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Abstract

A Bayesian pseudocoreset is a compact synthetic
dataset summarizing essential information of a
large-scale dataset and thus can be used as a proxy
dataset for scalable Bayesian inference. Typically,
a Bayesian pseudocoreset is constructed by min-
imizing a divergence measure between the pos-
terior conditioning on the pseudocoreset and the
posterior conditioning on the full dataset. How-
ever, evaluating the divergence can be challenging,
particularly for the models like deep neural net-
works having high-dimensional parameters. In
this paper, we propose a novel Bayesian pseudo-
coreset construction method that operates on a
function space. Unlike previous methods, which
construct and match the coreset and full data pos-
teriors in the space of model parameters (weights),
our method constructs variational approximations
to the coreset posterior on a function space and
matches it to the full data posterior in the function
space. By working directly on the function space,
our method could bypass several challenges that
may arise when working on a weight space, in-
cluding limited scalability and multi-modality is-
sue.

1. Introduction

Deep learning has achieved remarkable success in various
domains, but accurately estimating and characterizing the
uncertainties associated with its predictions remain chal-
lenging. Bayesian approaches offer a principled framework
to address this issue by capturing uncertainty through prob-
ability distributions. However, applying Bayesian methods
to large-scale deep learning problems poses significant com-
putational difficulties due to the high dimensionality of the
models and the massive amounts of data involved (Chen
et al., 2014; Baker et al., 2017; Quiroz et al., 2018).
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To address this issue, a potential solution is to employ a
Bayesian coreset (Huggins et al., 2016). A Bayesian coreset
is a small subset of the original dataset where the posterior
conditioning on it closely approximates the original pos-
terior conditioning on the full dataset. Once the Bayesian
coreset is trained, it can be utilized as a lightweight proxy
dataset for subsequent Bayesian inference.

A Bayesian coreset is constructed by selecting a sub-
set from a large dataset and learning the corresponding
weights. However, recent research suggests that this ap-
proach may not be effective, especially in high-dimensional
settings (Manousakas et al., 2020). Instead, an alternative
method of synthesizing a coreset, wherein the coreset is
learned as trainable parameters, has been found to signif-
icantly enhance the quality of the approximation. This
synthesized coreset is referred to as a Bayesian pseudo-
coreset. The process of learning a Bayesian pseudocore-
set involves minimizing a divergence measure between the
posterior of the full dataset and the posterior of the pseu-
docoreset. However, it is generally challenging due to the
intractability of constructing the posterior distributions, as
well as computing the divergence between them, which ne-
cessitates approximation. Consequently, existing works on
Bayesian pseudocoresets have primarily focused on small-
scale problems. (Manousakas et al., 2020; Chen et al., 2022;
Manousakas et al., 2022; Naik et al., 2023). Recently, Kim
et al. (2022) introduced a scalable method for constructing
Bayesian pseudocoresets, however, it still demands substan-
tial computational resources for high-dimensional models
like deep neural networks.

In this paper, we present a novel approach to enhance the
scalability of Bayesian pseudocoreset construction, partic-
ularly for Bayesian neural networks (BNNs) with a large
number of parameters. Our proposed method operates in
function space. When working with BNNSs, it is common
to define a prior distribution on the weight space and infer
the corresponding weight posterior distribution, which also
applies to Bayesian pseudocoreset construction. However,
previous studies (Sun et al., 2019; Rudner et al., 2022a)
have highlighted the challenge of interpreting weights in
high-dimensional neural networks, making it difficult to
elicit meaningful prior distributions. Additionally, in high-
dimensional networks, the loss surfaces often exhibit a com-
plex multimodal structure, which means that proximity in
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the weight space does not necessarily imply proximity in the
desired prediction variable (Pan et al., 2020a; Rudner et al.,
2022b). This same argument can be applied to Bayesian
pseudocoreset construction, as matching the full data and
pseudocoreset posteriors in the weight space may not re-
sult in an optimal pseudocoreset in terms of representation
power and computational scalability.

