. *Advances in neural information processing systems*, 34:1415–1428,
 630 2021.

631

632 Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In *Artificial*
 633 *intelligence and statistics*, pp. 567–574. PMLR, 2009.

634

635 Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel learning.
 636 In *Artificial intelligence and statistics*, pp. 370–378. PMLR, 2016.

637

638 Jian Xu and Delu Zeng. Sparse variational student-t processes. In *Proceedings of the AAAI Conference*
 639 *on Artificial Intelligence*, volume 38, pp. 16156–16163, 2024.

640

641 Jian Xu, Delu Zeng, and John Paisley. Sparse inducing points in deep gaussian processes: Enhancing
 642 modeling with denoising diffusion variational inference. In *International Conference on Machine*
 643 *Learning*, pp. 55490–55500. PMLR, 2024.

644

645 Conghan Yue, Zhengwei Peng, Junlong Ma, Shiyan Du, Pengxu Wei, and Dongyu Zhang. Image
 646 restoration through generalized ornstein-uhlenbeck bridge. *arXiv preprint arXiv:2312.10299*,
 647 2023.

648

649 Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
 650 diffusion models. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 651 pp. 3836–3847, 2023.

652

653 Xiao Lei Zhang, Henri Begleiter, Bernice Porjesz, Wenyu Wang, and Ann Litke. Event related
 654 potentials during object recognition tasks. *Brain research bulletin*, 38(6):531–538, 1995.

648 Kaiwen Zheng, Guande He, Jianfei Chen, Fan Bao, and Jun Zhu. Diffusion bridge implicit models.
649 *arXiv preprint arXiv:2405.15885*, 2024.
650
651 Linqi Zhou, Aaron Lou, Samar Khanna, and Stefano Ermon. Denoising diffusion bridge models.
652 *arXiv preprint arXiv:2309.16948*, 2023.
653
654 Yuanzhi Zhu, Zhaohai Li, Tianwei Wang, Mengchao He, and Cong Yao. Conditional text image
655 generation with diffusion models. In *Proceedings of the IEEE/CVF Conference on Computer*
656 *Vision and Pattern Recognition*, pp. 14235–14245, 2023.
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A TABLES AND FIGURES IN THE MAIN TEXT

Table 2: Mean test log-likelihood (\uparrow) \pm 1 standard error estimated over 128 test samples.

Model	Squared Exponential			Matérn- $\frac{5}{2}$		
	D = 1	D = 2	D = 3	D = 1	D = 2	D = 3
ANP	-4.79 \pm 0.05	-23.80 \pm 0.05	-23.80 \pm 0.04	-0.70 \pm 0.04	-17.22 \pm 0.02	-21.24 \pm 0.02
ConvCNP	-6.40 \pm 0.07	-24.00 \pm 0.03	-23.80 \pm 0.02	-0.87 \pm 0.06	-17.50 \pm 0.03	-21.24 \pm 0.02
GNP	4.00 \pm 0.02	-19.60 \pm 0.02	-23.80 \pm 0.02	0.14 \pm 0.02	-15.70 \pm 0.02	-21.20 \pm 0.02
NDP	4.21 \pm 0.04	-13.39 \pm 0.05	-20.48 \pm 0.05	-0.13 \pm 0.02	-14.74 \pm 0.03	-20.66 \pm 0.05
SNP	4.27 \pm 0.02	-13.19 \pm 0.03	-20.24 \pm 0.04	0.01 \pm 0.02	-14.67 \pm 0.03	-20.59 \pm 0.05
GEOMNDP	4.22 \pm 0.05	-13.36 \pm 0.05	-20.45 \pm 0.05	-0.13 \pm 0.03	-14.73 \pm 0.03	-20.63 \pm 0.06
NBP (ours)	4.33 \pm 0.03	-13.15 \pm 0.05	-20.11 \pm 0.04	-0.05 \pm 0.02	-14.62 \pm 0.03	-20.51 \pm 0.03

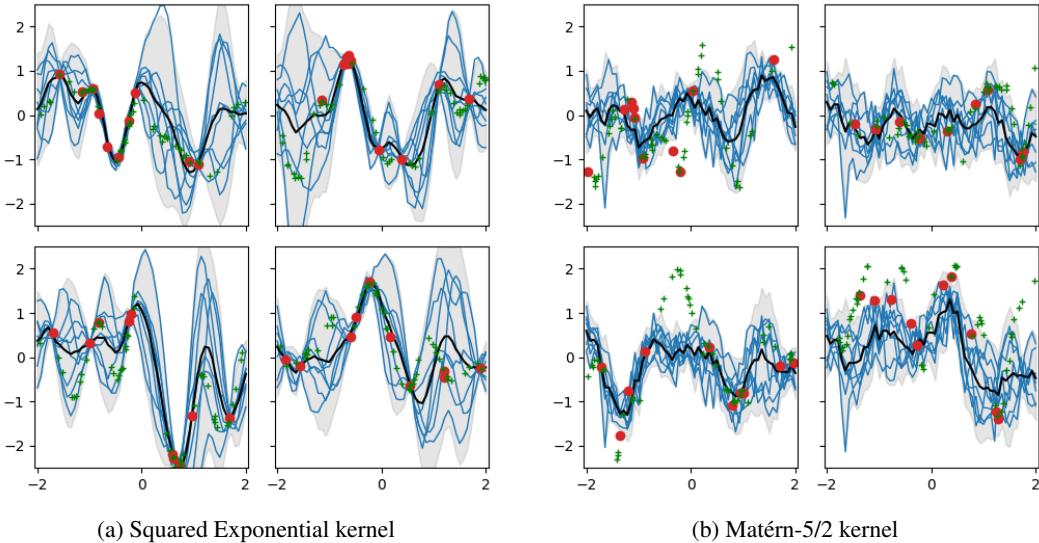
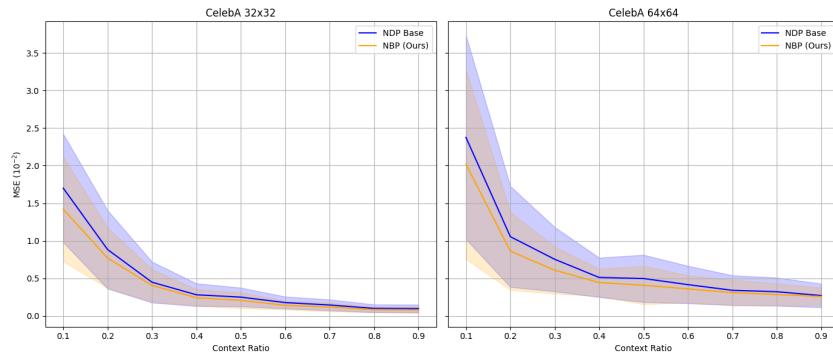


Figure 4: Function samples generated by NBP under two different GP kernels. In each plot, the black solid line indicates the sample mean, blue lines are function samples, red circles represent the context points, and green crosses denote the target points.

