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Abstract

Noisy-OR Bayesian Networks (BNs) are a family
of probabilistic graphical models which express
rich statistical dependencies in binary data. Vari-
ational inference (VI) has been the main method
proposed to learn noisy-OR BNs with complex
latent structures (Jaakkola & Jordan, 1999; Ji
et al., 2020; Buhai et al., 2020). However, the
proposed VI approaches either (a) use a recogni-
tion network with standard amortized inference
that cannot induce “explaining-away”; or (b) as-
sume a simple mean-field (MF) posterior which
is vulnerable to bad local optima. Existing MF
VI methods also update the MF parameters se-
quentially which makes them inherently slow. In
this paper, we propose parallel max-product as
an alternative algorithm for learning noisy-OR
BNs with complex latent structures and we derive
a fast stochastic training scheme that scales to
large datasets. We evaluate both approaches on
several benchmarks where VI is the state-of-the-
art and show that our method (a) achieves better
test performance than Ji et al. (2020) for learning
noisy-OR BNs with hierarchical latent structures
on large sparse real datasets; (b) recovers a higher
number of ground truth parameters than Buhai
et al. (2020) from cluttered synthetic scenes; and
(c) solves the 2D blind deconvolution problem
from Lazaro-Gredilla et al. (2021) and variants—
including binary matrix factorization—while VI
catastrophically fails and is up to two orders of
magnitude slower.

1. Introduction
Probabilistic graphical models (PGMs) propose a rigorous
and elegant way to represent the full joint probability density
function of high-dimensional data and to express assump-
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tions about its hidden structure. Learning and inference
algorithms let us analyze data under those assumptions and
recover the hidden structure that best explains our obser-
vations. However, performing exact inference in complex
PGMs is often intractable. To mitigate this problem, several
techniques have been proposed for approximate inference,
among which a popular one is variational inference (VI)
(Wainwright et al., 2008; Bishop & Nasrabadi, 2006).

In this paper, we consider directed acyclic PGMs—also
named Bayesian networks (BNs)—with binary variables
and noisy-OR conditional distribution (Pearl, 1988). The
resulting noisy-OR BNs have been used for medical diagno-
sis (Jaakkola & Jordan, 1999), data compression (Šingliar
& Hauskrecht, 2006), text mining (Liu et al., 2016), and
more recently overparametrized learning (Buhai et al., 2020)
and topic modeling on large sparse datasets (Ji et al., 2020).
Noisy-OR BNs have an intractable posterior: most of the
aforementioned applications rely on VI for approximate
inference. Some existing VI methods (Buhai et al., 2020)
use a recognition network and amortize the approximate
inference via a single forward pass, which cannot induce
“explaining-away” (see Section 2). In contrast, Jaakkola &
Jordan (1999); Šingliar & Hauskrecht (2006); Ji et al. (2020)
assume a mean-field (MF) posterior, which is vulnerable to
bad local optima. These existing MF methods also update
the MF parameters sequentially—i.e. one by one—which is
prohibitively slow. To scale MF VI, Ji et al. (2020) propose
a local heuristic that updates fewer MF parameters (see Sec-
tion 3). However, their approach only applies to large sparse
datasets (i.e. most of the observations are 0s).

In this work, we propose a fast and efficient stochastic
scheme for learning noisy-OR BNs that use the parallel max-
product (MP) algorithm (Pearl, 1988; Murphy et al., 2013)
as an alternative to VI. We scale MP to very large noisy-OR
BNs by reducing the max-product updates complexity for a
noisy-OR factor from exponential to linear in the number
of variables. We accelerate MP on Graphics Processing
Units (GPUs) using a recent open-sourced package (Zhou
et al., 2022). Similar to Ji et al. (2020), our method supports
multi-layered noisy-OR networks and relies on stochastic
optimization (Robbins & Monro, 1951) for scaling. How-
ever, (a) contrary to Ji et al. (2020), our approach runs in
parallel which allows it to scale to large dense datasets; and
(b) in contrast with Buhai et al. (2020), our method induces
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Figure 1. Two-layers noisy-OR Bayesian network with four hidden
and three visible nodes. The leak node (z0 = 1) is not shown.

explaining-away. For large sparse datasets where MF VI
is the best existing method (Ji et al., 2020), we show that
our approach efficiently explores the parameters space, and
can be used as a powerful initialization for MF VI to reach
new state-of-the-art performance. We additionally show
that several challenging problems including (a) binary ma-
trix factorization; (b) the noisy-OR BNs experiments from
Buhai et al. (2020); and (c) the complex 2D blind deconvo-
lution problem from Lazaro-Gredilla et al. (2021) can be
expressed as learning problems in noisy-OR BNs, for which
standalone MP outperforms VI while being up to two orders
of magnitude faster. Our code is written in JAX (Bradbury
et al., 2018) and is available at https://github.com/
deepmind/max_product_noisy_or.

The rest of this paper is organized as follows. Section 2
reviews noisy-OR BNs while Section 3 discusses existing
learning methods for these models. Section 4 introduces the
max-product algorithm, which Section 5 integrates into our
training scheme for BNs. Finally, Section 6 compares our
method with VI in a wide variety of experiments.

2. Noisy-OR Bayesian networks
Given binary observations x ∈ {0, 1}p, we model its statis-
tical dependencies using binary BNs (Koller & Friedman,
2009) as in Figure 1. The nodes in the graph are divided
into p visible nodes—which are the leaves—and m hidden
nodes. Each visible (resp. hidden) node i is associated
with a binary random variable xi (resp. hi). We denote
h = (h1, . . . , hm) and x = (x1, . . . , xp). Similar to Ji
et al. (2020), we introduce a leak node 0 that connects to all
the nodes, whose variable z0 is always active, i.e. z0 = 1.
The leak node allows any active variable to be explained by
other factors than its parents. For convenience, we denote
z = (z0, h, x) the vector of all variables: h = (z1, . . . , zm)
and x = (zm+1, . . . zm+p).

Let P(i) be the set of parents (excluding the leak node) of
the node i ≥ 1. The activation probability of the variable zi
is given by the noisy-OR conditional distribution

p(zi = 0 | zP(i), Θ) = exp

(
−θ0→i −

∑
k∈P(i)

θk→izk

)
(1)

where θ0→i ≥ 0, θk→i ≥ 0, ∀k ∈ P(i) and Θ is the

vector collecting all these parameters. This conditional
distribution possesses three important properties. First, if all
the parents are inactive, the activation probability is given
by the leak node: p(zi = 0 | zP(i) = 0, Θ) = exp(−θ0→i).
As in Buhai et al. (2020), we refer to 1 − exp(−θ0→i) as
the “prior probability” when P(i) is empty and the “noise
probability” otherwise. Second, if only the variable k is
connected to the variable i and there is no leak node, p(zi =
0 | zk = 1, Θ) = exp(−θk→i)—which we refer to as the
“failure probability”. Finally, noisy-OR BNs can induce
“explaining-away”: explaining-away creates competition
between a-priori unlikely causes, which allows inference to
pick the smallest subset of causes that explain the effects.

3. Related Work
The QMR-DT network (Jaakkola & Jordan, 1999) is one of
the first models which exploits the properties of noisy-OR
BNs. It consists of a two-layer bipartite graph created by
domain experts which models how 600 diseases explain
4, 000 findings. The probability of a finding given diseases
is expressed by Equation (1). After learning, the QMR-DT
network is used to infer the probabilities of different diseases
given a set of observed symptoms. For approximate infer-
ence in the intractable noisy-OR BN, the authors assumed
a MF posterior—which can induce explaining-away (see
Section 2)—and introduced a family of variational bounds
as well as a heuristic to increase the graph sparsity.

Other approaches have been proposed for learning bipar-
tite noisy-OR BNs. Šingliar & Hauskrecht (2006) intro-
duced a variational EM procedure that exploits the bounds
of Jaakkola & Jordan (1999) while assuming a fully con-
nected graph. Halpern & Sontag (2013) proposed a method
of moments that requires the graph to be sparse. Liu et al.
(2016) introduced a Monte-Carlo EM algorithm that re-
quires a large number of sampling steps for good perfor-
mance. None of these methods would scale to large datasets.

Recently, Buhai et al. (2020) discussed the effect of over-
parameterization in PGMs and showed that, on synthetic
datasets, increasing the number of latent variables of noisy-
OR BNs improves their performance at recovering the
ground truth parameters. Their method considered VI with
a recognition network. However, the authors amortize the
inference via a single forward pass: inference results in
picking all causes that are consistent with the effects and
cannot induce explaining-away (see Section 2).

In another recent work, Ji et al. (2020) proposed a stochas-
tic variational training algorithm for noisy-OR BNs. The
authors assumed a MF posterior and extended the bounds
of Jaakkola & Jordan (1999). For scalability, the authors
introduced “local models”: they only update the variational
parameters associated with the ancestors of the active visible
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variables. They showed that this is equivalent to optimizing
a constrained variational bound, and derived state-of-the-
art performance for multi-layered BNs on large sparse real
datasets, while significantly outperforming Liu et al. (2016).

The method we propose in Section 5 for learning noisy-OR
BNs has the same appealing properties as Ji et al. (2020): it
induces explaining-away, it supports multi-layered graphs
and it scales to large sparse datasets. In addition, (a) it is
faster as it runs parallel max-product; (b) it also scales to
large dense datasets; and (c) it considers a richer posterior
than MF VI which allows it to find better local optima.

4. Background on Max-Product
We first review the parallel max-product algorithm. We
then discuss how this algorithm can be used for sampling in
PGMs, and how it can be easily accelerated on GPUs.

4.1. Max-product message passing

We consider a PGM with variables z described by a set of A
factors {ψ⊤

a ϕa(z
a)}Aa=1 and I unary terms {λ⊤i ηi(zi)}Ii=1.

za is the vector of variables used in the factor a, ψa is
a vector of factor parameters and ϕa(z

a) is a vector of
factor sufficient statistics. For the unary terms, the suffi-
cient statistics are the indicator functions ηi(zi) = (1(zi =
0),1(zi = 1)). For a Bayesian network, a factor involv-
ing za = (za, zP(a), z0) is defined for the ath variable.
The corresponding ψa can be derived from the parameters
{θ0→a} ∪

{
θk→a

}
k∈P(a)

defined in Equation (1).

