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Given <img>. Q: What’s in the 
image? Answer in emojis. 
A: 🍏🍌🍇🍐🍑🍈🍒.

Scene Understanding

Visual Q&A

Given <img1> and 
<img2> Q: what 
did the robot pick 
up? A: The 
multi-grain chips.

Given <img1> Q: 
what days might I 
most commonly go 
to this building?
A: Sunday.

TBD

TBD
TBD

Task and Motion Planning

Given <emb> Q: How 
to grasp blue block?
A: First grasp yellow 
block and place it on 
the table, then grasp 
the blue block.

Given <img> Task: Sort 
colors into corners.
Step 1. Push the green 
star to the bottom left.
Step 2. Push the green 
circle to the green star.

Tabletop Manipulation

Mobile Manipulation

Visual Q&A, Captioning …

Human: Bring me the rice chips from the 
drawer.  Robot: 1. Go to the drawers, 2. Open 
top drawer. I see <img>. 3. Pick the green rice 
chip bag from the drawer and place it on the 
counter.

                                                                                               A: First, grasp yellow block and … 

Given  <emb>  …  <img> Q: How to grasp blue block? A: First, grasp yellow block

Large Language Model (PaLM)

?

Control

PaLM-E: An Embodied Multimodal Language Model

… …

ViT

Language Only Tasks
Here is a Haiku about
embodied language models: 
Embodied language
models are the future of
natural language

Describe the 
following <img>: 
A dog jumping 
over a hurdle at a 
dog show.

… …

Q: Miami Beach borders which ocean? A: Atlantic. 
Q: What is 372 x 18? A: 6696. 
Language models trained on robot sensor data can 
be used to guide a robot’s actions.

PROMPT:
 Q: How can embodied language 
models benefit robots?  A:
PREDICTION:
 Embodied language models can 
benefit robots by allowing them to 
learn language in a more natural 
way. 

PROMPT:
 Language models which understand 
robot sensor data can
PREDICTION:
 be used to generate natural 
language descriptions of the 
robot's environment.

Figure 1: PaLM-E is a single general-purpose multimodal language model for embodied reasoning tasks, visual-language tasks,
and language tasks. PaLM-E transfers knowledge from visual-language domains into embodied reasoning – from robot planning in
environments with complex dynamics and physical constraints, to answering questions about the observable world. PaLM-E operates on
multimodal sentences, i.e. sequences of tokens where inputs from arbitrary modalities (e.g. images, neural 3D representations, or states, in
green and blue) are inserted alongside text tokens (in orange) as input to an LLM, trained end-to-end.

Abstract
Large language models excel at a wide range of
complex tasks. However, enabling general infer-
ence in the real world, e.g. for robotics problems,
raises the challenge of grounding. We propose
embodied language models to directly incorpo-
rate real-world continuous sensor modalities into
language models and thereby establish the link
between words and percepts. Input to our embod-
ied language model are multimodal sentences that
interleave visual, continuous state estimation, and
textual input encodings. We train these encodings
end-to-end, in conjunction with a pre-trained large
language model, for multiple embodied tasks in-
cluding sequential robotic manipulation planning,
visual question answering, and captioning. Our
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evaluations show that PaLM-E, a single large em-
bodied multimodal model, can address a variety
of embodied reasoning tasks, from a variety of
observation modalities, on multiple embodiments,
and further, exhibits positive transfer: the model
benefits from diverse joint training across internet-
scale language, vision, and visual-language do-
mains. Our largest model with 562B parameters,
in addition to being trained on robotics tasks, is
a visual-language generalist with state-of-the-art
performance on OK-VQA, and retains generalist
language capabilities with increasing scale.

1. Introduction
Large language models (LLMs) demonstrate strong reason-
ing capabilities across various domains, including dialogue
(Glaese et al., 2022; Thoppilan et al., 2022), step-by-step
reasoning (Wei et al., 2022; Kojima et al., 2022), math prob-
lem solving (Lewkowycz et al., 2022; Polu et al., 2022), and
code writing (Chen et al., 2021a). However, a limitation of
such models for inference in the real world is the issue of
grounding: while training LLMs on massive textual data
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may lead to representations that relate to our physical world,
connecting those representations to real-world visual and
physical sensor modalities is essential to solving a wider
range of grounded real-world problems in computer vision
and robotics (Tellex et al., 2020). Previous work (Ahn et al.,
2022) interfaces the output of LLMs with learned robotic
policies and affordance functions to make decisions, but
is limited in that the LLM itself is only provided with tex-
tual input, which is insufficient for many tasks where the
spatial layout of the scene is important. Further, in our
experiments we show that current state-of-the-art visual-
language models trained on typical vision-language tasks
such as visual-question-answering (VQA) cannot directly
solve robotic reasoning tasks.

In this paper we propose embodied language models, which
directly incorporate continuous inputs from sensor modali-
ties of an embodied agent and thereby enable the language
model itself to make more grounded inferences for sequen-
tial decision making in the real world. Inputs such as images
and state estimates are embedded into the same latent embed-
ding as language tokens and processed by the self-attention
layers of a Transformer-based LLM in the same way as text.
We start from a pre-trained LLM in which we inject the
continuous inputs through an encoder. These encoders are
trained end-to-end to output sequential decisions in terms of
natural text that can be interpreted by the embodied agent
by conditioning low-level policies or give an answer to an
embodied question. We evaluate the approach in a vari-
ety of settings, comparing different input representations
(e.g. standard vs. object-centric ViT encodings for visual
input), freezing vs. finetuning the language model while
training the encoders, and investigating whether co-training
on multiple tasks enables transfer.

The approach enables a broad set of capabilities, as we
demonstrate on three robotic manipulation domains (two
of which are closed-loop in the real-world) and a set of
standard visual-language tasks such as VQA and image
captioning, while simultaneously retaining the strong pure-
language abilities of PaLM. Our results indicate that multi-
task training improves performance compared to training
models on individual tasks. We show that this transfer
across tasks can lead to high data-efficiency for robotics
tasks, e.g. significantly increasing learning success from
handfuls of training examples, and even demonstrating one-
shot or zero-shot generalization to novel combinations of
objects or unseen objects.

We scale PaLM-E up to 562B parameters, integrating the
540B PaLM (Chowdhery et al., 2022) LLM and the 22B
Vision Transformer (ViT) (Dehghani et al., 2023) into, to
our knowledge, the largest vision-language model currently
reported. PaLM-E-562B achieves state-of-the-art perfor-
mance on the OK-VQA (Marino et al., 2019) benchmark,

without relying on task-specific finetuning. Although not
the focus of our experimentation, we also find (Fig. 6) that
PaLM-E-562B exhibits a wide array of capabilities includ-
ing zero-shot multimodal chain-of-thought reasoning, few-
shot prompting, and multi-image reasoning, despite being
trained on only single-image examples.

To summarize our main contributions, we (1) propose the
methodological idea to train a generalist vision, language,
and robotics model that addresses robotics tasks through
vision-language modeling. We also (2) demonstrate the
novel scientific result of demonstrating positive transfer
across both vision and language into robotics tasks, which
is enabled by the methodological idea mentioned prior. In
studying how to best train such models, we (3) introduce
novel architectural ideas such as neural scene representa-
tions and entity-labeling multimodal tokens. In addition to
our focus on PaLM-E as an embodied reasoner we (4) show
that PaLM-E is also a quantitatively competent vision and
language generalist, and (5) demonstrate that scaling the
language model size enables multimodal finetuning with
less catastrophic forgetting.

2. Related Work
General vision-language modeling. Building on suc-
cesses in large language (Brown et al., 2020; Devlin et al.,
2018) and vision (Dosovitskiy et al., 2020) models, recent
years have seen a growing interest in large vision-language
models (VLMs) (Li et al., 2019; Lu et al., 2019; Hao et al.,
2022; Gan et al., 2022). Unlike their predecessors, VLMs
are capable of simultaneously understanding both images
and text, and can be applied to tasks such as visual question
answering (Zhou et al., 2020; Zellers et al., 2021b), cap-
tioning (Hu et al., 2022), optical character recognition (Li
et al., 2021), and object detection (Chen et al., 2021b). The
methods by which images are integrated varies. For exam-
ple, Alayrac et al. (2022) introduces cross-attention layers
to fuse images into a pretrained language model. In con-
trast, PaLM-E represents images and text as “multimodal
sentences” where both image and text tokens are input to
the self-attention layers of the language model. This also
allows it to process multiple images in a flexible way within
any part of a sentence. More closely related to our work
is Frozen (Tsimpoukelli et al., 2021) where vision encoder
parameters are optimized via backpropagation through a
frozen LLM (Lu et al., 2021). Inspired by this work, we
investigate the design in a broader scope by introducing
alternative input modalities (e.g. neural scene representa-
tions), and our proposed approach empirically outperforms
Frozen by more than 45% on the VQAv2 benchmark. More
importantly we demonstrate that PaLM-E is applicable not
only to perceptual but also embodied tasks.