Figure 5: Comparison of reconstruction errors (MSE) between the NDP Base and our proposed NBP on the CelebA dataset at resolutions of 32x32 and 64x64. The horizontal axis represents the context ratio (i.e., the proportion of retained pixels), while the vertical axis shows the reconstruction error in units of 10^{-2} . Solid lines indicate the mean MSE across test samples, and the shaded regions represent the standard deviation (Std), reflecting model uncertainty.

756 **B RELATED WORKS**
757758 **B.1 NEURAL PROCESSES AND THEIR EXTENSIONS**
759

760 Neural Processes (NPs) Garnelo et al. (2018b) combine the flexibility of neural networks with the
761 uncertainty modeling capabilities of stochastic processes, aiming to learn distributions over functions.
762 Conditional Neural Processes (CNPs) Garnelo et al. (2018a) extend this framework by conditioning
763 on observed context points to predict target outputs. Attentive Neural Processes (ANPs) Kim et al.
764 (2019) further enhance NPs by incorporating attention mechanisms, enabling the model to focus on
765 relevant context points for each target prediction. Despite these advancements, challenges remain in
766 capturing complex, multimodal distributions and ensuring consistency in posterior predictions. These
767 approaches have been successfully extended to various domains, including sequential modeling Singh
768 et al. (2019); Nguyen & Grover (2022); Bruinsma et al. (2023), convolutional architectures Gordon
769 et al. (2019); Foong et al. (2020), graph-based models Hu et al. (2023), and probabilistic predictive
770 models for large language models (LLMs) Requeima et al. (2024).

771 **B.2 DIFFUSION AND BRIDGE MODELS IN GENERATIVE MODELING**
772

773 Denoising Diffusion Probabilistic Models (DDPMs) Ho et al. (2020) are powerful generative models
774 that approximate complex data distributions by reversing a progressive noising process. Conditional
775 Diffusion Models (CDMs) Choi et al. (2021); Zhang et al. (2023); Zhu et al. (2023) extend this
776 framework by incorporating auxiliary information, enabling conditional generation. More recently,
777 Denoising Diffusion Bridge Models (DDBMs) Zhou et al. (2023); Yue et al. (2023); Zheng et al.
778 (2024); Li et al. (2023); Peluchetti (2023); He et al. (2024); Shi et al. (2023); Naderiparizi et al.
779 (2025) have been proposed as a natural alternative. DDBMs introduce diffusion bridges—stochastic
780 processes that interpolate between two paired distributions given as endpoints—making them well-
781 suited for tasks such as image-to-image translation. However, existing DDBMs are primarily designed
782 to model transformations in data space and may fall short in fully capturing the stochastic nature of
783 functional mappings.

784 In this work, we avoid the complexity and computational overhead of SDE-based diffusion bridges.
785 Instead, we extend the bridge concept within the DDPM framework Ho et al. (2020) through SNR-
786 aware functional modeling. Since DDBMs address a different problem—focusing on generative
787 modeling—while our work centers on functional learning, a direct experimental comparison with the
788 original DDBM is not feasible.

789 **B.3 GENERATIVE MODELS FOR FUNCTION MODELING**
790

791 Recent work has explored the use of diffusion models for function modeling. Neural Diffusion
792 Processes (NDPs) Dutordoir et al. (2023) model distributions over functions by applying diffusion
793 processes in latent space, allowing the representation of complex, non-Gaussian function distribu-
794 tions. Geometric Neural Diffusion Processes Mathieu et al. (2023) further extend this approach by
795 incorporating geometric priors for infinite-dimensional modeling in non-Euclidean spaces. In parallel,
796 other generative modeling techniques such as Neural ODEs Chen et al. (2018); Norcliffe et al. (2021),
797 flow matching Lipman et al. (2022); Hamad & Rosenbaum, and score-based SDE methods Song
798 et al. (2020); Dou et al. (2025) are also being integrated into the Neural Processes (NP) framework
799 to enhance function modeling capabilities. In our experiments, we compared against open-source
800 methods, including score-based neural processes (SNP) Dou et al. (2025) and Geometric Neural
801 Diffusion Processes Mathieu et al. (2023), both of which demonstrated the empirical advantages of
802 our approach.

803 **C FORMULATION OF THE DBP FRAMEWORK**
804805 **C.1 DERIVATION OF EQUATION (10) IN THE MAIN TEXT**
806

807 In our setting, the forward process also depends on x . Assume that y_0 is the initial state, which may
808 correspond to y_0 or another variable. For clarity, we assume y_0 is the initial state and x is the target.
809

From y_{t-1} to y_t :

810
811
812

$$y_t = \sqrt{1 - \beta_t} y_{t-1} + \gamma_t x + \sqrt{\beta_t} \epsilon_t \quad (23)$$

813 By recursively expanding:

814
815
816
817
818

$$\begin{aligned} y_t &= \sqrt{1 - \beta_t} \left(\sqrt{1 - \beta_{t-1}} y_{t-2} + \gamma_{t-1} x + \sqrt{\beta_{t-1}} \epsilon_{t-1} \right) + \gamma_t x + \sqrt{\beta_t} \epsilon_t \\ &= \sqrt{(1 - \beta_t)(1 - \beta_{t-1})} y_{t-2} + \left(\sqrt{1 - \beta_t} \gamma_{t-1} + \gamma_t \right) x + \text{noise terms} \end{aligned} \quad (24)$$

819 Continuing this expansion, we obtain:

820
821
822
823
824

$$y_t = \left(\prod_{s=1}^t \sqrt{1 - \beta_s} \right) y_0 + \left(\sum_{s=1}^t \gamma_s \prod_{k=s+1}^t \sqrt{1 - \beta_k} \right) x + \text{noise terms} \quad (25)$$

825 Define $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$, then,826
827
828
829

$$y_t = \sqrt{\bar{\alpha}_t} y_0 + \left(\sum_{s=1}^t \gamma_s \sqrt{\frac{\bar{\alpha}_t}{\bar{\alpha}_s}} \right) x + \text{noise terms} \quad (26)$$

830 We define the cumulative bridge coefficient $\bar{\gamma}_t$ as831
832
833
834

$$\bar{\gamma}_t = \sum_{s=1}^t \gamma_s \sqrt{\frac{\bar{\alpha}_t}{\bar{\alpha}_s}}. \quad (27)$$

835 The noise terms arise from the $\sqrt{\beta_s} \epsilon_s$ contributions at each step836
837
838
839

$$\begin{aligned} \text{noise terms} &= \sqrt{\beta_t} \epsilon_t + \sqrt{1 - \beta_t} \sqrt{\beta_{t-1}} \epsilon_{t-1} + \sqrt{(1 - \beta_t)(1 - \beta_{t-1})} \sqrt{\beta_{t-2}} \epsilon_{t-2} \\ &\quad + \cdots + \sqrt{\bar{\alpha}_t / \bar{\alpha}_1} \sqrt{\beta_1} \epsilon_1. \end{aligned} \quad (28)$$

840 This can be written compactly as:

841
842
843

$$\text{noise terms} = \sum_{s=1}^t \left(\sqrt{\beta_s} \prod_{k=s+1}^t \sqrt{1 - \beta_k} \right) \epsilon_s.$$

