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ABSTRACT

This paper addresses domain adaptation challenges in graph data resulting from
chronological splits. In a transductive graph learning setting, where each node
is associated with a timestamp, we focus on the task of Semi-Supervised Node
Classification (SSNC), aiming to classify recent nodes using labels of past nodes.
Temporal dependencies in node connections create domain shifts, causing signif-
icant performance degradation when applying models trained on historical data
into recent data. Given the practical relevance of this scenario, addressing do-
main adaptation in chronological split data is crucial, yet underexplored. We pro-
pose Imposing invariance with Message Passing in Chronological split Tempo-
ral Graphs (IMPaCT), a method that imposes invariant properties based on re-
alistic assumptions derived from temporal graph structures. Unlike traditional
domain adaptation approaches which rely on unverifiable assumptions, IMPaCT
explicitly accounts for the characteristics of chronological splits. The IMPaCT
is further supported by rigorous mathematical analysis, including a derivation of
an upper bound of the generalization error. Experimentally, IMPaCT achieves
a 3.8% performance improvement over current SOTA method on the ogbn-mag
graph dataset. Additionally, we introduce the Temporal Stochastic Block Model
(TSBM), which replicates temporal graphs under varying conditions, demonstrat-
ing the applicability of our methods to general spatial GNNs.

1 INTRODUCTION

The task of Semi-supervised Node Classification (SSNC) on graph often involves nodes with tem-
poral information. For instance, in academic citation network, each paper node may contain infor-
mation regarding the year of its publication. The focus of this study lies within such graph data,
particularly on datasets where the train and test splits are arranged in chronological order. In other
words, the separation between nodes available for training and those targeted for inference occurs
temporally, requiring the classification of the labels of nodes with the most recent timestamp based
on the labels of nodes with historical timestamp. While leveraging GNNs trained on historical data
to classify newly added nodes is a common scenario in industrial and research settings (Liu et al.,
2016; Bai et al., 2020; Pareja et al., 2020), systematic research on effectively utilizing temporal
information within chronological split graphs remains scarce.

Figure 1: Illustrative explanation of chronological split dataset.

Failure to appropriately utilize temporal information can lead to significant performance degradation
when the model attempts to classify labels of recent data. We conducted a toy experiment on the
ogbn-mag dataset, an academic graph dataset having features with chronological split, to confirm
the existence of such distribution shifts. The specific settings of this experiment can be found in
Appendix A.2. Table 1 presents results of the toy experiment.
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Table 1: Accuracy of SeHGNN (Yang et al., 2023) on ogbn-mag for chronological and random split.

Split wo/time emb w/time emb
Chronological 0.5682 ± 0.001 0.5580 ± 0.0009
Random 0.6302 ± 0.0011 0.6387 ± 0.0011

The substantial difference in accuracy, 5.2%, between the chronological split and random split set-
tings clearly demonstrates the presence of distribution shift induced by the chronological split. Time
positional encoding contributes to obtain better test accuracy only in random split setting. This
discrepancy arises because in the chronological split setting, the inference process of test nodes en-
counters time positional encodings not seen during training. The distribution for recent nodes may
exhibit extrapolation properties that diverge from those of past nodes, thereby adding to the challeng-
ing nature of this problem. In our work, we presented robust and realistic assumptions on temporal
graph, and proposed message passing methods, IMPaCT, to impose invariant representation.

Contributions Our research contributes in the following ways:
(a) We present robust and realistic assumptions that rooted in properties observable in real-world
graphs, to effectively analyze and address the domain adaptation problem in graph datasets with
chronological splits. (b) We propose the scalable imposing invariance with message passing meth-
ods, IMPaCT, and established a theoretical upper bound of the generalization error when our meth-
ods were used. (c) We propose Temporal Stochastic Block Model (TSBM) to generate realistic
temporal graph, and systematically demonstrate the robustness and applicability to general spatial
GNNs of IMPaCT. (d) We showcase significant performance improvements on the real-world cita-
tion graph ogbn-mag, yielding significant margin of 3.8% over current SOTA method.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have gained significant attention across various domains, including
recommender systems (Ying et al., 2018; Gao et al., 2022), biology (Barabasi & Oltvai, 2004), and
chemistry (Wu et al., 2018). Spatial GNNs, such as GCN (Kipf & Welling, 2017), GraphSAGE
(Hamilton et al., 2017), GAT (Velickovic et al., 2017) and HGNN (Feng et al., 2019), derive topo-
logical information by aggregating information from neighboring nodes through message passing.