To be more specific, our method constructs a variational
approximation to the pseudocoreset posteriors in function
space by linearization and variational approximation to the
true posterior. Then we learn Bayesian pseudocoreset by
minimizing a divergence measure between the full data pos-
terior and the pseudocoreset posterior in the function space.
Compared to the previous weight space approaches, our
method readily scales to the large models for which the
weight space approaches were not able to compute. More-
over, it has another advantage that the posteriors learned
from the Bayesian pseudocoreset in function space have
better out-of-distribution (OOD) robustness, similar to the
previous reports showing the benefit of function space ap-
proaches in OOD robustness (Rudner et al., 2022a).

In summary, this paper presents a novel approach to cre-
ating a scalable and effective Bayesian pseudocoreset us-
ing function space variational inference. The resulting
Bayesian pseudocoreset is capable of being generated in
high-dimensional image and deep neural network settings
and has better uncertainty quantification abilities compared
to weight space variational inference. We demonstrate the
efficiency of the function space Bayesian pseudocoreset
through the various experiments.

2. Background
2.1. Bayesian pseudocoresets

In this paper, we focus on probabilistic models for super-
vised learning problem. Let # € O be a parameter, and let
p(y | z, 0) be a probabilistic model indexed by the parameter
6. Given a set of observations x := (x;)}_; and the set of
labels y := (y;)P, with each z; € X and y; € ), we
are interested in updating our prior belief 7 (#) about the
parameter to the posterior,

T (0) = Hp yi | @i,0), ey

yIX

ﬂwm:éﬂmm%mmw» @
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However, when the size of the dataset n is large, the com-
putation of the posterior distribution can be computation-
ally expensive and infeasible. To overcome this issue,
Bayesian pseudocoresets are constructed as a synthetic

dataset u = (u;)72; with m < n with the set of labels

y = (gjj);»”:l where the posterior conditioning on it approx-
imates the original posterior 7Tx(9).

Ta(0) = H p(Fj | uj,0), 3)

w=AEmmemw> 4

This approximation is made possible by solving an opti-
mization problem that minimizes a divergence measure D
between the two posterior distributions '

u* = argmin D(my, Ty). 5)

2.2. Bayesian pseudocoresets in weight-space

Kim et al. (2022) advocates using forward KL divergence as
the divergence measure when constructing Bayesian pseu-
docoresets, with the aim of achieving a more even explo-
ration of the posterior distribution of the full dataset when
performing uncertainty quantification with the learned pseu-
docoreset. The derivative of the forward KL divergence
with respect to the pseudocoreset u is computed as

VuDKL [7TxH7Tu] = ]Eﬂ'u |:vu Z logp(z]] | Uy s 0):|
. ©)
— VuEr, {Z log p(; |u;, 9))}

j=1
For the gradient, we need the expected gradients of the
log posteriors that require sampling from the posteriors 7y
and m,. Most of the probabilistic models do not admit
simple closed-form expressions for these posteriors, and it
is not easy to simulate those posteriors for high-dimensional
models. To address this, Kim et al. (2022) proposes to
use a Gaussian variational distributions ¢, (6) and ¢x(0)
to approximate 7y and 7, whose the means are set to the
parameters obtained from the SGD trajectories,

Qu(e) = N(ea Hu, Zu)a QX(Q) = N(Q, Hx Ex)a @)

where iy and py are the maximum a posteriori (MAP) so-
lutions computed for the dataset u and x, respectively. The
gradient, with the stop gradient applied to p,,, is approxi-
mated as,

S m
%Z (Zlogp(z?j|Uj,59(uu)+2,11/25$f))
s=1 j=1
m @
- 1 ~'| j o x+231(/2 Scs) .
Dol )

In principle, we should learn the (pseudo)labels ¥ as well, but
for classification problem, we can simply fix it as a constant set
containing equal proportion of all possible classes. We assume this
throughout the paper.
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Here, 55{9) and 55(5) are i.i.d. standard Gaussian noises and .S

is the number of Monte-Carlo samples.

