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Abstract

Implicit neural representations have recently
emerged as a promising tool in data science re-
search for their ability to learn complex, high-
dimensional functions without requiring explicit
equations or hand-crafted features. Here we
aim to use these implicit neural representations
weights to represent batch of data and use it to
classify these batch based only on these weights,
without any feature engineering on the raw data.
In this study, we demonstrate that this method
yields very promising results in data classifica-
tion of several type of data, such as sound, im-
ages, videos or human activities, without any
prior knowledge in the relative field.

1 Introduction

Implicit neural representations (INRs) have shown great
promise in a variety of tasks, including image and shape
synthesis, rendering, and inversion. INRs are neural net-
works that learn to represent a high-dimensional space im-
plicitly without requiring an explicit parametric form for
the function.

When it comes to classifying subsets of data using INRs,
there are a few approaches that can be taken. One possible
approach is to use INRs to learn a representation of the data
that is optimized for classification. This can be done by
training an INR on a dataset and using the learned weights
as extracted features that are then fed into a classifier such
as XGBoost or a neural network.

Extracting relevant information from sets of data is a funda-
mental task in many fields such as machine learning, data
science, and engineering. The process of comparing and
classifying sets of data often requires a minimum knowl-
edge of the data itself, such as its statistical characteristics
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(min, max, average, etc.) of each of their variables. How-
ever, this approach can be limiting as it requires the data to
be preprocessed in a specific way, and the choice of statisti-
cal characteristics may not always capture the most impor-
tant features of the data.

In this paper, we demonstrate the effectiveness of using
INRs for data classification. We show that the weights of
a neural network can be used as a vector representation
of a structured data set such as sound, images, videos or
accelerometer data, and that this representation allows a
model such as XGBoost to accurately classify data. Our
experiments demonstrate the potential of INRs for several
kinds of data and provide insights into their use for other
similar applications.

Furthermore, INR are mainly used for data reconstruction,
but this is not our goal here. That’s why in this paper we
will show if there is a direct correlation between the capac-
ity to reconstruct data and the capacity to represent the data
and have a good classification score.

2 Background and related work

Implicit neural representations (INRs) appear to be a good
way to represent signals by continuous functions parame-
terized by neural networks. It has been used to represent
diverses kinds of data such as shape parts (Genova, Cole,
Vlasic, et al. 2019; Genova, Cole, Sud, et al. 2019), ob-
jects (Park et al. 2019; Michalkiewicz et al. 2019; Atzmon
and Lipman 2020; Gropp et al. 2020), or scenes (Sitzmann,
Zollhöfer, and Wetzstein 2019; Jiang et al. 2020; Peng et
al. 2020; Chabra et al. 2020) but also images (Strümpler
et al. 2022; Feng, Jabbireddy, and Varshney 2022), videos
(H. Chen et al. 2021; Z. Chen et al. 2022) and audio (Sza-
tkowski et al. 2022; Szatkowski et al. 2023; Lanzendörfer
and Wattenhofer 2023).
All papers using implicit neural representations do not use
them the same way. There is several applications such as
super-resolution, compression or interpolation (Sitzmann,
Martel, et al. 2020).
In particular SIREN (Sitzmann, Martel, et al. 2020) appears
to be the most used architecture in all cited applications.
SIREN architecture demonstrate that it’s possible to cor-
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rectly perform classification task using INRs in the process
but not directly on the weights of the INR (Xu et al. 2022).

3 Hypotheses and proposed method

3.1 Implicit neural representation

An implicit neural representation (INR) is a type of neu-
ral network architecture that learn to represent objects or
scenes in a way that is independent of their explicit ge-
ometry or parametric representation. In other words, an
INR is a neural network that can learn to represent com-
plex shapes and patterns without explicitly encoding their
geometry, topology, or other explicit mathematical descrip-
tions.

An INR can learn to represent any type of data, whatever
the dimension. By processing the raw signal data through
a NN INR, the resulting vector representation can capture
the salient features and patterns in the signal data without
requiring explicit knowledge of the underlying signal pro-
cessing or physics.

The generation of INRs is a consequence of machine learn-
ing procedures conducted on a specific data collection.
Thus, it is imperative to treat the data intended for cate-
gorization as a well-structured dataset. Consequently, we
adapt our data manipulation techniques to accommodate
one dimension less. This is exemplified in the instance
of a video, which can be dissected and interpreted as an
image dataset. The neural network architecture typically
employed for INR execution is likely a 2DConv neural
network. Dimensionality reduction can be leveraged as a
strategic advantage, allowing us to approach our data as a
more conventional problem. This, in turn, simplifies the
architecture of the neural network required for the task.

