

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ONLINE VERSATILE INCREMENTAL LEARNING: TO- WARDS CLASS AND DOMAIN-AGNOSTIC ADAPTATION AT ANY TIME

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Continual learning enables vision systems to adapt to ever-changing data distributions. Despite significant advances, existing approaches fail to capture the seamless, concurrent transitions, a critical capability for real-world deployment. This work introduces **Online VIL (Online Versatile Incremental Learning)**, a novel scenario where class concepts and visual domains evolve simultaneously online without explicit boundaries. To better adapt to the challenges of such dynamic environments that more closely resemble real-world conditions, we propose a novel framework **TopFlow**, **Topology preservation with Flow** matching representation that contains two complementary mechanisms: **Domain-agnostic Flow Matching (DFM)** and **Global Topology Preservation (GTP)**. DFM guides the model to have domain-agnostic representations by integrating the geodesic flow kernel into contrastive learning. In contrast, GTP maintains the global structure of the feature space without explicitly storing past examples. Our extensive experiments demonstrate that TopFlow effectively addresses the limitations of existing methods within the Online VIL scenario, achieving state-of-the-art performance in challenging Online VIL. The proposed methods suggest potential directions for building continual learning systems in realistic dynamic environment.

1 INTRODUCTION

Continual Learning (CL) (Li & Hoiem, 2017a; Kirkpatrick et al., 2017; Wang et al., 2022a;c;b; Smith et al., 2023; Zhang et al., 2023; Park et al., 2024a) has gained increasing attention as deep learning moves closer to the real world, where data distributions evolve. A key challenge is catastrophic forgetting, where adapting to new knowledge disrupts previous knowledge. To mitigate this, prior research has introduced distinct paradigms such as Class Incremental Learning (CIL) and Domain Incremental Learning (DIL), each targeting a specific form of non-stationarity. More recently, Online Continual Learning (OCL) (Wang et al., 2023a; Wei et al., 2023; He et al., 2024) has been proposed to handle streaming data under memory and single-pass constraints, including scenarios with blurry task boundaries (Koh et al., 2021; Bang et al., 2021; Moon et al., 2023). However, most studies still rely on CIL or DIL, limiting their ability to capture the full complexity of real-world dynamics.

A recently introduced Versatile Incremental Learning (VIL) (Park et al., 2024b) suggests a more realistic scenario where new tasks have a broader chance to evolve in both directions of the classes and domains, without prior knowledge. While VIL marks a divergence from realism, it assumes discrete increments provide implicit structural information about distribution shifts. In contrast, real-world environments exhibit continuous transitions without boundaries, offering no such organizational cues. Moreover, environmental change in reality is continuous and unpredictable, due to locally constrained information and multi-factor interactions. For instance, an autonomous driving system may suddenly face both a new object and a shift in weather or city conditions, requiring immediate (online) adaptation without knowing whether it concerns classes, domains, or both.

To this end, we introduce **Online Versatile Incremental Learning (Online VIL)**, a new scenario that captures both the unpredictable heterogeneous shifts in an online manner. Online VIL is distinguished by reflecting the evolution of the natural information stream, characterized by unpredictable, gradual, and heterogeneous shifts that occur along multiple evolutionary trajectories. As shown in Figure 1,

Figure 1: Conceptual comparison of (a) Class Incremental Learning (CIL), (b) Domain Incremental Learning (DIL), (c) Versatile Incremental Learning (VIL), and (d) Online Versatile Incremental Learning (Online VIL, Ours). Red lines indicate the scopes observable at once, while black dashed lines depict transitions across time.

Online VIL ensures a degree of freedom for transition; each sequence presents distinct challenges without heuristic patterns. Consequently, Online VIL enables faithful evaluation of CL models and provides a foundation for systems that operate under real-world dynamics.

In the Online VIL scenario, adaptation to chaotic shifts in classes and domains without explicit access to prior inputs is crucial for distinguishing class-discriminative knowledge from domain-specific knowledge. Otherwise, models rely on the spurious features of current distributions and tend to exhibit rapid forgetting and a lack of generalization. Through systematic layer-wise feature analysis of pre-trained Vision Transformers, we observe that early layers predominantly capture domain-specific patterns (e.g., texture, lighting), while deeper layers encode class-discriminative features and more abstract semantic representations. This motivates a novel **Domain-agnostic Flow Matching (DFM)** technique, which aligns features with the intrinsic geometry of pre-trained knowledge through reconceptualized geodesic flow kernel (Gong et al., 2012) while mitigating domain-specific shifts.

In addition to class and domain-agnostic alignment, preserving the global topology of learned features is essential for maintaining semantic continuity across evolving tasks. Conventional objectives often fail to maintain the structural relationships of feature space because they shrink the occupation of missing classes in the feature space. To address this, we propose **Global Topology Preservation (GTP)**, which preserves invariant geometric configurations in feature space, enabling robust knowledge retention without requiring complete class coverage.

Integrating these components, we introduce **Topology** preservation with **Flow** matching representation (**TopFlow**), a novel framework designed for Online VIL. With recognition of DFM and GTP regularization for geometry, TopFlow ensures robust adaptation to unpredictable shifts. To evaluate its effectiveness, we conduct extensive experiments in Online VIL and observe that TopFlow consistently outperforms existing state-of-the-art methods across multiple benchmarks.

Our contributions are summarized as follows:

- We introduce **Online VIL**, a realistic scenario for evaluating continual learning under continuously evolving both class and domain distributions with ambiguous task boundaries.
- We reveal a novel role of the pre-trained ViT layer that encodes class and domain knowledge. Leveraging this insight, we propose Domain-agnostic Flow Matching (**DFM**) to learn domain-agnostic representations by integrating the geodesic flow kernel into contrastive learning.
- We propose Global Topology Preservation (**GTP**), a mechanism for maintaining knowledge representations using feature topologies without explicit memory of previous inputs.
- We demonstrate that the proposed **TopFlow** significantly outperforms existing state-of-the-art methods through comprehensive experiments in our challenging Online VIL scenario.

2 RELATED WORK

2.1 ONLINE CONTINUAL LEARNING

Online Continual Learning (OCL) (De Lange et al., 2021; Gunasekara et al., 2023) has emerged as a pragmatic paradigm that reflects the challenges of real-world settings, where data arrive as continuous

streams and models must operate under minimal batch sizes, single-pass constraints, and strict computational and memory limitations. Traditionally, OCL methods rely on replay buffers (Rolnick et al., 2019; Mai et al., 2021) to store a small subset of past data, thereby mitigating catastrophic forgetting while learning new tasks. Recent advances explore leveraging prototypes (Wei et al., 2023), replay-free strategies (Zajac et al., 2024), and pre-trained models with prompt (Moon et al., 2023). While effective in class or domain increments, this dependence on memory limits scalability and realism. Methods addressing more realistic scenarios with blurry or ambiguous task boundaries have emerged (Koh et al., 2021; Bang et al., 2021). However, the replay methods require growing memory in proportion to task diversity. Also, blurry boundary methods still assume either class-only or domain-only shifts, failing to capture the heterogeneous evolution of a realistic data stream.

Therefore, we propose Online Versatile Incremental Learning (Online VIL). This scenario exposes models to unpredictable shifts in both classes and domains while enforcing online constraints that limit memory and multi-pass access.

2.2 GEODESIC FLOW KERNEL

The Geodesic Flow Kernel (GFK) (Gong et al., 2012; Gopalan et al., 2011) has been widely used in unsupervised domain adaptation to align feature distributions between a predefined source and target domain. Conventional applications approximate the geodesic on the Grassmannian manifold between two static domains, which requires that the data of the source and target domains are fully available and static. In contrast, Online VIL presents unique challenges: domain shifts occur continuously and unpredictably, and data arrive sequentially, making it impossible to estimate the flow offline.

To address these challenges, we reformulate the approach from GFK and design a novel Domain-Agnostic Flow Matching (DFM). Unlike traditional geometry estimation in feature space, DFM is designed for sequentially arriving data and evolving domains without relying on holistic data access. Through both empirical and theoretical analysis of feature geometry, DFM enables online alignment on feature geometry in dynamic conditions, avoiding computationally expensive higher-order manifold computations. This design fundamentally extends the applicability and purpose of GFK, enabling robust domain-agnostic feature matching in the OCL.

2.3 FEATURE TOPOLOGY

Several works have leveraged the topology of feature space to mitigate catastrophic forgetting in sequential learning. Tao et al. (2020a) employs elastic Hebbian graphs to preserve neighborhood relationships during incremental updates, while Tao et al. (2020b) uses self-organizing maps to identify representative feature points and restrict their displacement. More recent approaches, such as Liu et al. (2022) and Wang et al. (2023b), maintain pair-wise instance similarity or local topological relations by decomposing the global structure, further reducing forgetting across tasks.

However, these methods are limited to offline CL, requiring full access to past samples to construct the feature topology. Furthermore, existing topology preservation methods rely on complete semantic information across all classes. In online scenarios where only partial class information is available at each time step, these methods suffer from incomplete topology construction, resulting in suboptimal feature space organization. In contrast, our work proposes a Global Topology Preservation (GTP) strategy that maintains structural knowledge without requiring the storage of previous data.

3 METHOD

3.1 PROBLEM SETUP: ONLINE VERSATILE INCREMENTAL LEARNING

In real-world scenarios, data distributions gradually evolve, often exhibiting significant variability across multiple dimensions such as spatial domains, semantic classes, and temporal shifts. We propose a novel scenario termed Online Versatile Incremental Learning (Online VIL), which simulates these properties by constructing a continuous data stream with stochastically varying distributions.

Given a dataset with n_D domains and n_C classes, we define the product category space as follows:

$$\mathcal{X} = \bigcup_{i=1}^{n_D} \mathcal{D}_i, = \bigcup_{j=1}^{n_C} \mathcal{C}_j, = \bigcup_{i=1}^{n_D} \bigcup_{j=1}^{n_C} \mathcal{K}_{i,j}, \quad \text{where } \mathcal{K}_{i,j} = \mathcal{D}_i \cap \mathcal{C}_j, \quad (1)$$

Figure 2: Analysis of layer-wise knowledge on pre-trained ViT for data with changing distributions (CORe50). (a) t-SNE visualization of features from certain layers of the pre-trained ViT. The color indicates the domain. (b) The t-SNE visualization of the last layer with class-wise color. (c) Accuracy of linear probing for class and domain classification from different layers.

where \mathcal{D}_i is a set of samples in a domain i and \mathcal{C}_j is in a class j , and $\mathcal{K}_{i,j}$ is samples that belong to domain i and class j . Machine learning typically assumes the data \mathcal{X} as a lower-dimensional manifold embedded in a high-dimensional space Cayton et al. (2005). In this context, we can conceptualize the data stream as a trajectory through the joint domain-class space, where each timestep t provides an observation window $\mathcal{V}_t \subset \mathcal{X}$ which is a disjoint open neighborhood of data \mathcal{X} . This geometric interpretation naturally leads to our manifold-based approach in the subsequent technical development. Inspired by Si-Blurry (Moon et al., 2023), we divide categories into disjoint sets ($\mathcal{K}_{\text{disjoint}}$) with clear distributional boundaries and blurry sets ($\mathcal{K}_{\text{blurry}}$) with deliberately abstracted distributions.