3. Function space Bayesian pseudocoreset
3.1. Function space Bayesian neural networks

We follow the framework presented in Rudner et al. (2020;
2022a) to define a Function-space Bayesian Neural Network
(FBNN). Let 7y (6) be a prior distribution on the parameter
and gy : X — R? be a neural network index by 6. Let
h: 0 — (X - R be a deterministic mapping from
a parameter 6 to a neural network gy. Then a function-
space prior is simply defined as a pushforward vy(f) =
hemo(f) = mo(h™1(f)). The corresponding posterior is
also defined as a pushforward vx(f) = h.mx(f) and so is
the pseudocoreset posterior vy, (f) = hamu(f).

3.2. Learning function space Bayesian pseudocoresets

Given the function space priors and posteriors, a Function
space Bayesian PseudoCoreset (FBPC) is obtained by min-
imizing a divergence measure between the function space
posteriors. We follow Kim et al. (2022) suggesting to use
the forward KL divergence, so our goal is to solve

u* = argmin Dgp,[Vx||Vul- )
u

The following proposition provides an expression for the
gradient to minimize the divergence, whose proof is given
Appendix A.

Proposition 3.1. The gradient of the forward KL divergence
with respect to the coreset u is

Vu-DKL [VxHVu]
= —VuEp,,logp(y [fu)] + Ep,), [Vulog p(y [ fu)],
(10)
where [Vx)y and [vy]y are finite-dimensional distributions
of the stochastic processes vx and vy, respectively, £, :=

(f(uj))jiy, and p(y [ £a) = TT52, p(35 | f(uy)).

To evaluate the gradient Equation (10), we should iden-
tify the finite-dimensional functional posterior distributions
[Vx]u and [vy]u. While this is generally intractable, as pro-
posed in Rudner et al. (2020; 2022a), we can instead con-
sider a linearized approximation of the neural network g,

G0(1) = Gpne () + Ty () (0 — 1), (11)

where x = E,_[6] and 7, (-) is the Jacobian of gy evalu-
ated at ux. Then we approximate the function space poste-
rior vy with 77y = h,7, Where B(G) = g, and as shown in
Rudner et al. (2020; 2022a), the finite dimensional distribu-
tion [Py |y is @ multivariate Gaussian distribution,

Prdu(fa) = N (Fa 91 (W), T (W ST (W) ), (12)

with Xx = Covy, (6). Similarly, we obtain [0y (fy). Us-
ing these linearized finite-dimensional distribution, we can
approximate

VuDKL[VxHVu]

= —VuEp,, logp(¥ | fu)] + Ejz,), [Vulog p(¥ | fu)],
(13)

3.3. Tractable approximation to the gradient

Even with the linearization, evaluating Equation (13) is still
challenging because it requires obtaining i« and >y which
are the statistics of the weight-space posterior 7. Rudner
et al. (2022a) proposes to learn a variational approximation
gx(0) in the weight-space, and use the linearized pushfor-
ward of the variational distribution A, gy as a proxy to the
function space posterior. Still, this approach requires com-
puting the heavy Jacobian matrix Jg,_[g)(u), so may not be
feasible for our scenario where we have to compute such
variational approximations at each update of the pseudo-
coreset u.

Instead, we choose to directly construct a variational ap-
proximations to the finite-dimensional distributions of the
function space posteriors, that is,

[Oxlu(fu) = gx(fu) = N(fu | 94, (1), ‘i’x),
[Du]u(fu) ~ Qu(fu) = N(fu |gﬂu (u)a \i/u)v

where (fix, U) and (fiy, ¥y) are variational parameters
for the full data and coreset posteriors. We obtain fix and
[y using MAP solutions for x and u, respectively. For
the covariance matricies \ilx and \ifu, we set them as an
empirical covariance matrices of the samples collected from
the optimization trajectory. Please refer to Appendix B.2
for a detailed description of the training procedure. Using
the obtained variational approximations, we can derive a
Monte-Carlo estimator for Equation (13),

VuDxkw[vx| vl
R =V log p(F | fix + U3/ )]
+ Epen) [Vu log p(¥ | fiu + @111/2511)}

18 ) 15)
~ 5 ( ~ Valogp( | jix + 03/%())
s=1
+ Valogn(3 i+ 0220 )
where p(ex) and p(ey,) are standard Gaussians, (5,((3))521

and ()8

2_; are i.i.d. samples from them.
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Figure 1. Example images of FBPC for CIFAR10.