3.2 INR vectorization generalization

Let’s consider a classification problem with a dataset E,
with n classes and P features such as:
n ∈ N∗,
P ∈ N∗,
E = {A1, A2, ..., AK}, where K is the number of subset
that compose E,
∀i ∈ [1,K], Ai ⊂ E, with #(Ai) > 0 and #(Ai) ≤
#(E),
∀i, j ∈ [1,K] such as i ̸= j, Ai ∩Aj = ∅,
Every subset Ai could be classified in class Ci, with Ci ∈
{C1, C2, ..., Cn}.
Now let’s take a neural network model M, with any achitec-
ture and k weights. ∀i ∈ [1,K], M is trained from scratch
on Ai with a constant initialization. ∀i ∈ [1,K], we obtain
a vector Wi composed of k values, that are the weights of
the model trained on Ai.

Now each Ai subset is vectorized into a Wi vector, that can

be classified with any standard classifier.

3.3 Functions comparison

If a function represents a set of data, then it is possible to
compare these functions directly, and in particular to clas-
sify these functions in the context of a classification.

In the context of implicit neural representation, the set of
weights of a model trained on a subset of data represents
this subset, and thus allows these weight vectors to be clas-
sified via a more conventional machine learning algorithm.
This set of weight could be named functa (Dupont et al.
2022), ”a concise term for INRs that are to be thought of as
data”.

According to XGBoost research (T. Chen and Guestrin
2016), XGBoost is a highly effective machine learning
model for classification tasks, demonstrating superior per-
formance through its regularized model formalization that
effectively controls overfitting. Its parallelizable nature al-
lows it to leverage the capabilities of multi-core comput-
ers, enhancing its speed and efficiency. Furthermore, XG-
Boost is versatile, capable of handling a variety of data
types, missing values, and outlier values, and can be ap-
plied to both regression and classification tasks, including
those involving categorical features. In the case of functa
classification, the main advantage of XGBoost is that even
in scenarios with a high number of features, XGBoost per-
forms well due to its tree-based nature, which is renowned
for handling high-dimensional data effectively, because de-
pending to the architecture used to create functas, the num-
ber of features in the Machine learning processus could ex-
plodes.

However, it is important to note that XGBoost, like any
machine learning model, can be affected by the ”curse of
dimensionality” when the feature space becomes exceed-
ingly large, making it challenging for the model to identify
patterns.

3.4 Reconstruction and classification correlation

The quality of an Implicit Neural Representation is often
measured by how well it can reconstruct or generate the
data it was trained on. This can be quantified using various
metrics depending on the specific task. For instance, in im-
age generation, one might use metrics like Peak Signal-to-
Noise Ratio (PSNR), Structural Similarity Index (SSIM),
or perceptual loss based on pre-trained networks. For 3D
shapes, one might use Chamfer distance or Earth Mover’s
distance. In the case of graph data, one might use graph-
based metrics like Graph Edit Distance or subgraph match-
ing scores. But here we don’t really want a good INR but
a good functa so whatever the type of data processed, the
only metric that interest us is the accuracy of our XGBoost
classifier.
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During our experiment we will demonstrate that the INR
quality (capacity of data reconstruction) and the functa
quality (capacity of being well classified) are not always
correlated, and depending on our objectif, reconstruction
or classification, we will not choose the same architecture
of neural network.

4 Experimental protocol

The use of different types of data in our experiments is
of paramount importance. The reason for this is twofold.
Firstly, it allows us to evaluate the generalizability of functa
across different data modalities. An approach that performs
well across diverse datasets is likely to be more robust and
versatile. Secondly, different types of data come with their
unique challenges and characteristics. For instance, im-
age data might involve dealing with high-dimensional in-
puts and complex spatial dependencies, while audio data
might involve handling temporal dependencies. By testing
on different types of data, we can gain insights into how
well functa can handle these different challenges, which
can guide future research and development.

4.1 Datasets

To test the approach and demonstrate its generalizability,
we will work on four types of datasets: image, sound,
video, and accelerometers.

4.1.1 CIFAR-10

The CIFAR-10 dataset is a widely used collection of im-
ages for research in image classification. It is commonly
employed in the fields of computer vision and machine
learning to evaluate and compare the performance of im-
age classification algorithms. It consists of a total of 60,000
color images divided into 10 different classes, with 6,000
images per class. The classes include common objects such
as cars, airplanes, birds, cats, dogs, and more. Each image
is 32x32 pixels in size and encoded with three color chan-
nels (red, green, blue).

This dataset is interesting for classification research due to
several challenges it presents:

• Class complexity: CIFAR-10 classes can be challeng-
ing to distinguish due to their visual similarity. For
example, images of cats and dogs can be quite simi-
lar in terms of shape and color, making classification
more difficult.