M (k+1)
v ← AGG({X(k)

u ,∀u ∈ Nv}) (1)

X(k+1)
v ← COMBINE({X(k)

v ,M (k+1)
v }), ∀v ∈ V, k < K (2)

Here, K is the number of GNN layers, X0
v = Xv is initial feature vector of each node, and the final

representation XK
v = Zv serves as the input to the node-wise classifier. The AGG function performs

topological aggregation by collecting information from neighboring nodes, while the COMBINE
function performs semantic aggregation through processing the collected message for each node.
Scalability is a crucial issue when applying GNNs to massive graphs. Ego graph, which defines the
scope of information influencing the classification of a single node, exponentially increases with the
number of GNN layers. Therefore, to ensure scalability, algorithms must be meticulously designed
to efficiently utilize computation and memory resources (Hamilton et al., 2017; Shi et al., 2022; Zeng
et al., 2019). Decoupled GNNs, whose process of collecting topological information occurs solely
during preprocessing and is parameter-free, such as SGC (Wu et al., 2019), SIGN (Rossi et al., 2020),
and GAMLP (Zhang et al., 2022), have demonstrated outstanding performance and scalability on
many real-world datasets. Furthermore, SeHGNN (Yang et al., 2023) and RpHGNN (Hu et al., 2023)
propose decoupled GNNs that efficiently apply to heterogeneous graphs by constructing separate
embedding spaces for each metapath based on HGNN (Feng et al., 2019).

2.2 DOMAIN ADAPTATION

A machine will learn from a train domain in order to perform on a test domain. Domain adaptation
is needed due to the discrepancy between train and test domains. That is, we can not guarantee
that a model which performed well on the train domain, will perform well on the test domain. The
performance on the test domain is known to depend on the performance of the train domain and the
similarity between two domains (Ben-David et al., 2006; 2010; Germain et al., 2013; 2016).

For feature space X and label space Y , the goal is to train a predictor function f : X → Y to
minimize the risk Rtr(f) = E(X,Y )∼Ptr

[L(f(X), Y )] where Ptr is the distribution of the train

2
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feature-label pairs, and L is a loss function L : Y × Y → R. We are interested in minimizing
Rte(f) = E(X,Y )∼Pte

[L(f(X), Y )] where Pte is the distribution of the test feature-label pairs.

The domain adaptation bound, or upper bound of generalization error was firstly proposed for a
binary classification task by defining the set of all trainable functions F , symmetric hypothesis
class F∆F (Ben-David et al., 2006), and a metric for distributions, namely dF∆F . dF∆F is the
factor which represents the similarity between two distributions. Recently, theories and applications
as setting up the metric between two distributions as the Wasserstein-1 distance, W1 instead of
dF∆F have been developed (Lee et al., 2019; Shen et al., 2018; Arjovsky et al., 2017; Redko et al.,
2017). For brevity, we omit the assumptions introduced in (Redko et al., 2017) and simply state the
theoretical domain adaptation bound below.

Rte(f) ≤ Rtr(f) +W1(Dtr,Dte) (3)
where Dtr and Dte are marginal distributions on X of Ptr and Pte, respectively.

2.3 PRIOR STUDIES

Despite its significance, studies on domain adaptation in GNNs are relatively scarce. Notably, to our
knowledge, no studies propose invariant learning applicable to large graphs. For example, EERM
(Wu et al., 2022) defines a graph editor that modifies the graph to obtain invariant features through
reinforcement learning, which cannot be applied to decoupled GNNs. SR-GNN (Zhu et al., 2021)
adjusts the distribution distance of representations using a regularizer, with computational com-
plexity proportional to the square of the number of nodes, making it challenging to apply to large
graphs. This scarcity is attributed by several factors: data from different environments may have
interdependencies, and the extrapolating nature of environments complicates the problem.

3 METHOD EXPLANATION

3.1 MOTIVATION OF OUR METHOD: IMPOSING INVARIANCE WITH MESSAGE PASSING

The distribution of node connections depends on both timestamps and labels. As a result, even
if features from previous layers are invariant, features after the message passing layers belong to
different distributions: Dtr for training andDte for testing. Imposing invariance here means aligning
the mean and variance of Dtr and Dte. While it may seem straightforward to compute and align the
mean and variance for each label, this is impractical in real settings since test labels are unknown
during prediction. To overcome this, we analyzed real-world temporal graphs and identified practical
assumptions about connection distributions. Based on this, we propose a message passing method
that corrects the discrepancy between Dtr and Dte, ensuring feature invariance at each layer.

3.2 PROBLEM SETTING

Denote the possible temporal information as T = {. . . , tmax− 1, tmax}, Y as the set of labels, and
Ptr and Pte as the joint probability distribution of feature-label pairs in train data and test data. The
training data will be historical labels, that is, nodes with timestamp smaller than tmax. The test data
will be recent labels, that is, nodes with timestamp tmax. Therefore, labels of nodes with time tmax

are unknown. We say that a variable is invariant if and only if it does not depend on t.