Actions-output models. Prior works focus on combining
vision and language inputs in an embodied setting with the
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goal of direct action prediction (Guhur et al., 2022; Shridhar
et al., 2022b;a; Zhang & Chai, 2021; Silva et al., 2021; Jang
et al., 2022; Nair et al., 2022; Lynch et al., 2022; Brohan
et al., 2022). Among these methods, VIMA (Jiang et al.,
2022) explores multimodal prompts similar to PaLM-E. The
role of language is perhaps most aptly described as task
specification in these works. In contrast, PaLM-E generates
high-level instructions as text; in doing so, the model is
able to naturally condition upon its own predictions and di-
rectly leverage the world knowledge embedded in its param-
eters. This enables not only embodied reasoning but also
question answering, as demonstrated in our experiments.
Among works that output actions, perhaps most similar is
the approach proposed in Gato (Reed et al., 2022) which,
like PaLM-E, is a generalist multi-embodiment agent. In
contrast to Gato, we demonstrate positive transfer across
different tasks where the model benefits from diverse joint
training across multiple domains.

LLMs in embodied task planning. There have been sev-
eral methods proposed to leverage LLMs in embodied do-
mains. While many works focus on understanding natural
language goals (Lynch & Sermanet, 2020; Shridhar et al.,
2022a; Nair et al., 2022; Lynch et al., 2022), fewer con-
sider natural language as a representation for planning –
the focus of this work. LLMs contain vast amounts of in-
ternalized knowledge about the world (Bommasani et al.,
2021), but without grounding, generated plans may be im-
possible to execute. One line of research has employed
prompting to elicit a sequence of instructions directly from
an LLM either by leveraging semantic similarity between an
LLM’s generation and an eligible set of instructions (Huang
et al., 2022b), incorporating affordance functions (Ahn et al.,
2022), visual feedback (Huang et al., 2022c), generating
world models (Nottingham et al., 2023; Zellers et al., 2021a),
planning over graphs and maps (Shah et al., 2022; Huang
et al., 2022a), visual explanations (Wang et al., 2023), pro-
gram generation (Liang et al., 2022; Singh et al., 2022), or
injecting information into the prompt (Zeng et al., 2022). In
contrast, PaLM-E is trained to generate plans directly with-
out relying on auxiliary models for grounding. This in turn
enables direct integration of the rich semantic knowledge
stored in pretrained LLMs into the planning process.

With few exceptions, the parameters of the LLMs employed
in many of these works are employed as-is without further
training. In LID (Li et al., 2022), this constraint is relaxed
and LLM parameters are finetuned to produce a planning net-
work for generating high-level instructions. (SL)3 (Sharma
et al., 2021) tackles the more challenging task of simulta-
neously finetuning two LLMs: a planning network, which
produces high-level instructions, and a low-level policy net-
work, which selects actions. With PaLM-E, our interests
are distinct and complementary: we investigate a generalist,
multi-embodiment model, across multiple modalities.

3. Background on Large Language Models
Decoder-only LLMs. Decoder-only large language models
(LLMs) are generative models trained to predict the proba-
bility p(w1:L) of a piece of text w1:L = (w1, . . . , wL) that
is represented as a sequence of tokens wi ∈ W . Typical
neural architectures realize this by factorizing into

p(w1:L) =

L∏
l=1

pLM(wl|w1:l−1), (1)

where pLM is a large transformer network.

Prefix-decoder-only LLMs. Since the LLM is auto-
regressive, a pre-trained model can be conditioned on a
prefix w1:n without the necessity to change the architecture

p(wn+1:L|w1:n) =

L∏
l=n+1

pLM(wl|w1:l−1). (2)

The prefix or prompt w1:n provides the context based on
which the LLM continues to predict the subsequent tokens
wn+1:L. This is often used for inference to steer the predic-
tions of the model. For example, the prompt can contain a
description of the task the LLM should solve or examples
of desired text completions for similar tasks.

Token embedding space. The tokens wi are elements of a
fixed vocabularyW which is a discrete, finite set correspond-
ing to (sub)words in natural language. Internally, the LLM
embeds wi into a word token embedding space X ⊂ Rk via
γ : W → X , i.e. pLM(wl|x1:l−1) with xi = γ(wi) ∈ Rk.
The mapping γ is typically represented as a large embed-
ding matrix of size k × |W| and trained end-to-end. In our
case, |W| = 256 000 (Chowdhery et al., 2022).

4. Methodology: An Embodied Multimodal
Language Model

The main architectural idea of PaLM-E is to inject continu-
ous, embodied observations such as images, state estimates,
or other sensor modalities into the language embedding
space of a pre-trained language model. This is realized by
encoding the continuous observations into a sequence of
vectors with the same dimension as the embedding space of
the language tokens. The continuous information is hence
injected into the language model in an analogous way to
language tokens. PaLM-E is a decoder-only LLM that gen-
erates textual completions autoregressively given a prefix or
prompt. We call our model PaLM-E, since we use PaLM
(Chowdhery et al., 2022) as the pre-trained language model,
and make it Embodied.

The inputs to PaLM-E consist of text and (multiple) con-
tinuous observations. The multimodal tokens correspond-
ing to these observations are interleaved with the text
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to form multimodal sentences. An example of such
a multimodal sentence is Q: What happened between

<img 1> and <img 2>? where <img i> represents an em-
bedding of an image. The output of PaLM-E is text gen-
erated auto-regressively by the model, which could be an
answer to a question, or a sequence of decisions produced by
PaLM-E in textual form that should be executed by a robot.
When PaLM-E is tasked with producing decisions or plans,
we assume that there exists a low-level policy or planner that
can translate these decisions into low-level actions. Prior
work has discussed a variety of ways to train such low-level
policies (Lynch & Sermanet, 2020; Brohan et al., 2022), and
we use these prior methods directly without modification.
In the following, we describe our approach more formally.

Multimodal sentences: injection of continuous observa-
tions. Multimodal information such as image observations
can be injected into the LLM by skipping the discrete token
level and directly mapping the continuous observations into
the language embedding space X . To this end, we train an
encoder φ : O → X q that maps a (continuous) observation
space O (refer to Sec. 4.1 for details) into a sequence of
q-many vectors in X . These vectors are then interleaved
with normal embedded text tokens to form the prefix for the
LLM. This means that each vector xi in the prefix is formed
from either the word token embedder γ or an encoder φi:

xi =

{
γ(wi) if i is a text token, or
φj(Oj)i if i corresponds to observation Oj .

(3)

Note that a single observation Oj is usually encoded into
multiple embedding vectors. It is possible to interleave
different encoders φi at different locations in the prefix
to combine, e.g., information from different observation
spaces. Injecting the continuous information this way into
the LLM reuses its existing positional encodings. In contrast
to other VLM approaches (e.g, (Chen et al., 2022)), the
observation embeddings are not inserted at fixed positions,
but instead placed dynamically within the surrounding text.

Embodying the output: PaLM-E in a robot control loop.
PaLM-E is a generative model producing text based on
multimodal sentences as input. In order to connect the
output of the model to an embodiment, we distinguish two
cases. If the task can be accomplished by outputting text
only as, e.g., in embodied question answering or scene
description tasks, then the output of the model is directly
considered to be the solution for the task.

Alternatively, if PaLM-E is used to solve an embodied plan-
ning or control task, it generates text that conditions low-
level commands. In particular, we assume to have access to
policies that can perform low-level skills from some (small)
vocabulary, and a successful plan from PaLM-E must con-
sist of a sequence of such skills. Note that PaLM-E must
determine on its own which skills are available based on

the training data and the prompt, and no other mechanism
is used to constrain or filter its outputs. Although these
policies are language conditioned, they are not capable of
solving long-horizon tasks or taking in complex instructions.
PaLM-E is hence integrated into a control-loop, where its
predicted decisions are executed through the low-level poli-
cies by a robot, leading to new observations based on which
PaLM-E is able to replan if necessary. In this sense, PaLM-
E can be understood as a high-level policy that sequences
and controls the low-level policies.