• Instance variability: Images within each class exhibit
significant variability in terms of pose, orientation,
scale, brightness, etc. This variability requires robust
classification models capable of generalizing well to
new instances.

• Dataset size: With 60,000 images, CIFAR-10 pro-
vides a sufficient amount of data to train machine
learning models and evaluate their performance mean-
ingfully.

• Image size: The 32x32 pixel images are relatively
small compared to other datasets like ImageNet. This
makes machine learning models lighter and faster to
train, facilitating experimentation and iteration in re-
search.

4.1.2 ESC-50

The ESC-50 (Environmental Sound Classification) dataset
is a widely used dataset in research on environmental sound
classification. It is specifically designed for the analysis
and classification of sounds from everyday environments.
It consists of a total of 2,000 audio clips, each lasting 5
seconds. The clips are divided into 50 different categories,
representing various sounds such as dog barking, car horns,
ocean waves, bird chirping, phone ringing, and more. Each
class contains 40 audio examples.

This dataset is interesting for sound classification research
for several reasons:

• Class variety: ESC-50 offers a wide variety of envi-
ronmental sounds from different sources and contexts.
This allows researchers to study and develop classifi-
cation models capable of recognizing and distinguish-
ing a wide range of real-world sounds.

• Classification challenges: Classifying environmental
sounds can be complex due to acoustic variations,
background noise, overlaps, and other factors. ESC-
50 provides a realistic testing environment to evaluate
the models’ ability to tackle these challenges.

• Dataset size: With 2,000 audio clips, ESC-50 provides
a sufficient amount of data to train classification mod-
els and evaluate their performance meaningfully.

4.1.3 HMDB-51

The HMDB-51 (Human Motion DataBase) dataset is a
widely used dataset in research on human motion classi-
fication. It is specifically designed for the analysis and
recognition of actions and movements performed by hu-
mans. It consists of a total of 6,766 video clips from 51
different action classes. The classes include movements
such as walking, running, jumping, smiling, waving, lying
down, dancing, and more. Each class contains a variable
number of videos, with an average of about 70 videos per
class. The videos are captured in diverse contexts, with dif-
ferent individuals, camera angles, lighting conditions, and
more.

This dataset is interesting for research in human motion
classification for several reasons:
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• Action variety: HMDB-51 offers a wide range of hu-
man movements and actions, spanning from basic ac-
tions like walking and running to more complex ac-
tions like dancing and sports. This allows researchers
to study and develop classification models capable of
recognizing an extensive range of human actions.

• Recognition challenges: Recognizing human actions
from videos can be challenging due to variations in
poses, clothing, backgrounds, camera angles, and
more. HMDB-51 provides a realistic challenge to
evaluate the models’ ability to identify and classify
human movements under diverse conditions.

• Dataset size: With over 6,000 video clips, HMDB-51
provides a significant amount of data to train and eval-
uate classification models. This enables conducting
experiments and statistically robust studies.

4.1.4 UCI-HAR

UCI-HAR dataset was developed to help in human activity
recognition field (Jorge et al. 2012), which involved 30 vol-
unteers engaging in various daily activities such as sitting,
lying down, walking, standing, walking upstairs, and walk-
ing downstairs. The authors used a smartphone equipped
with an accelerometer and gyroscope to capture tri-axial
linear acceleration and angular velocities. The data was
sampled at a rate of 50Hz and consisted of nine features.
The data was then segmented into fixed-width sliding win-
dows with 50% overlap, resulting in a total of 10,299 sam-
ples that have been segmented by user id.

4.2 Data Computation

Each dataset have to be processed differently. For image
data (CIFAR-10), this involves training an implicit neural
representation (INR) for each image. For audio data (ESC-
50), this might involve training an INR for each audio clip.
For video data (HMDB-51), this might involve training an
INR for each video frame or sequence. For sensor data
(UCI-HAR), this might involve training an INR for each
sensor reading sequence.

There are several ways to create INR on each type of data.
In all cited papers, INR to reconstruct image is a fonction
that map the coordinate of of pixel to its value. But an
image could be seen as a time series, and a LSTM could be
trained on it, and, given the N first pixel values, predict the
N+1 pixel value.

For each dataset we will test different approaches and dis-
cuss the relevance of the INR and the functa created this
way. It will permit us to see if their is any direct correlation
between the INR quality and functa quality. Moreover, we
will be able to see if certain architectures are more suitable
to create good functa.