Algorithm A.1 in Appendix details our task construction process, which proceeds in six main steps: (i) *category partitioning* to establish variable distributional clarity, (ii) *sample extraction* to create diverse distributional patterns, (iii) *sample redistribution* to simulate realistic category overlap, (iv) *randomized task assignment* to eliminate artificial task boundaries, (v) *task construction* with varying characteristics, and (vi) *batch generation* with constrained visibility windows. The Online VIL scenario distinguishes itself from traditional CL scenarios through three key characteristics:

1. **Locally Limited Visibility.** At any time step, the model observes only a small fraction in both number of samples ($|\mathcal{V}_t| \ll |\mathcal{D}|$) and categories ($\exists \mathcal{K}_{i,j} : x \in \mathcal{K}_{i,j} \wedge x \notin \mathcal{V}_t$), reflecting real-world constraints on data accessibility, combines both spatial and temporal restrictions.
2. **Continuous Smooth Variation.** The variation is smooth and continuous over time, making it hard to distinguish the distribution shift without a global context.
3. **Dynamic Distribution.** Each category appears and disappears gradually. The variance across spatial (domain appearances), semantic (class properties), and temporal (distribution evolution) dimensions requires simultaneous adaptation to new patterns and retention of previously acquired knowledge.

This formulation demands adaptation mechanisms that extract meaningful patterns despite high variance and constrained observability. Traditional CL methods, which assume either domain stability or class stability, fail to resemble these fundamental challenges in real-world perception systems.

3.2 DOMAIN-AGNOSTIC FLOW MATCHING

The Online VIL scenario, with limited visibility, multi-dimensional variance, and dynamic distribution, poses challenges beyond traditional CL. While the original VIL work measured feature similarity, it did not examine how domain and class signals are encoded in the backbone under noisy

216 class and domain shifts. This is critical because the one-pass constraint and lack of rehearsal in the
 217 online regime can make representations unstable.

218 To better understand this, we analyze the representations of frozen pre-trained Vision Transformers,
 219 which have become the standard backbone in recent CL research (Wang et al., 2022a;b;c; Smith
 220 et al., 2023; Gao et al., 2023). Although not trained under Online VIL, the frozen backbone provides
 221 a stable proxy, reflecting common practice in CL of freezing the ViT and updating only a small
 222 number of parameters. Its knowledge largely dictates how domain-specific variations and class-level
 223 semantics interact. Motivated by this, we conduct a layer-wise analysis, expecting deeper layers to
 224 align more closely with class semantics, as their outputs directly drive the classification head.

225 We perform a t-SNE study and linear probing to investigate this. Our t-SNE visualizations (Figures
 226 2a, 2b) show that intermediate features group by domain, while final features group by class. Linear
 227 probing (Figure 2c) further confirms stronger domain discrimination in intermediate layers and
 228 stronger class discrimination in the final layer. These findings reveal a structural representation gap in
 229 Online VIL, motivating our proposed Domain-agnostic Flow Matching (DFM), a geometry-informed
 230 contrastive loss designed to learn domain-agnostic representations.

231 The Geodesic Flow Kernels (GFK) (Gong et al., 2012) suggest that an assumption can be made that
 232 features from each domain compose a subset of the Grassmann manifold. Our approach innovates
 233 this concept by acquiring the geometric relationship between layers rather than inter-domain, which
 234 may be impossible to access in the continual learning scenario. For convenience, we use the function
 235 with the same dimension for each layer, like Vision Transformers (ViTs) (Dosovitskiy et al., 2020).

236 With a cascade of functions with residual connections:

$$\mathbf{h}_0 = \mathbf{x}, \quad \mathbf{h}_n = f_n(\mathbf{h}_{n-1}) + \mathbf{h}_{n-1}, \quad n = 1, 2, \dots, l, \quad (2)$$

237 where $f_i : \mathbb{R}^{b \times d} \rightarrow \mathbb{R}^{b \times d}$ is a function of the i -th layer, and $\mathbf{h}_l \in \mathbb{R}^{b \times d}$ is the last layer feature with
 238 batch size b and feature dimension d . With local neighborhood \mathcal{V}_t on a Riemannian manifold as
 239 mentioned Section 3.1, the infinitesimal derivation of feature \mathbf{h}_l can be expressed with infinitesimal
 240 variation on the tangent space $\delta\mathbf{h}_{n-1}$:

241 The Geodesic Flow Kernels (GFK) (Gong et al., 2012) suggest that an assumption can be made that
 242 features from each domain compose a subset of the Grassmann manifold. Our approach innovates
 243 this concept by acquiring the geometric relationship between layers rather than inter-domain, which
 244 may be impossible to access in the continual learning scenario. For convenience, we use the function
 245 with the same dimension for each layer, like Vision Transformers (ViTs) (Dosovitskiy et al., 2020).

246 With a cascade of functions with residual connections:

$$\mathbf{h}_0 = \mathbf{x}, \quad \mathbf{h}_n = f_n(\mathbf{h}_{n-1}) + \mathbf{h}_{n-1}, \quad n = 1, 2, \dots, l, \quad (3)$$

247 where $f_i : \mathbb{R}^{b \times d} \rightarrow \mathbb{R}^{b \times d}$ is a function of the i -th layer, and $\mathbf{h}_l \in \mathbb{R}^{b \times d}$ is the last layer feature with
 248 batch size b and feature dimension d . With the local neighborhood \mathcal{V}_t on a Riemannian manifold as
 249 mentioned in Section 3.1, we can take a first-order approximation with the infinitesimal variation of
 250 feature \mathbf{h}_l , as detailed in Equation A.3-A.5. Then the inner product between \mathbf{h}_n and \mathbf{h}_l as:

$$\begin{aligned} \langle \mathbf{h}_n, \mathbf{h}_l \rangle &= \int_X \mathbf{h}_n^T \mathbf{h}_l d\mathbf{x} = \int_X (\bar{\mathbf{h}}_n + \delta\mathbf{h}_n)^T (\bar{\mathbf{h}}_l + \delta\mathbf{h}_l) d\mathbf{x} \\ &= \mathbb{E}_X [(\bar{\mathbf{h}}_n + \delta\mathbf{h}_n)^T (\bar{\mathbf{h}}_l + \delta\mathbf{h}_l)] \end{aligned} \quad (4)$$

251 where the expectation of feature $\bar{\mathbf{h}}_n = \mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [\mathbf{h}_n]$ being cotangent $T^* F_n$, and the variation $\delta\mathbf{h}_n =$
 252 $\mathbf{h}_n - \bar{\mathbf{h}}_n$ belonging to tangent space TF_n .

253 When we utilize SVD decomposition for the combined space of \mathbf{h}_n and $H = [\mathbf{h}_n^T \quad \mathbf{h}_l^T]^T = U \Sigma V^T$.
 254 As detailed in Equation A.3, we can approximate the inner product between the function spaces by
 255 projecting onto their common subspace U as an orthogonal basis. Based on our empirical observation
 256 in Figure 2:

- 257 • $\delta\mathbf{h}_n^T \delta\mathbf{h}_n$ represents the residual component ($\mathbf{u}_{\text{residual}}$).
- 258 • $\delta\mathbf{h}_n^T \delta\mathbf{h}_l$ and $\delta\mathbf{h}_l^T \delta\mathbf{h}_n$ represent push-forward induced by transportation (\mathbf{u}_{push}).
- 259 • $\delta\mathbf{h}_n^T (\Phi_n^l)^T \Phi_n^l \delta\mathbf{h}_n$ provides metric of the push-forward transportation ($\mathbf{u}_{\text{metric}}$), curvature infor-
 260 mation with its derivative.

This decomposition provides crucial insights, as the proper selection of layer u_{residual} naturally captures domain-specific variations, while the transformation components encode semantic abstractions. In contrast, u_{push} and u_{metric} encode semantic transformations that correlate with class boundaries. Especially u_{metric} performs as a role of optimization for metric in local neighborhood, enables to delicate geometric optimizations. With this insight, we can guide intermediate representations away from domain-specific geometry and toward class-discriminative. However, explicitly isolating the basis vectors corresponding to components is non-trivial. We introduce the Domain-agnostic Flow Matching Loss (\mathcal{L}_{DFM}), which utilizes contrastive learning with geometry-guided representations. Let \mathbf{h}_n^* be a perturbed function of \mathbf{h}_n with continuous deformation; we are locally able to apply the same U . For a sample $\mathbf{x}_{(i)}$ in batch \mathbf{X} , let the intermediate feature $\mathbf{h}_{n,(i)} \in \mathbf{H}_n$, last-layer feature $\mathbf{h}_{l,(i)} \in \mathbf{H}_l$ from the frozen backbone model, and intermediate features from the perturbed function $\mathbf{h}_{n,(i)}^* \in \mathbf{H}_n^*$. We define $\mathbf{H}_{(i)}^+ = \{\mathbf{h}_{l,(i)} \mid \mathbf{h}_{l,(i)} \in \mathbf{H}_l\}$ as positive pairs, and $\mathbf{H}_{(i)}^- = \{\mathbf{h}_{n,(i)} \mid \mathbf{h}_{n,(i)} \in \mathbf{H}_n\} \cup \{\mathbf{h}_{l,(i)} \mid i \neq j \wedge \mathbf{h}_{l,(j)} \in \mathbf{H}_l\}$ as negative pairs. We propose a contrastive loss formulated as follows:

$$\mathcal{L}_{\text{DFM}} = -\frac{1}{M} \sum_{m=1}^M \log \frac{\sum_{\mathbf{h}_{n,(m)}^* \in \mathbf{H}_{(m)}^+} \exp \left(\langle \mathbf{h}_{n,(m)}^*, \mathbf{h}_{(m)}^+ \rangle / (\tau \|\mathbf{h}_{(m)}^* U\| \|\mathbf{h}_{(m)}^+ U\|) \right)}{\sum_{\mathbf{h}_{n,(m)}^* \in \mathbf{H}_{(m)}^-} \exp \left(\langle \mathbf{h}_{n,(m)}^*, \mathbf{h}_{(m)}^- \rangle / (\tau \|\mathbf{h}_{(m)}^* U\| \|\mathbf{h}_{(m)}^- U\|) \right)}, \quad (5)$$

where τ is a temperature, while dividing by norm reduces the effect of the amplitude of the feature. The further details of the derivation are provided in Appendix A.2 and Algorithm A.2.

This formulation guides the perturbed feature \mathbf{h}_n^* to capture class-relevant information by aligning with the output feature from frozen backbone \mathbf{h}_l while implicitly minimizing its encoding of pure domain-specific cues in \mathbf{h}_n . The DFM loss acts as a robust anchor, leveraging the geometric structure to be invariant to domain shifts while preserving class-discriminative distances. Furthermore, batch-wise computing enables the model to locally learn nuanced, domain-invariant knowledge, while permitting intermediate layers to capture necessary domain-specific adaptations under guidance.

3.3 GLOBAL TOPOLOGY PRESERVATION

One significant challenge in the Online VIL scenario is that the model needs to train without samples that can represent the overall distribution. This challenge is particularly acute in the Online VIL scenario, where input batches exhibit non-stationary class-domain compositions. To address this representational instability and to ensure topological coherence of the feature space, we introduce **Global Topology Preservation (GTP)**, a novel approach designed to maintain semantic structural integrity across temporally evolving data streams. The effective information content of batch B_t at layer $\mathbf{h}_l(\mathbf{x})$ can be measured by the rank of its empirical covariance matrix:

$$C_t = \mathbb{E}_{\mathbf{x} \in B_t} [(\mathbf{h}_l(\mathbf{x}) - \mu_t)(\mathbf{h}_l(\mathbf{x}) - \mu_t)^T], \quad \mu_t = \mathbb{E}_{\mathbf{x} \in B_t} [\mathbf{h}_l(\mathbf{x})], \quad (6)$$

When certain classes are absent, C_t captures only partial information about the global feature distribution, leading to rank deficiency. When batch B_t contains samples from only $k < C$ classes, the rank of the gradient is limited to k ; the gradient provides not only the construction of decision boundaries for the present classes but also distorts the feature space by contracting around them. This rank deficiency leads to incomplete representations in the feature space, biased gradients toward observed classes, resulting in distortions and instability as the feature space contracts around present classes, while failing to maintain representations for absent classes. This issue persists even with a prototype-based classifier (Snell et al., 2017), which assumes each class is independent, thereby removing the absent rank into a zero-eigenvalue space.