The energy of the model can be expressed as E(z) =

−
∑A

a=1 ψ
⊤
a ϕa(z

a)−
∑I

i=1 λ
⊤
i ηi(zi) or, collecting the pa-

rameters and sufficient statistics in corresponding vectors,
E(z) = −Ψ⊤Φ(z)− Λ⊤η(z). The probability of a config-
uration z satisfies p(z) ∝ exp(−E(z)). The maximum a
posteriori (MAP) problem consists in finding the variable
assignment with the lowest energy, that is

zMAP ∈ argmin
z

E(z) = argmax
z

Ψ⊤Φ(z)+Λ⊤η(z) (2)

The max-product algorithm estimates this solution by iterat-
ing the fixed-point updates for NMP iterations:

mi→a(zi) = λ⊤i ηi(zi) +
∑

b∈nb(i)\a

mb→i(zi) (3)

ma→i(zi) = max
zk\i

{
ψ⊤
a ϕa(z

a) +
∑

k∈nb(a)\i

mk→a(zk)

}

where nb(·) denotes the neighbors of a factor or variable.
Equations (3) are derived by setting the gradients of the
Lagrangian of the Bethe free energy to 0—see Wainwright
et al. (2008). mi→a(zi) (resp. ma→i(zi)) are called the
“messages” from variables to factors (resp. from factors

to variables): max-product is a “message-passing” algo-
rithm. After NMP iterations of Equation (3), max-product
estimates the solution to Problem (2) by

zi = argmax
c

{
λ⊤i ηi(zi = c)+

∑
b∈nb(i)

mb→i(zi = c)

}
, ∀i.

MP is guaranteed to converge in trees like BNs (Weiss,
1997). A damping factor α ∈ (0, 1) in the updates can
be used to improve convergence, so that mnew

a→i(zi) =
αma→i(zi) + (1 − α)mold

a→i(zi). α = 0.5 offers a good
trade-off between accuracy and speed in most cases.

Max-product in BNs: The noisy-OR factor in Equation (1)
connects the variables {zi}∪{z0}∪ zP(i) and has 22+|P(i)|

valid configurations. At first sight, the max-product up-
dates in Equations (3) have an exponential complexity in
O(2|P(i)|). To scale to large factors, we derive in Appendix
A an equivalent representation of this noisy-OR factor for
which the updates have a linear complexity O(|P(i)|).

4.2. Sampling in PGMs via perturb-and-max-product

In this work, we are interested in answering two types of
inference queries in PGMs: MAP queries as in Problem (2)
and sampling queries. The perturb-and-MAP framework
(Papandreou & Yuille, 2011) unifies these two types of
queries by considering the problem:

argmax
z

{
Ψ⊤Φ(z) + (Λ + T ε)⊤η(z)

}
(4)

where ε ∈ R2I is a perturbation vector added to the vector
of unaries Λ, and T is a noise temperature parameter. When
T = 0, Problem (4) is the MAP Problem (2). When T = 1,
Papandreou & Yuille (2011) showed that if the entries of ε
are independently drawn from a Gumbel distribution, the so-
lution of Problem (4) approximates a sample from the PGM
distribution. Lazaro-Gredilla et al. (2021) recently showed
state-of-the-art learning and sampling performance on sev-
eral PGMs including Ising models and Restricted Boltzmann
Machines by using max-product to solve Problem (4). We
use their method, named perturb-and-max-product (PMP),
in the rest of this paper.

4.3. Accelerating max-product on GPUs

Recently Zhou et al. (2022) open-sourced PGMax, a
Python package to run GPU-accelerated parallel max-
product on general factor graphs with discrete variables.
The authors showed timing improvements of two to three
orders of magnitude compared with alternatives. We use this
package to solve the families of perturbed MAP Problems
(4) for noisy-OR BNs, while performing GPU-accelerated
message updates with linear complexity (see Appendix A).
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5. Noisy-OR Bayesian Networks Learning
We now derive a scheme for learning noisy-OR BNs that
uses parallel max-product for fast approximate inference.

5.1. Deriving the Elbo

Noisy-OR BNs are directed models with intractable likeli-
hood. Therefore, a standard approach is to maximize the
evidence lower bound (Elbo) (Kingma & Welling, 2013):

log p(x|Θ) ≥ Eq(h|x,ϕ) {log p(h, x|Θ)− log q(h|x, ϕ)}
= Eq(h|x,ϕ) {log p(h, x|Θ)}+H {q(h|x, ϕ)}
= L(x,Θ, ϕ), (5)

where q(h|x, ϕ) is an approximate posterior, which VI as-
sumes to be the output of a recognition network (Buhai
et al., 2020) or a MF posterior (Jaakkola & Jordan, 1999; Ji
et al., 2020). The first term in Equation (5) is the expectation
of the joint log-likelihood under the approximate posterior
distribution, while the second term is the entropy of the
approximate posterior. If we set q(h|x, ϕ) = p(h|x,Θ),
then the bound in Equation (5) becomes tight. However, the
exact posterior of a noisy-OR BN is intractable.

We propose to derive an approximate posterior for a binary
observation x as follows. We first use max-product to either
(a) estimate the mode of the model posterior h̃(x, T = 0) ≈
argmaxh p(h|x,Θ) or (b) get a sample from the model
posterior h̃(x, T = 1) ∼ p(h|x,Θ). Similar to Lazaro-
Gredilla et al. (2021), we address these posterior queries by
clamping the visible variables to their observed value and
running max-product, i.e., we set λi = (0,−∞) if xi = 0,
λi = (−∞, 0) if xi = 1 in Problem (4). We then solve
Problem (4) with a noise temperature T = 0 for (a) and
T = 1 for (b) using the PMP method described in Section
4.2. We refer to the posterior inference query (a) or (b) as:

h̃(x, T ) = PMP(x, Θ, T ). (6)

After addressing (a) or (b), we define the approximate poste-
rior q(h|x) by a Dirac delta centered at h̃(x, T ): q(h|x) =
1(h = h̃(x, T )). The lower bound in Equation (5) becomes
L(x,Θ) = log p(h̃(x, T ), x | Θ). L does not depend on ϕ,
and the entropy of q(h|x) is 0. Let z = (z0, h̃(x, T ), x).
Equation (1) can then be used to decompose the Elbo as a
sum over the different factors:

L(x,Θ) =

m+n∑
i=1

zi log
(
1− exp

(
−θ0→i −

∑
k∈P(i)

θk→izk

))
+ (1− zi)

(
−θ0→i −

∑
k∈P(i)

θk→izk

)
. (7)

5.2. Optimizing the Elbo

The Elbo in Equation (7) admits a closed-form gradient. Let
us denote f(β) = log(1− exp(−β)) the log1mexp func-
tion, which we compute accurately using Mächler (2012).

Its derivative is f ′(β) = exp(−β)
1−exp(−β) . Let k ∈ P(i). Then

the partial derivative of the Elbo w.r.t. θk→i is:

∂L(x,Θ)

∂θk→i
= zizkf

′
(
θ0→i +

∑
k∈P(i)

θk→izk

)
+ (zi − 1)zk

(8)
A similar relationship holds for ∂L(z,Θ)

∂θ0→i
, by setting z0 = 1.

Parameter sharing: In Sections 6.4 and 6.6, several parent-
child pairs (k, i) of the noisy-OR BN use the same parame-
ter θ. The chain rule generalizes the partial derivative w.r.t.
θ by summing the right-hand side of Equation (8) over the
pairs sharing this parameter.

Stochastic gradients updates: We iterate through the data
via mini-batches (Robbins & Monro, 1951), and we form a
noisy estimate of the gradient of the Elbo on each mini-batch.
This allows (a) scalability of our approach to large datasets
(b) escaping local optima. We then use Adam (Kingma &
Ba, 2014) to update the parameters Θ. Finally, as in Ji et al.
(2020), we clip the parameters Θ = max(Θ, ϵ) to keep the
Elbo in Equation (7) finite. Algorithm 1 summarizes one
step of parameters updates.

Algorithm 1 Stochastic gradient updates with max-product

Input: Current parameters Θ(t)

Mini-batch B(t) of size S
Noise temperature T
Learning rate lr, Clipping value ϵ
Output: Updated parameters Θ(t+1)

function UpdateParameters
for xi ∈ B(t) do
h̃i(xi, T ) = PMP(xi, Θ(t), T ) as in Equation (6)
Compute ∇L(xi,Θ(t)) using Equation (8)

end for
∇LB(t)(Θ(t)) = 1

S

∑
xi∈B(t) L(xi,Θ(t))

Θ(t+1) = ADAM(Θ(t),∇LB(t)(Θ(t)),lr)
Θ(t+1) = max(Θ(t+1), ϵ)

end function

5.3. Robustifying VI using MP

Our objective value differs from the one in Ji et al. (2020).
Algorithm 1 optimizes the Elbo defined in Equation (7)—
referred to as ElboMP—w.r.t. the model parameters for a
given binary configuration—while Ji et al. (2020) optimize
an Elbo derived using MF VI—referred to as ElboVI. When
both are defined, ElboMP and ElboVI are two valid lower
bounds of the log-likelihood of a noisy-OR BN. Thus, in
the rest of this paper, we refer to the Elbo of a method as the
maximum of ElboVI and ElboMP—Appendix D discusses
how we can also define ElboMP for any VI posterior.