4.3 Evaluation metrics

This paper evaluates the effectiveness of functas with XG-
Boost using various performance metrics, as described be-
low:

Accuracy is defined as the ratio of correctly predicted sam-
ples to the total number of samples, where TP denotes true
positives, FN denotes false negatives, TN denotes true neg-
atives, and FP denotes false positives.
Accuracy = (TP + TN) / (TP + TN + FP + FN)

A confusion matrix (CM) is a square matrix that provides
a complete performance analysis of a classification model.
The rows of the CM represent instances of true class labels,
while the columns represent predicted class labels. The di-
agonal elements of the matrix indicate the percentage of
points for which the predicted label is equal to the true la-
bel.

We will also evaluate the quality of the INR used, with
a PSNR wich is most commonly defined via the mean
squared error (MSE) between two images.

4.4 Baseline comparison

During these experiments we’ll need two types of baseline:

• An INR baseline to compare what is a good INR for
data reconstruction. That baseline will be classified
as functa too. To achieve that we will use SIREN as
baseline if possible for each type of data.

• A classifier baseline to compare with a more common
classifier for the current type of data. We will use
2dConv model as baseline image classifier, a 3Dconv
model for videos, 1Dconv model for sound classifier,
logistic regression for human activity recognition.

4.5 Ablation Studies

To understand the contribution of different components of
the functa models, we perform ablation studies, which in-
volve removing or modifying certain components and ob-
serving the effect on performance.

4.6 Analysis

Finally, we analyze the results, compare the performance of
the functa models with the baseline models, discuss the re-
sults of the ablation studies, and provide insights into why
the functa models performed as they did.
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5 Experimental Results

This section details the evaluation approach for different
data types using three distinct sections. Initially, the pro-
cess of data learning and reconstruction by the Implicit
Neural Representation (INR) models is discussed. The sub-
sequent section focuses on baseline results, presenting the
Peak Signal-to-Noise Ratio (PSNR) for the baseline INR
models and the accuracy metrics for the baseline classifiers.
The final section highlights the superior results achieved
using functas.

5.1 Common approach

5.1.1 INRs structure

Network Architecture: The architecture of an INR is usu-
ally a fully connected neural network. For the best results
the model has 3 dense layers.

Activation Functions: Special activation functions such
as sinusoidal functions (e.g., sine and cosine) are often
used instead of more common activations like ReLU. This
choice helps in learning the smooth and continuous nature
of the underlying function.

5.1.2 Weight Initialization

In tensorflow, by default the weights of Dense layers are
drawn from a uniform distribution in order to break sym-
metry between neurons. If all weights are initialized the
same, neurons will learn the same features during training,
which is inefficient and ineffective.

Here neurons need to have the same ”role” across all the
INRs creation, because funtas values have to represent the
same feature, and that is why it’s important to iniatilize all
the INRs the same way.

Also, it could be more efficient if the initial weights could
be in the center of the funtas space.

So all INR models used to create functas begin with a stan-
dard initialization process. To accomplish this, two sam-
ples from each class are utilized to construct INRs with
random initial weights. Each INR is trained using the same
number of epochs and batch size as utilized in the broader
experimental framework.

After this initial training phase, the model designated
for the experimental runs is initialized using the average
weights derived from this preliminary training.

Figure 1: Weight initialization method

5.1.3 Filtering and Normalization

Before launching the training of the classifier, once the
functas had been extracted, we implemented certain opti-
mization measures for efficiency reasons.

During the training of INRs, some weights could stay un-
changed for every training. These weights values are use-
less in the functaset to differenciate two objects. So a fil-
tering step is implemented to check for invariant values
across the functas. If such invariant values are identified,
the corresponding columns are removed to streamline the
data structure.

Additionally, to enhance the learning performance of the
XGBoost algorithm, the remaining columns are normal-
ized.

5.2 CIFAR-10

5.2.1 Implicit neural representation

Network Input: The inputs to the network are the coordi-
nates of the pixels. For a 2D image, these coordinates are
typically the (x,y) positions of each pixel.

Training Data: During training, the network learns from
a set of coordinates and their corresponding pixel values.
This training can be seen as fitting a high-dimensional
curve to the image data.

Output: The output of the network for any given input co-
ordinate is the predicted pixel value at that coordinate. This
allows the model to generate the image continuously across
resolutions and coordinates.
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5.2.2 Baseline results

INR Baseline: For the INR baseline, we use a Sinusoidal
Representation Networks (SIREN) model. For images, the
SIREN model achieved a mean PSNR of 52.63 dB.

Classifier Baseline: The baseline model in this context is
a 2D Convolutional Neural Network (2D Conv), which is
widely used for image classification tasks due to its effi-
ciency in handling spatial hierarchies in images. The accu-
racy of this model reached 0.795, demonstrating its com-
petence in classifying images accurately.