To circumvent these limitations while preserving global topological properties, GTP constructs a surrogate representation of the feature manifold through two key components: a set of k global prototypes $\{\bar{p}_g^j\}_{j=1}^k$, and a set of global relationship vectors $\{\bar{r}_g^{j,l}\}_{j,l=1}^k$. For each incoming batch B_t , we derive batch-specific prototypes $\{p_b^i\}_{i=1}^k$ from the final layer features using FINCH clustering (Sarfraz et al., 2019). We employ an exponential moving average (EMA) update strategy to ensure smooth temporal evolution of global prototypes while mitigating batch-to-batch fluctuations. Once the correspondence is established, each global prototype \bar{p}_g is updated with the batch prototype p_b :

$$\bar{p}_g^{\pi^*(i), \text{new}} = (1 - \alpha) \bar{p}_g^{\pi^*(i), \text{old}} + \alpha p_b^i \quad \text{for } i = 1, \dots, k, \quad (7)$$

where α controls EMA update rate, balancing stability and adaptability. We find optimal assignment π^* by solving: $\pi^* = \arg \min_{\pi \in S_k} \sum_{i=1}^k \|p_b^i - \bar{p}_g^{\pi(i)}\|$ using Hungarian algorithm Kuhn (1955).

324 The relationships between its constituent elements fundamentally characterize the topological struc-
 325 ture of a manifold. To capture these structural properties, we introduce a learnable mapping function
 326 $\psi : \mathbb{R}^{2d} \rightarrow \mathbb{R}^m$, where concatenation preserves both individual prototype information and their
 327 relative positioning, between batch-specific relationship vectors $r_b^{i,j} = \psi([p_b^i; p_b^j])$ and global relation-
 328 ship vectors $\bar{r}_g^{i',j'} = \psi([\bar{p}_g^{i'}; \bar{p}_g^{j'}])$. The GTP loss then enforces alignment between these relationship
 329 structures as follows:

$$\mathcal{L}_{\text{GTP}} = \sum_{i=1}^k \sum_{\substack{j=1 \\ j \neq i}}^k D(r_b^{i,j}, \bar{r}_g^{\pi^*(i), \pi^*(j)}), \quad (8)$$

330 Where D represents the cosine distance metric, this formulation encourages consistent pairwise
 331 relationships between semantic prototypes, effectively preserving the global topological structure
 332 without explicitly computing spectral properties.

333 Since the number of global prototypes \bar{p}_g is smaller than the number of samples in each batch, these
 334 prototypes deliberately capture a coarse-grained representation, reflecting the intended vagueness
 335 under limited observations. Each prototype is updated considering its relationships with all other
 336 prototypes. These prototypes cover the feature space of several semantic classes, which reduces
 337 the distortion of the feature space from the concept without samples. Additionally, the EMA
 338 update strategy stabilizes the prototypes over time and removes outdated information from previous
 339 batches. As shown in Figure A.3 and A.4, this effectively filters out the unseen class information
 340 in recent batches, performing a role similar to a short-term memory. This mechanism provides a
 341 computationally efficient solution to maintaining representational stability in non-stationary learning
 342 environments, complementing the domain-invariance properties induced by DFM.

343 4 EXPERIMENTS

344 This section comprehensively evaluated and compared our proposed methods against state-of-the-
 345 art approaches on established benchmark datasets. Section 4.1 describes the experimental setup,
 346 including datasets, comparison baselines, and evaluation metrics. Section 4.2 presents extensive
 347 quantitative results, demonstrating the effectiveness of our method across multiple benchmarks. To
 348 further interpret our approach, Section 4.3 provides in-depth analyses, including ablation studies, to
 349 isolate and assess the contribution of each component in our framework. Further details about the
 350 experiments are provided in the Appendix B.

351 4.1 EXPERIMENTAL SETUP

352 **Datasets.** We conducted experiments on three benchmarks, including iDigits (Volpi et al., 2021),
 353 CORE50 (Lomonaco & Maltoni, 2017), and CLEAR100 (Lin et al., 2021), for which it is possible to
 354 construct Online VIL scenarios that can cause a significant shift in distribution by clearly distinguishing
 355 both classes and domains. We split the CORE50 and CLEAR100 datasets into 10 tasks for the
 356 task construction, and 5 for the iDigits dataset.

357 **Baselines.** We compared our proposed method with traditional naive baselines and the latest state-of-
 358 the-art methods. First, we set the lower bound as the usual supervised sequential fine-tuning result
 359 (FT) and the upper bound as the usual supervised joint fine-tuning result. Then, we compared our
 360 proposed method with replay-based methods such as ER (Rolnick et al., 2019), Rainbow Memory
 361 (RM) (Bang et al., 2021), CLIB (Koh et al., 2021), and CBA (Wang et al., 2023a), regularization-
 362 based method LwF (Li & Hoiem, 2017b), SLCA (Zhang et al., 2023), DYSON (He et al., 2024),
 363 OnPro (Wei et al., 2023), PEC (Zajac et al., 2024) and prompt-based CODA-P (Smith et al., 2023),
 364 and MVP (Moon et al., 2023).

365 **Implementation Details.** We used the MVP (Moon et al., 2023) as our baseline for model and
 366 experimental setups. We used Adam optimizer with a learning rate of 5e-3, and implemented with a
 367 batch size of 64. As a mapping function ψ which maps prototypes into a relation vector, we used a
 368 simple 2-layer MLP function. The hidden dimension of ψ is 64 in CORE50, and 32 in CLEAR100.
 369 The size of the dimension of the relation vector m is 10. For the EMA update of global feature
 370 topology, a decay factor of 0.99 was used. Experiments were conducted under assumption of the
 371 memory-free setting, we adopted naïve reservoir memory for the experiments with memory buffer.

378
379
380
381 Table 1: Experimental results with proposed Online VIL scenarios. We used bold and underlined as
382 brief indications of the best and the second best, respectively.
383
384
385
386
387
388

Method	iDigits		CORe50		CLEAR100	
	A_{AUC}	A_{Last}	A_{AUC}	A_{Last}	A_{AUC}	A_{Last}
Upper-bound	-	87.18 ± 0.13	-	91.66 ± 0.25	-	94.36 ± 0.28
Lower-bound	13.45 ± 0.62	12.71 ± 3.34	3.39 ± 0.10	3.24 ± 1.09	2.38 ± 0.32	2.66 ± 0.55
EW ^C	20.07 ± 2.84	14.67 ± 3.61	18.60 ± 4.64	16.07 ± 1.56	23.61 ± 3.11	19.93 ± 1.33
LwF	19.61 ± 3.50	15.38 ± 1.04	25.27 ± 3.77	21.97 ± 4.22	23.80 ± 2.24	21.70 ± 4.19
CODA-P	23.96 ± 4.74	20.62 ± 3.47	54.06 ± 5.32	48.88 ± 2.92	28.82 ± 5.77	25.61 ± 3.52
SLCA	35.81 ± 3.98	24.88 ± 2.82	33.49 ± 4.47	27.36 ± 2.06	32.16 ± 2.28	31.70 ± 1.13
PEC	34.77 ± 3.02	28.01 ± 2.69	51.35 ± 4.39	46.95 ± 2.28	53.93 ± 3.20	51.66 ± 2.09
MVP	38.29 ± 5.74	31.05 ± 3.15	58.30 ± 4.48	52.84 ± 1.17	79.73 ± 3.59	77.11 ± 2.33
TopFlow (Ours)	48.52 ± 1.25	32.18 ± 1.01	64.51 ± 2.50	66.20 ± 4.18	87.12 ± 0.01	80.64 ± 2.67

389
390 Table 2: Results of proposed OnlineVIL scenarios using replay buffer sizes 500 and 2000.
391

Method	Buffer Size=500				Buffer Size=2000			
	CORe50		CLEAR100		CORe50		CLEAR100	
	A_{AUC}	A_{Last}	A_{AUC}	A_{Last}	A_{AUC}	A_{Last}	A_{AUC}	A_{Last}
ER	74.77 ± 4.85	72.25 ± 2.27	73.92 ± 3.93	71.49 ± 3.20	79.44 ± 5.17	76.61 ± 3.91	83.51 ± 4.61	81.03 ± 3.59
RM	81.06 ± 3.90	70.41 ± 3.17	72.42 ± 4.64	72.93 ± 2.05	82.42 ± 3.03	79.84 ± 2.19	84.73 ± 4.63	81.49 ± 2.26
CLIB	75.06 ± 5.81	71.93 ± 1.06	68.39 ± 5.25	66.92 ± 1.52	84.58 ± 4.26	81.63 ± 2.51	85.62 ± 5.05	83.25 ± 1.62
OCM	75.29 ± 3.10	72.66 ± 1.93	77.80 ± 3.25	75.10 ± 2.42	84.92 ± 4.03	83.24 ± 2.72	84.26 ± 4.82	82.91 ± 3.56
CBA	81.92 ± 4.04	81.02 ± 1.39	75.26 ± 4.08	74.47 ± 1.82	85.16 ± 3.28	83.49 ± 3.20	88.02 ± 3.80	85.94 ± 2.36
OnPro	71.39 ± 4.03	70.92 ± 2.24	81.36 ± 4.99	77.46 ± 1.53	81.35 ± 5.51	78.09 ± 3.91	88.83 ± 5.16	86.11 ± 3.57
DYSON	62.92 ± 5.61	60.72 ± 2.16	66.56 ± 4.65	65.62 ± 2.74	51.21 ± 3.71	49.29 ± 1.74	57.05 ± 4.18	55.48 ± 3.43
MVP-R	83.26 ± 5.16	80.16 ± 1.03	87.82 ± 3.17	85.65 ± 2.18	87.33 ± 3.37	82.39 ± 1.10	89.48 ± 1.71	88.93 ± 1.18
TopFlow (Ours)	85.16 ± 0.84	91.14 ± 0.05	91.67 ± 0.03	90.12 ± 1.00	87.56 ± 0.82	92.24 ± 0.15	93.55 ± 0.02	92.97 ± 0.65

400
401 We conducted experiments with 3 random seeds, and note that using more seeds (e.g., 10 runs) also
402 yields consistent results. Details are described in the Appendix Section C.5.1 and Table A.11.
403404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
12

432
433 Table 3: Ablation study for
434 DFM and GTP on CORe50.
435

DFM	GTP	A_{AUC}	A_{Last}
Baseline		58.30	52.84
✓		64.13	64.57
	✓	63.95	65.28
✓	✓	64.51	66.20

436 Table 4: The Effectiveness of TopFlow
437 in Standard CL Scenarios.
438

Method	Accuracy		
	CIL	CODA-P	DIL, S-Prompt
Baseline	84.17		82.96
+ DFM	84.19		85.36
+ GTP	85.52		86.88
+ DFM, GTP	86.04		87.50

439 Table 5: Ablation of layer
440 selection of DFM loss.
441

Layer	A_{Last}
Baseline	52.19
(0, 5)	49.92
(5, 10)	52.98
(5, 10), (6, 11)	53.49
(6, 11) (Ours)	54.82

442 its ability to integrate transient batch-specific insights into persistent feature topology. Combining
443 these methods yields complementary results, with improved representations fed into posterior layers
444 by DFM working in concert with the topological knowledge preservation of GTP to achieve superior
445 performance in the challenging Online VIL scenario.