When the approximate posterior is concentrated into a sin-
gle Dirac delta, ElboMP is tighter than ElboVI: ElboVI is
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derived from ElboMP using Jensen’s inequality in Ji et al.
(2020, Eq. (6))—see Appendix E.1 for more details. How-
ever, the non-zero entropy term present in ElboVI makes it
often tighter when the approximate posterior is not a Dirac
delta. While the global optima of ElboVI would provide a
good solution, in practice, the optimization of ElboVI us-
ing the simplistic MF VI posterior is hard and often gets
stuck in bad local optima. This explains the catastrophic
failures of MF VI in Sections 6.4 and 6.6. In contrast, MP
uses a richer posterior, which does not impose a factorized
approximation over variables like MF VI, but only relies on
the milder MP assumptions (locally consistent marginals,
Bethe entropy approximation). This difference in posteriors
affects the quality of inference and makes the optimization
of ElboMP easier. As a result, our approach seems better
at parameters search. We then propose to robustify MF VI
with a hybrid approach, which uses the parameters ΘAlg1

learned with Algorithm 1 to initialize the VI training from Ji
et al. (2020). This initialization should guide the parameters
search of VI and lead to a better optima than standalone VI,
while returning a tighter Elbo.

6. Results
We assess the performance of our methods on five categories
of binary datasets (a) the tiny20 dataset discussed in Ji
et al. (2020) (b) five large sparse Tensorflow datasets,
(c) binary matrix factorization datasets (d) seven synthetic
datasets introduced in Buhai et al. (2020) (e) the 2D blind
deconvolution dataset from Lazaro-Gredilla et al. (2021);
and on a synthetic depth dataset derived from MNIST (Deng,
2012). Each experiment is run on a NVIDIA Tesla A100.

6.1. Methods compared

We compare the following methods in our experiments:
• Full VI: this is the approach from Ji et al. (2020). The
authors did not release their code. To efficiently use their
method in our experiments, we re-implemented it in JAX
(Bradbury et al., 2018), using the variational hyperparam-
eters reported. We use ADAM (Kingma & Welling, 2013)
as we observe that it leads to better performance than the
preconditioning proposed by the authors.
• Local VI: This is our re-implementation of the local mod-
els proposed by Ji et al. (2020) and described in Section 3,
which are required to scale VI to large sparse datasets.
• MP: this is the proposed max-product training described
in Algorithm 1. Max-product is run with a damping α = 0.5
for NMP = 100 iterations. We select the noise temperature
T ∈ {0, 1} with better empirical performance.
• MP + VI: this is the hybrid training proposed in Section
5.3. We first run Algorithm 1 to learn the parameters ΘAlg1,
then run VI training for a few iterations starting from ΘAlg1.

All the methods consider a clipping value ϵ = 10−5 for

Method Num iters Test Elbo

Full VI 1.5k −14.41 (0.02)

Full VI 5k −14.40 (0.02)

Local VI 1.5k −14.43 (0.02)

Local VI 5k −14.43 (0.02)

MP (ours) 1k −14.49 (0.03)

MP + VI (ours) 1.5k −14.34 (0.02)

Table 1. Test Elbos on the tiny20 dataset averaged over 10 runs.
Higher is better. Our hybrid method outperforms full and local VI.

the parameters Θ. For a given experiment, all the meth-
ods use the same learning rate and mini-batch size, and we
report the best performance of each method over several
initializations—which we describe in Appendix C. We mon-
itor the loss of each method for each experiment to make
sure that all the methods have converged.

6.2. Tiny20 dataset

Problem: We first consider the tiny20 dataset1 on
which Ji et al. (2020) illustrate many of their findings. The
dataset contains binary occurrence data for 100 words across
16, 242 postings. As in Ji et al. (2020), we build a three-
layers graph with 100 visible and 44 hidden nodes using
the procedure in Appendix B. We fix this BN and learn
the noisy-OR parameters Θ that maximizes ElboMP (when
learning with MP and Algorithm 1) or ElboVI (when learn-
ing with MF VI as in Ji et al. (2020)).

Training: Our training set consists on 70% of the data at
random (i.e. 11, 369 samples). We train full VI and local VI
for 1, 500 gradient steps, and for 5, 000 steps. For MP + VI,
we first run 1, 000 gradient steps using Algorithm 1 with
T = 0, then 500 gradient steps using VI. All the methods
use full-batch gradients as in Ji et al. (2020) and a learning
rate of 0.01.

Results: Table 1 reports the test Elbo (defined in Sec-
tion 5.3 as the best value between ElboVI and ElboMP) of
the different methods averaged over 10 random train-test
splits. Our hybrid MP + VI approach outperforms all the
variational methods by a statistically significant margin. In-
terestingly, we observe that (a) increasing the number of
training iterations slightly improves full and local VI, but it
does not make them competitive with our best method; (b)
standalone MP is competitive; and (c) as reported in Ji et al.
(2020), full VI performs slightly better than local VI, as the
latter optimizes a constrained VI objective.

In addition, we note that Ji et al. (2020) reported a lower
Elbo of −14.50 for their best full VI method, using 145
nodes (as we do) with a different graph heuristic and a dif-

1Accessible at https://cs.nyu.edu/∼roweis/data/20news w100.mat
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Dataset Local VI MP+VI (ours)

Abstract −327.19 (0.05) −324.79 (0.05)

Agnews −130.90 (0.07) −126.48 (0.02)

IMDB −429.54 (0.02) −428.40 (0.01)

Patent −578.41 (0.04) −578.33 (0.02)

Yelp −294.46 (0.16) −292.08 (0.02)

Table 2. Test Elbos on the large sparse Tensorflow text datasets
averaged over 10 runs.

ferent initialization procedure—both not described. Finally,
to illustrate the distinction between ElboMP and ElboVI,
we report these two metrics in Appendix E.2, Table 5. In
particular, standalone MP is the best performer for ElboMP.

6.3. Large sparse Tensorflow text datasets

Datasets: We compare our hybrid method with Ji et al.
(2020) on five large sparse Tensorflow text datasets
(Abadi et al., 2015), which respectively contain scientific
documents, news, movie reviews, patent descriptions and
Yelp reviews. Note that Ji et al. (2020) only consider two
datasets and do not detail their processing procedure. To
process each dataset, we first tokenize and vectorize it us-
ing a vocabulary size of 10, 000 (removing all the words
outside the vocabulary) and a maximum sequence length of
500. Second, we represent each sentence by a binary vector
x ∈ {0, 1}10,000, where xj = 1 if the jth word is present.
Our datasets’ statistics are in Appendix F.1, Table 7.

Problem: As in Ji et al. (2020), for each dataset, we build
a five-layers Bayesian network, and learn the noisy-OR
parameters Θ that maximizes ElboMP or ElboVI.

Training: We train local VI for 4, 000 gradient steps. For
hybrid training, we use 3, 600 steps of Algorithm 1 with
T = 0, then 400 steps of local VI training. Both methods
use a mini-batch size of 128 and a learning rate of 3× 10−4.

Results: Table 2 averages the test Elbo of both methods
over 10 runs—each run shuffles the training and test set
separately. Our hybrid method outperforms local VI on four
datasets and is tied on one. In addition, Table 6 in Appendix
E.3 compares ElboMP with ElboVI on each dataset: the
hybrid approach is the best performer for ElboMP on all
the datasets, which shows that hybrid training improves the
overall performance of the noisy-OR models.

Timings comparison: Table 8 in Appendix F.2 reports the
update times (defined as the average time for one gradient
step) of MP and local VI on each dataset: MP is two to four
times faster. Despite updating the variational parameters
one by one, local VI runs at a reasonable speed as it uses
small arrays to represent large sparse datasets. Note that MP

runs in parallel and does not exploit the sparsity of the data.

6.4. Binary Matrix Factorization

Problem: Our next problem is Binary Matrix Factorization
(BMF). Let n, r, p be three integers with r < min(n, p) and
let U ∈ {0, 1}n×r, V ∈ {0, 1}r×p be two binary matrices.
We assume that addition is performed on the Boolean semi-
ring, i.e. 1 + 1 = 1, and we define a binary matrix X =
UV ∈ {0, 1}n×p. The BMF problem consists in recovering
the binary matrices U and V given the observations X .

This problem is equivalent to learning a noisy-OR BN with
p visible nodes and r hidden nodes, and with the positive
parameters θx, θu ∈ R+, V̂ ∈ Rr×p

+ , such that (a) the fail-
ure probability between the ith hidden and the jth visible
variable is given by exp(−V̂ij) (b) the prior probability of
each hidden variable is equal to 1− exp(−θu) (c) the noise
probability of each visible variable is 1− exp(−θx). Note
that θx (resp. θu) is shared across all the visible (resp. hid-
den) variables. Let Θ = (θx, θu, V̂ ). For x ∈ {0, 1}p, the
conditional probability of the jth entry xj is

p(xj = 1 | u1, . . . , ur,Θ) = 1− exp
(
− θx −

r∑
i=1

V̂ijui

)
.

The rows of X give access to n such observations, and our
Algorithm 1 naturally extends to the BMF problem.

Dataset: We fix n = p and consider two increas-
ing sequences of values for n ∈ {100, 200, 400} and for
r/n ∈ {0.2, 0.4, 0.6}. We additionally fix the proba-
bility pX = p(Xij = 1) = 0.25, ∀i, j. To do this,
we first set pUV = p(Uik = 1) = p(Vkj = 1) =√

1− (1− pX)1/r,∀i, j, k. We then generate three matri-
ces V ∈ {0, 1}r×p, U train ∈ {0, 1}n×r, U test ∈ {0, 1}n×r

with prior pUV and define X train = U trainV , X test = U testV .

Related work: Ravanbakhsh et al. (2016) proposed to learn
U and V with max-product by estimating the mode of the
joint posterior maxU,V p(U, V |X), using non-symmetric
priors for U and V . Their method is very similar to PMP
(Lazaro-Gredilla et al., 2021) which proposes to sample
from the joint multimodal posterior to solve the 2D blind
deconvolution problem, Section 6.6. Both approaches do not
consider training and directly solve max-product inference,
which cannot be expressed in a mini-batch format and has
to run on all the training data simultaneously. These two
methods are then memory-intensive, and cannot scale to
datasets orders of magnitude larger than the ones used here.
In comparison, our MP approach computes the gradient of
ElboMP for each training sample, which is memory-light
and allows scaling to larger datasets. We report the results
of PMP here, which we accelerate on GPU with PGMax
(Zhou et al., 2022), and we use pUV as priors for U and V .