Figure 2: Confusion matrix resulting from the baseline
classifier on CIFAR-10 dataset

5.2.3 Functa results

Table 1: Performance comparison of baseline model and
INR with the proposed model on the CIFAR-10 dataset

Model Accuracy PSNR
SIREN baseline with XGBoost 0.752 52.63

CONV2D 0.795 -
Best functa with XGBoost 0.779 60.24

Figure 3: Confusion matrix resulting from the examination
of the proposed model on CIFAR-10 dataset

5.3 HMDB-51

5.3.1 Implicit neural representation

Network Input: The inputs to the network are the coordi-
nates of the pixels in addition to time. For a video, these co-
ordinates are typically the (x, y, t) positions, where x and
y represent spatial pixel positions and t represents the time
or frame index.

Training Data: During training, the network learns from
a set of spatial coordinates, time points, and their corre-
sponding pixel values. This training can be seen as fitting
a high-dimensional curve to the video data, capturing not
only the appearance but also the changes over time.

Output: The output of the network for any given input co-
ordinate and time point is the predicted pixel value at that
spatial location and time. This allows the model to generate
video frames continuously across resolutions, coordinates,
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and time, offering potential for generating high-resolution
videos or slow-motion effects from limited data.

5.3.2 Baseline results

INR Baseline: For the INR baseline, we use a Sinusoidal
Representation Networks (SIREN) model. For videos, the
SIREN model achieved a mean PSNR of 61.4 dB.

Classifier Baseline: For video classification, a 3D Convo-
lutional Neural Network (3D Conv) serves as the baseline.
This model is adept at processing both spatial and temporal
dimensions, making it a standard choice for video analy-
sis tasks. It achieved an accuracy of 0.386, confirming its
robustness in recognizing and classifying dynamic patterns
across video frames.

Figure 4: Confusion matrix resulting from the baseline
classifier on HMDB-51 dataset

5.3.3 Functa results

Table 2: Performance comparison of baseline model and
INR with the proposed model on the HMDB-51 dataset

Model Accuracy PSNR
SIREN baseline with XGBoost 0.09 61.4

CONV3D 0.386 -
Best functa with XGBoost 0.324 62.77

Figure 5: Confusion matrix resulting from the examination
of the proposed model on HMDB-51 dataset

5.4 UCI-HAR

5.4.1 Implicit neural representation

Network Input: The input to the network for both mag-
netometer and accelerometer data is solely the time coordi-
nate, represented as t. This reflects the time at which each
sensor reading is taken.

Training Data: During training, the network learns from a
dataset consisting of time coordinates and their correspond-
ing sensor readings across the x, y, and z axes. This train-
ing approach fits a high-dimensional curve to the time se-
ries data, modeling the complex patterns and variations in
acceleration and magnetic fields over time.

Output: The output of the network for any given input
time coordinate t is the predicted values of sensor read-
ings at that moment along the x, y, and z axes. This model
thus generates continuous, high-fidelity reproductions of
the sensor data, which is particularly beneficial for tasks
requiring fine-grained analysis, such as motion tracking,
orientation detection, and condition monitoring.
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5.4.2 Baseline results

INR Baseline: For the INR baseline, we use a Sinusoidal
Representation Networks (SIREN) model. For images, the
SIREN model achieved a mean PSNR of 22.5 dB.

Classifier Baseline: The baseline classifier for this exper-
iment was a logistic regression model, chosen for its ef-
ficiency in multiclass classification tasks involving time-
series data like those from accelerometers and magnetome-
ters. With an accuracy of 0.527, the logistic regression
model demonstrates a low level of precision in classify-
ing different types of human activities, this model does’nt
seems to be relevant for HAR tasks.

Figure 6: Confusion matrix resulting from the baseline
classifier on UCI-HAR dataset

5.4.3 Functa results

Table 3: Performance comparison of baseline model and
INR with the proposed model on the UCI-HAR dataset

Model Accuracy PSNR
SIREN baseline with XGBoost 0.839 22.5

Logistic regression 0.527 -
Best functa with XGBoost 0.865 20.81

Figure 7: Confusion matrix resulting from the examination
of the proposed model on UCI-HAR dataset

5.5 ESC-50

5.5.1 Implicit neural representation

Network Input: The inputs to the network are the time
coordinates of the sound sample. For sound, these coordi-
nates are typically the t values, representing different time
points in the audio clip.

Training Data: During training, the network learns from
a set of time coordinates and their corresponding sound
amplitudes. This training can be seen as fitting a high-
dimensional curve to the sound data, effectively modeling
the waveform over time.