446 **Effectiveness of TopFlow in Standard CL Scenarios.** As shown in the
447 Table 4, DFM and GTP improve performance in both Standard CIL and
448 DIL, individually and combined. We adopted the widely used CIFAR-100
449 (Krizhevsky et al., 2009) 10-split CIL scenario and CORe50 (Lomonaco
450 & Maltoni, 2017) 8-split DIL scenario as standards, and conducted ex-
451 periments with CODA-P (Smith et al., 2023) and S-Prompts (Wang et al.,
452 2022a) as baselines for CIL and DIL respectively. Despite the limited do-
453 main variation in CIL, the proposed DFM and GTP showed performance
454 improvements. In DIL, both methods yield significant improvements,
455 highlighting their intense motivation and effectiveness under real-world
456 domain shifts.

457 **Layer Selection for DFM.** To analyze the effect of layer selection for
458 our proposed DFM loss, we conduct an ablation study using [various \$\(n, l\)\$](#)
459 [pairs for Equation 5](#) from the ViT encoder. As shown in Table 5, applying DFM loss on early layers
460 such as (0, 5) leads to a performance drop compared to the baseline, suggesting that early-layer
461 features are not well-aligned with the high-level semantics captured in the final layer. On the other
462 hand, using higher layers such as (5, 10) or a combination like (5, 10), (6, 11) yields improved
463 performance, with the latter reaching 53.49. This indicates that deeper layers better preserve semantic
464 information beneficial for matching with final representations. Our final configuration, using layers (6,
465 11) for DFM loss, achieves the best performance with 54.82. This choice strikes a balance between
466 representational abstraction and compatibility with final-layer features, enhancing the stability and
467 effectiveness of the DFM loss.

468 **DFM and GTP with Other Models.** As a generally designed framework, we consider DFM and GTP
469 not only to be effective independently but also to generate synergy when integrated. We conducted
470 ablation experiments to verify whether the proposed DFM and GTP could also yield performance
471 improvements on baseline CL algorithms other than the MVP. As shown in Table 6, DFM and GTP
472 lead to performance improvements over the baseline, even independently. DFM and GTP robustly
473 improve performance over the baseline on the CORe50 dataset and other existing continual learning
474 algorithms used in the main experiments.

475 5 CONCLUSION

476 We proposed a new online continual learning scenario named Online VIL, which simulates a complex
477 real world where states are ever-changing and there are no concepts of tasks and clear boundaries
478 between them. Through analysis, we determined the direction for problem-solving in Online VIL
479 and defined novel TopFlow framework. We demonstrated that the proposed TopFlow showed
480 SOTA performance in the challenging Online VIL scenario, and its effectiveness through various
481 experiments. Online VIL involves stochastic task construction, where the composition of data to
482 each task is influenced by random seed. While this design captures more realistic dynamics, it can
483 introduce variability in results. Despite this, we hope that our Online VIL scenario will serve as a
484 new benchmark for advancing real-world incremental learning research, providing a more realistic
485 and challenging setting for future studies.

486 Table 6: Performance
487 comparison of different
488 methods and variants.

Method	A_{Last}
CODA-P	49.13
+ DFM	52.88
+ GTP	53.17
+ DFM, GTP	54.62
PEC	45.99
+ DFM	46.64
+ GTP	48.19
+ DFM, GTP	48.86

486 REFERENCES
487

488 Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Laurent Charlin, Massimo Caccia, Min Lin,
489 and Lucas Page-Caccia. Online continual learning with maximal interfered retrieval. *Advances in
490 neural information processing systems*, 32, 2019.

491 Jihwan Bang, Heesu Kim, YoungJoon Yoo, Jung-Woo Ha, and Jonghyun Choi. Rainbow memory:
492 Continual learning with a memory of diverse samples. In *Proceedings of the IEEE/CVF conference
493 on computer vision and pattern recognition*, pp. 8218–8227, 2021.

494 Lawrence Cayton et al. Algorithms for manifold learning. *Univ. of California at San Diego Tech.
495 Rep.*, 12(1-17):1, 2005.

496

497 Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
498 Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
499 tasks. *IEEE transactions on pattern analysis and machine intelligence*, 44(7):3366–3385, 2021.

500 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
501 hierarchical image database. In *Proceedings of the IEEE/CVF Conference on Computer Vision
502 and Pattern Recognition*, pp. 248–255. Ieee, 2009.

503

504 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
505 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
506 image is worth 16x16 words: Transformers for image recognition at scale. In *Proceedings of the
507 International Conference on Learning Representations*, 2020.

508 Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for
509 discovering clusters in large spatial databases with noise. In *kdd*, volume 96, pp. 226–231, 1996.

510

511 Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
512 *Proceedings of the International Conference on Machine Learning*, pp. 1180–1189. PMLR, 2015.

513

514 Qiankun Gao, Chen Zhao, Yifan Sun, Teng Xi, Gang Zhang, Bernard Ghanem, and Jian Zhang. A
515 unified continual learning framework with general parameter-efficient tuning. In *Proceedings of
516 the IEEE/CVF International Conference on Computer Vision*, pp. 11483–11493, 2023.

517

518 Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grauman. Geodesic flow kernel for unsupervised
519 domain adaptation. In *2012 IEEE conference on computer vision and pattern recognition*, pp.
520 2066–2073. IEEE, 2012.

521

522 Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Domain adaptation for object recognition:
523 An unsupervised approach. In *2011 international conference on computer vision*, pp. 999–1006.
524 IEEE, 2011.

525

526 Nuwan Gunasekara, Bernhard Pfahringer, Heitor Murilo Gomes, and Albert Bifet. Survey on online
527 streaming continual learning. In *Proceedings of the Thirty-Second International Joint Conference
528 on Artificial Intelligence*, pp. 6628–6637, 2023.

529

530 John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. *Journal
531 of the royal statistical society. series c (applied statistics)*, 28(1):100–108, 1979.

532

533 Yuhang He, Yingjie Chen, Yuhan Jin, Songlin Dong, Xing Wei, and Yihong Gong. Dyson: Dynamic
534 feature space self-organization for online task-free class incremental learning. In *Proceedings of
535 the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 23741–23751, 2024.

536

537 Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
538 Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical
539 analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF International
Conference on Computer Vision*, pp. 8340–8349, 2021.

540

541 James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
542 Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
543 catastrophic forgetting in neural networks. *Proceedings of the national academy of sciences*, 114
544 (13):3521–3526, 2017.

540 Hyunseo Koh, Dahyun Kim, Jung-Woo Ha, and Jonghyun Choi. Online continual learning on class
 541 incremental blurry task configuration with anytime inference. *arXiv preprint arXiv:2110.10031*,
 542 2021.

543 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.(2009),
 544 2009.

545 Harold W Kuhn. The hungarian method for the assignment problem. *Naval research logistics
 546 quarterly*, 2(1-2):83–97, 1955.

547 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 548 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

549 Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
 550 generalization. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp.
 551 5542–5550, 2017.

552 Z. Li and D. Hoiem. Learning without forgetting. *IEEE Trans. Pattern Anal. Mach. Intell.*, 40,
 553 2017a. doi: 10.1109/TPAMI.2017.2773081. URL <https://doi.org/10.1109/TPAMI.2017.2773081>.

554 Zhizhong Li and Derek Hoiem. Learning without forgetting. *IEEE transactions on pattern analysis
 555 and machine intelligence*, 40(12):2935–2947, 2017b.

556 Zhiqiu Lin, Jia Shi, Deepak Pathak, and Deva Ramanan. The clear benchmark: Continual learning on
 557 real-world imagery. In *Thirty-fifth conference on neural information processing systems datasets
 558 and benchmarks track (round 2)*, 2021.

559 Yu Liu, Xiaopeng Hong, Xiaoyu Tao, Songlin Dong, Jingang Shi, and Yihong Gong. Model behavior
 560 preserving for class-incremental learning. *IEEE Transactions on Neural Networks and Learning
 561 Systems*, 34(10):7529–7540, 2022.

562 Vincenzo Lomonaco and Davide Maltoni. Core50: a new dataset and benchmark for continuous
 563 object recognition. In *Conference on Robot Learning*, pp. 17–26. PMLR, 2017.

564 Zheda Mai, Ruiwen Li, Hyunwoo Kim, and Scott Sanner. Supervised contrastive replay: Revisiting
 565 the nearest class mean classifier in online class-incremental continual learning. In *Proceedings of
 566 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 3589–3599, 2021.

567 Jun-Yeong Moon, Keon-Hee Park, Jung Uk Kim, and Gyeong-Moon Park. Online class incremental
 568 learning on stochastic blurry task boundary via mask and visual prompt tuning. In *Proceedings of
 569 the IEEE/CVF International Conference on Computer Vision*, pp. 11731–11741, 2023.

570 Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
 571 digits in natural images with unsupervised feature learning. *NeurIPS Workshop on Deep Learning
 572 and Unsupervised Feature Learning*, 2011.

573 Keon-Hee Park, Kyungwoo Song, and Gyeong-Moon Park. Pre-trained vision and language trans-
 574 formers are few-shot incremental learners. In *Proceedings of the IEEE/CVF Conference on
 575 Computer Vision and Pattern Recognition*, pp. 23881–23890, 2024a.

576 Min-Yeong Park, Jae-Ho Lee, and Gyeong-Moon Park. Versatile incremental learning: Towards
 577 class and domain-agnostic incremental learning. In *European Conference on Computer Vision*, pp.
 578 271–288. Springer, 2024b.

579 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 580 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF International Conference on
 581 Computer Vision*, pp. 1406–1415, 2019.

582 David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory Wayne. Experience
 583 replay for continual learning. *Advances in neural information processing systems*, 32, 2019.

584 Saquib Sarfraz, Vivek Sharma, and Rainer Stiefelhagen. Efficient parameter-free clustering using first
 585 neighbor relations. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
 586 recognition*, pp. 8934–8943, 2019.

594 James Seale Smith, Leonid Karlinsky, Vyshnavi Gutta, Paola Cascante-Bonilla, Donghyun Kim, Assaf
 595 Arbelle, Rameswar Panda, Rogerio Feris, and Zsolt Kira. Coda-prompt: Continual decomposed
 596 attention-based prompting for rehearsal-free continual learning. In *Proceedings of the IEEE/CVF*
 597 *Conference on Computer Vision and Pattern Recognition*, pp. 11909–11919, 2023.

598 Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Advances*
 599 *in neural information processing systems*, 30, 2017.

601 Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, Songlin Dong, Xing Wei, and Yihong Gong. Few-shot
 602 class-incremental learning. In *Proceedings of the IEEE/CVF conference on computer vision and*
 603 *pattern recognition*, pp. 12183–12192, 2020a.

604 Xiaoyu Tao, Xiaopeng Hong, Xinyuan Chang, and Yihong Gong. Bi-objective continual learning:
 605 Learning ‘new’ while consolidating ‘known’. In *Proceedings of the AAAI Conference on Artificial*
 606 *Intelligence*, volume 34, pp. 5989–5996, 2020b.