Training: We train full VI and BP for 40, 000 gradient
steps with batch size 20 and learning rate 0.001. We use
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Dataset Full VI MP (ours) PMP

n r Test Elbo ↑ Test RE (%) ↓ Update time (s) ↓ Test Elbo ↑ Test RE (%) ↓ Update time (s) ↓ Test RE (%) ↓

100 20 −18.26 (0.76) 4.32 (0.51) 0.62 (0.03) −17.01 (1.28) 4.44 (0.64) 0.09 (0.00) 9.81 (0.92)
40 −43.80 (3.27) 9.15 (1.42) 1.39 (0.05) −39.29 (0.90) 9.75 (0.30) 0.11 (0.00) 9.63 (0.67)
60 −78.42 (3.18) 10.93 (0.98) 2.56 (0.07) −54.25 (1.24) 13.68 (0.53) 0.13 (0.00) 7.36 (1.03)

200 40 −103.03 (17.31) 10.80 (2.07) 2.48 (0.05) −42.71 (2.07) 7.05 (0.49) 0.14 (0.00) 12.57 (0.52)
80 −295.83 (2.95) 24.98 (0.32) 6.74 (0.07) −80.23 (1.68) 11.71 (0.40) 0.20 (0.14) 11.05 (0.56)
120 −362.32 (5.78) 24.55 (0.34) 14.42 (0.42) −95.25 (1.46) 13.11 (0.35) 0.26 (0.15) 8.11 (0.68)

400 80 — — 18.49 (0.06) −94.95 (2.19) 9.72 (0.26) 0.35 (0.00) 12.95 (0.83)
160 — — 72.22 (0.30) −152.16 (3.21) 11.06 (0.26) 0.61 (0.00) 11.74 (0.47)
240 — — 167.83 (0.20) −154.94 (1.71) 10.82 (0.27) 0.86 (0.00) —

Table 3. BMF results averaged over 10 runs. Arrows pointing up (down) indicate that higher (lower) is better. For large settings, “—”
means that we were not able to get the results, due to time-out (for VI) or out-of-GPU-memory error (for PMP).

MP with T = 1 to sample from the posterior as it allows
to escape local optima during training. For PMP, there is
no training and we directly turn to inference using 1, 000
max-product iterations as in Lazaro-Gredilla et al. (2021).

Metrics: We report the Elbo of each method, as well as
its update time. We also report its test reconstruction error,
which is defined as 1

n2 ∥U test V̂ thre−X test∥1, where U test and
V̂ thre are binary matrices and we have used 1+ 1 = 1. V̂ thre

is derived by thresholding the learned V̂ with a threshold
of log(2): a 1 in V̂ thre corresponds to a failure probability
lower than 0.5 in V̂ . U test is the mode of posterior, estimated
as detailed in Appendix D. For PMP, V̂ is already binary
and we only report its test RE—the update times are not
defined for PMP as there is no training.

Results: Table 3 averages the results over 10 runs—each
run generate new V,U train, U test. For n = 100, there is no
clear winner: MP achieves a higher Elbo, while PMP and VI
reach lower REs. However, the performance of VI decreases
as n increases: for n = 200, r ∈ {80, 120}, VI has a test
RE very close to pX = 0.25, which is what would return
the trivial estimate V̂ = 0. In addition, the sequential MF
parameters updates make full VI prohibitively slow here:
MP is 55 times faster for n = 200, r = 120, and 195 times
faster for n = 400, r = 240. Finally, for n = 400, VI
did not finish training after three weeks and the test REs
are close to pX , which shows that no latent structure has
been recovered. PMP is a solid competitor: it is faster
than our method as it has no learning, and it leads to better
performance when r/n = 0.6. However it cannot scale and
runs out of GPU memory for the large n = 400, r = 240.

6.5. Overparametrization experiments

Problem: Here, we reproduce the noisy-OR experiment
from Buhai et al. (2020). The authors introduced seven syn-
thetic datasets2—which we refer to as OVPM. Five datasets
(IMG, PLNT, UNIF, CON8, CON24) are generated from
ground truth (GT) noisy-OR BNs while two (IMG-FLIP

2All the datasets are at https://github.com/clinicalml/overparam

and IMG-UNIF) additionally perturb the observations.

The five GT noisy-OR BNs have the same structure, defined
as follows. K∗ = 8 latent variables u1, . . . , u8, are each
associated with a continuous vector of parameters V k ∈ Rp

+.
V 1, . . . , V 8 are shared across all the observations while uk
expresses whether the kth latent variable is active for a given
observation. Each latent variable has a prior 1− exp(−θk)
with θk ≥ 0. Let Θ∗ = (V 1, . . . , V 8, θ1, . . . , θ8, θ

x). An
observation x is generated such that

p(xj = 1 | u1, . . . , ur,Θ∗) = 1−exp
(
−θx−

8∑
k=1

ukV
k
j

)
, ∀j.

The GT parameters Θ∗ are different for each GT noisy-OR
BN. Figure 3[left] shows V 1, . . . , V 8 and eight cluttered
binary samples from one of the datasets, IMG3.

Training: Buhai et al. (2020) learned the noisy-OR BN
above for increasing values K ≥ 8 of latent variables and
study how overparametrization improves the recovery of the
GT parameters V 1, . . . , V 8. We compare our MP approach
with their results, using T = 1 for MP. For each dataset,
we then consider an increasing sequence of latent variables
K ∈ {8, 10, 16, 32}. We use the same training parameters
as Buhai et al. (2020): 9, 000 training samples, 100 epochs,
a batch size of 20 and a learning rate of 0.001.

Metrics: We compare the performance of our method
with the VI results reported in the main Figure 2 of Buhai
et al. (2020, Fig. 2) (the numerical values are in Tables 2
and 5 in their appendices). As the authors, we report the
averaged number of GT parameters V 1, . . . , V 8 recovered
during training—which we compute as detailed in Appendix
G.1—and the percentage of runs with full recovery.

Results: Figure 2 compares our method (blue) averaged
over 50 repetitions, with VI (orange). Both MP and VI
benefit from overparametrization: when K increases, both
methods recover more GT parameters. In addition, MP out-
performs VI. In particular, for each dataset, for a model with
16 or 32 latent variables, our method (a) always recovers

3IMG is originally from Šingliar & Hauskrecht (2006).
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Figure 2. Results for the seven OVPM datasets (a) averaged over 50 repetitions for our method (blue) and (b) reported in Buhai et al.
(2020) for VI (orange). As in Buhai et al. (2020), we report the 95% confidence intervals (CIs): the authors considered 500 repetitions,
which explain their smaller CIs. Black markers indicate the number of latent variables for which each method is evaluated: Buhai
et al. (2020) did not evaluate VI for K = 10 on the first five datasets. [Top] Averaged number of GT parameters recovered. [Bottom]
Percentage of runs where all the GT parameters are recovered. For overparametrized models with 16 or 32 latent variables, our method
always recovers a higher number of GT parameters. All the numerical values are reported in Appendix G.2, Table 9.

Figure 3. [Top left] Continuous GT parameters for the IMG dataset. Grey (resp. black) pixels correspond to failure probabilities of 0.1
(resp. 1.0). [Bottom left] 8 cluttered samples from the IMG dataset. [Top middle] GT binary features for the BD problem. [Bottom
middle] 4 samples from the BD dataset. [Right] Binary features learned with MP [top] and VI [bottom] for BD for a random seed.

on average at least seven (out of eight) GT parameters (b)
always performs better than VI. This gap is larger for the
first five datasets, which do not perturb the observations.

6.6. 2D Blind Deconvolution

Problem: Our next experiment is the 2D blind decon-
volution (BD) problem from Lazaro-Gredilla et al. (2021,
Section 5.6). The task consists in recovering two binary vari-
ables W and S from 100 binary images4 X ∈ {0, 1}n×p.
W (size: nfeat × featheight × featwidth) contains 2D binary
features. S (size: nimages × nfeat × actheight × actwidth) is a
set of binary indicator variables. S and W are combined
by convolution, placing the features defined by W at the
locations specified by S in order to form X . Unlike S, W is
shared by all images. The dimensions of the GT W used to
generate X are 4× 5× 5, but the authors set the dimensions
of the learned Ŵ to 5 × 6 × 6, which we do too. Figure
3[middle] shows the ground truth W and four samples from
X from the BD dataset. Appendix H.1 presents another ex-
ample from Lazaro-Gredilla et al. (2021), which visualizes
S,W and X on a simpler dataset. Note that the BMF exper-
iment, Section 6.5, is a particular case of BD: BD is a harder
problem. BD is also equivalent to learning a noisy-OR BN,
which we describe in Appendix H.2.

Methods compared: We compare full VI and MP with

4To generate the datasets, we use the publicly released code at
https://github.com/vicariousinc/perturb and max product

PMP (discussed in Section 6.4), which directly learns a
binary Ŵ by sampling from the joint posterior p(S,W |X).

Training: We train MP and full VI for 3, 000 steps on 80%
of the data, using full-batch gradients and a learning rate of
0.01. PMP has no training and, for inference, we use the
same priors as Lazaro-Gredilla et al. (2021).

Metrics: We report the test Elbo, the update time and the
test RE of each method. Here, the test RE is defined as
1
np∥X

test
RE −X test∥1, where X test

RE is computed by convolving
the estimated test feature locations Stest with the thresholded
learned features Ŵ thre. Finally, we match Ŵ thre with the
GT W using intersection over union (IOU) for matching
and report the features IOU—defined in Appendix H.3. For
PMP, we only report the test RE and features IOU.

Results: Table 4 averages the four metrics over 10 repe-
titions with random train-test splits. VI is 50 times slower
than our method and completely fails at recovering the la-
tent structure of the data, which leads to worse test metrics.
Again, PMP is a strong competitor. However, (a) it is sensi-
tive to the value of the priors of X , S and W , (b) it leads to
a test RE twice higher than MP, (c) it is memory-intensive.