4.1. Input & Scene Representations for Different
Sensor Modalities

In this section, we describe the individual modalities that we
incorporate into PaLM-E, and how we set up their encoders.
We propose different architectural choices for each encoder
φ : O → X to map the corresponding modality into the
language embedding space. We investigate state estimation
vectors, Vision Transformers (ViTs) (Dosovitskiy et al.,
2020; Chen et al., 2022; Ryoo et al., 2021) for 2D image
features, and the 3D-aware Object Scene Representation
Transformer (OSRT) (Sajjadi et al., 2022a). In addition to
encoders that represent the input scene globally, we consider
object-centric representations that factor observations into
tokens that represent individual objects in the scene.

State estimation vectors. State vectors, e.g. from a robot
or a state estimate for objects, are perhaps the simplest to
input into PaLM-E. Let s ∈ RS be a vector describing the
state of the objects in a scene. For example, s could contain
the pose, size, color etc. of those objects. Then, the MLP
φstate maps s into the language embedding space.

Vision Transformer (ViT). ViT φ̃ViT (Dosovitskiy et al.,
2020) is a transformer architecture mapping an image I
into a number of token embeddings x̃1:m = φ̃ViT(I) ∈
Rm×k̃. We consider several variants, including the 4 billion
parameter model from Chen et al. (2022), which we refer to
as ViT-4B, and a similar 22 billion parameter model, ViT-
22B (Dehghani et al., 2023), both of which have been pre-
trained on image classification. We further investigate the
ViT token learner architecture (ViT + TL) (Ryoo et al., 2021)
which is trained end-to-end from scratch. Note that the
dimensionality k̃ of the ViT embeddings is not necessarily
the same as that of the language model. We therefore project
each embedding into xi = φViT(I)i = ψ(φ̃ViT(I)i) with ψ
being a learned affine transformation.

Object-centric representations. Unlike language, visual
input is not pre-structured into meaningful entities and rela-
tionships: while ViT may capture semantics, the structure of
the representation resembles a static grid rather than a col-
lection of object instances. This poses a challenge both for
interfacing with LLMs which have been pre-trained on sym-
bols, and for solving embodied reasoning which requires
interaction with physical objects. We therefore also explore
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structured encoders that aim to separate visual inputs into
distinct objects before injecting them into the LLM. Given
ground-truth object instance masks Mj , we can decompose
ViT’s representation into xj1:m = φViT(Mj ◦ I) for object j.

Object Scene Representation Transformer (OSRT). An
alternative that does not require ground-truth segmentations
is OSRT (Sajjadi et al., 2022a): rather than relying on ex-
ternal knowledge about objects, they are discovered in an
unsupervised way through inductive biases in the architec-
ture (Locatello et al., 2020). Based on SRT (Sajjadi et al.,
2022b), OSRT learns 3D-centric neural scene representa-
tions through a novel view synthesis task. Its scene repre-
sentations consist of object slots oj = φ̄OSRT(I1:v)j ∈ Rk̄.
We project each of these slots into xj1:m = ψ(φ̄OSRT(I1:v)j)
with an MLP ψ. Note that individual objects are always tok-
enized into multiple embeddings each, i.e. ψ : Rk̄ → Rm×k

for OSRT maps into m-many embeddings.

Entity referrals. For embodied planning tasks, PaLM-E
must be able to reference objects in its generated plan. In
many cases, including the majority of our experiments,
objects in a scene can be identified in natural language
by some of their unique properties. However, there
also exist settings where objects are not easily identifi-
able by language in few words, e.g. if there are multi-
ple blocks on a table of the same color at different loca-
tions. For object-centric representations such as OSRT,
we label the multimodal tokens corresponding to an object
in the input prompt as follows: Object 1 is <obj 1>.

. . . Object j is <obj j>. This enables PaLM-E to ref-
erence objects via special tokens of the form obj j in its
generated output sentences. In this case, we assume that the
low-level policies operate on these tokens as well.

4.2. Model Training
PaLM-E is trained on a dataset of the form D ={(
Ii1:ui

, wi
1:Li

, ni
)}N

i=1
, where each example i consists of

ui-many continuous observations Iij , a text wi
1:Li

, and an
index ni. Despite being a decoder-only model, the text
consists of a prefix part up to index ni that is formed from
multimodal sentences, and the prediction target, which only
contains text tokens. The loss function is therefore a cross-
entropy loss averaged over the individual non-prefix tokens
wi

ni+1:Li
. To form the multimodal sentences within the

model, we have special tokens in the text that get replaced
by the embedding vectors of the encoders at the locations
in the text of those tokens. We base PaLM-E on the pre-
trained 8B, 62B, and 540B parameter variants of PaLM as
the decoder-only LLM into which we inject the continuous
observations through the input encoders. Those encoders
are either pre-trained or trained from scratch, see Sec. 4.1.
We refer to an 8B LLM combined with a 4B ViT as PaLM-
E-12B, similarly a 62B LLM + 22B ViT as PaLM-E-84B,
and 540B LLM + 22B ViT as PaLM-E-562B.

Variation with Model freezing. Most of our architectures
consist of three parts, an encoder φ̃, a projector ψ, and the
LLM pLM. When training PaLM-E, one way is to update
the parameters of all these components. However, LLMs
show impressive reasoning capabilities if supplied with a
suitable prompt (Wei et al., 2022). Therefore, we investigate
whether it is possible to freeze the LLM and to just train the
input encoders, and if so, how different-modality encoders
compare. In this case, the encoder has to produce embed-
ding vectors such that the frozen LLM is grounded on the
observations, and also propagate information to the LLM
about the capabilities of an embodiment. Training such en-
codings can be understood as a form of input-conditioned
soft-prompting (Tsimpoukelli et al., 2021), in relation to nor-
mal soft prompts (Lester et al., 2021). In experiments with
φOSRT, we also freeze the slot representation, i.e. we only
update the small projector ψ which serves as the interface
between OSRT and the LLM.

Co-training across tasks. In our experiments, we investi-
gate the effects of co-training our models on a variety of
diverse data. The “full mixture”, see App. D, consists pri-
marily of a diverse set of internet-scale vision-and-language
data, from a variety of tasks. The sampling frequencies are
set such that only 8.9% of the full mixture is embodied data,
and there are several tasks for each embodiment.

5. Experiments
Our experiments consider diverse robotic (mobile) manip-
ulation tasks across three different robot embodiments, in
simulation and with two different real robots. We refer to
https://palm-e.github.io for videos showing the
capabilities of PaLM-E on those tasks. Although not the
focus of our work, we evaluate PaLM-E also on general
vision-language tasks such as visual-question-answering
(VQA), image captioning, and established language tasks.

We split our experimental investigation into two broad cate-
gories. First, we compare the different input representations
from Sec. 4.1 with respect to performance, generalization,
and data-efficiency. The second thread of experiments fo-
cuses on one architecture, the main PaLM-E version, con-
sisting of a pre-trained ViT and PaLM LLM that takes in raw
images as the continuous inputs. Here we show that a single
model, trained on a mixture of many datasets, across diverse
tasks, and across robot embodiments, can simultaneously
achieve high performance on all of those tasks. Crucially,
we investigate whether co-training on these datasets enables
transfer (Fig. 2): despite different tasks and embodiments,
the performance on the individual tasks increases by training
on the mixture of tasks. We study the influence on perfor-
mance, generalization, and data efficiency with respect to
co-training strategies and model parameter size. Finally, we
consider if freezing the LLM and just training the ViT that
injects vision into the LLM is a viable path.
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Figure 2: Overview of transfer learning demonstrated by PaLM-
E: across three different robotics domains, using PaLM and ViT
pretraining together with the full mixture of robotics and general
visual-language data provides a significant performance increase
compared to only training on the respective in-domain data. See
Tab. 1, Fig. 3, Tab. 2, Tab. 4 for additional data in each domain.

As baselines, we consider the state-of-the art visual language
model PaLI (Chen et al., 2022), which has not been trained
on embodiment robot data, as well as the SayCan algorithm
(Ahn et al., 2022), supplied with oracle affordances.