844 Since the ϵ_s are independent, the total variance is the sum of the variances of each term:845
846
847
848

$$\text{Var}(\text{noise terms}) = \sum_{s=1}^t \beta_s \prod_{k=s+1}^t (1 - \beta_k).$$

849 we rewrite the variance:

850
851
852

$$\text{Var}(\text{noise terms}) = \sum_{s=1}^t \beta_s \frac{\bar{\alpha}_t}{\bar{\alpha}_s}.$$

853 Using $\bar{\alpha}_s = \prod_{k=1}^s (1 - \beta_k)$, we can express β_s as $\beta_s = 1 - (1 - \beta_s) = 1 - \frac{\bar{\alpha}_s}{\bar{\alpha}_{s-1}}$. Substituting this in:854
855
856
857

$$\text{Var}(\text{noise terms}) = \sum_{s=1}^t \left(1 - \frac{\bar{\alpha}_s}{\bar{\alpha}_{s-1}} \right) \frac{\bar{\alpha}_t}{\bar{\alpha}_s}.$$

858 This simplifies to:

859
860
861

$$\text{Var}(\text{noise terms}) = \sum_{s=1}^t \left(\frac{\bar{\alpha}_t}{\bar{\alpha}_s} - \frac{\bar{\alpha}_t}{\bar{\alpha}_{s-1}} \right).$$

862 This is a telescoping series:

863

$$\text{Var}(\text{noise terms}) = \left(\frac{\bar{\alpha}_t}{\bar{\alpha}_1} - \frac{\bar{\alpha}_t}{\bar{\alpha}_0} \right) + \left(\frac{\bar{\alpha}_t}{\bar{\alpha}_2} - \frac{\bar{\alpha}_t}{\bar{\alpha}_1} \right) + \cdots + \left(\frac{\bar{\alpha}_t}{\bar{\alpha}_t} - \frac{\bar{\alpha}_t}{\bar{\alpha}_{t-1}} \right).$$

864 Most terms cancel out, leaving:

866 $\text{Var}(\text{noise terms}) = \bar{\alpha}_t \left(\frac{1}{\bar{\alpha}_t} - \frac{1}{\bar{\alpha}_0} \right).$

868 Assuming $\bar{\alpha}_0 = 1$ (since no steps have been applied at $t = 0$):

870 $\text{Var}(\text{noise terms}) = 1 - \bar{\alpha}_t.$

872 The variance of the accumulated noise can be computed similarly to the DDPM framework and is
873 assumed to be: $(1 - \bar{\alpha}_t)I$. Thus, Equation (10) in the main text has been proven.

874 **C.2 DERIVATION OF EQUATION (16) AND (17) IN THE MAIN TEXT**

876 **C.2.1 THE REVERSE PROCESS POSTERIOR**

878 The marginal distribution $q(y_{t-1}|y_0, x)$ is:

880 $q(y_{t-1}|y_0, x) = \mathcal{N}(\sqrt{\bar{\alpha}_{t-1}}y_0 + \bar{\gamma}_{t-1}x, (1 - \bar{\alpha}_{t-1})I), \quad (29)$

881 where $\bar{\alpha}_t = \prod_{s=1}^t (1 - \beta_s)$ and $\bar{\gamma}_t = \sum_{s=1}^t \gamma_s \sqrt{\frac{\bar{\alpha}_t}{\bar{\alpha}_s}}$.

883 The reverse process posterior is:

885 $q(y_{t-1}|y_t, y_0, x) \propto q(y_t|y_{t-1}, x)q(y_{t-1}|y_0, x). \quad (30)$

886 This is a product of two Gaussians:

888 $\mathcal{N}(y_t; Ay_{t-1} + b, \sigma_1^2 I) \times \mathcal{N}(y_{t-1}; \mu, \sigma_2^2 I), \quad (31)$

890 where:

- 891 • $A = \sqrt{1 - \beta_t}$,
- 892 • $b = \gamma_t x$,
- 893 • $\sigma_1^2 = \beta_t$,
- 894 • $\mu = \sqrt{\bar{\alpha}_{t-1}}y_0 + \bar{\gamma}_{t-1}x$,
- 895 • $\sigma_2^2 = 1 - \bar{\alpha}_{t-1}$.

896 Assume

897 $q(y_{t-1}|y_t, y_0, x) = \mathcal{N}(\tilde{\mu}, \tilde{\beta}_t I)$

901 The mean of the product is:

902 $\tilde{\mu} = \left(\frac{A^T(y_t - b)}{\sigma_1^2} + \frac{\mu}{\sigma_2^2} \right) \left(\frac{A^T A}{\sigma_1^2} + \frac{1}{\sigma_2^2} \right)^{-1}. \quad (32)$

906 Substituting the values:

907 $\tilde{\mu} = \left(\frac{\sqrt{1 - \beta_t}(y_t - \gamma_t x)}{\beta_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}y_0 + \bar{\gamma}_{t-1}x}{1 - \bar{\alpha}_{t-1}} \right) \left(\frac{1 - \beta_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}} \right)^{-1}. \quad (33)$

910 Simplify the denominator:

912 $\frac{1 - \beta_t}{\beta_t} + \frac{1}{1 - \bar{\alpha}_{t-1}} = \frac{(1 - \beta_t)(1 - \bar{\alpha}_{t-1}) + \beta_t}{\beta_t(1 - \bar{\alpha}_{t-1})} = \frac{1 - \bar{\alpha}_t}{\beta_t(1 - \bar{\alpha}_{t-1})}, \quad (34)$

914 since $\bar{\alpha}_t = (1 - \beta_t)\bar{\alpha}_{t-1}$.

916 Thus:

917 $\tilde{\mu} = \left(\frac{\sqrt{1 - \beta_t}(y_t - \gamma_t x)}{\beta_t} + \frac{\sqrt{\bar{\alpha}_{t-1}}y_0 + \bar{\gamma}_{t-1}x}{1 - \bar{\alpha}_{t-1}} \right) \frac{\beta_t(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_t}. \quad (35)$

918 Now, expand the numerator:
 919

$$\tilde{\mu} = \frac{\sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}(y_t - \gamma_t x) + \frac{\beta_t(\sqrt{\bar{\alpha}_{t-1}}y_0 + \bar{\gamma}_{t-1}x)}{1-\bar{\alpha}_t}. \quad (36)$$

922 This can be rewritten as:
 923

$$\tilde{\mu} = \frac{\sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}y_t + \frac{\beta_t\sqrt{\bar{\alpha}_{t-1}}}{1-\bar{\alpha}_t}y_0 + \left(\frac{\beta_t\bar{\gamma}_{t-1}}{1-\bar{\alpha}_t} - \frac{\sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})\gamma_t}{1-\bar{\alpha}_t} \right)x. \quad (37)$$

926 The variance $\tilde{\beta}_t$ is derived as:
 927

$$\tilde{\beta}_t = \left(\frac{1-\beta_t}{\beta_t} + \frac{1}{1-\bar{\alpha}_{t-1}} \right)^{-1} = \frac{\beta_t(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}. \quad (38)$$