607 Antonio Torralba and Alexei A. Efros. Unbiased look at dataset bias. In *Proceedings of the IEEE/CVF*
 608 *International Conference on Computer Vision*, 2011.

609 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Ma-*
 610 *chine Learning Research*, 9(86):2579–2605, 2008. URL <http://jmlr.org/papers/v9/vandermaaten08a.html>.

611 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 612 hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE/CVF Conference*
 613 *on Computer Vision and Pattern Recognition*, pp. 5018–5027, 2017.

614 Riccardo Volpi, Diane Larlus, and Grégory Rogez. Continual adaptation of visual representations
 615 via domain randomization and meta-learning. In *Proceedings of the IEEE/CVF Conference on*
 616 *Computer Vision and Pattern Recognition*, pp. 4443–4453, 2021.

617 Quanzhang Wang, Renzhen Wang, Yichen Wu, Xixi Jia, and Deyu Meng. Cba: Improving online
 618 continual learning via continual bias adaptor. In *Proceedings of the IEEE/CVF International*
 619 *Conference on Computer Vision*, pp. 19082–19092, 2023a.

620 Shaokun Wang, Weiwei Shi, Songlin Dong, Xinyuan Gao, Xiang Song, and Yihong Gong. Semantic
 621 knowledge guided class-incremental learning. *IEEE Transactions on Circuits and Systems for*
 622 *Video Technology*, 33(10):5921–5931, 2023b.

623 Yabin Wang, Zhiwu Huang, and Xiaopeng Hong. S-prompts learning with pre-trained transformers:
 624 An occam’s razor for domain incremental learning. In Alice H. Oh, Alekh Agarwal, Danielle Bel-
 625 grave, and Kyunghyun Cho (eds.), *Proceedings of the Advances in Neural Information Processing*
 626 *Systems*, 2022a.

627 Zifeng Wang, Zizhao Zhang, Sayna Ebrahimi, Ruoxi Sun, Han Zhang, Chen-Yu Lee, Xiaoqi Ren,
 628 Guolong Su, Vincent Perot, Jennifer Dy, et al. Dualprompt: Complementary prompting for
 629 rehearsal-free continual learning. In *European Conference on Computer Vision*, pp. 631–648.
 630 Springer, 2022b.

631 Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vincent
 632 Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In *Proceedings*
 633 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 139–149, 2022c.

634 Yujie Wei, Jiaxin Ye, Zhizhong Huang, Junping Zhang, and Hongming Shan. Online prototype
 635 learning for online continual learning. In *Proceedings of the IEEE/CVF International Conference*
 636 *on Computer Vision*, pp. 18764–18774, 2023.

637 Michał Zajac, Tinne Tuytelaars, and Gido M van de Ven. Prediction error-based classification for
 638 class-incremental learning. In *International Conference on Learning Representations*, 2024.

639 Gengwei Zhang, Liyuan Wang, Guoliang Kang, Ling Chen, and Yunchao Wei. Slca: Slow learner
 640 with classifier alignment for continual learning on a pre-trained model. In *Proceedings of the*
 641 *IEEE/CVF International Conference on Computer Vision*, pp. 19148–19158, 2023.

648 APPENDIX
649650 In this Appendix, we provide additional details and further analysis on the **Online VIL** scenario and
651 proposed **TopFlow** as follows:652 A. Algorithms and Details for Methods
653654 A.1. Online VIL
655 A.2. Domain-Agnostic Flow Matching
656 A.3. Global Topology Preservation
657658 B. Experimental Details
659660 B.1. Dataset
661 B.2. Implementation Details
662 B.3. Number of classes in the task
663664 C. Additional Experiments and Analysis
665666 C.1. Other Datasets
667 C.2. Variation on Model Components
668 C.3. Robustness on Various Scenarios
669 C.5. Hyperparameters
670 C.6. Comparison of Computational Cost and Model Size
671672 D. Discussions
673674 D.1. Limitations and Future Works
675 D.2. Broader Impacts
676677 A ALGORITHMS AND DETAILS FOR METHODS
678679 A.1 ONLINE VIL
680681 Algorithm A.1 shows the actual configuration procedure for an Online VIL scenario configuration.
682 The `RandSplit`(S, C) function partitions a set of items S into C chunks. Given a set of samples S
683 and a target number of chunks C , `RandSplit` first creates a random permutation of the items in S . If
684 $C > 1$, it randomly selects $C - 1$ distinct division points from the $|S| - 1$ possible positions between
685 the permuted items. These points partition the permuted sequence into C chunks, which may thus
686 have variable sizes. The function returns an ordered list of these C disjoint chunks, whose union
687 is S . If $C = 1$, the single chunk returned is S . The `Sample`(X, k) function, when X is a set or
688 collection, randomly selects k distinct items from X without replacement. If X is a category identifier,
689 `Sample`(X, k) implies sampling from the underlying data instances associated with category X . If
690 X is a range like $\{1, \dots, M\}$, it samples an integer uniformly from that range.
691692 In Figure A.1, we demonstrate an example of the density of these created Tasks over time. It can
693 be seen that it is possible to dynamically control the unbalanced, variable, online learning coverage
694 induced by the task configuration. In our experiments, we found that beta acts like a memory to blur
695 task boundaries when the domain changes significantly. Since utilizing direct task boundaries due to
696 the online batch is impossible, we wanted to check the model’s performance more objectively by not
697 applying the task boundary blurring beta.
698699 Figure A.1: Visualization of ratio of sample visibility under various α, β
700

702
703
704
705
706
707
708
709
710

Algorithm A.1 Online VIL Task Construction

```

711
712: Input: Categories  $\mathcal{K}$ , disjoint ratio  $\alpha$ , blurry ratio  $\beta$ , tasks  $M$ , batch size  $b$ 
713: Output: Batch sequence  $\mathcal{B} = \{B_1, B_2, \dots, B_N\}$ 
714
715: 3: /* category partitioning */
716: 4:  $\mathcal{K}_{\text{disjoint}} \leftarrow \text{Sample}(\mathcal{K}, \lfloor \alpha |\mathcal{K}| \rfloor)$  ▷ Categories with clear boundaries
717: 5:  $\mathcal{K}_{\text{blurry}} \leftarrow \mathcal{K} \setminus \mathcal{K}_{\text{disjoint}}$  ▷ Categories with ambiguous boundaries
718
719: 6: /* sample extraction */
720: 7: for each  $k \in \mathcal{K}_{\text{blurry}}$  do
721: 8:    $\mathcal{S}_k^{\text{blurred}} \leftarrow \text{Sample}(k, \beta |k|)$  ▷ Samples across the boundaries
722: 9:    $\mathcal{S}_k^{\text{nonblurred}} \leftarrow k \setminus \mathcal{S}_k^{\text{blurred}}$  ▷ Samples remain in the boundaries
723: 10: end for
724
725: 11: /* sample redistribution */
726: 12:  $\mathcal{K}_{\text{blurred}} \leftarrow \text{RandSplit} \left( \bigcup_{k \in \mathcal{K}_{\text{blurry}}} \mathcal{S}_k^{\text{blurred}}, |\mathcal{K}_{\text{blurry}}| \right)$ 
727: 13:  $\mathcal{K}_{\text{nonblurred}} \leftarrow \{\mathcal{S}_k^{\text{nonblurred}} \mid k \in \mathcal{K}_{\text{blurry}}\}$ 
728
729: 14: /* random task assignment */
730: 15: for each category  $i$  in  $\mathcal{K}$  do
731: 16:    $t_i \sim \text{Uniform}\{1, \dots, M\}$ 
732: 17: end for
733
734: 18: /* task construction */
735: 19: for  $k = 1$  to  $M$  do
736: 20:    $T_k^{\text{disjoint}} \leftarrow \{i \in \mathcal{K}_{\text{disjoint}} \mid t_i = k\}$ 
737: 21:    $T_k^{\text{nonblurred}} \leftarrow \{i \in \mathcal{K}_{\text{nonblurred}} \mid t_i = k\}$ 
738: 22:    $T_k^{\text{blurred}} \leftarrow \{i \in \mathcal{K}_{\text{blurred}} \mid t_i = k\}$ 
739: 23:    $T_k \leftarrow T_k^{\text{disjoint}} \cup T_k^{\text{nonblurred}} \cup T_k^{\text{blurred}}$  ▷ Task  $k$  with explicit and implicit boundary
740: 24: end for
741
742: 25: /* batch generation */
743: 26:  $\mathcal{B} \leftarrow \{\}$ 
744: 27: for  $k = 1$  to  $N$  do
745: 28:   while  $\|\mathcal{T}_k\| > 0$  do
746: 29:      $B_t \leftarrow \text{Sample}(T_k, \min(b, \|\mathcal{T}_k\|))$ 
747: 30:      $\mathcal{B} \leftarrow \mathcal{B} \cup B_t$ 
748: 31:      $T_k \leftarrow T_k \setminus B_t$ 
749: 32:   end while
750: 33: end for
751: 34: return  $\mathcal{B}$  ▷ Online VIL Batch Sequence
752
753
754
755
```

756 A.2 DOMAIN-AGNOSTIC FLOW MATCHING
757

758 The inner product between two continuous real functions in the same function space $f, g \in C : X \mapsto$
759 $Y, x \in X \subset \mathbb{R}^{d_x}, y \in Y \subset \mathbb{R}^{d_y}$ is defined with a Riemannian integral:

$$760 \quad \langle f(x), g(x) \rangle = \int_X f(x)^\top g(x) dx \quad (A.1)$$

761 With an open and neighborhood set \mathcal{V}_t is a small subset of the domain X , the feature \mathbf{h}_n from the
762 n -th layer can be expressed with infinitesimal variation on the tangent space $d\mathbf{h}_{n-1}$:

$$764 \quad d\mathbf{h}_{n+1} = (D_{\mathbf{h}_n} f_{n+1} + I) d\mathbf{h}_n, \quad d\mathbf{h}_l = \left(\prod_{k=n+1}^l (D_{\mathbf{h}_{k-1}} f_k + I) \right) d\mathbf{h}_n = \Phi_n^l d\mathbf{h}_n, \quad (A.2)$$

766 where $D_{\mathbf{h}_n} f_{n+1}$ is the Fréchet derivative of f_{n+1} at \mathbf{h}_n , and I is an identity matrix, and Φ_n^l is a
767 push-forward map from tangent space $TF_n \mapsto TF_l$.