Figure 3[right] shows the binary Ŵ thre learned with MP
and VI for a random seed—all the results are in Appendix
H.4. VI learns continuous features with failure probabilities
larger than 0.90 which leads to empty thresholded binary
features. MP recovers the four GT features and adds a
noisier feature in the first position (which has a smaller prior
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Figure 4. [Top-left] A continuous depth image from our 64× 64 augmented MNIST dataset and its color-coded cuts activations (each
color correspond to a different channel). [Bottom-left] Cuts activations per channel. [Middle] Our 13 learned binary features. [Top-right]
Cuts reconstructions on the test scenes. [Bottom-right] Corresponding features activations: each activation is associated with a feature.

and can be easily discarded) while VI fails. Finally, we refer
to Appendix H.5 for a comparison of the reconstructed test
images returned by our method and PMP.

Metrics Full VI PMP MP (ours)

Test RE (%) ↓ 23.46 (0.50) 6.65 (0.79) 2.96 (0.23)

Features IOU ↑ 0.00 (0.00) 0.94 (0.03) 0.99 (0.01)

Test Elbo ↑ −233.22 (1.33) N/A −43.12(1.36)

Update time (s) ↓ 24.65 (0.67) N/A 0.53(0.00)

Table 4. BD results averaged over 10 runs. Arrows pointing up
(down) indicate that higher (lower) is better. VI fails while our
method recovers all the features. PMP is a solid competitor.

6.7. Learning binary features from synthetic scenes

Problem: We discuss how the BD formulation can be
scaled and extended to learn binary features from synthetic
scenes of single objects with perfect depth. To do so, we
create a variation of the MNIST dataset (Deng, 2012) that
contains 3, 994 continuous depth imagesXs of size 64×64:
Figure 4[top-left] shows a depth image from our training
set. We introduce binary cuts variables C ∈ {0, 1}4×64×64

that are active whenever the depth difference between two
consecutive pixels is higher than a threshold ∆. That is,
we define (a) C1,r,c = 1 iff Xr,c+1 − Xr,c ≤ −∆, (b)
C2,r,c = 1 iff Xr,c+1 − Xr,c ≥ ∆, (c) C3,r,c = 1 iff
Xr+1,c−Xr,c ≤ −∆, (d)C4,r,c = 1 iffXr+1,c−Xr,c ≥ ∆.
As we see in Figure 4[bottom-left], the activations in C
capture the contours of the object, and the different channels
in C capture the verticality or horizontality of the cuts and
their border ownerships. We visualize all the cuts in 2D
on a single V ∈ {0, 1}128×128 image where, to display
the presence of cuts in-between pixels, we set V2r,2c+1 =
max(C1,r,c, C2,r,c) and V2r+1,2c = max(C3,r,c, C4,r,c). In
particular, V2r,2c = 0,∀r, c. Figure 4 refers to V as the “2D
cuts images” and color-codes the channel of each activation.

Learning: For each C, we aim at recovering 16 binary
features W ∈ {0, 1}16×4×5×5 (shared across Cs) and their
activations S ∈ {0, 1}16×60×60, such that C is obtained by
convolving W and S. Each feature in W is now of size
4× 5× 5 and has four channels. We train MP as in Section

6.6, using the parameters reported in Appendix C.4.

Results: Figure 4[middle] displays, after thesholding, the
13 learned binary cuts features in 2D: again, the cuts chan-
nels are color-coded. The features capture different ori-
entations of the digits: we learn horizontal, vertical and
diagonal lines. Note that, as cuts capture border ownership,
we learn two vertical and two horizontal features. The test
RE is 0.22%: Figure 4[top-right] represents the cuts recon-
struction on four test images and Figure 4[bottom-right]
represents the inferred activations S in 2D. Each activation
is associated with a feature identity, not represented here.
Finally, we refer to Appendix I for additional results.

7. Discussion
We have developed a fast, memory-efficient, stochastic algo-
rithm for training noisy-OR BNs using parallel max-product.
To scale MP to very large noisy-OR factors, we have turned
the max-product updates for a noisy-OR factor from ex-
ponential to linear in the number of variables. Contrary
to existing VI approaches with a recognition network, our
MP method induces explaining-away and recovers more
GT parameters on the OVPM datasets. In contrast with MF
VI approaches, our method (a) finds better local optima;
and (b) scales to large dense datasets. This explains, re-
spectively, why (a) it solves the BD and the BMF problems
while MF VI catastrophically fails; and (b) it is up to two
orders of magnitude slower. Finally, our method is more
memory-efficient than PMP. In addition, we have proposed
to use our method to guide VI and help it find better local
optima on the large sparse real Tensorflow datasets. The
main limitation of our method is that max-product requires
tractable factors: we cannot apply our algorithm to sigmoid
belief networks. Finally, as in the MNIST experiment, our
next line of work is to use our algorithm to train noisy-OR
BNs on visual scenes with complex objects to extract rich
latent representations, and build powerful PGMs for vision.
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A. Equivalent representation of a noisy-OR factor with optimized messages updates
We discuss herein an equivalent representation of the noisy-OR conditional distribution in Equation (1) that uses the tractable
factors supported by PGMax.

First, as we have observed in Section 4.1, for the messages from factors to variables, the max-product updates detailed in
Equations (3) require to loop through all the valid configurations of a factor. Let i be a variable in the graph, let Ni = |P(i)|
be the cardinality of the set P(i) of parents of i, and let P(i) = {j1, . . . , jNi}. The noisy-OR factor associated with
i, and described in Equation (1), connects the 2 + Ni variables {zi} ∪ {z0} ∪ zP(i), and has 22+Ni valid configuration.
Consequently, a naive implementation of the max-product message updates in Equations (3) has a complexity exponential in
the number of variables of the noisy-OR factors, which is prohibitively slow for large factors.

To remedy this, let us introduce a family of “noise-free” OR factors which are described by the conditional distribution

p(zi = 0 | zP(i)) =
∏

k∈P(i)

(1− zk). (9)

The noise-free OR factors simply express the logical condition zi = OR(zj1 , . . . , zjNi
). They do not involve the noisy-OR

parameters Θ defined in Equation (1).

It turns out that, for a “noise-free” OR factor, the messages updates derived in PGMax have a complexity linear in the
number of variables connected to this factor. Consequently, if we derive an equivalent representation of the noisy-OR
conditional distribution in Equation (1) that uses the noise-free OR conditional distribution in Equation (9), the cost of the
max-product messages updates (using PGMax) would go from O(2|P(i)|) down to O(|P(i)|).

zi

nOR

. . . zjNi
zj1z0

zi

OR

. . . z̃jNi
z̃j1z̃0

PW PWPWPW

. . . zjNizj1z0

Figure 5. [Left] Noisy-OR factor graph with conditional distribution given by Equation (1). [Right] Equivalent factor graph, which
involves a noise-free OR factor with conditional distribution given by Equation (9) and several pairwise factors. For the latter, PGMax can
perform GPU-accelerated messages updates with a complexity linear in the number of variables connected to the factor.

To this end, we define two factor graphs, which we both represent in Figure 5:

1. The first factor graph considers a single noisy-OR factor—nOR in Figure 5—which connects the leak variable z0 and
the parents variables zP(i) to the child variable zi via the noisy-OR conditional distribution defined in Equation (1).

2. The second factor graph introduces the auxiliary binary variables z̃0, z̃j1 , . . . , ˜zjNi
and connects them to the child

variable zi via the noise-free OR factor defined in Equation (9). In addition, for each k ∈ {0}∪P(i), there is a pairwise
factor—referred to as PW in Figure 5—that connects the variables zk and z̃k and that is defined by{

p(z̃k = 0 | zk = 0) = 1

p(z̃k = 0 | zk = 1) = exp(−θk→i)

which can be represented in a more compact form by

p(z̃k = 0 | zk) = exp(−θk→izk). (10)
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We aim at showing the equivalence between the two factor graphs. To this end, let us derive the conditional distribution of zi
given zP(i) for the second factor graph:

p(zi = 0 | zP(i)) =
∑

z̃0∈{0,1}, z̃P(i)∈{0,1}Ni

p(zi = 0, z̃0, z̃P(i) | zP(i))

=
∑

z̃0∈{0,1}, z̃P(i)∈{0,1}Ni

p(zi = 0 | z̃0, z̃P(i)) p(z̃0, z̃P(i) | zP(i)) by conditional independence

=
∑

z̃0∈{0,1}, z̃P(i)∈{0,1}Ni

∏
k∈{0}∪P(i)

(1− z̃k) p(z̃k | zk)

=
∏

k∈{0}∪P(i)

p(z̃k = 0 | zk) as the product cancels if any z̃k = 1

= exp(−θ0→i)
∏

k∈P(i)

exp(−θk→izk) using Equation (10) and z0 = 1,

which is exactly the noisy-OR conditional distribution Equation (1). This proves the equivalence between the two factor
graphs. In particular, we can use the second factor graph to represent a noisy-OR factor and benefit from the GPU-accelerated
messages updates from PGMax which have a complexity linear in the number of variables.

B. Graph generation procedure for multi-layered noisy-OR Bayesian networks
We describe below the graph generation procedure we use to build the multi-layered noisy-OR BNs in the tiny20 and the
Tensorflow experiments, Sections 6.2 and 6.3.

We assume we are given a binary matrix X ∈ {0, 1}n×p, where each row is a binary observation: as in Section 2 there are p
visible variables. In the case of the tiny20 and Tensorflow datasets, each visible variable corresponds to a word, and
each observation to a sentence or a document: Xij = 1 indicates that the jth word is present in the ith document.

Given an integer nlayers, we aim at building a noisy-OR Bayesian network with nlayers + 1 layers. The bottom layer (with
index nlayers) of the network contains all the visible nodes, while the trivial top layer (with index 0) only contains the leak
node. Our procedure builds the graph iteratively, from the top to the bottom by repeating the two following steps (for j
running from nlayers down to 1)

1. Build a distance matrix for the jth layer.

2. Create the variables of the j − 1th layer and add edges connecting the parents of the j − 1th layer to the children of the
jth layer.