931 C.2.2 REPARAMETERIZATION OF y_0 (SIMILAR TO DDPM)

932 From the forward process, we can express y_t as:
 933

$$y_t = \sqrt{\bar{\alpha}_t}y_0 + \bar{\gamma}_t x + \sqrt{1-\bar{\alpha}_t}\epsilon, \quad (39)$$

935 where $\epsilon \sim \mathcal{N}(0, I)$. Solving for y_0 :
 936

$$y_0 = \frac{y_t - \bar{\gamma}_t x - \sqrt{1-\bar{\alpha}_t}\epsilon}{\sqrt{\bar{\alpha}_t}}. \quad (40)$$

939 Substitute y_0 into the Reverse Process Mean $\tilde{\mu}$
 940

941 The derived mean $\tilde{\mu}$ is:
 942

$$\tilde{\mu} = \frac{\sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})y_t + \beta_t\sqrt{\bar{\alpha}_{t-1}}y_0 + (\beta_t\bar{\gamma}_{t-1} - \sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})\gamma_t)x}{1-\bar{\alpha}_t}. \quad (41)$$

945 Substitute y_0 :
 946

$$\tilde{\mu} = \frac{\sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})y_t + \beta_t\sqrt{\bar{\alpha}_{t-1}}\left(\frac{y_t - \bar{\gamma}_t x - \sqrt{1-\bar{\alpha}_t}\epsilon}{\sqrt{\bar{\alpha}_t}}\right) + (\beta_t\bar{\gamma}_{t-1} - \sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})\gamma_t)x}{1-\bar{\alpha}_t}. \quad (42)$$

950 Simplify the Expression:
 951

952 1. Combine y_t Terms:
 953

$$\begin{aligned} \frac{\sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})y_t + \frac{\beta_t\sqrt{\bar{\alpha}_{t-1}}y_t}{\sqrt{\bar{\alpha}_t}}}{1-\bar{\alpha}_t} &= \frac{\left(\sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1}) + \frac{\beta_t}{\sqrt{1-\beta_t}}\right)y_t}{1-\bar{\alpha}_t}, \\ &= \frac{y_t}{\sqrt{1-\beta_t}} \end{aligned} \quad (43)$$

958 where we used $\bar{\alpha}_t = \bar{\alpha}_{t-1}(1-\beta_t)$, so $\sqrt{\bar{\alpha}_{t-1}}/\sqrt{\bar{\alpha}_t} = 1/\sqrt{1-\beta_t}$.
 959

960 2. Combine x Terms:
 961

$$\frac{-\frac{\beta_t\sqrt{\bar{\alpha}_{t-1}}\bar{\gamma}_t}{\sqrt{\bar{\alpha}_t}} + \beta_t\bar{\gamma}_{t-1} - \sqrt{1-\beta_t}(1-\bar{\alpha}_{t-1})\gamma_t}{1-\bar{\alpha}_t}x \triangleq C(t)x \quad (44)$$

964 3. Noise (ϵ) Term:
 965

$$-\frac{\beta_t\sqrt{\bar{\alpha}_{t-1}}\sqrt{1-\bar{\alpha}_t}\epsilon}{\sqrt{\bar{\alpha}_t}(1-\bar{\alpha}_t)} = -\frac{\beta_t}{\sqrt{1-\beta_t}\sqrt{1-\bar{\alpha}_t}}\epsilon. \quad (45)$$

967 Then, the mean can be written as:
 968

$$\tilde{\mu} = \frac{1}{\sqrt{1-\beta_t}} \left(y_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}}\epsilon \right) + C(t)x. \quad (46)$$

971 which proves the Equation (16) in the main text.

972 C.2.3 CALCULATION OF $C(t)$
973974 From Equation (44),
975

976
$$977 C(t) = \frac{-\frac{\beta_t \sqrt{\bar{\alpha}_{t-1}} \bar{\gamma}_t}{\sqrt{\bar{\alpha}_t}} + \beta_t \bar{\gamma}_{t-1} - \sqrt{1 - \beta_t} (1 - \bar{\alpha}_{t-1}) \gamma_t}{1 - \bar{\alpha}_t}. \quad (47)$$

978

979 Using $\sqrt{\bar{\alpha}_t} = \sqrt{\bar{\alpha}_{t-1}} \sqrt{1 - \beta_t}$, we first compute:
980

981
$$982 -\frac{\beta_t \sqrt{\bar{\alpha}_{t-1}} \bar{\gamma}_t}{\sqrt{\bar{\alpha}_{t-1}} \sqrt{1 - \beta_t}} + \beta_t \bar{\gamma}_{t-1} = -\frac{\beta_t \bar{\gamma}_t}{\sqrt{1 - \beta_t}} + \beta_t \bar{\gamma}_{t-1}. \quad (48)$$

983

984 Next, using the relation $\bar{\gamma}_t = \gamma_t + \sqrt{1 - \beta_t} \bar{\gamma}_{t-1}$ (since $\bar{\gamma}_t = \sum_{s=1}^t \gamma_s \sqrt{\frac{\bar{\alpha}_t}{\bar{\alpha}_s}} = \gamma_t + \sqrt{\frac{\bar{\alpha}_t}{\bar{\alpha}_{t-1}}} \bar{\gamma}_{t-1} = \gamma_t + \sqrt{1 - \beta_t} \bar{\gamma}_{t-1}$), we simplify:
985

986
$$987 -\frac{\beta_t \bar{\gamma}_t}{\sqrt{1 - \beta_t}} + \beta_t \bar{\gamma}_{t-1} = -\frac{\beta_t (\gamma_t + \sqrt{1 - \beta_t} \bar{\gamma}_{t-1})}{\sqrt{1 - \beta_t}} + \beta_t \bar{\gamma}_{t-1} = -\frac{\beta_t \gamma_t}{\sqrt{1 - \beta_t}} - \beta_t \bar{\gamma}_{t-1} + \beta_t \bar{\gamma}_{t-1}$$

988
$$989 = -\frac{\beta_t \gamma_t}{\sqrt{1 - \beta_t}}. \quad (49)$$

990

991 Thus, the final bridge correction term is:
992

993
$$994 C_t(x) = \frac{-\frac{\beta_t \gamma_t}{\sqrt{1 - \beta_t}} - \sqrt{1 - \beta_t} (1 - \bar{\alpha}_{t-1}) \gamma_t}{1 - \bar{\alpha}_t} x = -\frac{\beta_t + (1 - \beta_t) (1 - \bar{\alpha}_{t-1})}{\sqrt{1 - \beta_t} (1 - \bar{\alpha}_t)} \gamma_t x. \quad (50)$$

995

996 Using $\sqrt{\bar{\alpha}_t} = \sqrt{\bar{\alpha}_{t-1}} \sqrt{1 - \beta_t}$, we obtain the simplified form:
997

1000
$$1001 C(t)x = -\frac{\gamma_t}{\sqrt{1 - \beta_t}} x. \quad (51)$$

1002

1003 Substitute $\gamma_t = \frac{\text{SNR}_T}{\text{SNR}_t} = \frac{\bar{\alpha}_T (1 - \bar{\alpha}_t)}{\bar{\alpha}_t (1 - \bar{\alpha}_T)}$:

1004
$$1005 C(t) = -\frac{1}{\sqrt{1 - \beta_t}} \cdot \frac{\bar{\alpha}_T (1 - \bar{\alpha}_t)}{\bar{\alpha}_t (1 - \bar{\alpha}_T)}. \quad (52)$$

1006

1007 In essence, the role of $C(t)$ is to correct the contribution of x during the reverse process, ensuring
1008 that the generative procedure properly incorporates the bridging information.
10091010 C.3 DERIVATION OF EQUATION (18) IN THE MAIN TEXT
10111012 We derive the NBP loss $\mathcal{L}_\theta = \mathbb{E}_{t, y_0, x, \epsilon} [\|\epsilon_\theta(y_t, x, t) - \epsilon\|_2^2]$ in Equation (18) in the main text directly
1013 from the Evidence Lower Bound (ELBO).
10141015 The log-likelihood of the data y_0 is lower-bounded by:
1016

1017
$$1018 \log p_\theta(y_0|x) \geq \mathbb{E}_{q(y_{1:T}|y_0, x)} \left[\log \frac{p_\theta(y_{0:T}|x)}{q(y_{1:T}|y_0, x)} \right] = \text{ELBO}, \quad (53)$$

1019

1020 where:
10211022

- 1023 • $p_\theta(y_{0:T}|x)$ is the reverse (generative) process.
1024 • $q(y_{1:T}|y_0, x)$ is the forward (noising) process.
1025

1026 1. The ELBO decomposes into:
 1027

$$\begin{aligned} \text{ELBO} &= \mathbb{E}_{q(y_{1:T}|y_0, x)} \left[\log p(y_T|x) + \sum_{t=2}^T \log \frac{p_\theta(y_{t-1}|y_t, x)}{q(y_t|y_{t-1}, x)} + \log \frac{p_\theta(y_0|y_1, x)}{q(y_1|y_0, x)} \right] \\ &= \mathbb{E}_{q(y_{1:T}|y_0, x)} \left[\log \frac{p(y_T|x)}{q(y_T|y_0, x)} + \sum_{t=2}^T \log \frac{p_\theta(y_{t-1}|y_t, x)}{q(y_{t-1}|y_t, y_0, x)} + \log p_\theta(y_0|y_1, x) \right] \end{aligned} \quad (54)$$

1034 The key term is the sum of KL divergences between $p_\theta(y_{t-1}|y_t, x)$ and $q(y_{t-1}|y_t, y_0, x)$:

$$\mathbb{E}_{q(y_{1:T}|y_0, x)} \left[\sum_{t=2}^T D_{\text{KL}}(q(y_{t-1}|y_t, y_0, x) \| p_\theta(y_{t-1}|y_t, x)) \right] \quad (55)$$

1039 The KL divergence term between $q(y_{t-1}|y_t, y_0, x)$ and $p_\theta(y_{t-1}|y_t, x)$ is:

$$D_{\text{KL}}(q \| p_\theta) \propto \|\mu_\theta(y_t, t, x) - \tilde{\mu}(y_t, y_0, x)\|^2. \quad (56)$$

1042 where $\mu_\theta(y_t, t, x) - \tilde{\mu}(y_t, y_0, x)$ are the means of $q(y_{t-1}|y_t, y_0, x)$ and $p_\theta(y_{t-1}|y_t, x)$, respectively.

1043 2. Sample from $q(y_t|y_0, x)$: Using the forward process properties by Equation (10) in the main text,
 1044 we can write:

$$y_t = \sqrt{\bar{\alpha}_t} y_0 + \bar{\gamma}_t x + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}) \quad (57)$$

1046 This allows sampling y_t directly from y_0, x and ϵ .

1048 3. Rewrite $q(y_{t-1}|y_t, y_0, x)$ by Equation (46):

$$\tilde{\mu}_t(y_t, y_0, x) = \frac{1}{\sqrt{1 - \beta_t}} \left(y_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon \right) + C(t)x. \quad (58)$$

1053 4. Reparameterize $\mu_\theta(y_t, t, x)$: Assume $p_\theta(y_{t-1}|y_t, x)$ predicts $\tilde{\mu}_t$:

$$\mu_\theta(y_t, t, x) = \frac{1}{\sqrt{1 - \beta_t}} \left(y_t - \frac{\beta_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_\theta(y_t, t, x) \right) + C(t)x \quad (59)$$

1057 Here, $\epsilon_\theta(y_t, t, x)$ is a neural network predicting the noise ϵ .

1058 5. Final Noise-Prediction Loss: The KL terms simplify to a weighted L_2 loss on the noise:

$$\mathbb{E}_{t, \epsilon} \left[\frac{\beta_t^2}{2\sigma_t^2 \alpha_t (1 - \bar{\alpha}_t)} \|\epsilon - \epsilon_\theta(y_t, t, x)\|^2 \right] \quad (60)$$

1062 Dropping the weighting (as in DDPM) gives the simplified loss:

$$\mathcal{L} = \mathbb{E}_{t, y_0, x, \epsilon} [\|\epsilon - \epsilon_\theta(y_t, t, x)\|^2], \quad (61)$$

1065 where:

- $t \sim \text{Uniform}(1, T)$,
- $y_t = \sqrt{\bar{\alpha}_t} y_0 + \bar{\gamma}_t x + \sqrt{1 - \bar{\alpha}_t} \epsilon$.

1070 This proves Equation (18) in the main text, and the denoising network $\epsilon_\theta(y_t, t, x)$ is self-consistent
 1071 with respect to the condition on x .

1073 D BACKGROUND: NEURAL PROCESSES

1075 Neural Processes (NPs) Garnelo et al. (2018b;a); Kim et al. (2019); Louizos et al. (2019) com-
 1076 bine the expressiveness of neural networks with the probabilistic reasoning of Gaussian Processes
 1077 (GPs) Rasmussen (2003). While GPs offer principled uncertainty quantification, they suffer from poor
 1078 scalability Snelson & Ghahramani (2005); Titsias (2009) and limited kernel flexibility Wilson et al.
 1079 (2016); Liu et al. (2021). In contrast, Neural Networks (NNs) Schmidhuber (2015); Nielsen (2015)
 are highly flexible and scalable but lack inherent mechanisms for uncertainty modeling Blundell et al.

(2015); Pearce et al. (2020); Gawlikowski et al. (2023). NPs address these limitations by modeling distributions over functions using a neural network-based framework. They approximate a stochastic process $F : X \rightarrow Y$ through finite-dimensional marginals, parameterized by a latent variable z to capture global uncertainty. Given context observations $(x_{\mathbb{C}}, y_{\mathbb{C}})$ and target inputs $x_{\mathbb{T}}$, NPs generate predictive distributions over $y_{\mathbb{T}}$ via a conditional latent model.

$$p(y_{\mathbb{T}}, z|x_{\mathbb{T}}, x_{\mathbb{C}}, y_{\mathbb{C}}) = p(z|x_{\mathbb{C}}, y_{\mathbb{C}}) \prod_{i=1}^{|T|} p(y_{\mathbb{T},i}|x_{\mathbb{T},i}, z) \quad (62)$$

To ensure computational efficiency and order-invariance, NPs introduce three main components:

1. Encoder h : Maps each context input-output pair (x_i, y_i) to a representation space, producing representations $r_i = h(x_i, y_i)$.
2. Aggregator a : Combines the encoded inputs into a single, permutation-invariant global representation r . This is typically done by averaging the representations: $r = a(r_i) = \frac{1}{|\mathbb{C}|} \sum_{i \in \mathbb{C}} r_i$. This global representation r parameterizes the latent distribution $z \sim \mathcal{N}(\mu(r), I\sigma(r))$.
3. Decoder g : Predicts the target outputs $y_{\mathbb{T}} = g(x_{\mathbb{T}}, z)$, conditioned on the latent variable z and the target inputs $x_{\mathbb{T}}$.