768 The covariance matrix for left singular matrix U is:

$$769 \quad \frac{1}{b-1} H^\top H = (U \Sigma V^\top)^\top U \Sigma V = V \Sigma^\top U^\top U \Sigma V^\top = V \Sigma^\top \Sigma V^\top$$

$$770 \quad = \mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} \left[\begin{bmatrix} \mathbf{h}_n^\top & \mathbf{h}_l^\top \end{bmatrix} \begin{bmatrix} \mathbf{h}_n \\ \mathbf{h}_l \end{bmatrix} \right]$$

$$771 \quad = \mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [\bar{\mathbf{h}}_n^\top \bar{\mathbf{h}}_n + \bar{\mathbf{h}}_n^\top \bar{\mathbf{h}}_l + \bar{\mathbf{h}}_l^\top \bar{\mathbf{h}}_n + \bar{\mathbf{h}}_l^\top \bar{\mathbf{h}}_l + d\mathbf{h}_n^\top d\mathbf{h}_n + d\mathbf{h}_n^\top d\mathbf{h}_l + d\mathbf{h}_l^\top d\mathbf{h}_n + d\mathbf{h}_l^\top d\mathbf{h}_l],$$

$$772 \quad = \mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [\bar{\mathbf{h}}_n^\top \bar{\mathbf{h}}_n + d\mathbf{h}_n^\top d\mathbf{h}_n] + \mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [d\mathbf{h}_l^\top d\mathbf{h}_l + \bar{\mathbf{h}}_l^\top \bar{\mathbf{h}}_l]$$

$$773 \quad + \mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [\bar{\mathbf{h}}_n^\top \bar{\mathbf{h}}_l + \bar{\mathbf{h}}_l^\top \bar{\mathbf{h}}_n + d\mathbf{h}_n^\top d\mathbf{h}_l + d\mathbf{h}_l^\top d\mathbf{h}_n],$$

$$774 \quad \simeq \langle \mathbf{h}_n, \mathbf{h}_n \rangle + \langle \mathbf{h}_l, \mathbf{h}_l \rangle + \langle \mathbf{h}_n, \mathbf{h}_l \rangle, \quad (A.3)$$

775 where $\langle \bar{\mathbf{h}}_i, d\mathbf{h}_i \rangle \simeq 0$ for any i -th layer. The last layer feature \mathbf{h}_l can be denoted with the variation of
776 intermediate layer \mathbf{h}_n as:

$$777 \quad \mathbf{h}_l = \bar{\mathbf{h}}_l + d\mathbf{h}_l = \bar{\mathbf{h}}_l + D_{\mathbf{h}_n} \mathbf{h}_l d\mathbf{h}_n. \quad (A.4)$$

778 The third term in Equation A.3 can be expressed as:

$$779 \quad \langle \mathbf{h}_n, \mathbf{h}_n \rangle + \langle \mathbf{h}_l, \mathbf{h}_l \rangle + \langle \mathbf{h}_n, \mathbf{h}_l \rangle$$

$$780 \quad \simeq \bar{\mathbf{h}}_n^\top \bar{\mathbf{h}}_n + \bar{\mathbf{h}}_n^\top \bar{\mathbf{h}}_l + \bar{\mathbf{h}}_l^\top \bar{\mathbf{h}}_n + \bar{\mathbf{h}}_l^\top \bar{\mathbf{h}}_l$$

$$781 \quad + \mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [d\mathbf{h}_n^\top d\mathbf{h}_n + d\mathbf{h}_n^\top d\mathbf{h}_l + d\mathbf{h}_l^\top d\mathbf{h}_n + d\mathbf{h}_l^\top d\mathbf{h}_l]$$

$$782 \quad = \bar{\mathbf{h}}_n^\top \bar{\mathbf{h}}_n + \bar{\mathbf{h}}_n^\top \bar{\mathbf{h}}_l + \bar{\mathbf{h}}_l^\top \bar{\mathbf{h}}_n + \bar{\mathbf{h}}_l^\top \bar{\mathbf{h}}_l$$

$$783 \quad + \mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [d\mathbf{h}_n^\top d\mathbf{h}_n + d\mathbf{h}_n^\top \Phi_n^l \delta \mathbf{h}_n + d\mathbf{h}_n^\top (\Phi_n^l)^\top d\mathbf{h}_n + d\mathbf{h}_n^\top (\Phi_n^l)^\top \Phi_n^l d\mathbf{h}_n]. \quad (A.5)$$

784 In here, the term of $\mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [d\mathbf{h}_n^\top \Phi_n^l \delta \mathbf{h}_n + d\mathbf{h}_n^\top (\Phi_n^l)^\top d\mathbf{h}_n]$ denotes the common space between
785 \mathbf{h}_n and transformed by the push-forward, and the term of $\mathbb{E}_{\mathbf{x} \in \mathcal{V}_t} [d\mathbf{h}_n^\top (\Phi_n^l)^\top \Phi_n^l d\mathbf{h}_n]$ provides a
786 information about the push-forward metric induced by \mathbf{h}_n . Because $U^\top U = I$, we can use the U^\top
787 as a projection onto the common space. Also a pertubated function \mathbf{h}_n^* from \mathbf{h}_n can be projected
788 onto common space, the DFM loss in Equation 5 optimize both of the diagonal terms $\langle \mathbf{h}_n, \mathbf{h}_n \rangle$,
789 $\langle \mathbf{h}_l, \mathbf{h}_l \rangle$ and cross-layer interaction $\langle \mathbf{h}_n, \mathbf{h}_l \rangle$ in cosine similarity and the push-forward metric of local
790 neighborhood of sample point, modify the local geometric structure.

791 A.3 GLOBAL TOPOLOGY PRESERVATION

792 The overall algorithm for Global Topology Preservation is indicated in Algorithm A.3. For each
793 iteration, n_k prototypes are generated with the first hierarchy level of clustering of FINCH clustering.
794 We used the Frobenius norm as a cost function for the Hungarian algorithm.

804 B EXPERIMENTAL DETAILS

805 B.1 DATASETS

806 We conducted experiments on three benchmark datasets, iDigits (Volpi et al., 2021), CORe50
807 (Lomonaco & Maltoni, 2017), and CLEAR100 (Lin et al., 2021), which are all suitable for construct-
808 ing incremental learning scenarios characterized by substantial distribution shifts across both class
809 semantics and visual domains. These benchmarks were selected for their ability to clearly distinguish

810 **Algorithm A.2** Domain-agnostic Flow Matching (DFM) Loss Computation

```

811 1: Input: Batch of samples  $\mathbf{X}$ , frozen intermediate layer  $f_i$ , frozen last layer  $f$ , prompted intermediate layer  $f_i^*$ , subspace dimension  $k$ , temperature  $\tau$ .
812 2: Output: Domain-agnostic Flow Matching Loss  $\mathcal{L}_{\text{DFM}}$ .
813
814 3: /* feature extraction */
815 4:  $\mathbf{P}_{\mathbf{V}^*} \leftarrow f_i^*(\mathbf{x})$  for  $\mathbf{x} \in \mathbf{X}$  ▷ Prompted intermediate features
816 5:  $\mathbf{P}_{\mathbf{V}^L} \leftarrow f(\mathbf{x})$  for  $\mathbf{x} \in \mathbf{X}$  ▷ Frozen last-layer features
817 6:  $\mathbf{P}_{\mathbf{V}} \leftarrow f_i(\mathbf{x})$  for  $\mathbf{x} \in \mathbf{X}$  ▷ Frozen intermediate features
818
819 7: /* geodesic flow kernel (GFK) computation */
820 8:  $\mathbf{G}_{\mathbf{V}^* \leftrightarrow \mathbf{V}} \leftarrow \text{GFK}(\mathbf{P}_{\mathbf{V}^*}, \text{concat}(\mathbf{P}_{\mathbf{V}^L}, \mathbf{P}_{\mathbf{V}}))$ 
821
822 9: /* DFM loss calculation */
823 10:  $\mathcal{L}_{\text{DFM}} \leftarrow 0$ 
824 11:  $B \leftarrow \text{BatchSize}(\mathbf{X})$ 
825 12: for  $m = 1$  to  $B$  do
826 13:   anchor  $\leftarrow \mathbf{F}_{\mathbf{v}^*}[m, :]$ 
827 14:   positive  $\leftarrow \mathbf{F}_{\mathbf{v}^L}[m, :]$ 
828 15:    $S_{\text{pos}} \leftarrow \text{Similarity}(\text{anchor}, \text{positive}, \mathbf{G}_{\mathbf{V}^* \leftrightarrow \mathbf{V}})$ 
829 16:   numerator_sum  $\leftarrow \exp(S_{\text{pos}}/\tau)$ 
830 17:   denominator_sum  $\leftarrow 0$ 
831 18:   for  $n = 1$  to  $B$  do
832 19:     if  $n \neq m$  then
833 20:       neg_L  $\leftarrow \mathbf{F}_{\mathbf{v}^L}[n, :]$ 
834 21:        $S_{\text{neg\_L}} \leftarrow \text{Similarity}(\text{anchor}, \text{neg_L}, \mathbf{G}_{\mathbf{V}^* \leftrightarrow \mathbf{V}})$ 
835 22:       denominator_sum  $\leftarrow \text{denominator\_sum} + \exp(S_{\text{neg\_L}}/\tau)$ 
836 23:     end if
837 24:     neg_I  $\leftarrow \mathbf{F}_{\mathbf{v}}[n, :]$  ▷ Frozen intermediate features as negatives
838 25:      $S_{\text{neg\_I}} \leftarrow \text{Similarity}(\text{anchor}, \text{neg_I}, \mathbf{G}_{\mathbf{V}^* \leftrightarrow \mathbf{V}})$ 
839 26:     denominator_sum  $\leftarrow \text{denominator\_sum} + \exp(S_{\text{neg\_I}}/\tau)$ 
840 27:   end for
841 28:    $\mathcal{L}_{\text{DFM}} \leftarrow \mathcal{L}_{\text{DFM}} - \log(\text{numerator\_sum}/\text{denominator\_sum})$ 
842 29: end for
843 30:  $\mathcal{L}_{\text{DFM}} \leftarrow \mathcal{L}_{\text{DFM}}/B$ 
844 31: return  $\mathcal{L}_{\text{DFM}}$ 
845

```

846 between class and domain changes, enabling the rigorous evaluation of the Online VIL scenario. The
847 composition of each dataset is summarized in Table A.1.

848 For iDigits, we follow the incremental scenario introduced in (Volpi et al., 2021), which comprises
849 four digit datasets: MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), MNIST-M, and
850 SynDigits (Ganin & Lempitsky, 2015). Each dataset is regarded as a distinct domain while sharing
851 the same digit class space, making it an ideal setup for evaluating the interplay of domain and class
852 shift in a controlled setting.

853 CORe50 is a widely used benchmark for domain-incremental learning in real-world object recognition.
854 It contains 50 household object classes captured under 11 domain conditions that vary in background,
855 lighting, and acquisition settings. In our experimental setup, we use samples from 8 domains for
856 training and hold out the remaining three as unseen test domains. This allows us to assess the
857 generalization ability of the model to novel domain variations encountered post-training.

858 CLEAR100 is another standard benchmark for continual and domain-incremental learning, comprising
859 100 object categories collected from 10 visually diverse domains. In contrast to other benchmarks
860 such as DomainNet (Peng et al., 2019), CLEAR100 is carefully constructed with a temporally or-
861 dered domain progression, where domain shifts occur in a sequence aligned with a chronological
862 timeline. This design mimics real-world scenarios where environments evolve gradually, allowing
863 more realistic evaluation of online learning systems in terms of their adaptability, robustness, and
864 resistance to catastrophic forgetting. Additionally, the high domain diversity in CLEAR100 makes it
865 particularly challenging and relevant for studying dynamic representation learning.

Algorithm A.3 Global Topology Preservation (GTP) for Online VIL

1: **Input:** Batch B_t , Backbone with prompt tuning $f_p(\cdot)$, Global prototypes $\bar{P}_g = \{\bar{p}_g^j\}_{j=1}^k$, EMA rate α , Mapping function $\psi(\cdot)$, Distance metric $D(\cdot, \cdot)$, Finch clustering algorithm FINCH (\cdot) .