5.1. Robot Environments / Tasks
Our three robot environments (Fig. 1) include a Task and
Motion Planning (TAMP) domain where a robot has to
manipulate (grasp and stack) objects, a table-top pushing
environment, and a mobile manipulation domain. In each
domain, PaLM-E is trained on expert data from that do-
main. In many cases, this is a sparse amount of data per task.
The TAMP tasks involve large combinatorics over possible
plans, and many decision sequences are infeasible. PaLM-E
has to generate plans that consist of multiple steps, with
complicated decision boundaries. The multi-object tabletop
pushing environment is taken from the publicly available
Language-Table dataset (Lynch et al., 2022) and is chal-
lenging since it includes several objects, large cardinality
of language, and complex pushing dynamics. For both the
TAMP and Language-Table environment, PaLM-E has to
reason about the poses of the objects. It is not sufficient to
know which objects are on the table or knowing their rough
relationships, the more fine-grained details about the scene
geometry are important for solving the tasks. Finally, we
consider a mobile manipulation domain similar to SayCan
(Ahn et al., 2022), where a robot has to solve a variety of
tasks in a kitchen environment, including finding objects
in drawers, picking them, and bringing them to a human.
For all domains we consider both planning and VQA tasks
in those environments. For the mobile manipulation and
Language-Table environments, PaLM-E is integrated into
the control loop to execute the plans in the real world, and
has to adjust the plan in presence of external disturbances
or failures of the low-level control policies.

5.2. TAMP Environment

Tab. 8 (appendix) shows planning success rates and VQA
performance for the TAMP environment. The LLM is frozen
here (for pre-trained LLM). For the results reported in Tab. 8,
the input representations are trained on a dataset containing
96,000 training scenes of solely the TAMP environment,
i.e. no other data is part of the mixture. When 3-5 objects
are in the scene, as in the training set, most input represen-
tations perform similarly well. However, when increasing
the number of objects, it turns out that using a pre-trained
LLM improves performance considerably, especially with
entity referrals. Furthermore, a 62B LLM shows better out-
of-distribution generalization compared to the 8B variant,
while a non-pretrained LLM shows no out-of-distribution
generalization. The SayCan baseline (Ahn et al., 2022) uti-
lizes oracle affordance functions and has difficulties solving
this environment, since affordance functions only constrain
what is possible right now, but are not informative enough
for the LLM to construct long-horizon plans in TAMP en-
vironments. Additionally, the short-horizon skills (Tab. 8,
first row) are not sufficient to solve these tasks.

Tab. 1 shows results for 3-5 objects when training on 1%
of the dataset, which corresponds to only 320 examples for
each of the two planning tasks. Here we see that there are
significant differences between the input representations, es-
pecially for the planning tasks. First, pre-training the LLM
is beneficial in the low data regime for state inputs. Second,
both ViT variants (ViT+TL, ViT-4B) do not perform well
in solving the planning tasks for this little data. However,
if we co-train on all other robot environments as well as
general vision-language datasets (ViT-4B generalist), then
the performance of the ViT-4B more than doubles. This
shows a significant transfer effect between different robot
embodiments and tasks. Finally, using OSRT as the input
representation leads to the best performance here, demon-
strating the strengths of 3D-aware object representations.
We also observe another instance of transfer here: when
we remove the TAMP VQA data and only train on the 640
planning tasks examples, there is a (slight) drop in perfor-
mance. The state-of-the art vision-language model PaLI
(Chen et al., 2022) that was not trained on robot data is
not able to solve the tasks. We only evaluated it on q2 (ob-
jects left/right/center on the table) and q3 (vertical object
relations), since those most resemble typical VQA tasks.

5.3. Language-Table Environment
Tab. 2 reports success rates on long-horizon tasks from the
Language-Table environment (Lynch et al., 2022). PaLM-E
is integrated into a control loop that takes as input the long-
horizon task and the current image, and outputs an instruc-
tion for the low-level policy. We see that joint training on
internet-scale vision and language results in a more effec-
tive model for robot planning, particularly in the few-shot
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Figure 3: Planning success results in the TAMP environment
(1% data) for PaLM-E-12B, comparing of the effects of PaLM-E
models (i) using the full training mixture, (ii) pre-training (ViT
and PaLM), and (iii) freezing or finetuning the language model.
Transfer from full mixture is particularly effective. Note that full
mixture contains only 1% of the training data (320 examples each)
for the tasks evaluated here. Shown is the mean of tasks p1, p2.

Object- LLM Embodied VQA Planning
centric pre-train q1 q2 q3 q4 p1 p2

SayCan (oracle afford.) (Ahn et al., 2022) 3 - - - - 38.7 33.3
PaLI (zero-shot) (Chen et al., 2022) 3 - 0.0 0.0 - - -
PaLM-E (ours) w/ input enc:

State 3(GT) 7 99.4 89.8 90.3 88.3 45.0 46.1
State 3(GT) 3 100.0 96.3 95.1 93.1 55.9 49.7
ViT + TL 3(GT) 3 34.7 54.6 74.6 91.6 24.0 14.7
ViT-4B single robot 7 3 - 45.9 78.4 92.2 30.6 32.9
ViT-4B full mixture 7 3 - 70.7 93.4 92.1 74.1 74.6
OSRT (no VQA) 3 3 - - - - 71.9 75.1
OSRT 3 3 99.7 98.2 100.0 93.7 82.5 76.2

Table 1: Comparison of different input representations on TAMP
environment (in terms of success rates), where data from TAMP
constitutes only 1% (i.e., 320 samples for p1, p2 each) of to-
tal training data. PaLM-E outperforms both PaLI and SayCan.
Cross-domain transfer is observed, since the PaLM-E with ViT-4B
trained on our full data mixture improves planning performance.
OSRT, despite using no large-scale data, provides the most ef-
fective input encodings for learning. (GT) means ground-truth
object-centric information provided. In all experiments, the LLM
is frozen. The non-object centric ViT-4B variant utilizes color to
reference objects, hence q1 cannot be evaluated here. The LLM
is frozen in these experiments (except for the case where it is not
pre-trained). Sec. E.1 describes the tasks q1-q4, p1, q2.

regime with only 10 demos per task. Scaling the 12B model
to the 84B model leads to improvements on 2 of 3 tasks. As
with the TAMP environment, neither SayCan nor zero-shot
PaLI are effective, unable to solve the easiest task tested.

Real Robot Results and Few-Shot Generalization. In
Fig. 7, a), we see PaLM-E is capable of guiding a real robot
through a multi-stage tabletop manipulation task, while
remaining robust to adversarial disturbances. Given the ob-
served image and a long-horizon goal, e.g. “sort the blocks
by colors into corners”, PaLM-E outputs language subgoals
at 1 Hz to the policies from Lynch et al. (2022), that output
low-level robot actions at 5 Hz. Prior work (Lynch et al.,
2022) instead involved a human in the loop to interactively
guide subgoals and corrections. In Fig. 4, b) we see PaLM-
E is capable of one-shot and zero-shot learning. Here, we

finetuned PaLM-E on 100 different long horizon tasks with
a single training example each, e.g. “put all the blocks in
the center”, “remove the blue blocks from the line”. We
additionally see that PaLM-E can generalize zero-shot to
tasks involving novel object pairs (Fig. 7, c) and to tasks in-
volving objects that were unseen in either the original robot
dataset or the finetuning datasets, e.g. a toy turtle (Fig. 4, d).

5.4. Mobile Manipulation Environment
We demonstrate the performance of PaLM-E on challenging
and diverse mobile manipulation tasks. We largely follow
the setup in Ahn et al. (2022), where the robot needs to plan
a sequence of navigation and manipulation actions based on
a human instruction. For example, given the instruction “I
spilled my drink, can you bring me something to clean it
up?”, the robot needs to plan a sequence containing “1. Find
a sponge, 2. Pick up the sponge, 3. Bring it to the user, 4.
Put down the sponge.” Inspired by these tasks, we develop 3
use cases to test the embodied reasoning abilities of PaLM-
E: affordance prediction, failure detection, and long-horizon
planning. The low-level policies are from RT-1 (Brohan
et al., 2022), with RGB image and language instruction as
input, and end-effector controls as outputs.

Affordance prediction. We investigate PaLM-E’s perfor-
mance at affordance prediction, i.e. whether a skill of the
low-level policy can be executed in the current environment.
This can be formulated as the VQA problem Given <img>.

Q: Is it possible to <skill> here?. PaLM-E
outperforms PaLI (zero-shot), as well as thresholding on
value functions trained with QT-OPT (Tab. 4).