Here, z encodes the uncertainty about the global structure of the underlying function. Training NPs uses amortized variational inference, optimizing an evidence lower bound (ELBO) on the conditional log-likelihood:

$$\log p(y_{\mathbb{T}}|x_{\mathbb{C}}, y_{\mathbb{C}}, x_{\mathbb{T}}) \geq \mathbb{E}_{q(z|x_{\mathbb{C}}, y_{\mathbb{C}})} \left[\sum_{i \in \mathbb{T}} \log p(y_{\mathbb{T},i}|z, x_{\mathbb{T},i}) + \log \frac{p(z|x_{\mathbb{C}}, y_{\mathbb{C}})}{q(z|x_{\mathbb{C}}, y_{\mathbb{C}})} \right] \quad (63)$$

where $q(z|x_{\mathbb{C}}, y_{\mathbb{C}})$ is the variational posterior distribution parameterized by a neural network, and $p(z|x_{\mathbb{C}}, y_{\mathbb{C}})$ is the conditional prior.

E NDP REVIEW

Formally, given a function $f : \mathbb{R}^D \rightarrow \mathbb{R}$, an NDP learns a generative distribution over observed data pairs (x, y) , where inputs $x \in \mathbb{R}^{N \times D}$ and outputs $y = f(x) \in \mathbb{R}^N$. Unlike standard NPs, NDPs Dutordoir et al. (2023) do not explicitly require a partitioning into context and target sets during training; all points are jointly modeled. In supervised learning setting, the NDP modeling framework consists of two stochastic processes:

Forward Diffusion Process. Starting from observed clean data y_0 , the forward diffusion process gradually injects Gaussian noise into the outputs over T timesteps according to a predefined variance schedule $\{\beta_t\}$:

$$q(y_{1:T} | y_0) = \prod_{t=1}^T q(y_t | y_{t-1}), \quad q(y_t | y_{t-1}) = \mathcal{N}(y_t; \sqrt{1 - \beta_t} y_{t-1}, \beta_t I). \quad (64)$$

After T diffusion steps, the distribution of the outputs converges towards standard Gaussian noise, i.e., $y_T \sim \mathcal{N}(0, I)$.

Reverse Process. Neural Diffusion Processes (NDPs) learn a conditional reverse process that denoises observations from Gaussian noise y_T to outputs y_0 , guided by an input x :

$$p_{\theta}(y_{0:T} | x) = p(y_T) \prod_{t=1}^T p_{\theta}(y_{t-1} | y_t, x), \quad (65)$$

with Gaussian transitions parameterized by a noise prediction model ϵ_{θ} :

$$p_{\theta}(y_{t-1} | y_t, x) = \mathcal{N}(y_{t-1}; \mu_{\theta}(y_t, t, x), \tilde{\beta}_t I). \quad (66)$$

1134 where $\tilde{\beta}_t = \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t} \beta_t$, $\mu_\theta(y_t, t, x)$ is reparameterized as
 1135

$$1136 \quad 1137 \quad \mu_\theta(y_t, t, x) = \frac{1}{\sqrt{1-\beta_t}} \left(y_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta(y_t, t, x) \right), \quad \bar{\alpha}_t = \prod_{s=1}^t (1-\beta_s) \quad (67)$$

1139
 1140 **Training Objective.** NDPs employ a denoising score matching objective Hyvärinen & Dayan
 1141 (2005); Song et al. (2021); Huang et al. (2021), training the noise model ϵ_θ by minimizing the
 1142 discrepancy between predicted noise and actual noise $\epsilon \sim \mathcal{N}(0, I)$:

$$1143 \quad \mathcal{L}_\theta = \mathbb{E}_{t,x,y_0,\epsilon} \left[\|\epsilon - \epsilon_\theta(y_t, t, x)\|_2^2 \right], \quad \text{with} \quad y_t = \sqrt{\bar{\alpha}_t} y_0 + \sqrt{1-\bar{\alpha}_t} \epsilon. \quad (68)$$

1145
 1146 **Conditional Sampling Procedure.** At test time, NDPs draw samples from the conditional distribution
 1147 $p(y_{\mathbb{T},0} | x_{\mathbb{T}}, D)$, where $D = (x_{\mathbb{C}} \in \mathbb{R}^{M \times D}, y_{\mathbb{C},0} \in \mathbb{R}^M)$ is the context observations.

1148 The conditional sampling proceeds as follows. First, sample the initial target noise: $y_{\mathbb{T},T} \sim \mathcal{N}(0, I)$.
 1149 For each diffusion timestep $t = T, \dots, 1$, proceed with:
 1150

- 1151 • Sample the noisy version of the context points using the forward diffusion process:

$$1153 \quad y_{\mathbb{C},t} \sim \mathcal{N}(\sqrt{\bar{\alpha}_t} y_{\mathbb{C},0}, (1-\bar{\alpha}_t)I), \quad (69)$$

- 1154 • Form the combined dataset at time t by collecting the union of noisy targets and noisy
 1155 contexts:

$$1156 \quad y_t = \{y_{\mathbb{T},t}, y_{\mathbb{C},t}\}, \quad x = \{x_{\mathbb{T}}, x_{\mathbb{C}}\}. \quad (70)$$

- 1158 • Perform the reverse denoising step by sampling from the learned backward kernel:

$$1160 \quad y_{t-1} \sim \mathcal{N} \left(\frac{1}{\sqrt{\alpha_t}} \left(y_t - \frac{\beta_t}{\sqrt{1-\bar{\alpha}_t}} \epsilon_\theta(y_t, t, x) \right), \sigma_t^2 I \right), \quad \text{where} \quad \alpha_t = 1 - \beta_t. \quad (71)$$

Method	Endpoint Match	Path Consistency
NDP (Baseline)	Implicit	Weak
NBP (Ours)	✓	✓

1166
 1167 Table 3: Comparison of generation properties.
 1168

1169 F NOISE MODEL ARCHITECTURE

1171 To ensure that our model remains consistent with the structural properties of stochastic processes and
 1172 to guarantee fair experimental comparisons, we adopt the same noise model architecture as NDPs,
 1173 namely the Bi-Dimensional Attention Block Dutordoir et al. (2023).