Table 3. Averaged SGHMC performances of each Bayesian pseu-
docoreset on the Tiny-ImageNet datasets.

ipc 1 10 50
Table 1. Averaged SGHMC performances of each Bayesian pseu- Rand Acct | 190+00s 721+00s  19.150.12
docoreset on the CIFAR10 dataset. andom  NLL, | 6.18+0.04  5.77+0.02  4.88%0.01
BPC-fKL Acc ¢t 3.98+0.13 11.4+0.45 -
ipc SGHMC | Random  BPC-rKL ~ BPC-fKL | FBPC (Ours) NLL . | 5.63x0.03  5.08x0.05 -
! Acc t 16.30+0.74 2044+1.06 34.50+1.62 | 35.45+0.31 FBPC (Ours) Acct | 10.14+068 19.42+051  26.43+0.31
NLL ¢ 4.66+0.03 4.51+0.10 3.86+0.13 3.79+0.04 NLL | 4.69-+0.05 4.14+0.02 4.30-+0.05
10 Acc t 32.48+0.34  37.92+0.66 56.19+0.61 62.33+0.34
NLL | 2.98+0.03 2.4740.04 1.48+0.02 1.31+0.02
Table 4. The results for CIFAR10-C dataset.
50 Acc ¢ 49.68+0.46 51.86+0.38 64.74+0.32 71.23+0.17
NLL | 2.06+0.02 1.95+0.02 1.26+0.01 1.03+0.05

Table 2. Averaged SGHMC performances of each Bayesian pseu-
docoreset on the CIFAR100 datasets.

ipc \ 1 10 50
Random Acct | 4.82+0.47 18.0+0.31 35.14+0.23
NLL | | 5.55+0.07 4.57+0.01 3.35+0.01
Acc 1 14.7+0.16  28.1+0.60 37.1+0.33
BPC-KL NLL | | 4.17+0.05 3.53+0.05  3.28+0.24
Acc+ | 21.0+0.76 39.7+0.31 44.47+0.35
FBPC (Ours) NLL ¢ | 3.76+0.11  2.67+0.02 2.63+0.01

4. Experiments
4.1. Experimental Setup

In our study, we employed the CIFAR10, CIFAR100 and
Tiny-ImageNet datasets to create Bayesian pseudocore-
sets of coreset size m € {1,10,50} images per class
(ipc). These pseudocoresets were then evalutated by con-
ducting the Stochastic Gradient Hamiltonian Monte Carlo
(SGHMC) (Chen et al., 2014) algorithm on those pseudo-
coresets. We measured the top-1 accuracy and negative
log-likelihood of the SGHMC algorithm on the respective
test datasets.

we employed three baseline methods to compare the effec-
tiveness of function space Bayesian pseudocoresets. The
first baseline is the random coresets, which involves select-
ing a random mini-batch of the coreset size. The others two
baseline methods, BPC-rKL (Kim et al., 2022; Manousakas
et al., 2020) and BPC-fKL (Kim et al., 2022), are Bayesian
pseudocoresets on weight space. BPC-rKL and BPC-fKL
employ reverse KL divergence and forward KL divergence
as the divergence measures for their training, respectively.

4.2. Main Results

Table 1, Table 2 and Table 3 show the results of each baseline
and our method for each dataset. For BPC-rKL and BPC-
fKL, we used the official code from (Kim et al., 2022) for
training the pseudocoresets, and only difference is that we
used our own SGHMC hyperparameters during evaluation.

‘ BPC-fKL FBPC
Acc 1 ‘ 34.3 475

Degradation | 38.9 23.7

For detailed experiment setting, please refer the Appendix B.
Moreover, it is worth noting that for the Tiny-ImageNet
dataset, constructing BPC-fKL was not possible due to the
memory constraint.