We detail these two steps further below.

Distance matrix for the bottom layer: We first detail how we build the distance matrix for the bottom layer—which
contains all the visible variables. We start by building a vector of empirical word frequencies C ∈ {0, 1}p such that

Cj =
1

N

n∑
i=1

Xij , ∀j,

is the empirical probability that the jth word appears in a document. We also define a matrix of empirical co-occurrence
frequencies O ∈ {0, 1}p×p where

Ojk =
1

N

n∑
i=1

XijXik, ∀j, k,

is the empirical probability that the jth and kth words co-occur in a document. From there, we can define the empirical ratio

Rjk =
Ojk

CjCk
.
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Rjk possesses a few interesting properties. First, from the law of large numbers, when n grows to infinity, Cj → p(xj = 1),
Ojk → p(xj = 1, xk = 1) and consequently Rjk → p(xj=1,xk=1)

p(xj=1)p(xk=1) . Therefore, if the jth and kth words are independent,
the limit of Rjk in the case of an infinite amount of data is 1. If the limit of Rjk is higher than 1, then p(xj = 1, xk = 1) is
higher than the case where the variables are independent. Finally, Rjk can also be connected with the mutual information,
commonly used in information theory—see Globerson et al. (2004).

Given these properties, we propose to define the distance matrix associated with the bottom layer by

D
(nlayers)
jk = exp(−Rjk), ∀j, k.

Building the j − 1th layer and connecting it to the jth layer: Let j ≥ 2. We assume that the jth layer has d variables
and that we are given a distance matrix D(j) ∈ Rd×d

+ —we have described above how to build D(nlayers) for the bottom layer
which has p variables. We now describe how our procedure builds the j − 1th layer and adds edges between the jth and
j − 1th layers. To this end, we use two hyperparameters: (a) the ratio between the number of variables of the jth layer and
of the j − 1th layer, rchildren to parents (which we set to 3 in our experiments) (b) the number of nodes of the j − 1th layer that
each node of the jth layer will be connected with, nparents by node (which we set to 5).

As a first step, we use hierarchical clustering5 with average linkage on the distance matrix D(j) to form ⌊ d
rchildren to parents

⌋
clusters, with indices 1, . . . , ⌊ d

rchildren to parents
⌋. For each cluster m, we then create a variable for the j − 1th layer, z(j−1)

m .

We refer to label(z(j)k ) as the label returned by this clustering step for the kth variable z(j)k of the jth layer. We could then

add edges between the jth and j − 1th layers by going through the pairs of variables
(
z
(j)
ℓ , z

(j−1)

label(z(j)
ℓ )

)
ℓ
. However, if we

were doing so, each variable of the jth layer would only be connected to one variable of the j − 1th layer. The resulting
noisy-OR BN would not be able to induce explaining-away (see Section 2) as each effect would be connected to a single
cause. To allow inference to induce this appealing property, we propose to add extra edges to the graph by connecting each
variable of the jth layer to multiple variables of the j − 1th layer as follows. First, we define the distance from a variable
z
(j)
k of the jth layer to a variable z(j−1)

m of the j − 1th layer as the average distance from z
(j)
k to all the elements of the jth

layer with label m:

dist(z(j)k , z(j−1)
m ) =

1∣∣∣{ℓ : label(z(j)ℓ ) = m
}∣∣∣

∑
ℓ: label(z(j)

ℓ )=m

D
(j)
kℓ , ∀k,m.

Second, we add an edge connecting z(j)k to the nparents by node variables of the j − 1th layer with smallest dist(z(j)k , z
(j−1)
m ):

this intuitively connects z(j)k to the nparents by node labels it is the “closest”. Each variable of the jth layer is now connected to
the same number of variables of the j − 1th layer above. However, each variable of the j − 1th layer may be connected
to a different number of variables of the jth layer: we denote C(z(j−1)

m ) the set of indices of the variables of the jth layer
connected to z(j−1)

m . Let us note that, by definition, each node of the j − 1th and jth layer is also connected to the leak node.

Our last step is to define the symmetric distance matrix D(j−1) between two variables of the j − 1th layer, which we set to
the average distance of all the variables of jth layer connected to these two variables:

D(j−1)
m1,m2

=
1∣∣∣C(z(j−1)

m1 )
∣∣∣ ∣∣∣C(z(j−1)

m2 )
∣∣∣

∑
k∈C(z(j−1)

m1
)

∑
ℓ∈C(z(j−1)

m2
)

D
(j)
kℓ , ∀m1,m2.

Case j=1: When j = 1, as the 0th layer only consists of the leak node, we simply connect each node of the first layer to it.

Remark for the tiny20 graph: We mentioned that, for the tiny20 experiment, our graph contains 145 nodes and three
layers (excluding the top layer). Our graph can be indeed decomposed as follows. The bottom layer contains 100 visible
nodes, the second layer contains ⌊ 100

3 ⌋ = 33 hidden nodes, the first layer contains ⌊ 33
3 ⌋ = 11 hidden nodes and the top

layer only contains the leak node.

5We use the AgglomerativeClustering procedure from scikit-learn (Pedregosa et al., 2011).

14



Learning noisy-OR Bayesian Networks with Max-Product Belief Propagation

C. Initialization procedures
This section describes the initialization procedures used in the different experiments.

C.1. Tiny20 and large Tensorflow experiments

For each method used in the tiny20 and the Tensorflow experiments, Sections 6.2 and 6.3, we consider the four
following initializations for the failure, prior, and noise, probabilities:

1. all the failure probabilities, all the prior probabilities and all the noise probabilities are set to 0.5.

2. all the failure probabilities are set to 0.5, all the prior and noise probabilities are set to 0.1.

3. all the failure probabilities are set to 0.9, all the prior and noise probabilities are set to 0.1.

4. all the failure probabilities are set to 0.9, all the prior and noise probabilities are set to 0.5,

Once we have initialized the aforementioned probabilities, we initialize the parameters Θ accordingly by using the fact
that, that for a node i and a node k ∈ P(i), the failure probability is exp(−θk→i), while the noise probability—or prior
probability when P(i) is empty—is p(zi = 1 | zP(i) = 0, Θ) = 1− exp(−θ0→i).

For a given method and a given dataset, we run each initialization for 10 different seeds. We then report the results for the
initialization that leads to the best averaged test results.

C.2. BMF and BD experiments

For each method used in the BMF and BD experiments, Sections 6.4 and Sections 6.6, we initialize all the noise probabilities
to 0.01 and keep them fixed during training. We have found this to be particularly useful to avoid a local minima where
(a) the noise probabilities converge to the average number of activations of the visible variables (b) the prior probabilities
converge to 0.

We consider the four following initializations of the remaining failure and prior probabilities:

1. all the failure probabilities and all the prior probabilities are set to 0.5.

2. all the failure probabilities are set to 0.5, all the prior probabilities are set to 0.1.

3. all the failure probabilities are set to 0.9, all the prior probabilities are set to 0.1.

4. all the failure probabilities are set to 0.9, all the prior probabilities are set to 0.5,

In addition, the solution to the BMF and to the BP problems are invariant to certain permutations. For instance, a solution to
the BMF problem is invariant to applying the same permutation on the columns of U and the rows of V , while a solution to
the BD problem is invariant to applying the same permutation on the features indices (the first dimension) of both W and S.
A uniform initialization would then induce symmetries in the parameters during training. To break these symmetries, we
add some centered Gaussian noise N (0, 0.1) to the failure and prior probabilities, before projecting them to [0, 1].

As before, after initializing the failure and prior probabilities (and adding the Gaussian noise), we initialize the parameters Θ
accordingly. For a given method and experiment, we run each experiment for 10 different seeds and report the initialization
that leads to the best averaged test results.

C.3. OVPM experiment

For the overparametrization experiment, Section 6.5, we follow a very similar procedure to Section C.2, but we only consider
the initialization methods 3 and 4, and run each initialization for 50 seeds.

C.4. MNIST experiments

For the feature learning experiment on MNIST, Section 6.7, the failure probabilities are set to 0.9 and the prior probabilities
are set to 0.1 and the noise probabilities are set to 0.01.
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D. Estimating the mode of the model posterior after inference
Given a test sample x, we discuss how to estimate the mode of the model posterior hMAP ≈ argmaxh p(h|x,Θ) when we
use VI and MP at inference time. We use this posterior mode estimation in our experiments to compute (a) ElboMP in the
tiny20 and the Tensorflow experiments, Sections 6.2 and 6.3, and (b) the test reconstruction errors in the BMF and
BD experiments, Sections 6.4 and 6.6.

For MP, we estimate hMAP by clamping the visible variables to their observed value and running max-product with a noise
temperature T = 0. This is exactly the inference query (b) discussed in Section 5.

For VI, the inference from Ji et al. (2020) gives access to the mean-field posterior parameters, that is, the parameters such
that, the approximate posterior distribution factorizes as q(h|x) =

∏
i∈H qhi

i (1− qi)
1−hi . We then estimate the mode of the

posterior element-wise via rounding: hMAP
i = 1(qi ≥ 0.5), ∀i.

E. Performance comparisons of ElboMP and ElboVI

This section compares ElboMP with ElboVI for the methods evaluated in the tiny20 and the Tensorflow experiments,
Sections 6.2 and 6.3.