2: **Output:** GTP loss \mathcal{L}_{GTP}

3: /* clustering */

4: $k \leftarrow \|\bar{P}_g\|$ ▷ Number of global prototypes

5: $P_b = \{p_b^j\}_{j=1}^{n_k} \leftarrow \text{FINCH}(f_p(B_t))$ ▷ n_k clusters with Finch clustering

6: /* Hungarian algorithm */

7: **if** $n_k > k$ **then**

8: $\bar{P}_g^{\text{dummy}} \leftarrow \{0, 0, \dots\}$ with size $(n_k - k)$

9: $\bar{P}_g \leftarrow \bar{P}_g \cup \bar{P}_g^{\text{dummy}}$

10: **end if**

11: $S_{n_k} \leftarrow \{\pi : \{1, \dots, n_k\} \rightarrow \{1, \dots, n_k\} \mid \pi \text{ is bijection}\}$

12: $\pi^* = \arg \min_{\pi \in S_{n_k}} \sum_{i=1}^{n_k} \|p_b^i - \bar{p}_g^{\pi(i)}\|_F$, $p_b^i \in P_b$, $\bar{p}_g^{\pi(i)} \in \bar{P}_g$ ▷ Hungarian algorithm

13: /* global prototype update */

14: **for** $i = 1$ to n_k **do**

15: **if** $\pi^*(i) \leq k$ **then**

16: $\bar{p}_g^{\pi^*(i)} \leftarrow (1 - \alpha)\bar{p}_g^{\pi^*(i)} + \alpha p_b^i$ ▷ EMA update global prototypes

17: **else**

18: $p_g^i \leftarrow p_b^i$

19: **end if**

20: **end for**

21: /* GTP loss calculation */

22: $\mathcal{L}_{\text{GTP}} \leftarrow 0$ ▷ Initialize GTP loss

23: **for** $i = 1$ to n_k **do**

24: **for** $j = 1$ to n_k **do**

25: **if** $\pi^*(i) \neq \pi^*(j)$ **then**

26: $\mathcal{L}_{\text{GTP}} \leftarrow \mathcal{L}_{\text{GTP}} + D(\psi(p_b^i, p_b^j), \psi(\bar{p}_g^{\pi^*(i)}, \bar{p}_g^{\pi^*(j)}))$

27: **end if**

28: **end for**

29: **end for**

30: **return** \mathcal{L}_{GTP}

Table A.1: Dataset composition used in experiments.

Dataset	Composition	
	#Class	#Domain
iDigits Volpi et al. (2021)	10	4
CORe50 Lomonaco & Maltoni (2017)	50	11
CLEAR100 (Lin et al., 2021)	100	10

B.2 IMPLEMENTATION DETAILS.

We conducted all the experiments on a single NVIDIA GeForce RTX 3090 GPU and 8 Intel(R) Xeon(R) Gold 6226R CPU cores. To make fair comparisons, we used standard ImageNet Deng et al. (2009) pre-trained ViT-B/16¹ Dosovitskiy et al. (2020) as a backbone of all methods. We used MVP (Moon et al., 2023) as a baseline of our architecture and added the proposed \mathcal{L}_{DFM} and \mathcal{L}_{GTP} along with the loss of MVP. Almost all online incremental learning baselines assumed multi-iteration training (Aljundi et al., 2019), so we also adopted 3 times augmented iteration comparisons with our proposed method and other baselines.

Figure A.2: Classes per task constructed from different seeds.

B.3 NUMBER OF CLASSES IN THE TASK

As mentioned in Algorithm A.1, we used random selection for task construction. The task construction process, where a random seed randomly determines the class composition and number of classes per task under a fixed total class budget, naturally reflects the stochasticity and variability of real-world data streams. This setting departs from the conventional incremental learning benchmarks, which typically assume a fixed and balanced class allocation per task. Instead, our design introduces variability in task granularity and uncertainty in class arrival patterns, two key properties of naturalistic data distributions.

Figure A.2 visualizes the distribution of class counts per task over 10 incremental steps across five random seeds on the CORe50 dataset. Each colored line represents a different seed (Seed1–Seed5), with the dashed blue line showing the mean trend and the shaded region indicating one standard deviation. Notably, the number of classes per task varies significantly within and across seeds, ranging from as few as two classes to over 50. This variability closely reflects real-world deployment scenarios in which task boundaries are ill-defined and concept drift occurs with unpredictable granularity and cadence.

C ADDITIONAL EXPERIMENTS AND ANALYSIS

C.1 OTHER DATASETS

TinyImageNet. We extended our evaluation to TinyImageNet (200 classes, 100K images) dataset, which presents greater visual complexity and a larger label space than the datasets used in the main paper. The results in Table A.2 demonstrate that TopFlow maintains its performance advantage on TinyImageNet, indicating its ability to handle more challenging, real-world-like scenarios while generalizing beyond small-scale benchmarks. The consistent improvement validates our method’s scalability to larger, more complex datasets.

Table A.2: Evaluation on TinyImageNet.

Method	A_{AUC}	A_{Last}
MVP	52.13	30.51
TopFlow (Ours)	52.39	33.74

¹storage.googleapis.com/vit_models/imagenet21k/ViT-B_16.npz

972 **UCF-101.** We conducted experiments on UCF-101, a challenging video action recognition dataset
 973 containing 101 human action classes from videos captured in the wild. It presents significant
 974 challenges, including varying lighting conditions, camera angles, background clutter, and temporal
 975 dynamics—properties that closely mirror real-world deployment scenarios. Our proposed TopFlow
 976 demonstrates consistent improvements even in these more challenging, real-world-like environments,
 977 as demonstrated in Table A.3. This validates the ability of the TopFlow to handle the temporal
 978 dynamics and visual complexity present in genuinely "wild" data streams, addressing your concern
 979 about evaluation beyond curated academic datasets.

980 Table A.3: Evaluation on UCF-101.
 981

Method	A_{AUC}	A_{Last}
MVP	57.21	33.03
TopFlow (Ours)	57.42	37.84

982
 983 C.2 VARIATION ON MODEL COMPONENTS
 984985 C.2.1 MODEL BACKBONE
 986

987 **Model Random Initialization.** For further analysis, we conducted experiments comparing the
 988 baseline and TopFlow using randomly initialized backbones. The results in Table A.4 indicate that
 989 our performance improvements are not dependent on pre-training and remain effective when the
 990 model is trained from scratch. This reveals that the proposed DFM and GTP components perform
 991 as intended, demonstrating their intrinsic effectiveness rather than merely relying on pretrained
 992 knowledge. The consistent improvement of pretrained and random initialization settings confirms
 993 that our gains stem from methodological innovations.
 994

995 Table A.4: Evaluation on randomly initialized backbone.
 996

Method	A_{AUC}	A_{Last}
MVP	14.65	4.50
TopFlow (Ours)	16.04	5.72

1000 C.2.2 DIMENSION FOR DFM LOSS
 1001

1002 **Dimension Size in DFM.** We conducted experiments comparing explicit dimension selection with
 1003 our implicit approach. The results in Table A.5 demonstrate that our implicit contrastive approach
 1004 outperforms explicit fixed-size identification, validating the theoretical motivation while providing a
 1005 practically superior implementation. These results prove the superiority of the proposed DFM, which
 1006 was derived through a well-connected method of thorough theoretical analysis, recognition of related
 1007 difficulties, and introduction of countermeasures.
 1008

1009 Table A.5: Performance across different dimension sizes.
 1010

Dimension Size	A_{Last}
Baseline	52.19
4	53.22
16	53.17
64	53.90
128	53.88
512	54.26
768 (Ours)	54.82

1023 C.3 ROBUSTNESS ON VARIOUS SCENARIOS
 1024

1025 **GTP with Few Unique Classes.** While the goal of Online VIL is continuous and broad variation
 1026 of the scenario, each batch can contain only a few unique classes in Online VIL, which may affect

1026 the clustering of GTP module. Hence, we conducted experiments using 3 randomly selected seeds,
 1027 each containing 3 sessions (10 sessions total) with a few unique classes (average 2.3 classes, 50
 1028 classes) from the CORe50 dataset. We observed stable performance, even with a few unique classes,
 1029 as indicated in Table A.8. GTP maintains stable performance even under sparse class conditions,
 1030 demonstrating robustness to the unpredictable streams characteristic of Online VIL.

1031 Table A.6: Comparison of results across different scenarios.
 1032

1033 Scenario	A_{Last}
1034 Main Table Results	66.20 ± 4.18
1035 Results with Few Unique Classes	65.93 ± 4.34

1036 **Comparision with (Park et al., 2024b)** We evaluate TopFlow and ICON in Standard VIL and
 1037 Online VIL scenario. ICON relies on assumptions of discrete task changes that no longer apply in
 1038 the online scenario. In contrast, TopFlow maintains robust performance without needing task-level
 1039 information or multiple passes.

1040 Table A.7: Comparison with ICON Park et al. (2024b) on Virsatil Incremental Learining scinario.
 1041

1042 Scenario	A_{Last}
1043 ICON	45.15 ± 2.94
1044 TopFlow (Ours)	66.20 ± 4.18

1045 Table A.8: Comparison with ICON on Online VIL scinario.
 1046

1047 Scenario	A_{Last}
1048 ICON	79.06 ± 3.43
1049 TopFlow (Ours)	81.20 ± 2.75

1050

C.3.1 CLUSTERING METHOD FOR GTP

1051 Table A.9 demonstrates clustering method effects on GTP. K-Means (Hartigan & Wong, 1979) shows
 1052 fast adaptation but limited generalization due to its Euclidean geometry assumption. DBSCAN (Ester
 1053 et al., 1996) outperforms K-Means through better graph-spectral geometry estimation, while FINCH
 1054 (Sarfraz et al., 2019) achieves superior results via parameter-free hierarchical clustering that adapts to
 1055 variable batch distributions. The significant performance gap between K-Means and topology-aware
 1056 methods (DBSCAN and FINCH) confirms that the feature space contains substantial nonlinear
 1057 relationships. This validates our Domain-agnostic Flow Matching approach, which accumulates
 1058 structural information in earlier layers while preserving model expressivity.

1059 Table A.9: Analysis of Clustering Methods for GTP.
 1060

1061 Method	A_{AUC}	A_{Last}
1062 Baseline	58.30	52.84
1063 K-Means	64.04	60.44
1064 DBSCAN	64.46	66.18
1065 FINCH	64.51	66.20

1066

C.4 VISUALIZATION OF GTP

1067 To qualitatively analyze the effect of GTP, we visualize the output features using t-SNE (van der
 1068 Maaten & Hinton, 2008) over tasks with and without GTP in Figure A.3 and A.4, respectively. We
 1069 track the evolution of features from the first 10 classes, which are available for all tasks in the CORe50
 1070 dataset. And low-dimensional approximation is performed across all tasks to maintain consistency
 1071 and relative positions of features. While it is challenging to project high-dimensional topological
 1072 structures into 2D space, we observe that GTP helps to preserve the relative arrangement and internal
 1073

Figure A.3: t-SNE visualization of output features over tasks with GTP.

Figure A.4: t-SNE visualization of output features over tasks without GTP.

structure of clusters across tasks. Especially in red circles, the meaningful topologies (e.g., relative connections or penetrations between clusters) are better maintained with GTP, whereas they drift and dismorph without it. This qualitative analysis supports our quantitative findings, demonstrating that GTP effectively preserves global topological relationships in the feature space during online learning.

C.5 HYPERPARAMETERS

C.5.1 TASK CONSTRUCTION

Table A.10: Results on different ratio of class split for each task in CORe50.