1175 As described in Figure 1, this architecture is designed to encode two key symmetries:

- 1177 • **Exchangeability over data points:** the model should be equivariant to permutations of the
 1178 dataset ordering. That is, shuffling the order of inputs in the context or target set should not
 1179 affect the output distribution.
- 1180 • **Invariance over input dimensions:** the prediction should be unaffected by reordering of
 1181 input features (e.g., swapping the order of columns in a tabular dataset).

1182 To accommodate both properties, the Bi-Dimensional Attention Block operates over a tensor $s_t \in$
 1183 $\mathbb{R}^{N \times D \times H}$ representing the latent representation of paired inputs (x, y_t) and timestep t . Each block
 1184 consists of two multi-head self-attention (MHSA) mechanisms:

- 1186 • MHSA_N : acts across the *dataset axis* N , propagating information across data points;
- 1187 • MHSA_D : acts across the *input dimension axis* D , capturing interactions between features.

1188 The output of each block at layer ℓ is computed as:
 1189

$$1190 \quad A_t^{(\ell)}(s_t^{(\ell-1)}) = A_t^{(\ell-1)} + \sigma \left(\text{MHSA}_N(s_t^{(\ell-1)}) + \text{MHSA}_D(s_t^{(\ell-1)}) \right),$$

1192 where σ denotes a ReLU activation, and $A_t^{(0)} = 0$, $s_t^{(0)} = s_t$ is the output of the preprocessing stage.
 1193

1194 Each Bi-Dimensional Attention Block maintains equivariance under permutations of data and feature
 1195 dimensions:
 1196

Proposition 1 (Equivariance (Dutordoir et al., 2023, Prop. 4.1)) *Let π_N and π_D be permutations over dataset and feature axes respectively. Then,*

$$1198 \quad \pi_D \circ \pi_N \circ A_t(s) = A_t(\pi_D \circ \pi_N \circ s), \quad \forall s \in \mathbb{R}^{N \times D \times H}.$$

1200 The final noise model ϵ_θ is obtained by summing outputs across all Bi-Attention layers, followed by
 1201 an aggregation over the input dimension axis to remove dependence on feature order. This leads to:
 1202

Proposition 2 (Equivariance (Dutordoir et al., 2023, Prop. 4.2)) *Let π_N, π_D be permutations as above. Then,*

$$1205 \quad \pi_N \circ \epsilon_\theta(x_t, y_t, t) = \epsilon_\theta(\pi_N \circ \pi_D \circ x_t, \pi_N \circ y_t, t).$$

1206 By directly encoding these properties into the noise model architecture, NDPs and NBPs ensure
 1207 that the predicted outputs $\{y_t^1, \dots, y_t^N\}$ at each timestep t form an *exchangeable* set of random
 1208 variables, consistent with the Kolmogorov Extension Theorem (KET). This is critical for defining a
 1209 valid stochastic process over functions.
 1210

1211 G MORE DETAILS FOR EXPERIMENTS

1212 G.1 BASELINE IMPLEMENTATION AND EVALUATION METRICS

1213 To provide a comprehensive comparison, we implement NPs Garnelo et al. (2018b), ANPs Kim
 1214 et al. (2019), and ConvNPs Gordon et al. (2019) using the official NP-Family repository Dubois et al.
 1215 (2020), with all hyperparameters set to the recommended default values. For NDP Dutordoir et al.
 1216 (2023), we directly utilize the official repositories. Meanwhile, to ensure a fair comparison, our NBP
 1217 model adopts the same Bi-Dimensional Attention Block architecture and hyperparameters as the
 1218 baseline NDP. The implementation details are provided in the supplementary materials. All models
 1219 are retrained on the experimental datasets to ensure consistent metric evaluation and visualization.
 1220 We evaluate model performance using two primary metrics: Mean Squared Error (MSE) and Negative
 1221 Log-Likelihood (NLL). All experiments are conducted on a single NVIDIA RTX 4090 GPU.
 1222

1223 G.2 DETAILS OF EEG DATASET REGRESSION TASK

1224 The EEG dataset used in this experiment consists of recordings from 122 subjects, including both
 1225 alcoholic and control groups. Each subject underwent either single or double stimulus conditions,
 1226 during which neural responses were recorded using 64 scalp electrodes. Each trial lasted for 1 second
 1227 with a sampling rate of 256 Hz, and up to 120 trials were recorded per subject.
 1228

1229 For our study, we focus on signals from 7 frontal electrodes: FZ, F1, F2, F3, F4, F5, and F6. This
 1230 selection yields a total of 7,632 multivariate time series, each comprising 256 time steps across 7
 1231 channels. These signals exhibit strong temporal dynamics and inter-channel correlations, making
 1232 the dataset well-suited for evaluating the generalization and modeling capabilities of multi-output
 1233 meta-learning models. The data is publicly available from the UCI Machine Learning Repository,
 1234 with collection details described in Zhang et al. (1995). Figure 6 illustrates the signals recorded from
 1235 these seven channels for a single trial of one subject.
 1236

1237 Subjects were split into training, validation, and test sets on a per-individual basis. The validation
 1238 and test sets each contain 10 subjects, with the remainder assigned to the training set. All trials from
 1239 each subject form a single meta-task, enabling task-level generalization evaluation.
 1240

1241 Within each trial, we randomly select 3 out of the 7 channels and mask partial segments of these
 1242 channels to simulate missing data. This setup supports evaluation across the following three tasks:
 1243

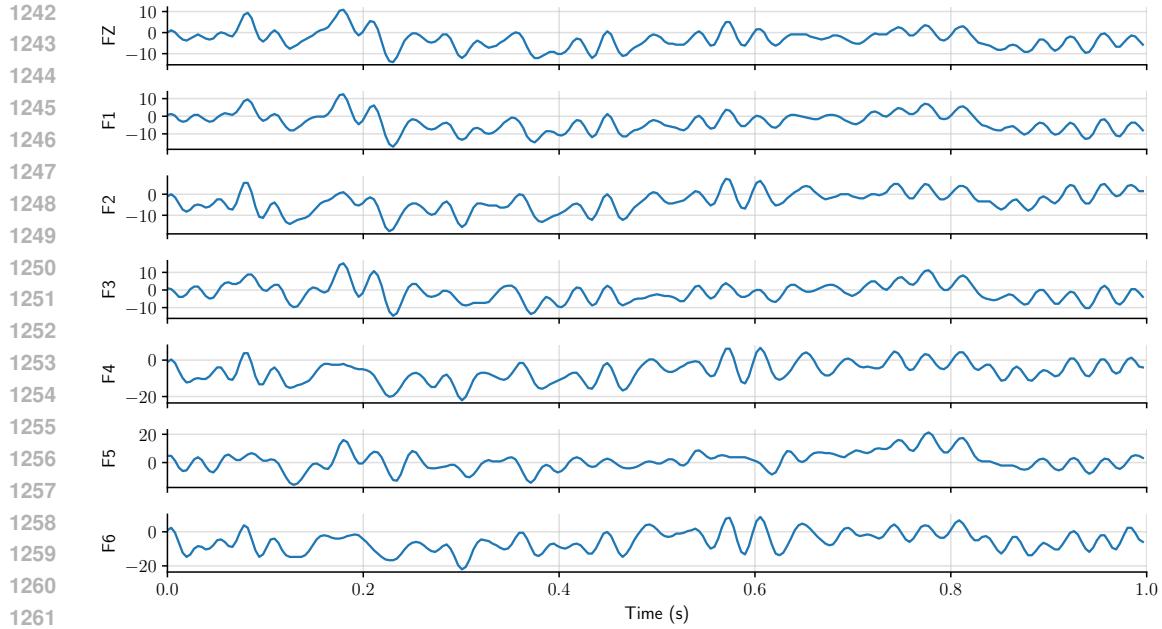


Figure 6: the signals recorded from these seven channels for a single trial of one subject.