1. ElboVI is computed by running the inference algorithm of Ji et al. (2020)—which we have reimplemented.

2. To compute ElboMP, we estimate the posterior mode hMAP as detailed in Section D, then plug it into Equation (7).

E.1. For a binary posterior, ElboVI is a lower-bound of ElboMP

We start by presenting the proof of a claim we made in Section 5.3. We said that, for a binary observation x ∈ {0, 1}p, if
the posterior h̃(x, T ) is binary, then ElboVI is a lower-bound of ElboMP. To prove this point, let us assume that h̃(x, T ) is
binary, let us introduce z = (z0, h̃(x, T ), x) and let us recall that ElboMP is defined in Equation (7) as:

L(x,Θ) =

m+n∑
i=1

zi log
(
1− exp

(
−θ0→i −

∑
k∈P(i)

θk→izk

))
+ (1− zi)

(
−θ0→i −

∑
k∈P(i)

θk→izk

)

=

m+n∑
i=1

zif
(
θ0→i +

∑
k∈P(i)

θk→izk

)
+ (1− zi)

(
−θ0→i −

∑
k∈P(i)

θk→izk

)
,

(11)

where we have used f(β) = log(1− exp(−β)). Equation (11) is exactly Equation (3) in Ji et al. (2020) in the case of a
binary posterior. From there, as θ0→i ≥ 0 and θk→izk ≥ 0, ∀k ∈ P(i), the authors introduced an auxiliary parameter rk→i

for each edge connecting a non-leak parent variable to a child variable such that

rk→i ≥ 0, ∀k ∈ P(i); and
∑

k∈P(i)

rk→i = 1.

Consequently
∑

k∈P(i) rk→izk ∈ [0, 1]. As f is concave, the authors use Jensen’s inequality to get the following lower-
bound:

f

(
θ0→i +

∑
k∈P(i)

θk→izk

)
= f

((
1−

∑
k∈P(i)

rk→izk

)
θ0→i +

∑
k∈P(i)

rk→izk

(
θ0→i +

θk→i

rk→i

))

≥
(
1−

∑
k∈P(i)

rk→izk

)
f(θ0→i) +

∑
k∈P(i)

rk→izkf(uk→i) where uk→i = θ0→i +
θk→i

rk→i

= f(θ0→i) +
∑

k∈P(i)

rk→izk

(
f(uk→i)− f(θ0→i)

)
(12)

By pairing Equations (11) and (12) we get:

L(x,Θ) ≥
m+n∑
i=1

zi

f(θ0→i) +
∑

k∈P(i)

rk→izk

(
f(uk→i)− f(θ0→i)

)+ (1− zi)
(
−θ0→i −

∑
k∈P(i)

θk→izk

)
. (13)
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The right-hand size of Equation (13) is exactly ElboVI in the case of a binary posterior, as defined in Equation (9) in
Ji et al. (2020). Consequently, Equation (13) proves that for a binary posterior, ElboMP is a tighter lower-bound of the
intractable log-likelihood of a noisy-OR BN than ElboVI. Hence, in all our experiments, we never compute ElboVI for a
binary posterior.

E.2. Performance comparisons on the tiny20 dataset

Table 5 reports the averaged test ElboMP and ElboVI on the tiny20 dataset. Standalone MP is trained with Algorithm 1 to
optimize ElboMP. As a result, the MP parameters land in a local optima of this loss and MP reaches the highest test ElboMP.
MP is also the worst performer for ElboVI as it has not been exposed to this loss during training.

In comparison, all the methods trained with ElboVI (including the hybrid method MP+VI) perform better at test time for
ElboVI than for ElboMP. Full VI performs particularly poorly for ElboMP as it has never been exposed to it during training.

Finally, Table 5 suggests that initializing the VI training with MP helps VI find a better local optima of ElboVI, which is
why our hybrid method reaches the best overall lower bound—while maintaining a high ElboMP.

Method Num iters Test ElboMP Test ElboVI

Full VI 1.5k −14.80 (0.03) −14.41 (0.02)

Full VI 5k −14.85 (0.03) −14.40 (0.02)

Local VI 1.5k −14.65 (0.03) −14.43 (0.02)

Local VI 5k −14.64 (0.03) −14.43 (0.02)

MP (ours) 1k −14.49 (0.03) −14.49 (0.03)

MP + VI (ours) 1.5k −14.55(0.02) −14.34 (0.02)

Table 5. Test ElboMP and ElboVI on the tiny20 dataset averaged over 10 runs.

E.3. Performance comparisons on the large sparse Tensorflow datasets

Table 6 reports the averaged ElboMP and ElboVI on the large sparse Tensorflow datasets. As before, standalone MP is
the worst performer for ElboVI as it has not been exposed to this loss during training. Local VI is also the worst overall
method for ElboMP for a similar reason. However, it performs better than MP on two datasets, which suggests that, for these
datasets, standalone MP is stuck in a local optima during its training.

Our hybrid method is the best performer for both ElboMP and ElboVI, which shows that our MP approach finds a good
area of the parameters space, that is further refined during the VI optimization of ElboVI. As a result, the hybrid scheme
improves the overall performance of each noisy-OR model.

Dataset Local VI, ElboMP MP, ElboMP Hybrid, ElboMP Local VI, ElboVI MP, ElboVI Hybrid, ElboVI

Abstract −342.79 (0.05) −342.48 (0.07) −327.73 (0.06) −327.19 (0.05) −335.56 (0.05) −324.89 (0.05)

Agnews −134.98 (0.07) −140.48 (0.05) −127.75 (0.02) −130.90 (0.07) −137.88 (0.08) −126.48 (0.02)

IMDB −450.48 (0.06) −438.16 (0.04) −431.34 (0.03) −429.53 (0.02) −436.96 (0.04) −428.40 0.01

Patent −619.75 (0.07) −595.91 (0.10) −586.08 (0.05) −578.41 (0.04) −590.33 (0.09) −578.33 (0.07)

Yelp −303.31 (0.07) −308.58 (0.09) −294.38 (0.02) −294.16 (0.05) −302.75 (0.07) −292.08 (0.02)

Table 6. Test ElboMP and ElboVI on the large Tensorflow datasets averaged over 10 runs.

F. Additional materials for the large sparse Tensorflow datasets
This section reports some statistics for the large Tensorflow datasets used in Section 6.3, as well as a timing comparison of
the different methods used.
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F.1. Datasets statistics

For the five large Tensorflow datasets, Table 7 below gives access to (a) the full name of the dataset, as it appears in the
catalog accessible at https://www.tensorflow.org/datasets/catalog (b) the feature name used when loading the dataset (c)
the number of edges in the BNs returned by our graph generation procedure (detailed in Appendix B) (d) the train and test
set sizes. In particular, the BNs returned by our procedure have a similar number of edges. This is explained by the fact
that, for all the datasets, we use the same number of visible variables—10, 000—during the preprocessing, and the same
hyperparameters during the BN generation.

Dataset Full name Feature name Number of edges Train set Test set

Abstract scientific papers abstract 90, 554 203, 037 6, 440

Agnews ag news subset description 89, 508 120, 000 7, 600

IMDB imdb reviews text 91, 234 25, 000 25, 000

Patent big patent/f description 90, 606 85, 568 4, 754

Yelp yelp polarity reviews text 91, 111 560, 000 38, 000

Table 7. Tensorflow datasets full names and statistics.

F.2. Update times for local VI and MP

Table 8 reports the update time of local VI and MP on the Tensorflow datasets, which we have defined in Section 6.3 as
the average time for one gradient step. The MP gradients updates detailed in Algorithm 1 run at a very similar speed on
all the datasets. Indeed, the complexity of the messages updates is similar across the datasets as (a) as the different BNs
have a similar number of edges (as seen in Table 7) (b) MP does not use exploit the sparsity of the data and represents each
sentence by a vector x ∈ {0, 1}10,000.

In contrast, as explained in Section 3, the local models in VI represent each sentence by its active visible variables and by
their ancestors. We have set the number of active visible variables per sentence to be at most 500, and in practice it can
be lower—some datasets only have a few tenths of active variables on average. Consequently, local VI represents sparse
data using arrays three orders of magnitudes smaller than MP. Hence, although local VI updates its variational parameters
sequentially, it is reasonably fast. Nonetheless, its update time is dataset-specific and it is two to four times slower than MP.

Dataset Local VI MP (ours)

Abstract 17.71 (0.05) 7.51 (0.01)

Agnews 13.12 (0.07) 7.39 (0.00)

IMDB 32.52 (0.11) 7.51 (0.00)

Patent 18.72 (0.15) 7.50 (0.00)

Yelp 18.89 (0.04) 7.49 (0.00)

Table 8. Update times, in seconds, for local VI and MP on the large sparse Tensorflow datasets averaged over 10 runs.
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G. Additional material for the overparametrization experiment
This section contains some additional materials for the overparametrization experiment presented in Section 6.5. First, we
discuss the method proposed in Buhai et al. (2020) to compute the number of GT parameters recovered during training.
Second, we report the table of results associated with Figure 2.

G.1. Computing the number of ground truth parameters recovered

We consider a trained noisy-OR BN withK ≥ 8 latent variables and learned parameters Θ̂ = (V̂ 1, . . . , V̂ K , θ̂1, . . . , θ̂K , θ̂
x).

We follow the procedure of Buhai et al. (2020) to count the number of recovered GT parameters V 1, . . . , V 8—let us trivially
note that are at most eight recovered GT parameters.

First, we discard the V̂ k with a prior probability 1− exp(−θ̂k) lower than 0.02. Second, we perform minimum cost bipartite
matching between the non-discarded learned parameters and the GT ones V 1, . . . , V 8, using the ℓinf norm as the matching
cost. Finally, we count as recovered all the GT parameters with a matching cost lower than 1.0.

G.2. Table of results

Table 9 reports the numerical results of the OVPM experiment which are displayed in Figure 2, Section 6.5. For VI, we take
the numbers from Tables 2 and 5 in the appendices of Buhai et al. (2020), which are averaged over 500 repetitions. For MP,
our results are averaged over 50 seeds. As in Buhai et al. (2020), we report the 95% confidence intervals of each method.