The results clearly demonstrate that our FBPC method out-
performs all the baseline approaches, including random
coresets, BPC-rKL and BPC-fKL, in terms of both accuracy
and negative log-likelihood, especially on the large-scale
datasets in Table 2 and Table 3.

Furthermore, the Bayesian pseudocoreset can be leveraged
to enhance robustness against distributional shifts when
combined with Bayesian model averaging. To assess the ro-
bustness of our function space Bayesian pseudocoresets on
out-of-distribution inputs, we also conducted experiments
using the CIFAR10-C dataset, which involves the insertion
of image corruptions into the CIFAR10 images. we measure
the top-1 accuracy and degradation scores, which indicate
the extent to which accuracy is reduced compared to the
in-distribution’s test accuracy. In Table 4, we present the
averaged results for 10 types of corruptions. For detailed re-
sults, please refer to the appendix. The result demonstrates
that our FBPC consistently outperforms the weight space
Bayesian pseudocoreset, BPC-fKL.

5. Conclusion

In this paper, we explored the function space Bayesian pseu-
docoreset. We constructed it by minimizing forward KL
divergence between the function posteriors of pseudocore-
set and the entire dataset. To optimize the divergence, we
proposed a novel method to effectively approximate the
function posteriors with an efficient training procedure. Fi-
nally, we empirically demonstrated the superiority of our
function space Bayesian pseudocoresets compared to weight
space Bayesian pseudocoresets, in terms of test performance
and uncertainty quantification.
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A. Proofs

Proposition A.1. The gradient of the forward KL divergence with respect to the coreset U is
VuDxL [Vx Hl/u]
= _qu[vx]u [logp(y ‘ fu)} + IE:[uu]u [vu Ing(y | fu)}v

where [Vx)u and [vy]u are finite-dimensional distributions of the stochastic processes vx and vy, respectively, £, =

(f(uj))jiy, and p(y [ £a) = TT52, p(35 | f(uy)).

Proof. We follow the arguments in de G. Matthews et al. (2016); Rudner et al. (2020). The forward KL divergence is
defined as,

(10)

dvy
Dict el = [ log T2 (1)) (16)
By the chain rule for the Radon-Nikodym derivative, we have
duk d
D [vlva] = /log d%o(f)dux(f) = / log dzo (f)dva(f). (17)
The first term does not depend on u, so we investigate the second term. By the measure theoretic Bayes’ rule,
dvy p(y| /)
— ) === (13)
an " = o
where p(y | f,u) == 72, p(3; | uj, f) and,
p(51) = [ p(31f Wi () (19)

Now let ps : (X — R?) — (A — R?) be a projection function that takes a function f and returns its restriction on a set
A C X. Assuming that the likelihood depends only on the finite index set u, we can write

dv d[v p(5 | fu)

Do gy = Wala gy = AT T,

dug d[vo]u p(y|u)
where [-], denotes the finite-dimensional distribution of stochastic process evalauted at u and pu(f) = fu := (f(u;))},
are corresponding function values at u. Putting this back into the above equation,

/log j%(f)dVX(f) = /log (31[11//:]]: (fu)d[vxlu(fu)

[
10 PO 1) @

=Ep,1.[logp(y | fu)] — log p(y | u).

(20)

Now taking the gradient w.r.t. u, we get
VuDxr[vl[vu] = =VuEf,), log p(¥ [ fu)] + Vulogp(y |u). (22)
Note also that
vu%mwmzvu%/mmﬂmmMﬂ

Z/Vulogp(iflﬁ u) (TJf’))dV (f)
(23)

/Vl%pwﬁ W) () ()
=/VM%Mﬂﬁw®¢ﬂ

=/vu%mwmmm¢wrﬂ%$Wu%Mﬂm»
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As a result, we conclude that

VuDkL[vxl[va] = =VuEp, . [log (¥ [ fu)] + Epy)o [Vu log p(y | fu)]- (24)

B. Experimental Details
B.1. Expert trajectories

Approximating the full data and coreset posteriors with variational distributions requires the MAP solutions p,, and px as
consequences of running optimization algorithms untill convergence. While this may be feasible for small datasets, for
large-scale setting of our interest, obtaining 1, and ux from scratch at each iteration for updating u can be time-consuming.
To alleviate this, in the dataset distillation literature, Cazenavette et al. (2022) proposed to use the expert trajectories, the set
of pretrained optimization trajectories constructed in advance to the coreset learning. Kim et al. (2022) brought this idea to
Bayesian pseudocoresets, where a pool of pretrained trajectories are assume to be given before pseudocoreset learning. At
each step of pseudocoreset update, a checkpoint 6 from an expert trajectory is randomly drawn from the pool, and then g,
and pyx are quickly constructed by taking few optimization steps from 6.