Failure detection. For a robot to do closed-loop planning,
it is important to detect failures, as shown in (Huang et al.,
2022c). The multimodal prompt is Given <img>. Q:

Was <skill> successful?. Tab. 4 shows that PaLM-E
outperforms PaLI (zero-shot), and a fine-tuned version of
CLIP on this data. PaLM-E also outperforms the algorithm
of Xiao et al. (2022) that leverages two CLIP models trained
with hindsight relabeled data. This method has access to
more information than our method, and was specifically
designed to just solve failure detection on this dataset.

Real robot results: Long-horizon planning. Finally, we
use PaLM-E to perform embodied planning end-to-end
for mobile manipulation tasks. The prompt structure for
this task is Human: <instruction> Robot: <step

history>. I see <img>. PaLM-E is trained to gener-
ate the next step of the plan, conditioned on the history of
taken steps and the current image observation of the scene.
After each step is decoded, we map them to a low-level
policy as defined in Ahn et al. (2022). This process is done
in an autoregressive manner, until PaLM-E outputs “termi-
nate”. We train the model by using the runs from (Ahn et al.,
2022), which contains 2912 sequences. We qualitatively
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Zero-shot Baselines Task 1 Task 2 Task 3

SayCan (oracle afford.) (Ahn et al., 2022) 0.0 - -
PaLI (Chen et al., 2022) 0.0 - -

trained from LLM+ViT LLM Task # Demos
PaLM-E- on scratch pretrain frozen finetune 10 20 40 10 20 40 10 20 80

12B Single robot 3 7 n/a 3 20.0 30.0 50.0 2.5 6.3 2.5 11.3 16.9 28.3
12B Full mixture 7 3 3 7 - - 20.0 - - 36.3 - - 29.4
12B Full mixture 7 3 7 7 - - 80.0 - - 57.5 - - 50.0
12B Full mixture 7 3 7 3 70.0 80.0 80.0 31.3 58.8 58.8 57.5 54.4 56.3
84B Full mixture 7 3 7 7 - - 90.0 - - 53.8 - - 64.4

Table 2: Results on planning tasks in the simulated environment from Lynch et al. (2022).

Task 1. Q: There is a block that is closest to
{i.e., top right corner}. Push that block to
the other block of the same color.

Task 2. Q: How to sort the blocks by colors
into corners?

Task 3. Q: How to push all the blocks that
are on the {left/right} side together,
without bringing over any of the blocks
that are on the {right/left} side?

Table 3: Task prompts for Tab. 2.

Go to the drawers Open the top 
drawer

Take the rice chips 
out of the drawer

Take the rice chips 
out of the drawer

PaLM-E guiding a real robot through a long horizon mobile manipulation task
Instruction: “bring me the rice chips from the drawer”

start goal

Bring it to the user
Adversarial Disturbance: 
human knocks the rice chips 

back into the drawer
Put it down

PaLM-E guiding a real robot through one-shot and zero-shot tabletop manipulation tasks success

Move the blue triangle 
to the group

Move the green circle 
to the yellow hexagon success

one-shot: "Move the remaining blocks to the group"

Move the green star to 
the top left corner

Move the green circle to 
the green star

zero-shot: "Move the green blocks to the turtle"

success

Figure 4: A single PaLM-E model directs the low-level policies of two real robots. Shown is a long-horizon mobile manipulation task in
a kitchen, and one-shot / zero-shot generalization with a tabletop manipulation robot.

Baselines Failure det. Affordance
PaLI (Zero-shot) (Chen et al., 2022) 0.73 0.62
CLIP-FT (Xiao et al., 2022) 0.65 -
CLIP-FT-hindsight (Xiao et al., 2022) 0.89 -
QT-OPT (Kalashnikov et al., 2018) - 0.63
PaLM-E-12B from LLM+ViT LLM
trained on scratch pretrain frozen

Single robot 3 7 n/a 0.54 0.46
Single robot 7 3 3 0.91 0.78
Full mixture 7 3 3 0.91 0.87
Full mixture 7 3 7 0.77 0.91

Table 4: Mobile manipulation environment: failure detection and
affordance prediction (F1 score) in out-of-distribution scenes.

evaluated the model in a real kitchen and found the model
can carry out long-horizon mobile manipulation tasks, even
under adversarial disturbances (Fig. 4).

5.5. Performance on General Visual-Language Tasks
Although it is not the focus of our work, we report in Tab. 5
results on general vision-language tasks, including OK-
VQA (Marino et al., 2019), VQA v2 (Goyal et al., 2017) and
COCO captioning (Chen et al., 2015). A single, generalist
PaLM-E-562B model achieves the highest reported number
on OK-VQA, including outperforming models finetuned

VQAv2 OK-VQA COCO
Model test-dev test-std val Karpathy test
Generalist (one model)
PaLM-E-12B 76.2 - 55.5 135.0
PaLM-E-562B 80.0 - 66.1 138.7
Task-specific finetuned models
Flamingo (Alayrac et al., 2022) 82.0 82.1 57.8† 138.1
PaLI (Chen et al., 2022) 84.3 84.3 64.5 149.1
PaLM-E-12B 77.7 77.9 60.1 136.0
PaLM-E-66B - - 62.9 -
PaLM-E-84B 80.5 - 63.3 138.0
Generalist (one model), with frozen LLM
(Tsimpoukelli et al., 2021) 48.4 - - -
PaLM-E-12B frozen 70.3 - 51.5 128.0

Table 5: Results on general visual-language tasks. For the gen-
eralist models, they are the same checkpoint across the different
evaluations, while task-specific finetuned models use different-
finetuned models for the different tasks. COCO uses Karpathy
splits. † is 32-shot on OK-VQA (not finetuned).

specifically on OK-VQA. Compared to (Tsimpoukelli et al.,
2021), PaLM-E achieves the highest performance on VQA
v2 with a frozen LLM to our knowledge. This establishes
that PaLM-E is a competitive visual-language generalist, in
addition to being an embodied reasoner on robotic tasks.
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Figure 5: Results on general language tasks (NLG = natural
language generation): increasing scale leads to less catastrophic
forgetting between a corresponding PaLM-E model and its inher-
ited PaLM model. See full suite of tasks and results in Tab. 10.

5.6. Performance on General Language Tasks
Tab. 10 reports the averaged performance of PaLM-E on 21
general language benchmarks for Natural Language Under-
standing (NLU) and Natural Language Generation (NLG)
tasks. The notable trend is that with increasing model scale,
there is considerably less catastrophic forgetting of language
capabilities. As seen in Fig. 5, while for the smallest (PaLM-
E-12B) model 87.3% of its NLG performance (relative) has
degraded during multimodal training, merely 3.9% have
been degraded for the largest model (PaLM-E-562B).

6. Summary of Experiments & Discussion
Generalist vs specialist models – transfer. As summa-
rized in Fig. 2, we have shown several instances of transfer,
meaning that PaLM-E trained on different tasks and datasets
at the same time leads to significantly increased performance
relative to models trained separately on the different tasks
alone. In Fig. 3, co-training on the “full mixture” achieves
more than double the performance. In Tab. 11, we see sig-
nificant improvements in performance if we add LLM/ViT
pre-training, and training on the full mixture instead of the
mobile manipulation data alone. For the Language-Table
experiment in Tab. 2, we observe similar behaviour.

Data efficiency. Compared to available massive language
or vision-language datasets, robotics data is significantly
less abundant. As discussed in the last paragraph, our model
exhibits transfer, which aids PaLM-E to solve robotics tasks
from very few training examples in the robotics domain, e.g.
between 10 and 80 for Language Table or 320 for TAMP.
The OSRT results show another instance of data-efficiency
by using a geometric input representation. A promising
opportunity for future work is to combine this with a method
benefitting from large-scale visual data.

Retaining language capabilities. We have shown two
paths to retain the language capabilities of the model during

multimodal training. As one option, freezing the LLM and
only training the input encoders is a viable path for building
embodied language models, although this approach occa-
sionally struggled for robotics tasks (Tab. 2). As an alter-
native route, when the whole model is trained end-to-end,
the model retains significantly more of its original language
performance with increasing model scale (Fig. 5).

Limitations and Impact. In App. B and C we discuss
technical limitations and considerations for broader impact.