Output: The output of the network for any given input time
coordinate is the predicted sound amplitude at that time.
This allows the model to generate the sound continuously
across time points, which can be particularly useful for cre-
ating high-resolution audio or extending audio durations.
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5.5.2 Baseline results

INR Baseline: For the INR baseline, we use a Sinusoidal
Representation Networks (SIREN) model. For sound, the
SIREN model achieved a mean PSNR of 55 dB.

Classifier Baseline: Alongside the INR, we also bench-
mark against a conventional sound classification model.
For this purpose, a 1D Convolutional Neural Network (1D
Conv) is employed, given its proficiency in analyzing tem-
poral sequence data such as audio. The accuracy of this
model reached 0.57, showcasing its effectiveness in accu-
rately classifying sound patterns and frequencies.

Figure 8: Confusion matrix resulting from the baseline
classifier on ESC-50 dataset

5.5.3 Specific preprocess

Throughout the experimentation phase, we encountered
significant performance challenges. The functas did not
achieve the anticipated classification accuracy when the
INRs were trained directly on raw data. To address this
issue, we opted to employ Mel Frequency Cepstral Coeffi-
cients (MFCC) for training our INRs. MFCC is a widely
recognized technique in sound processing, known for its ef-
fectiveness in capturing the key temporal and spectral char-
acteristics of audio signals.

5.5.4 Functa results

Table 4: Performance comparison of baseline model and
INR with the proposed model on the ESC-50 dataset

Model Accuracy PSNR
SIREN baseline with XGBoost 0.073 74.11

SIREN baseline with XGBoost/mfcc 0.383 15.76
CONV1D 0.57 -

Best functa with XGBoost 0.118 13.17
Best functa with XGBoost and mfcc 0.465 15.75

Figure 9: Confusion matrix resulting from the examination
of the proposed model on ESC-50 dataset

Figure 10: Confusion matrix resulting from the examina-
tion of the proposed model with mfcc treatment on ESC-50
dataset

6 Analysis

6.1 Images and videos

The experimental outcomes for both image and video data,
while slightly below the established baselines, are nonethe-
less encouraging. Our results confirm the viability of using
INRs with an XGBoost classifier for these types of data,
which are well-known to be suitable for INR applications.

Performance Comparison : Our findings demonstrate
that, although our results did not surpass the baseline
metrics, the performance of our INR models closely ap-
proaches these benchmarks. This slight underperformance
is not unexpected in the initial stages of implementing a
new methodology and underscores the fundamental sound-
ness of the INR approach for handling complex visual data.

Potential for Optimization : There is optimism that with
further optimization and continued refinement of our mod-



Implicit Neural Representation as vectorizer for classification task applied to diverse data structures

els, the performance can not only meet but potentially ex-
ceed the established baselines. Adjustments in the network
architecture, training procedures, and parameter tuning are
anticipated to enhance the efficacy of our models.

Suitability and Expectations : The fact that both videos
and images are effective candidates for INR-based models
is well-documented. Our results reinforce this understand-
ing and provide a solid foundation for future investigations
into this area. The successful application of INRs for these
media types aligns with our expectations and contributes to
the growing body of evidence supporting the robustness of
INR techniques.

Future Work : The current study lays the groundwork for
additional research aimed at refining these techniques. Fur-
ther experiments and development efforts are required to
fully realize the potential of integrating INRs with machine
learning classifiers like XGBoost. Exploring various con-
figurations and settings within this framework will be cru-
cial for advancing our understanding and application of this
technology.

6.2 Sensor data

Our experiments with sensor data, specifically from ac-
celerometers, magnetometers, and gyroscopes, using INRs
combined with XGBoost classification, have yielded re-
sults that are notably impressive compared to our estab-
lished baseline. However, this comparison requires careful
interpretation due to the inherent limitations of the baseline
model.

Comparison to Baseline: While our results significantly
surpass the baseline performance, it’s important to ac-
knowledge that the baseline itself is not an optimal classi-
fier for this type of data. The baseline model demonstrates
considerably poor performance, which somewhat dimin-
ishes the impact of our comparative success. Thus, our
achievements, though notable, are benchmarked against a
relatively weak standard.

State-of-the-Art Comparison: When contrasting our re-
sults with state-of-the-art models, specifically some CNN
models that achieve an accuracy of 92.7%, our model’s ac-
curacy of 86.5% appears competitive but still not up to the
leading edge in this field. This comparison underscores the
potential yet untapped in optimizing our approach to better
match or even surpass these top-performing models.

Potential for Optimization: The current performance of
our INR models suggests that with further refinement and
optimization, particularly in how we tune and train our
INRs, there could be significant improvements. Moreover
there are other classifiers that could improve significantly
the accuray.

6.3 Sound

The examination of sound data using INRs integrated with
an XGBoost classifier produced mixed outcomes. Notably,
the results on raw sound data were disappointing, which
can be attributed primarily to the inherent complexities and
the substantial size of the data involved.