Dataset VI MP (ours)

Name Latent variables Parameters recovered Full recovery (%) Parameters recovered Full recovery (%)

IMG 8 6.31 (0.11) 29.6 (4.0) 6.52 (0.24) 26.0 (12.1)
10 N/A N/A 7.44 (0.25) 72.0 (12.5)
16 7.62 (0.06) 73.6 (3.9) 7.88 (0.13) 94.0 (6.0)
32 7.75 (0.05) 79.6 (3.5) 7.84 (0.15) 92.0 (7.5)

PLNT 8 4.71 (0.12) 0.4 (0.6) 6.60 (0.18) 0.0 (0.0)
10 N/A N/A 7.06 (0.15) 14.0 (9.6)
16 6.83 (0.12) 45.0 (4.4) 7.70 (0.13) 70.0 (12.7)
32 6.57 (0.11) 38.4 (4.3) 7.74 (0.15) 78.0 (11.5)

UNIF 8 5.35 (0.14) 12.6 (2.9) 7.20 (0.27) 60.0 (13.6)
10 N/A N/A 7.96 (0.08) 98.0 (3.9)
16 7.78 (0.05) 85.4 (3.1) 8.00 (0.00) 100.0 (0.0)
32 7.87 (0.04) 88.2 (2.8) 8.00 (0.00) 100.0 (0.0)

CON8 8 3.70 (0.15) 1.2 (1.0) 6.84 (0.27) 42.0 (13.7)
10 N/A N/A 7.96 (0.08) 98.0 (3.9)
16 5.77 (0.15) 23.6 (3.7) 7.96 (0.06) 98.0 (3.9)
32 7.45 (0.08) 71.6 (4.0) 8.00 (0.00) 100.0 (0.0)

CON24 8 2.26 (0.15) 0.4 (0.6) 7.48 (0.24) 74.0 (12.2)
10 N/A N/A 7.92 (0.00) 96.0 (5.4)
16 4.90 (0.21) 17.2 (3.3) 8.00 (0.00) 100.0 (0.0)
32 7.21 (0.10) 53.8 (4.4) 7.96 (0.08) 98.0 (3.9)

IMG-FLIP 8 4.40 (0.10) 0.2 (0.4) 4.30 (0.32) 0.0 (0.0)
10 6.09 (0.12) 20.0 (3.5) 7.14 (0.33) 64.0 (13.3)
16 6.88 (0.09) 27.0 (3.9) 7.76 (0.18) 88.0 (9.0)
32 N/A N/A 7.84 (0.15) 92.0 (13.5)

IMG-UNIF 8 4.95 (0.12) 0.0 (0.0) 4.16 (0.28) 0.0 (0.0)
10 N/A N/A 6.08 (0.32) 16.0 (12.2)
16 7.27 (0.09) 59.0 (4.3) 7.72 (0.19) 86.0 (9.6)
32 7.76 (0.05) 80.0 (3.5) 8.00 (0.00) 100.0 (0.0)

Table 9. Numerical results for the OVPM datasets. We use N/A to express that Buhai et al. (2020) did not evaluate VI for the associated
number of latent variables. Our method outperforms VI on all the datasets. In particular, it always recovers more GT parameters in the
overparametrized regime, that is for 16 or 32 latent variables. The performance gap is larger for the first five datasets (IMG, PLNT, UNIF,
CON8, CON24) for which the data is not perturbed.
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H. Additional material for the 2D blind deconvolution experiment
This section contains some additional materials for the 2D blind deconvolution (BD) experiment presented in Section 6.6.
First, we discuss a simple example from Lazaro-Gredilla et al. (2021) which illustrates the generative process of the BD
dataset. Second, we express the BD problem as a learning problem in a noisy-OR BN. Third, we define the features IOU
metric used in Table 4. Finally, we display the continuous and binary features learned by each method, as well as the
reconstructed test images for MP and PMP.

H.1. A simple example

Figure 6 uses a simple example from Lazaro-Gredilla et al. (2021) to illustrate the generative process of the BD dataset. The
small dataset considered here only contains two independent binary images: each image X ∈ {0, 1}15×15 is formed by
convolving the shared binary features W ∈ {0, 1}5×6×6 with the image-specific binary locations S ∈ {0, 1}5×10×10.

W contains five features, each of size 6× 6. S contains the locations of the features, which are sampled at random using
an independent Bernoulli prior per entry: p(Sf,i,j = 1) = 0.01, ∀f, i, j. The top (resp. bottom) row of S indicates the
locations of the features in the top (resp. bottom) image of X . The jth column of S corresponds to the locations of the jth
feature in W . For instance, the two activations on the right of the top-left block of S, means that the first feature in W will
appear twice on the right of the first image of X . This is verified by the two anti-diagonal lines in the top row of X .

Figure 6. Simple binary convolution example from Lazaro-Gredilla et al. (2021), with features W , locations S and resulting images X .

H.2. The BD problem can be expressed as learning a noisy-OR Bayesian network

The 2D BD problem can be expressed as a learning problem in the noisy-OR BN detailed below.

Let N × P be the size of an image X . As W is of size nfeat × featheight × featwidth, S is of size nimages × actheight × actwidth,
and X is produced from S and W by convolution, let us first note that

N = actheight + featheight − 1

P = actwidth + featwidth − 1

In addition, for a pixel with indices (n, p), let us introduce the set of indices:

I(n, p) =


(i, j, k, ℓ) :

1 ≤ i ≤ actheight

1 ≤ j ≤ actwidth

1 ≤ k ≤ featheight

1 ≤ ℓ ≤ featwidth

i+ k − 1 = n

j + ℓ− 1 = p


.

The BD problem is equivalent to learning a noisy-OR BN where (a) the visible nodes are X (b) the hidden nodes are S
(c) the positive continuous parameters are θx ∈ R+, θ1, . . . , θnfeat ∈ R+, and Ŵ∈Rnfeat×featheight×featwidth

+ and we denote Θ =

(θx, θ1, . . . , θnfeat , Ŵ ) (d) the prior probability of each entry of S, for the f th feature f is p(Sf,i,j = 1) = 1−exp(−θf ),∀i, j
(e) the conditional probability of the pixel Xnp is given by
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p(Xnp = 1 | S,Θ) = 1− exp

(
− θx −

∑
1≤f≤nfeat

∑
(i,j,k,ℓ)∈I(n,p)

Sf,i,jŴf,k,ℓ

)

In particular, the noise probability of each visible variable is equal to 1− exp(−θx).

H.3. Computing the features intersection-over-union

Let us first define the intersection-over-union (IOU) between a thresholded learned feature Ŵ thre
j ∈ {0, 1}6×6 and a GT

feature Wk ∈ {0, 1}5×5. To do so, we introduce the four sub-features Ŵ thre
j,1 , . . . , Ŵ

thre
j,4 ∈ {0, 1}5×5 of same size as Wk,

obtained by removing the first or last row, and the first or last column of Ŵ thre
j . We then compute:

IOU(Ŵ thre
j ,Wk) = max

ℓ=1,...,4


∑

1≤n,p≤5

AND
((
Ŵ thre

j,ℓ

)
np

= 1,
(
Wk

)
np

= 1
)

∑
1≤n,p≤5

OR
((
Ŵ thre

j,ℓ

)
np

= 1,
(
Wk

)
np

= 1
)
 .

The IOU is always between 0 and 1: IOU = 0 means that Ŵ thre
j = 0 whereas IOU = 1 of one means that one of the

sub-features Ŵ thre
j,1 , . . . , Ŵ

thre
j,4 is equal to Wk.

After training our noisy-OR BN on the BD problem, we perform minimum bipartite matching between the learned binary
features Ŵ thre

1 , . . . , Ŵ thre
5 and the GT binary features W1, . . . ,W4, using the opposite of the IOU as the matching cost—as

we want to maximize the IOU. We then define the features IOU as the average matching cost: a feature IOU of 1 means that
we have recovered the four GT features whereas a feature IOU of 0 means that training has not learned any information.

H.4. Learned binary features

Our next Figure 7 plots the five continuous parameters Ŵ and the corresponding binary features Ŵ thre learned by MP, VI,
and PMP for each of the 10 seeds. Note that the order of the features is not relevant here, as it depends on the random noise
added to the unaries of each model during the initialization—as discussed in Appendix A.

VI completely fails at this task: all the learned failure probabilities are higher than 0.90 and are not visible in Figure 7[third
panel]. As a result, all the learned binary features in the fourth panel are empty.

As PMP directly turns to posterior inference, the learned features Ŵ are binary so we only have one plot. PMP perfectly
recovers the four GT features W for seven of the ten runs. It misses two features on one run, and only misses one pixel of
one feature on two runs (see fith panel). As the learned Ŵ thre contains five features while the GT W only contains four
features, each run also learns an extra feature. However, PMP does not provide a way to discard this extra element.

In contrast, as we see on the second panel, MP successfully recovers the four GT features—as well as an extra one—for
nine runs, and only misses one pixel of one feature for the other run. This is why MP reaches the highest features IOU in
Table 4. The noisy-OR BN trained with MP also learns a prior probability for each feature: the additional feature is always
the one with the lowest prior, and can be easily discarded.
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Figure 7. [First panel] Continuous Ŵ learned with MP. [Second panel] Binary Ŵ thre learned with MP. [Third panel] Continuous Ŵ
learned with VI. [Fourth panel] Binary Ŵ thre learned with VI. [Fifth panel] Binary Ŵ learned with PMP.

H.5. Reconstructed test images

Finally, Figure 8 compares the performance of MP and PMP for reconstructing the test scenes on one seed selected at
random. We see that PMP performs well, and that our method achieves an almost perfect test reconstruction, which explains
that it reaches the lowest test RE in Table 4, Section 6.6.

Figure 8. [Left] Ground truth test scenes for a random seed. [Middle] Test reconstructions returned by our MP method. [Right] Test
reconstructions returned by PMP.
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I. Additional material for the feature learning experiment on synthetic scenes
Our last Figure 9 displays additional depth images from our test set derived from MNIST as well as their respective (a)
ground truth 2D cuts images, (b) reconstructed 2D cuts images and (c) activations in 2D. The noisy-OR framework learns
sparse representations of contours. It could then be extended to more layers to build a hierarchy of features; or paired with a
discrete attention mechanism in PGMs, such as the one proposed in Zhou et al. (2021) for object-agnostic modeling.

Figure 9. [Left] Six depth scenes from the test set. [Middle left] Ground truth color-coded 2D cuts images. [Middle right] Reconstructed
color-coded 2D cuts images. [Right] Sparse features activations, represented in 2D.
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