7. Conclusion
We proposed to build an embodied language model by in-
jecting multimodal information such as images into the em-
bedding space of a pre-trained LLM. Experiments showed
that off-the-shelf state-of-the-art vision-language models
trained on general VQA and captioning tasks are not suffi-
cient for embodied reasoning tasks, as well as limitations of
a recent proposal for grounding language models through
affordances. To overcome these limitations, we proposed
PaLM-E, a single model that is able to control different
robots in simulation and in the real world, while at the same
time being quantitatively competent at general VQA and
captioning tasks. In particular the novel architectural idea of
ingesting neural scene representations (i.e., OSRT) into the
model is particularly effective, even without large-scale data.
PaLM-E is trained on a mixture of diverse tasks across mul-
tiple robot embodiments as well as general vision-language
tasks. Importantly, we have demonstrated that this diverse
training leads to several avenues of transfer from the vision-
language domains into embodied decision making, enabling
robot planning tasks to be achieved data efficiently. While
our results indicate that frozen language models are a viable
path towards general-purpose embodied multimodal models
that fully retain their language capabilities, we have also
surfaced an alternative route with unfrozen models: scaling
up the language model size leads to significantly less catas-
trophic forgetting while becoming an embodied agent. Our
largest model, PaLM-E-562B, showcases emergent capabil-
ities like multimodal chain-of-thought reasoning, and the
ability to reason over multiple images, despite being trained
on only single-image prompts.
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A. Qualitative Results – Emergent Capabilities
PaLM-E demonstrates several emergent capabilities, including zero-shot multimodal chain-of-thought (CoT), few-shot
multimodal prompting, OCR-free math reasoning, as well as multi-image reasoning capabilities despite being only trained
on single-image prompts (Fig. 6). Zero-shot CoT (Kojima et al., 2022), originally a language-only concept, has been shown
on multimodal data with language-composed programs (Zeng et al., 2022) but to our knowledge, not via an end-to-end
model.

Given <img> .What is the human trying to 
do and what can the robot do to help?
A: reach cookie. robot could get cookie.

Visually-conditioned Jokes + Few-shot prompting

I see (image omitted). Description: A cow 
sitting on a rug. Joke: Why is the cow 
sitting on a rug? Because it wants to be a 
cow-ch! … I see <img>. Description: a 
donkey is carrying a dog, cat, and rooster. 
Joke: what do you call a donkey with a 
rooster on his back. A rooster booster. 

Assistive Robotics

Physical Reasoning Given <img> . Q: 
Which of these 
objects is best for 
climbing up high?
A: ladder.

Robot Visual Perception, Dialogue, and Planning Robot: I am a robot operating in a kitchen. Given 
<img>, what do I see? a bowl of eggs, a bowl of 

Robot Initiative
Given <img>. Q: If a 
robot wanted to be 
useful here, what 
steps should it take? 
A: clean table..pick 
up trash.. pick up 
chairs.. wipe chairs.. 
put chairs down.

Zero-shot Multimodal Chain-of-Thought

Given <img>. Q: Can I go down 
this street on a bicycle, yes or 
no? A: Let’s think step by step. 
1. do not enter. 2. except 
bicycles. 3. do not entry except 
bicycles. 4. yes.

Given <img>. Q: How many 
championship rings did the player 
on the left win in his career A: Let’s 
think step by step. 1. kobe bryant is 
on the left. 2. kobe bryant has won 
5 championship rings.

Given <img>. Q: Who are the two teams playing in this 
photo, and which was the last to win a championship, and 
which year did they win, and who was their star player that 
year? A: Let's think step by step. 1. team in white is new

Zero-shot: Multi-image Relationships

york knick. 2. team in green is boston celtic. 3. last to win championship was 
boston celtic. 4. year was 2008. 5. star player was paul pierce. 6. i am not 
sure if this is correct. i am not basketball fan. i just google it. 

Photo 1: <img1>. Photo 2: <img2>. Q: What is in Photo 1 
but NOT in Photo 2? A: sunglasses.
Photo 1: <img1>. Photo 2: <img2>. Q: What is in Photo 1 
but NOT in Photo 2? A: Let’s think step by step and 
explain. Photo 1 has sunglasses on top of folded 
clothes. Photo 2 does not have sunglasses on top of 
folded clothes. Therefore, sunglasses are in Photo 1 but 
not in Photo 2.

Q: Where is 
<img1> in this 
scene <img2>? A: 
a stove top with a 
pot on it.

Q: I am getting just two 
custom pizza for me and my 
friend. How much should I 
pay in total? A: Let's think 
step by step. 1st step: 2 
custom pizzas. 2nd step: 2 x 
$9.99. 3rd step: $19.98.

OCR-free Math Reasoning

End-to-End Egocentric Q&A, Dialogue

Photo 1, at 10:30 am: <img1>.
Photo 2, at 12:45 pm: <img2>.
Photo 3, at 3:45 pm: <img3>.
Q: I forget, what did I have for 
lunch, and what time was it? A: 
Let’s think step by step.
1. you had a sandwich for lunch.
2. it was 12:45 pm.

flour, and a bowl of sugar.. and a spatula.. and a spoon.. and a bag of flour.. and a bag of 
sugar. When a human asks me to do a task, I will respond with the sequence of actions 
I would do to accomplish the task with only the items I see.  Human: Use all of the 
ingredients you see to make a cake batter. 1. crack egg. 2. put egg in bowl. 3. put flour 
in bowl. 4. put sugar in bowl. 5. mix. 6. put in pan. 7. bake. 8. eat. 9. clean up.

Physical Prediction Spatial Grounding Given <img> . Q: What
flavor is the doughnut

on the right? Strawberry.. Q: 
What flavor is the doughnut 
on the left? A blueberry.

Given <img> . 
Q: What will
the robot do 
next? A: fall.

Given <img> . 

Figure 6: PaLM-E-562B is able to perform zero-shot multimodal chain-of-thought reasoning, can tell visually-conditioned jokes given an
image, and demonstrates an array of robot-relevant multimodal-informed capabilities including perception, visually-grounded dialogue,
and planning. PaLM-E also generalizes, zero-shot, to multi-image prompts despite only being trained on single-image prompts. PaLM-E
can also perform math given an image with textually-interleaved handwritten numbers. In addition, the model can perform, zero-shot,
question and answering on temporally-annotated egocentric vision, similar to what was shown in (Zeng et al., 2022) but end-to-end all in
one model.

B. Limitations
One limitation of PaLM-E’s formulation is that it relies on low-level language-conditioned policies to solve robotics tasks.
For example, if the underlying policy is not capable of peeling a banana when asked to “peel the banana”, then it would be
difficult for PaLM-E to guide the low-level policy with simple textual primitives in such a dexterous task. Additionally, if the
goal requires interacting with specific parts of a scene that is difficult to describe verbally, then outputting only text can also
be limiting. To address these cases, we have proposed the idea of using self-supervised entity-centric labeling, which allows
the high-level PaLM-E policy to refer the low-level policy to specific entities without describing them in natural language.

C. Impact
While the positive societal impacts of artificial intelligence may be profound, we also discuss inherent risks. Since PaLM-E
is a model capable of solving general vision-language and language-only tasks, we inherit many of the risks associated
with large language models, including hallucination, non-factual answers, and biases. Expanding the set of capabilities
into the vision-language domain has the potential to further increase these biases based on the vision-language datasets the
model has been trained on. One of our scientific goals of this research is to evaluate whether training on many tasks at the
same time improves the performance on individual tasks. As we have shown, PaLM-E shows positive transfer across tasks.
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zero-shot learning (unseen object)

zero-shot learning (new object pair)

1-shot learning

50 demonstrations

PaLM-E guiding a real robot through long horizon tasksstart goal

Adversarial 
disturbance

Adversarial 
disturbance

Adversarial 
disturbance

push the red star to 
the top left corner

push the red circle 
to the red star

push the blue 
triangle to the blue 
cube

push the green star 
to the bottom left 
corner

move the green 
circle closer to the 
group

move the red star to 
the top left corner

move the red circle 
to the red star

nudge the red circle 
closer to the red 
star

move the red star to 
the bottom right

move the green star 
to the top left 
corner

move the green 
circle to the green 
star

… …
success: 

sort blocks by colors 
into corners

success: 
move the remaining 
blocks to the group

……move the yellow 
hexagon to the red 
star

move the green 
circle to the yellow 
hexagon

move the blue 
triangle to the 
group

success: 
move the red blocks to 

the coffee cup
……

success: 
move the green blocks 

to the turtle

a)

b)

c)

d)

PaLM-E

robot 
images

PaLM-E replans 
at 1hz

robot actions 
at 5hz

language conditioned 
policylanguage 

commands

"sort the blocks 
by color"

long horizon goal

Figure 7: PaLM-E interactively guides a real robot through long-horizon manipulation tasks on Language-Table, while remaining robust
to adversarial disturbances. We find evidence that PaLM-E is capable of one-shot and zero shot generalization.