For expert trajectory, we trained the network with the entire dataset and saved their snapshot parameters at every epoch,
following the setup described in (Cazenavette et al., 2022). For training, we used an SGD optimizer with a learning rate of
0.01. We saved 100 training trajectories, with each trajectory consisting of 50 epochs.

B.2. Detailed training procedure

Inspired by Kim et al. (2022), we construct the variational parameters in Equation (14) using expert trajectories. Unlike
(Kim et al., 2022), we simply let the MAP solution computed for x, 6, by sampling a checkpoint from the later part of
the expert trajectories, and obtain the MAP solution of u, 6y, by directly optimizing an initial random parameter. Then
we obtain fix and fi,, using u. For the covariance matricies W and U, while Kim et al. (2022) proposed to use spherical
Gaussian noises, we instead set them as an empirical covariance matrices of the samples collected from the optimization
trajectory. Specifically, we take additional K steps from each MAP solution to compute the empirical covariance.

9>(c0) = HX7 a(t) - opt(e(t 2 (X7Y))v ﬂx = gsg(g)((o))(u)ﬂ (25)

) | K | X 2
Uy :=sg <diag <K Zgz)((k) (u) — (K Z o (u)> >> , (26)
k=1 k=1

where opt (6, x) is a step of SGD optimization applied to 6 with data x and the squares in the diag(-) are applied in
element-wise manner. Note also that we are applying the stop-gradient operations for to block the gradient flow that might
lead to complication in the backpropagation procedure. The variational parameters ( /iy, \I'u) are constructed in a similar
fashion, but using the psedocoreset (u,¥) instead of the original data (x,y). The overview of proposed method is provided
in Figure 2.

B.3. Evaluation

To implement the SGHMC algorithm, as discussed in (Chen et al., 2014) and following the recommendations of (Chen et al.,
2014), we employed the SGD with momentum along with an auxiliary noise term.

A =v 27
Av = —nVU(x) — av + N(0, 2d).

we set 7 = 0.03, « = 0.1, and d = 0.01/m, where m represents the coreset size. We perform 1000 epochs of SGHMC and
collect samples every 100 epochs.



Function Space Bayesian Pseudocoreset for Bayesian Neural Networks

N (fir, W)
h()(w) g5 W)
P IRy 7 ‘~~.’
gaX(u) ’,
[~ NG 3 NG NG 52 (R | SO
. MAP
Expert trajectory solution
Minimize divergence
. between two posteriors
o) | 4o
TN
Train on . | u D
pseudocoreset u © o ) g 5_};‘( ) ‘,’
se e 0 1 2 LN ] ~\ { ll
B Ou Ou Ou y5<1>(‘:) ;' .
Initial MAP- T e a”
parameter solution T

Figure 2. The conceptual overview of our proposed training procedure.

Algorithm 1 Multi-architecture Function space Bayesian Pseudocoreset

é‘” : a € A}, an optimizer opt.