Challenges with Large Data Sets: For a typical 5-second
sound clip, we are dealing with a dataset exceeding 200,000
values. Such extensive data sets pose significant challenges
for INRs, which may struggle to effectively represent this
level of complexity within a manageable computational
framework. The initial hypothesis was that larger neural
networks, trained over many epochs, might be better suited
to handle this scale of data.

Parameter Adjustments and Sampling Rate Changes:
Despite multiple attempts to optimize the model by ad-
justing parameters and reducing the sampling rate to de-
crease the data size, the outcomes were not satisfactory.
These modifications did not yield the improvements in per-
formance that were anticipated, underscoring the difficulty
of working with high-dimensional sound data in an INR
framework.

Utilizing Basic Data Processing: In light of these chal-
lenges, we resorted to applying basic preprocessing tech-
niques to the raw data, similar to those used for the base-
line models. Specifically, we implemented Mel Frequency
Cepstral Coefficients (MFCC) processing, which is a stan-
dard treatment for simplifying sound data before classifi-
cation tasks. This approach led to results that, while still
slightly below the baseline, were much closer to what was
expected, indicating that this method can be effective with
minimal alterations to the raw data.

7 Ablation Studies

In our ablation studies, we sought to understand the im-
pact of reducing the computational resources on the perfor-
mance of our INR models. Specifically, we halved the size
of each layer in the network, aiming to analyze the trade-
offs between training speed and model accuracy.

The following table summarizes the accuracy results of the
INRs trained with full-sized and half-sized layers for dif-
ferent types of data:

Table 5: Accuracy Results with Full and Half Layer Sizes
Data Type Full Layer Size (%) Half Layer Size (%)

Images 0.779 0.652
Videos 0.324 0.288
HAR 0.865 0.811
Sound 0.465 0.36
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The results indicate a consistent pattern across all data
types: reducing the size of each layer by half resulted in
a significant increase in processing speed, approximately
doubling the speed of training. However, this reduction in
layer size also led to a decrease in model accuracy, although
the extent of the decline varied across different data types.

Conclusively, this ablation study highlights the feasibility
of using smaller networks for faster processing, which may
be beneficial in scenarios where computational resources
are limited or rapid model deployment is necessary. How-
ever, for applications where maximum accuracy is critical,
utilizing full-sized layers remains advisable. This balance
between speed and accuracy must be carefully considered
in the design of practical Functas-based systems.

8 Conclusion

The results presented in this paper provide a promising
foundation for future research in utilizing INRs coupled
with simple classifiers such as XGBoost. Our findings
demonstrate the functionality and potential of this approach
across various data types, including images, videos, sound,
and sensor data. Each of these applications presents unique
challenges, but also opportunities for significant advance-
ments in the field of machine learning. The classification
performance of our functa-based approach closely aligns
with the selected baseline models. It is important to note
that we did not compare our results against state-of-the-
art models, as these are often highly optimized for specific
tasks. In contrast, our approach is designed to be broadly
applicable across various data types, which inherently lim-
its the extent of optimization for any one domain but en-
hances its versatility. This versatility positions our method
as a particularly promising candidate for multimodal clas-
sification tasks, where it has the potential to integrate and
process diverse data types seamlessly.

The application of INR models to complex data sets, such
as large-scale sound and high-dimensional sensor data, has
shown that while the initial results are promising, they also
require substantial enhancements to match the performance
of state-of-the-art models. The success of basic preprocess-
ing in improving model performance underscores the im-
portance of effective data simplification prior to employ-
ing these complex models. However, the continual need
to refine model architectures and adjust training strategies
parallels the challenges faced in continual learning.

Optimizations in the domain of continual learning could
significantly enhance the efficiency and effectiveness of us-
ing INRs. Techniques such as dynamic architectural adjust-
ments, effective regularization strategies, and novel train-
ing paradigms could be adapted to improve the training
processes and utility of INR models in handling the com-
plexity and vastness of the data types explored.

Future research will therefore not only continue to refine
and optimize INR models and their integration with classi-
fiers but also explore how principles of continual learning
can be applied to improve the adaptability and efficiency
of these models. By addressing these challenges, we can
enhance the scalability and applicability of INRs, making
them more robust and versatile tools in the machine learn-
ing toolkit. Finally we can explore other existing extrac-
tion approach of INRs, like the utilization of modulation,
without forgetting that there are multitude of classifiers that
could increase our results, and some other way to treat these
INR such as graphs.
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9 PSNR and accuracy

During our experiments, we initially hypothesized a
strong correlation between the Peak Signal-to-Noise Ratio
(PSNR) and accuracy. The rationale behind this expecta-
tion is straightforward: a higher PSNR indicates that the
Implicit Neural Representation (INR) more accurately re-
produces the object it represents. Consequently, we antic-
ipated that functas derived from INRs with higher PSNR
values would be classified more accurately, suggesting a
direct correlation between these two metrics.