This paves a path towards more powerful models. However, the effects of transfer across tasks with respect to potential
biases induced from training on other tasks is not yet well understood. We integrate PaLM-E into control loops controlling
robots in the real world. This induces additional risks, as the decisions made by the model are impacting the behavior of real
physical systems. If a model like PaLM-E is to be deployed in other settings, especially around non-experts, this should
involve additional physical risk assessment. The fact that PaLM-E does not directly control robot actuators, but provides
textual instructions for low-level policies enables introspection and interpretability of its outputs.
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D. Data Mixture
Tab. 6 shows the dataset and sampling frequency for the “full mixture” as referred to in the experiments. The majority of the
data distribution is general vision-language tasks, with less than 10% robot data.

Dataset in full mixture Sampling frequency %

Webli (Chen et al., 2022) 100 52.4
VQ2A (Changpinyo et al., 2022) 25 13.1
VQG (Changpinyo et al., 2022) 10 5.2
CC3M (Sharma et al., 2018) 25 13.1
Object Aware (Piergiovanni et al., 2022) 10 5.2
OK-VQA (Marino et al., 2019) 1 0.5
VQAv2 (Goyal et al., 2017) 1 0.5
COCO (Chen et al., 2015) 1 0.5
Wikipedia text 1 0.5
(robot) Mobile Manipulator, real 6 3.1
(robot) Language Table (Lynch et al., 2022), sim and real 8 4.2
(robot) TAMP, sim 3 1.6

Table 6: Dataset sampling frequency and ratio for the “full mixture” referred to in experiments.

In Tab. 7, we vary the amount of robot data in the training mixture. The remaining data has the same relative distribution as
in Tab. 6. As one can see, varying the amount of robot data in the mixture mainly influences the performance on general
vision-language tasks. Note that the metrics in Tab. 7 for the general vision-language tasks are the next-token-prediction
accuracies, which are different from the CIDER score or VQA accuracy reported in Tab. 5. Using just robot data (100%) is
not sufficient to achieve good performance on general vision-language tasks, which is expected, as the robot data does not
contain the same amount of variety. The robot task performance is largely unaffected by the data mixture. For the TAMP
planning task p2 (stacking blocks), we find a small advantage of having more general vision-language tasks in the mixture.
Note that even when just robot data (100%) is used, the model can still benefit from cross-robot transfer learning.

Amount of robot data
in overall mixture

Robotics tasks General vision-language tasks

TAMP Mobile manipulation OK-VQA VQAv2 COCO
p1 p2 failure detection affordance detection

10% 96.5a 93.5a 95.9b 96.3b 65.8c 74.5c 53.5c

90% 97.0a 91.6a 98.1b 98.1b 61.4c 70.9c 49.6c

100% 96.9a 88.7a 98.4b 98.2b 26.1c 31.2c 15.1c

asuccess rate (1% of TAMP training data). baccuracy (%), in-domain test set. cnext token accuracy (proxy metric).

Table 7: Performance on different tasks when varying the amount of robot data in the training mixture.
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Figure 8: Two TAMP environment test examples. Left with 6 objects (training data contains 3-5 objects), right with 4 objects.

E. Environment Details
E.1. Task and Motion Planning (TAMP)

The training scenes for the TAMP environment contain 3-5 cube-shaped objects of different sizes, colors and sampled initial
poses. Fig. 8 show an example test scene that contains 6 objects.

In the global version, we consider the following three VQA tasks:

• q2: object-table relation. Example prompt: Given <img>. Q: Is the red object left, right,
or center of the table?. Target: A: The red object is in the center of the table.

• q3: object-object relations. Example prompt: Given <img>. Q: Is the yellow object below the
blue object?. Target: A: No, the yellow object is not below the blue object.

• q4: plan feasibility. Example prompt: Given <img>. Q: Is it possible to first grasp the
blue object, then place it on the yellow object, and then grasp the yellow
object?. Target: A: No, this is not possible.

as well as the two planning tasks

• p1: grasping. Example prompt: Given <img>. Q: How to grasp the green object?. Tar-
get: A: First grasp the orange object and place it on the table, then grasp the
green object.

• p2: stacking. Example prompt: Given <img>. Q: How to stack the white object on top
of the red object?. Target: A: First grasp the green object and place it on the
table, then grasp the white object and place it on the red object.

For the object-centric version with entity referrals, all prompts contain the prefix <prefix> = Obj 1 is <obj1>. . . .
Obj j is <objj>., and the VQA task q1 is about the color of an object. The other tasks (except with the different
prefix, and entity referrals), remain the same.

We utilize the planner from Driess et al. (2020) to generate the dataset for the planning tasks. The low-level policies are also
obtained with the method of Driess et al. (2020).

E.2. Interactive Language Table

We use the Language-Table real-world tabletop setup and simulated environment from Interactive Language (Lynch et al.,
2022).

Data collection. For each task, given the long horizon instruction, we prompt a labeler to enter a short horizon command
every 4 seconds. We pass the short horizon instructions to an Interactive Language policy trained using the same procedure
as in Lynch et al. (2022). The policy executes 40 steps (10Hz for 4 seconds) before requiring another command from the
labeler. This is repeated until the labeler determines the long horizon instruction is complete and issues a ’done’ instruction.
The data collection procedure for the real world experiments are the same as in simulation.
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φ LLM pre-trained q1 q2 q3 q4 p1 p2

3 - 5
objects

Low-level policy only - - - - - 31.3 0.0
SayCan (w/ oracle affordances) 3 - - - - 38.7 33.3

state 7 100.0 99.3 98.5 99.8 97.2 95.5
state 3(unfrozen) 100.0 98.8 100.0 97.6 97.7 95.3
state 3 100.0 98.4 99.7 98.5 97.6 96.0

state (w/o entity referrals) 3 100.0 98.8 97.5 98.1 94.6 90.3
ViT + TL (obj. centric) 3 99.6 98.7 98.4 96.8 96.2 94.5

ViT + TL (global) 3 - 60.7 90.8 94.3 70.7 69.2
ViT-4B (global) 3 - 98.2 99.4 99.0 96.0 93.4

ViT-4B generalist 3 - 97.1 100.0 98.9 97.5 95.2
OSRT 3 99.6 99.1 100.0 98.8 98.1 95.7

6
objects

state 7 20.4 39.2 71.4 85.2 56.5 34.3
state 3 100.0 98.5 94.0 89.3 95.3 81.4

state (w/o entity referrals) 3 77.7 83.7 93.6 91.0 81.2 57.1

8
objects

state 7 18.4 27.1 38.1 87.5 24.6 6.7
state 3 100.0 98.3 95.3 89.8 91.3 89.3

state (w/o entity referrals) 3 60.0 67.1 94.1 81.2 49.3 49.3

6 objects +
OOD tasks

state (8B LLM) 7 - 0 0 72.0 0 0
state (8B LLM) 3 - 49.3 89.8 68.5 28.2 15.7
state (62B LLM) 3 - 48.7 92.5 88.1 40.0 30.0

Table 8: Success rates on TAMP environment for different input representations. 3-5 objects in the scene correspond to the training
distribution. OOD tasks means out-of-distribution tasks where the objects are referenced by color, although in the trainig data they have
been referenced by their special tokens objj in the object-centric case. The SayCan baseline (Ahn et al., 2022) utilizes oracle, one-step
affordance functions. Compared to the results presented in Tab. 1, 100% of the training data, i.e. 100 times more than in Tab. 1, is used
here.

Task 1 Task 2 Task 3a

Low-level policy only 0.0 0.0 37.5a

# demos 40 40 80
PaLM-E-12B, full mixture 80.0 58.8 77.0a

Table 9: Results on Language Table environment comparing using only the low-level policy from (Lynch et al., 2022) to address the
long-horizon tasks, as opposed to training PaLM-E to address the long-horizon tasks by closed-loop conditioning the low-level policy
with text. Tasks are defined in Tab. 3. aHere the quantitative reward for Task 3 has been adjusted to more closely match the qualitative
desired behavior, by penalizing blocks that were incorrectly brought from the wrong side.