Input: Set of architectures A, expert trajectories {€ @.aqe A}, prior distributions of parameters {m
Initialize u with random minibatch of coreset size m.
fori=1,...,N do

Initialize the gradient of pseudocoreset: g <— 0.

fora € Ado

Sample the MAP solution computed for x: 65 € £,
Sample an initial random parameter: 6o ~ w(()a) ).
repeat
0 + Opt(et*h (u> S’))

until converges to obtain the MAP solution computed for u: 6,
Obtain fix, fiu, ¥x, Uy by Equation (25).
Compute the pseudocoreset gradient gl@ using Equation (15).
g+ g+g.

end for

Update the pseudocoreset u using the gradient g.

end for

C. Additional Experiments
C.1. Multiple architectures FBPC training

Another benefit of function space matching is that it does not constrain the number of architectures of the neural networks
to be matched, provided that their inherited function space posteriors are likely to be similar. Indeed, the function space
is typically of much lower dimension compared to the weight space. This makes it more likely for function spaces to
exhibit similar posterior shapes in the vicinity of the MAP solutions. This characteristic of function space encourages the
exploration of function space pseudocoreset training in the context of multiple architectures. Because, the task of training a
coreset that matches the highly complex weight space posterior across multiple architectures is indeed challenging, while
the situation becomes relatively easier when dealing with architectures that exhibit similar function posteriors.

Therefore we propose a novel multi-architecture FBPC algorithm in Algorithm 1. The training procedure involves calculating
the FBPC losses for each individual architecture separately and then summing them together to update. This approach
allows us to efficiently update the pseudocoreset by considering the contributions of each architecture simultaneously.

To assess the performance of multi-architecture training, we compare a single architecture trained pseudocoreset and a
multiple architecture trained pseudocoreset. we specifically focus on investigating the impact of varying normalization layers
on the generalizability of the pseudocoreset, since it is widely recognized that a pseudocoreset trained using one architecture
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may struggle to generalize effectively to a model that employs different normalization layers. For single architecture training,
we initially train a pseudocoreset using one architecture with a specific normalization layer, for instance we use instance
normalization. Subsequently, we evaluate the performance of this pseudocoreset on four different types of normalization
layers: instance normalization, group normalization, layer normalization, and batch normalization. For multiple architecture
training, we aggregate four losses for single architecture training of each architecture, and train the pseudocoreset with the
sum of all losses, as mentioned above.

As depicted in Figure 3(a), we observe that both WBPC (Weight space Bayesian pseudocoresets) and FBPC-single (Function
space Bayesian pseudocoresets trained on a single architecture) exhibit a notable trend, that they tend to not perform well
when evaluated on the architecture that incorporates different normalizations, regardless of whether it is trained on weight
space or function space. On the other hand, when trained with multiple architectures, both WBPC-multi and FBPC-multi
perform well across the all architectures, while notably FBPC-multi significantly outperforms WBPC-multi.
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(a) Performance evaluation with different normalization layers. (b) A sample image and its corresponding function values. Despite
Color represents the test architectures. The multiple architecture  variations in the normalization layers of different architectures, the
FBPC training enhances the generalization ability to other architec-  function values exhibit similarity across the architectures.

tures.

Figure 3. Results for multiple architectures FBPC training.

We hypothesize that the superior performance of FBPC compared to WBPC can be attributed to the likelihood of having
similar function space posterior across architectures. To validate this, we conduct an examination of the logit values for
each sample across different architectures. As an illustration, we provide an example pseudocoreset image belonging to the
class label “dog” along with its corresponding logits for all four architectures. As Figure 3(b) shows, it can be observed that
the logits display a high degree of similarity, indicating a strong likelihood of matching function posterior distributions.
Our analysis confirms that, despite architectural disparities, the function spaces generated by these architectures exhibit
significant similarity and it contributes to superiority of FBPC in terms of architecture generalizability.

C.2. Out-of-distribution Inputs Robustness

In Section 4.2, we have shown consistent superiority of FBPC over weight space BPC in terms of OOD robustness. In
Table 5, we present the results for 10 different types of corruptions.