Here are the 3 assumptions introduced in this study.
Assumption 1 : Pte(Y ) = Ptr(Y ) (4)
Assumption 2 : Pte(X|Y ) = Ptr(X|Y ) (5)

Assumption 3 : Pyt

(
ỹ, t̃
)
= f(y, t)g

(
y, ỹ, |t̃− t|

)
, ∀y, ỹ ∈ Y,∀t, t̃ ∈ T (6)

From now on, we use y and t as the label and time of the target node, and ỹ and t̃ as the label and time
of neighboring nodes, unless specified otherwise. Relative connectivityPyt

(
ỹ, t̃
)

denotes the proba-
bility distribution of label and time pairs of neighboring nodes. Hence,

∑
ỹ∈Y

∑
t̃∈T Pyt

(
ỹ, t̃
)
= 1.

Assumptions 1 and 2 posit that the initial features and labels allocated to each node originate from
same distributions. Assumption 3 assumes separability in the distribution of neighboring nodes. It
is based on the observation that the proportion of nodes at time t̃ within the set of neighboring nodes
of the target node at time t decreases as the time difference |t̃ − t| increases. g

(
y, ỹ, |t̃− t|

)
is

the function representing the proportion of neighboring nodes as a function on |t̃ − t|. f(y, t) is a
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function to adjust relative proportion value g
(
y, ỹ, |t̃− t|

)
to construct Pyt

(
ỹ, t̃
)

as a probability
density function. Figure 2 graphically illustrates these properties. These assumptions are rooted
in properties observable in real-world graphs. The motivation and analysis on real-world temporal
graphs are provided in Appendix A.1.

3.3 OUTLINE OF IMPACT METHODS

Figure 2: Graphical representation of
functions f and g. The shaded bars de-
note relative connectivity. Target node has
label y, and only consider cases neighbor-
ing nodes with a labels ỹ. The function
g(y, ỹ, |t̃− t|) determines extent to which
relative connectivity varies, and its scale
is adjusted by the function f(y, t).

In the analysis of IMPaCT methods, we will later de-
fine and use the first and second moment of distribu-
tions, which are simply the approximations of mean
and variance. Occasionally, first moment and second
moment are written as approximate expectation and ap-
proximate variance, respectively.

Section 4 introduces the 1st moment alignment meth-
ods, MMP and PMP. These methods impose the in-
variance of the 1st moment among layers by modi-
fying the original graph data. Formally, MMP and
PMP ensures the aggregated message M

(k+1)
v to ap-

proximately satisfy Ptr(M
(k+1)
v |Y ) = Pte(M

(k+1)
v |Y )

when the representations X(k)
v at the k-th layer satisfies

Ptr(X
(k)
v |Y ) = Pte(X

(k)
v |Y ), ∀v ∈ V.

Section 5 introduces the 2nd moment alignment meth-
ods, PNY and JJNORM, which impose the invariance of
the 2nd moment. These methods are not graph-modifying methods and should be applied over 1st
moment alignment methods. Specifically, JJNORM algebraically alters the distribution of the final
layer to impose 2nd moment invariance, without changing the 1st moment invariance property.

4 FIRST MOMENT ALIGNMENT METHODS

Message passing refers to the process of aggregating representations from neighboring nodes in the
previous layer. Here, we assume the commonly used averaging message passing procedure. For any
arbitrary target node v ∈ V with label y and time t,

M (k+1)
v =

∑
ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)X

(k)
w∑

ỹ∈Y

∑
t̃∈T |Nv

(
ỹ, t̃
)
|

, X(k)
w ∼P (k)

w (7)

where Nv

(
ỹ, t̃
)
= {w ∈ V | w is a neighbor of v with ỹ and time t̃}, P (k)

w is the distribution of
random variable X

(k)
w , and M

(k+1)
v is the aggregated message at node v in the k + 1-th layer.

The first moment of aggregated message. If the representations from the previous layer
have means which are consistent across time, i.e., E[X(k)

w ] = µ
(k)
X (ỹ) for ∀w ∈ Nv

(
ỹ, t̃
)
,

we can calculate the approximate expectation, defined in Appendix A.4, as Ê[M (k+1)
v ] =∑

ỹ∈Y

∑
t̃∈T Pyt

(
ỹ, t̃
)
µ
(k)
X (ỹ). Here, we can observe that Ê[M (k+1)

v ] depends on the target node’s
time t due to Pyt

(
ỹ, t̃
)
. Our objective is to modify the spatial aggregation method to ensure invari-

ance of the 1st moment and preserve it among layers.