Interpolation: Recovering locally missing values within the observed time range.

Reconstruction: Reconstructing entire masked regions of a target channel using the remaining channels as context.

Forecasting: Extrapolating future signal trajectories based on current observations.

Each input is represented as an index vector $\mathbf{x}_e = (i_t, i_c)$, where i_t denotes the time step and i_c the channel index. The corresponding output is the voltage signal \mathbf{y}_e .

All models were trained for 1,000 iterations on the training set. Evaluation metrics include Mean Squared Error (MSE) and Negative Log-Likelihood (NLL). The Neural Bridge Process (NBP) employs a 5-layer Bi-Dimensional Attention Block with hidden dimension 64 and 8 attention heads. The model was trained using a fixed random seed of 42 to ensure reproducibility.

For models incorporating diffusion-based generation (such as DNP and NBP), we adopt a cosine noise schedule with the following parameters: $\beta_{\text{start}} = 0.0003$, $\beta_{\text{end}} = 0.5$, and 500 diffusion timesteps. These settings are applied consistently across the forward and reverse processes in all diffusion-based models. Additional training hyperparameters are as follows:

- For NBP and DNP base, the learning rate was set to $2 \cdot 10^{-5}$;
- Other models used default learning rates as recommended in prior literature;
- All models operated on input sequences of 256 time steps.

The evaluation results, summarized in Table 1 of the main text, demonstrate that NBP consistently outperforms existing baseline models across all three tasks, highlighting its superior modeling capacity for highly correlated multichannel temporal data.

G.3 DETAILS OF IMAGE REGRESSION TASK

We provide detailed information on the image regression task using Neural Bridge Processes (NBPs). The task involves predicting pixel intensities based on their spatial coordinates, which are normalized to the range $[-2, 2]$. We use the CelebA dataset at resolutions of 32×32 and 64×64 .

Our experimental protocol—including the denoising network architecture, training schedule, optimizer configuration, and random seed—closely follows the setup used for Neural Diffusion Processes

1296 Table 4: CelebA 32×32 Results for NDP Base and NBP (Ours) in 10^{-2} MSE Units
1297

Context Ratio	Retained Pixels	NDP Base		NBP (Ours)	
		MSE Mean	MSE Std	MSE Mean	MSE Std
0.1	96	1.7011	0.7221	1.4206	0.6958
0.2	197	0.8831	0.5214	0.7694	0.4008
0.3	312	0.4482	0.2724	0.4055	0.2157
0.4	412	0.2809	0.1511	0.2416	0.1091
0.5	512	0.2496	0.1251	0.2066	0.1062
0.6	570	0.1769	0.0793	0.1406	0.0573
0.7	714	0.1450	0.0729	0.1185	0.0579
0.8	832	0.0997	0.0518	0.0821	0.0373
0.9	913	0.0969	0.0527	0.0793	0.0392

1307 Table 5: CelebA 64×64 Results for NDP Base and NBP (Ours) in 10^{-2} MSE Units
1308

Context Ratio	Retained Pixels	NDP Base		NBP (Ours)	
		MSE Mean	MSE Std	MSE Mean	MSE Std
0.1	432	2.3763	1.3563	2.0189	1.2632
0.2	872	1.0546	0.6718	0.8615	0.5174
0.3	1276	0.7530	0.4283	0.6078	0.3132
0.4	1628	0.5115	0.2626	0.4432	0.1826
0.5	2080	0.4973	0.3144	0.4078	0.2548
0.6	2392	0.4160	0.2496	0.3587	0.1801
0.7	2788	0.3405	0.1985	0.3097	0.1694
0.8	3100	0.3215	0.1875	0.2838	0.1461
0.9	3492	0.2706	0.1579	0.2584	0.1177

1319 (NDPs), ensuring a fair and consistent comparison. The core architecture of the NBP model consists
1320 of 7 layers, each with hidden dimension 64 and 8 attention heads. Sparse attention is not used in
1321 these experiments.

1322 **Training Configuration.** The model is trained for 10 epochs using a batch size of 32. The optimizer
1323 follows a warmup and decay schedule:

- 1324 • Initial learning rate: 2.0×10^{-5}
- 1325 • Peak learning rate: 1.0×10^{-3}
- 1326 • End learning rate: 1.0×10^{-5}
- 1327 • Warmup: 20 epochs, decay over 200 epochs
- 1328 • EMA decay rate: 0.995

1329 **Diffusion Settings.** We employ a cosine beta schedule with the following parameters for the forward
1330 and reverse processes:

- 1331 • $\beta_{\text{start}} = 0.0003$
- 1332 • $\beta_{\text{end}} = 0.5$
- 1333 • Number of timesteps: 500

1334 **Evaluation Protocol.** Each prediction is averaged over 9 conditional samples during testing. The
1335 evaluation batch size is set to 9, with 128 samples drawn per image for final averaging. All pixel
1336 values are normalized to the $[0, 1]$ range. The model was trained and evaluated with a fixed random
1337 seed of 42.

1338 **Loss Function.** We adopt the ℓ_1 loss for training the denoising objective.

1339 **Results and Analysis.** Tables 2 and 3 in the main text report the quantitative performance under
1340 various levels of context sparsity. NBPs consistently outperform NDPs across settings. For example,
1341 at a context ratio of 0.02 on CelebA 32×32 , NBPs achieve an MSE of 0.76 compared to 0.88 by

1350 NDPs. This trend persists at higher resolutions: on CelebA 64×64 , NBPs achieve an MSE of 0.80
1351 compared to NDPs' 1.05 under the same sparse context condition.
1352

1353 This performance gain is attributed to NBPs' novel design, wherein the forward diffusion kernel is
1354 explicitly conditioned on the input coordinates. This conditioning acts as a structural constraint across
1355 the diffusion trajectory, ensuring that the trajectory remains anchored to the input while steering
1356 toward the supervised target.
1357

1358 H CODE CONTRIBUTION

1359
1360 The full implementation of the Neural Bridge Processes (NBP) framework is provided in the supple-
1361 mentary materials to ensure reproducibility and to facilitate further evaluation by reviewers.
1362

1363 I STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

1364 Large language models (LLMs) were used solely for polishing and editing the text of this manuscript.
1365

1366 J LIMITATIONS

1367 The current evaluation focuses exclusively on EEG and image regression tasks. Future work will ex-
1368 plore the applicability of the proposed method to a broader range of domains, including spatiotemporal
1369 modeling, control, and scientific data analysis.
1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403