D. A Comparison between WBPC and FBPC

By working directly on the function space, FBPC could bypass several challenges that may arise when working on a weight
space. Indeed, a legitimate concern arises regarding multi-modality, as the posterior distributions of deep neural networks are
highly complex. It makes the optimization of pseudocoresets on weight space difficult. Moreover, minimization of weight
space divergence does not necessarily guarantee proximity in the function space. Consequently, although we try to minimize
the weight space divergence, there is a possibility that the obtained function posterior may significantly deviate from the true
posterior. However, if we directly minimize the divergence between the function distributions, we can effectively address
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Table 5. Test accuracy and degradation scores of models trained on each Bayesian pseudocoreset from scratch using SGHMC on the
CIFAR10-C. Degradation refers to the extent by which a model’s accuracy decreases when evaluated on the CIFAR10-C dataset compared
to the CIFAR10 test dataset.

corruption BN DB ET FT GB JPEG MB PIX SN SP | Avg.

| |
BPC-fKL Acc 1 335 34 359 251 337 391 327 383 289 412 | 343
Degradation | | 403 394 36 552 399 303 41.6 31.6 484 265 | 389
FBPC Acc 1 489 464 476 417 440 520 443 51.0 471 523 | 475
Degradation | | 21.5 257 237 33.0 293 164 288 181 244 16.1 | 23.7

this issue.

On the other hand, there is an additional concern related to memory limitations for WBPC. While it has been demonstrated
in Kim et al. (2022) that the memory usage of Bayesian pseudocoresets employing forward KL divergence is not excessively
high, we can see that Equation (8) requires Monte-Carlo samples of weights, which requires O(Sp) where S and p represent
the number of Monte-Carlo samples and the dimensionality of the weights, respectively. This dependence on Monte-Carlo
sampling poses a limitation for large-scale networks when memory resources are constrained. In contrast, FBPC requires
significantly less memory, O(Sd) where d represents the dimensionality of the functions. Indeed, all the results presented in
this paper were obtained using a single NVIDIA RTX-3090 GPU with 24GB VRAM.

E. Related works
E.1. Bayesian coresets

Bayesian Coreset (Campbell & Beronov, 2019; Campbell & Broderick, 2018; 2019; Huggins et al., 2016) is a field of
research aimed at addressing the computational challenges of MCMC and VI on large datasets in terms of time and space
complexity (Chen et al., 2014; Baker et al., 2017; Quiroz et al., 2018). It aims to approximate the energy function of the entire
dataset using a weighted sum of a small subset. However for high-dimensional data, Manousakas et al. (2020) demonstrates
that considering only subsets as Bayesian coreset is not sufficient, as the KL divergence between the approximated coreset
posterior and the true posterior increases with the data dimension, and they proposed Bayesian pseudocoresets. There are
recent works on constructing pseudocoreset variational posterior to be more flexible (Chen et al., 2022) or how to effectively
optimize the divergences between posteriors (Kim et al., 2022; Chen et al., 2022; Manousakas et al., 2022; Naik et al., 2023).
However, there is still a limitation in constructing high-dimensional Bayesian pseudocoresets specifically for deep neural
networks.

E.2. Dataset distillation

Dataset distillation also aims to synthesize the compact datasets that capture the essence of the original dataset. However,
the dataset distillation places particulary on optimizing the test performance of the distilled dataset. Consequently, the
primary objective in dataset distillation is to maximize the performance of models trained using the distilled dataset, and
researchers provides how to effectively solve this bi-level optimization (Wang et al., 2018; Nguyen et al., 2021; 2020; Zhou
et al., 2022; Zhao & Bilen, 2021; Zhao et al., 2021; Cazenavette et al., 2022). In recent work, Kim et al. (2022) established a
link between specific dataset distillation methods and optimizing certain divergence measures associated with Bayesian
pseudocoresets.

E.3. Function space variational inference

Although Bayesian neural networks exhibit strong capabilities in performing variational inference, defining meaningful
priors or efficiently inferring the posterior on weight space is still challenging due to their over-parametrization. To overcome
this issue, researchers have increasingly focused on function space variational inference (Carvalho et al., 2020; Burt et al.,
2020; Ma & Hernandez-Lobato, 2021; Rudner et al., 2022b; Pan et al., 2020b; Titsias et al., 2020). For instance, Sun et al.
(2019) introduced a framework that formulates the KL divergence between functions as the supremum of marginal KL
divergences over finite sets of inputs. Wang et al. (2019) utilizes particle-based optimization directly in the function space.
Furthermore, Rudner et al. (2022c¢) recently proposed a scalable method for function space variational inference on deep
neural networks.