(α, β)	Baseline		TopFlow (Ours)	
	A_{AUC}	A_{Last}	A_{AUC}	A_{Last}
(100, 0)	58.30 ± 4.48	52.84 ± 1.17	64.51 ± 2.50	66.20 ± 4.18
(0, 100)	87.50 ± 1.95	84.52 ± 7.79	87.91 ± 2.01	85.20 ± 7.08
(0, 50)	87.71 ± 0.95	90.84 ± 0.21	87.68 ± 0.95	91.17 ± 0.14
(50, 0)	64.36 ± 2.42	76.29 ± 8.78	65.46 ± 2.16	77.15 ± 7.99
(50, 50)	80.88 ± 0.68	78.86 ± 10.36	82.08 ± 0.24	80.56 ± 9.88
(50, 100)	80.15 ± 2.25	60.61 ± 11.25	81.25 ± 1.41	62.79 ± 9.03

Variation of ratio of classes. We conducted experiments by varying α and β , which are hyperparameters for controlling the ratio of classes that are exclusively included in specific tasks, and the ratio of classes that are included without explicit task boundaries, and the result is indicated in Table A.10. While our proposed framework, TopFlow, achieved state-of-the-art on most task configurations, the task was the most challenging when $(\alpha, \beta) = (100, 0)$, which we adopted as a main experiment configuration.

Results on random seeds. To further validate the reliability of the results reported in the main paper, we conducted additional experiments on CORe50 across 10 random seeds. Please refer to Table A.11. The inherent randomness of task sequences and class/domain compositions leads to high variability

1134 across seeds. To report performance fairly, we summarize results using the mean and standard
 1135 deviation. Our method consistently outperformed the baseline across all seeds, demonstrating robust
 1136 improvements despite the scenario’s variability. These additional experiments confirm that extending
 1137 the number of seeds from 3 to 10 does not substantially change the average performance, further
 1138 supporting the reliability and robustness of the proposed approach.

1139 Table A.11: Performance comparison between MVP and Ours across different seeds.
 1140

Seeds	MVP		Ours	
	A_{AUC}	A_{Last}	A_{AUC}	A_{Last}
1	52.82	51.67	62.01	55.40
2	59.39	56.07	59.62	57.22
3	66.25	70.38	66.59	71.41
4	57.86	76.50	58.70	76.73
5	63.04	65.92	63.46	67.65
6	58.30	52.84	64.51	77.00
7	64.20	75.18	65.69	78.35
8	67.41	79.43	68.10	80.45
9	62.78	54.01	67.01	66.20
10	62.90	65.04	63.23	65.18
Average	61.50	64.70	63.89	69.56
Std	4.40	10.54	3.12	8.77

1157 C.5.2 HYPERPARAMETER ABLATIONS.
 11581159 We provide extended experiments on the CORe50 dataset, analyzing sensitivity to the temperature
 1160 parameter τ in DFM, EMA update rate α , ψ and r in GTP—the core parameters you identified as
 1161 requiring deeper analysis.1162 Table A.12: Performance with different val-
 1163 ues of τ .

τ	A_{AUC}	A_{Last}
0.01	62.94	65.27
0.02	62.62	65.73
0.05	63.09	65.98
0.1 (Ours)	64.51	66.20
0.2	60.11	65.56

1164 Table A.13: Performance with different val-
 1165 ues of α .

α	A_{AUC}	A_{Last}
0.9	63.54	64.52
0.95	64.79	65.48
0.99 (Ours)	64.51	66.20
0.999	64.03	65.49
0.9999	64.05	65.55

1172 Table A.14: Analysis on the dimension
 1173 of the ψ in GTP.

Metric	A_{AUC}	A_{Last}
Baseline	58.30	52.84
16	63.98	66.48
32	64.24	64.85
Dim of ψ	64	64.51
64	64.51	66.20
128	64.66	66.02
256	64.84	66.48

1174 Table A.15: Analysis on the dimension
 1175 of the r in GTP.

Metric	A_{AUC}	A_{Last}
Baseline	58.30	52.84
1	64.28	64.84
2	64.20	65.77
5	64.20	64.87
Dim of r	10	64.51
10	64.51	66.20
20	64.66	65.06
50	64.39	66.00
100	63.77	65.06

1186 As shown in Table A.12 and Table A.13, our analysis reveals that TopFlow performs robustly across
 1187 various hyperparameter settings, with performance degradation occurring only at extreme values.
 1188 The optimal ranges provide stable performance, demonstrating the practical reliability. Tables

1188 A.14 and A.15 analyze dimensionality effects of prototype ψ and relationship vector r in GTP.
 1189 Performance improves as ψ increases from 16 to 64, but degrades beyond this, suggesting that
 1190 moderate dimensionality optimally balances topological representation and computational efficiency.
 1191 For relationship vectors, performance enhances robustly across dimensions 1 to 100, with sub-optimal
 1192 results at $r = 100$ due to overfitting instantaneous prototypes to global prototypes.
 1193

1194 C.6 COMPARISON OF COMPUTATIONAL COST AND MODEL SIZE

1195 **Computational Cost.** We further compare the computational cost of our method with recent state-
 1196 of-the-art approaches in continual learning. Table A.16 reports the total number of floating point
 1197 operations (GFLOPs) required by each method, which reflects the resource overhead introduced
 1198 during training. As shown in table, previous methods such as SLCA, CODA-P, and PEC introduce
 1199 substantial computational burden due to additional forward/backward passes or auxiliary modules.
 1200 In contrast, our method achieves superior efficiency, significantly lower than all other baselines and
 1201 comparable to the baseline with only a marginal increase, while maintaining strong performance.
 1202 Notably, our approach requires less than 71% of the computation needed by SLCA, and nearly 46%
 1203 less than PEC, demonstrating the lightweight nature of our design. This advantage makes our method
 1204 highly suitable for resource-constrained continual learning settings where efficiency is critical.
 1205

1206 Table A.16: Comparison of Computational Cost.

Method	GFLOPs
Baseline	47920.083
SLCA	67150.983
CODA-P	78680.380
PEC	88476.600
Ours	47922.365

1207 **Model Size.** Our analysis in Table A.17 confirms that TopFlow has a comparable number of
 1208 parameters to the baselines, with differences within a narrow range that do not significantly impact
 1209 model capacity. Therefore, the d performance improvements are not attributable to increased model
 1210 size, but rather to the effectiveness of the proposed methods.
 1211

1212 Table A.17: Comparison of parameter counts and relative increase Δ .

Method	Parameter Counts	Δ (%)
EWC	85M	+0.000
LWF	85M	+0.000
SLCA	85M	+0.000
PEC	96M	+0.099
CODA-P	90M	+0.048
MVP	86M	+0.006
TopFlow (Ours)	87M	+0.018

1213 D DISCUSSIONS

1214 D.1 LIMITATIONS AND FUTURE WORKS

1215 While our proposed Online VIL setting introduces a realistic and challenging paradigm for continual
 1216 learning and demonstrates competitive empirical performance, several limitations should be noted.
 1217 First, our experimental evaluation is conducted on three benchmark datasets (iDigits (Volpi et al.,
 1218 2021), CORe50 (Lomonaco & Maltoni, 2017), and CLEAR100 (Lin et al., 2021)) that can be
 1219 reasonably adapted to the Online VIL configuration. Generalizing this framework to other widely
 1220 adopted datasets presents non-trivial challenges. For example, CIFAR-100 Krizhevsky et al. (2009)
 1221 lacks clearly defined domain shifts and is restricted to a single domain of natural images, which limits
 1222 its applicability in multi-domain incremental learning. Datasets such as ImageNet-R Hendrycks
 1223 et al. (2021) and VLCS Torralba & Efros (2011) suffer from severe class imbalance, which can lead
 1224 to degenerate few-shot scenarios (1–5 samples per class) under the Online VIL setting. Similarly,
 1225

PACS Li et al. (2017) and OfficeHome Venkateswara et al. (2017) contain too few classes (7 each) to support fine-grained incremental evaluation and exhibit imbalance issues that impair consistency across tasks. As such, we highlight the pressing need to develop larger, more balanced, and richly annotated benchmarks tailored for the Online VIL scenario. Such benchmarks would enable more comprehensive evaluation and foster the advancement of continual learning methods in realistic, dynamically evolving environments.

Second, according to Algorithm A.1, Online VIL involves stochastic task construction, where the choice of random seed influences the composition and ordering of data in each task. While this design reflects the uncertainty and variability of real-world data streams, it introduces variance in experimental outcomes and poses challenges for reproducibility; for this reason, we reported the mean and standard deviation. Future work should explore robust evaluation protocols and standardized benchmark splits to mitigate these effects.

Furthermore, changes in classes, domains, and conditions can be further maximized through various modalities such as language and audio, which is a direction that needs to be studied to become more difficult and closer to the real world. In real-world deployments, learning agents are often exposed to open-world conditions, where previously unseen classes or domains may emerge without warning. The system must respond appropriately without Oracle supervision. While TopFlow demonstrates robustness in Online VIL settings with the continual evolution of known categories and domains, its performance under novel or out-of-distribution (OOD) conditions remains underexplored.

D.2 BROADER IMPACTS

This work tackles the Online VIL (Online Versatile Incremental Learning) scenario, where class semantics and visual domains evolve simultaneously without explicit task boundaries that reflect real-world, interactive environments more closely than traditional continual learning setups. Such dynamic learning settings are highly relevant to fields like robotics, augmented reality, and adaptive AI, where continuous real-time learning and adaptation are essential. We hope Online VIL will serve as a new benchmark for real-world incremental learning, offering a more realistic and challenging testbed for future research.

Our proposed method, TopFlow, introduces two key components:

- DFM (Domain-agnostic Flow Matching) leverages a geodesic flow-based alignment mechanism to promote domain-invariant representations, enabling models to generalize across changing visual domains. This is especially beneficial for real-world applications such as mobile robotics, autonomous driving, and field systems, where perceptual shifts (e.g., lighting, weather, terrain) are standard.
- GTP (Global Topology Preservation) maintains the global structure of the feature space over time without replaying past data, supporting lifelong learning in memory- or privacy-constrained environments. Preserving topological consistency also mitigates catastrophic forgetting and promotes safer, more stable adaptation in long-term deployment.

Despite these strengths, TopFlow’s ability to learn domain-invariant features may inadvertently reduce the effectiveness of existing privacy-preserving techniques. These techniques often rely on altering visual domains (e.g., style transfer, blurring) to obscure identity. As TopFlow neutralizes domain shifts by design, it may bypass such obfuscation strategies, posing potential limitations in privacy-sensitive contexts.

ETHICS STATEMENT

This research strictly adheres to the ICLR Code of Ethics and poses no ethical risks. We used publicly available datasets (COPRe50, iDigits, CLEAR100) and model weights (pre-trained ViT), and do not include scenarios that threaten public safety, violate privacy, or cause discrimination. We only discuss real-world Online VIL scenarios and their corresponding algorithms, which are essential for AI system innovation.

REPRODUCTION

We have provided details on ensuring reproducibility in appropriate sections, such as 4.1 Experimental Setup in the Main Paper, A. Algorithms and Details for Methods, and B. Experimental Details in the Appendix. We also include results across multiple random seeds to demonstrate stability, and

1296 ablation studies to clarify the contribution of individual components. The actual implementation code
1297 will be made public once the paper has been evaluated.
1298

1299

1300 LLM USAGE

1301 We were not used to LLMs for the core methodology, ideation, scientific rigor, or originality of the
1302 research. Additionally, no LLMs were utilized in the experimental design or analysis, and all work
1303 was conducted entirely by the authors. We used LLMs only for document-level grammar checking
1304 and readability improvement.
1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349