However, our experimental observations did not conform
to these expectations. As illustrated in the graphs below,
which plot accuracy against PSNR for different types of
data, the relationship varies significantly depending on the
data type. For instance, in some cases, even moderate
PSNR improvements led to substantial increases in accu-
racy, whereas in others, substantial enhancements in PSNR
did not translate into corresponding improvements in clas-
sification accuracy.

Figure 11: Graphs depicting the relationship between
PSNR and accuracy for HAR experiments

Figure 12: Graphs depicting the relationship between
PSNR and accuracy for images experiments

Figure 13: Graphs depicting the relationship between
PSNR and accuracy for videos experiments

Consequently, while PSNR remains a valuable metric for
assessing the quality of data reconstruction by INRs, we
cannot conclusively assert a direct correlation between
PSNR and classification accuracy across all types of data

10 Models description

In this section main models used will be explicitly de-
scibed.

10.1 Best functa

For each data type, the same model was used to create func-
tas. This model was created with tensorflow and has the
following structure :

• An Input layer with shape (input− size, ), designed
to take a single value representing a time-encoded fea-
ture.

• A Dense layer with 128 units using a Sine activation
function with a frequency of 30.

• Another Dense layer with 64 units, also using a Sine
activation.

• An Output layer with ouput − size unit, employing
a sigmoid activation.

Input and output sizes depend of data type processed:

Table 6: Input and output sizes of models used for functa
creation

Sizes Sound Image Video HAR
Input 1 2 3 1

Output 1 3 3 9
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10.2 Siren baseline

For all baseline INR, the model used is a SIREN model
that come from the librairy tf-siren. Input and output are
the same than previously in best functas. These SIREN are
created this way:

Listing 1: Python code for creating a the SIREN baseline
model

from tf_siren import
SinusodialRepresentationDense

model = models.Sequential([
layers.Input(shape=(3,)), # Input

layer with shape 2
SinusodialRepresentationDense(64,

w0=30.0), # Dense layer with
Sine activation

SinusodialRepresentationDense(64,
w0=1.0), # Dense layer with
Sine activation

SinusodialRepresentationDense(64,
w0=1.0), # Dense layer with
Sine activation

SinusodialRepresentationDense(64,
w0=1.0), # Dense layer with
Sine activation

SinusodialRepresentationDense(64,
w0=1.0), # Output layer with
sigmoid activation

SinusodialRepresentationDense(3,
activation="linear") #
Output layer with linear
activation

])

10.3 XGBoost

The model used to classify functas is an XGBoost with the
following parameters:

• An max-depth : 6

• An eta : 0.3

• An objective : multi:softmax

• An eval-metric : mlogloss

• An seed : 42

11 Multimodality

Our experiments have delved into the fascinating field of
multimodality, particularly in the context of transforming
diverse types of data into vectors of the same dimension.
This approach simplifies the process of combining multiple
vectors to create a singular vector that carries information
from various data types.

In our case, we focused on video and sensor data types,
linking each video with a corresponding human activity.
This approach allowed us to create a multi-dimensional
representation of both the visual and sensor-based aspects
of the activity.

The initial results have been promising. Without any ad-
ditional optimization on the data, our model achieved an
accuracy of 77.5%. This suggests that our approach to mul-
timodal data representation can effectively integrate and in-
terpret information from different types of data.

However, it’s important to note that while our initial results
are encouraging, there is still room for improvement. Fur-
ther optimization of the data and refinement of our model
could potentially lead to higher accuracy rates. This could
involve fine-tuning the process of transforming data into
vectors or improving the way we link videos with human
activities.

In conclusion, our exploration into multimodality has
demonstrated its potential in handling and interpreting di-
verse types of data. With further research and optimization,
this approach could significantly improve the way we ana-
lyze and understand complex data sets.

Figure 14: Multimodal experiment confusion matrix



Thibault Malherbe

Acknowledgements

We extend our heartfelt gratitude to Anis Takka, whose
invaluable assistance was pivotal in setting up the experi-
ments, contributing to the writing of this paper, and provid-
ing numerous insightful ideas that enriched our research.
We are also deeply appreciative of the support and guid-
ance provided by Etienne Gay and Gabriel Prevot. Their
roles as managers were instrumental in fostering a produc-
tive research environment, and their meticulous review and
methodological advice significantly enhanced the quality
of our work.