Train and Evaluation. To train the finetuned versions of these models, we train a pretrained PaLM-E model for 9,000
additional steps, in order to support a data complexity sweep without training several separate models from scratch on
slightly different versions of the full mixture. For Tasks 2 and 3 in simulation, we implement an automated reward to
measure the success rate, and we evaluate PaLM-E by running 80 rollouts for each task. Given the current image and high
level task, PaLM-E issues a text instruction which a trained low-level policy executes for 4 seconds before PaLM-E issues a
new text instruction. For Task 1, we use a test-set and report validation accuracy. This is because the task only requires one
step to solve, despite being a complicated visual and linguistic processing task and cannot be solved by the low-level policy
from the prompt alone.

Analysis of Low-level Policies. In Tab. 9 we address the question: “since the low-level policies themselves are vision+text-
conditioned policies, are they sufficient to solve the long-horizon tasks without the use of PaLM-E?”. Here we directly
condition the policies from (Lynch et al., 2022) with the full prompts as in Tab. 3. As shown in Tab. 9, the low-level policies
are not sufficient to solve the tasks.
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F. Natural Language Generation and Understanding Results

PaLM-8B PaLM-E-12B PaLM-62B PaLM-E-84B PaLM-540B PaLM-E-562B Category
1-shot evals (unfrozen) (unfrozen) (unfrozen)

TriviaQA (wiki) (EM) 48.5 10.1 72.7 31.8 81.4 74.6 NLG
Natural Questions (EM) 10.6 1.6 23.1 7.6 29.3 27.2 NLG
WebQuestions (EM) 12.6 3.4 19.8 7.9 22.6 21.8 NLG
Lambada 57.8 1.4 75.5 26.1 81.8 83.3 NLG
HellaSwag 68.2 48.4 79.7 75.3 83.6 83.5 NLU
StoryCloze 78.7 68.7 83.8 83.9 86.1 86.3 NLU
Winograd 82.4 71.8 85.3 86.4 87.5 89.0 NLU
Winogrande 68.3 55.3 76.8 72.5 83.7 83.0 NLU
RACE-M 57.7 43.2 64.1 57.4 69.3 70.3 NLU
RACE-H 41.6 33.2 48.7 42.3 52.1 52.8 NLU
PIQA 76.1 68.1 80.9 78.2 83.9 84.9 NLU
ARC-e 71.3 53.4 78.9 71.4 85.0 86.3 NLU
ARC-c 42.3 30.9 51.8 46.7 60.1 62.6 NLU
OpenBookQA 47.4 41.4 51.2 51.6 53.6 55.8 NLU
BoolQ 64.7 61.6 83.1 81.6 88.7 89.4 NLU
Copa 82.0 77.0 93.0 91.0 91.0 93.0 NLU
RTE 57.8 54.9 71.5 59.6 78.7 75.1 NLU
Wic 50.6 50.0 48.6 50.2 63.2 64.1 NLU
WSC 81.4 68.4 84.9 75.8 86.3 85.6 NLU
ReCoRD 87.8 71.2 91.0 78.5 92.8 92.5 NLU
CB 41.1 37.5 55.4 73.2 83.9 80.3 NLU

Avg NLU 64.7 55.0 72.3 69.2 78.2 78.5
Avg NLG 32.4 4.1 47.8 18.4 53.8 51.7

NLU delta (%, relative) -15.0% -4.3% +0.4%
NLG delta (%, relative) -87.3% -61.6% -3.8%

Table 10: Full language evaluation task results on both NLU and NLG tasks, for both the original PaLM models and for associated
PaLM-E (unfrozen) models. The PaLM-E models with a frozen LLM have the same performance as their corresponding underlying
PaLM models.

G. Additional Data for Affordance and Success Detection

Model Precision Recall F1-score
PaLI (Zero-shot) (Chen et al., 2022) 0.59 0.98 0.73
CLIP-FT (Xiao et al., 2022) 0.50 0.95 0.65
CLIP-FT-hindsight (Xiao et al., 2022) 1.0 0.80 0.89
PaLM-E-12B from LLM+ViT LLM
trained on scratch pretrain frozen

Single robot 3 7 n/a 0.52 0.55 0.54
Single robot 7 3 3 0.91 0.92 0.91
Full mixture 7 3 3 0.89 0.93 0.91
Full mixture 7 3 7 0.66 0.91 0.77

Table 11: Mobile manipulation environment: failure detection, showing individual precision and recall scores. Results correspond to
out-of-distribution scenes of Tab. 13.

Model Precision Recall F1-score
PaLI (Zero-shot) (Chen et al., 2022) 0.57 0.69 0.62
QT-OPT (Kalashnikov et al., 2018) 0.60 0.67 0.63
PaLM-E-12B from LLM+ViT LLM
trained on scratch pretrain frozen

Single robot 3 7 n/a 0.67 0.35 0.46
Single robot 7 3 3 0.90 0.69 0.78
Full mixture 7 3 3 0.95 0.80 0.87
Full mixture 7 3 7 0.92 0.88 0.91

Table 12: Mobile manipulation environment: affordance prediction, showing individual precision and recall scores. Results correspond to
out-of-distribution scenes of Tab. 13.
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PaLM-E-12-B
trained on

from
scratch

LLM + ViT
pretrain

LLM
frozen

Failure detection Affordance prediction

in-distribution out-of-distribution in-distribution out-of-distribution

Single robot 3 7 n/a 0.63 0.54 0.36 0.46
Single robot 7 3 3 0.96 0.91 0.97 0.78
Full mixture 7 3 3 0.96 0.91 0.98 0.87
Full mixture 7 3 7 0.97 0.77 0.98 0.91

Table 13: Mobile manipulation environment: Comparison between in-distribution and out-of-distribution environments. In-distribution
means hold-out scenes with similar backgrounds, lighting conditions, and objects as in the training distribution. Out-of-distribution are
scenes with different backgrounds, different furniture, and lighting conditions. The table shows F1-scores.

H. Image Encoders
PaLM-E-12B utilizes the ViT-4B from Chen et al. (2022) to encode images. Tab. 14 presents results using CLIP ViT
models Radford et al. (2021); Ilharco et al. (2021) that have different numbers of parameters, and are pre-trained differently.
Compared to the ViT-4B which is trained on an image classification as described in Chen et al. (2022), the CLIP models
investigated here are trained using a contrastive objective. Further, we investigate the number of tokens to use in these
experiments. The CLIP vision model was trained using a single read-out token for the embedding, and we experiment using
this to convey the information of the image into the language model instead of using 256 tokens corresponding to the image
patches. Alternatively, we also try using all 257 tokens (256 patch tokens, plus the 1 readout token).

As one can see, among the CLIP variations using all 257 tokens performs better than only using 1 token. Amongst the
variations using 1 token, it is considerably better to finetune the vision encoder. The differences are especially pronounced
on the robot tasks, and in particular on the TAMP planning tasks, which requires spatial precision to solve the tasks.

The ViT-4B model outperforms the CLIP models. One potential explanation is that the ViT-4B model has the highest number
of parameters. We also note that one might, intuitively, expect the CLIP model to be better aligned to text embeddings, a
pre-trained CLIP model is not necessarily aligned with the text embeddings used by the particular language model that is
used to build PaLM-E.

Pre-trained
vision model

Vision model
frozen

# tokens
input into

LLM

# parameters

Robotics tasks General vision-language tasks

TAMP Mobile manipulation OK-VQA VQAv2 COCO
p1 p2 failure detection affordance detection

ViT-4B 7 256 4B 96.5a 93.5a 95.9b 96.3b 65.8c 74.5c 53.5c

CLIP L-14d 3 1 427M 32.0a 35.8a 87.1b 81.6b 60.1c 66.4c 45.7c

CLIP L-14d 7 1 427M 70.7a 72.8a 93.0b 95.2b 64.3c 71.7c 51.2c

CLIP L-14d 7 257 427M 79.7a 78.2a 92.0b 94.5b 65.2c 73.1c 52.2c

CLIP G-14e 7 257 1.8B 90.5a 81.2a 90.4b 95.2b 65.3c 72.9c 52.0c

asuccess rate (1% of TAMP training data). baccuracy (%), in-distribution test set. cnext token accuracy (proxy metric).
dCLIP model from Radford et al. (2021). eCLIP model from Ilharco et al. (2021).

Table 14: Performance comparison for different image encoders.

I. Image Attribution
The image of the New York Knicks and Boston Celtics in Figure 2 is under the terms CC-by-2.0 (https://
creativecommons.org/licenses/by/2.0/), and was posted to Flickr by kowarski at https://www.flickr.
com/photos/27728232@N00/8666371367. The egocentric video images are from https://youtu.be/
-UXKmqBPk1w, as in (Zeng et al., 2022), via permission from creator Cody Wanner.
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