4.1 PERSISTENT MESSAGE PASSING: PMP

We propose Persistent Message Passing (PMP) as one approach to achieve 1st moment invari-
ance. For the target node v with time t, consider the time t̃ of some neighboring node. For
∆ = |t̃ − t| where 0 < ∆ ≤ |tmax − t|, both t + ∆ and t − ∆ neighbor nodes can ex-
ist. However, nodes with ∆ > |tmax − t| or ∆ = 0 are only possible when t̃ = t − ∆. Let
Tdouble

t = {t̃ ∈ T | 0 < |t̃− t| ≤ |tmax − t|} and Tsingle
t = {t̃ ∈ T | |t̃− t| > |tmax − t| or t̃ = t}.

The target node receives twice the weight from t̃ ∈ Tdouble
t against t̃ ∈ Tsingle

t . Motivation behind
PMP is to correct this by double weighting the neighbor nodes with time in Tsingle

t .
In the case of figure 3, the target node’s time is t = 2018, and by definition, Tdouble

t =

{2019, 2017},Tsingle
t = {2018, 2016, 2015, 2014, ...}. The neighbor nodes with time 2017 and

4
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2019 have the same ∆ = 1, and hence by assumption 3, contribute equally when message passing
to the target node. However, neighbor nodes with time in Tsingle

t do not have the “symmetric pairs”,
unlike 2017 having a “symmetric pair” 2019. Therefore, double nodes contribute twice more than
single nodes when message passing. Hence, by multiplying 2 to the weight of single nodes, every
node will contribute equally when message passing, regardless of the target node’s time.
Definition 4.1. The PMP from the k-th layer to the k + 1-th layer of target node v is defined as:

Mpmp(k+1)
v =

∑
ỹ∈Y

∑
t̃∈Tsingle

t

∑
w∈Nv(ỹ,t̃) 2X

(k)
w +

∑
ỹ∈Y

∑
t̃∈Tdouble

t

∑
w∈Nv(ỹ,t̃)X

(k)
w∑

ỹ∈Y

∑
t̃∈Tsingle

t
2|Nv

(
ỹ, t̃
)
|+
∑

ỹ∈Y

∑
t̃∈Tdouble

t
|Nv

(
ỹ, t̃
)
|

(8)

Figure 3: Graphical
explanation of PMP

As noted, PMP is a graph modifying method. Neighbor nodes in Tsingle
t are

duplicated in order to contribute equally with nodes in Tdouble
t .

Theorem 4.1. The 1st moment of aggregated message obtained by PMP layer
is invariant, if the 1st moment of previous representation is invariant.
Sketch of proof Let E[X(k)

w ] = µ
(k)
X (ỹ) for ∀w ∈ Nv

(
ỹ, t̃
)

as a function
invariant with t̃. Then,

Ê
[
Mpmp(k+1)

v

]
=

∑
ỹ∈Y

∑
τ≥0 g(y, ỹ, τ)µ

(k)
X (ỹ)∑

ỹ∈Y

∑
τ≥0 g(y, ỹ, τ)

(9)

which is invariant with t. See Appendix A.5 for details and implementation.

We provide a final remark that the initial layer of features must be experimen-
tally ensured to have a time-invariant mean in order to apply PMP. Once the
time invariance of the first moment in the initial layer is confirmed, the first
moments of all subsequent layers are also time-invariant, as guaranteed by the previous theorem.

4.2 MONO-DIRECTIONAL MESSAGE PASSING: MMP

Besides PMP, there are numerous ways to adjust the 1st moment of train and test distributions to
be invariant. We introduce Mono-directional Message Passing (MMP) as one such approach. MMP
aggregates information only from neighboring nodes with time less or equal than the target node.
Definition 4.2. The MMP from the k-th layer to the k + 1-th layer of target node v is defined as:

Mmmp(k+1)
v =

∑
ỹ∈Y

∑
t̃≤t

∑
w∈Nv(ỹ,t̃)

X
(k)
w∑

ỹ∈Y

∑
t̃≤t |Nv(ỹ, t̃)|

(10)

Theorem 4.2. The 1st moment of aggregated message obtained by MMP layer is invariant, if the
1st moment of previous representation is invariant.
Sketch of proof Let E[X(k)

w ] = µ
(k)
X (ỹ) for ∀w ∈ Nv

(
ỹ, t̃
)

as a function invariant with t̃. Then,

Ê
[
Mmmp(k+1)

v

]
=

∑
ỹ∈Y

∑
τ≥0 g(y, ỹ, τ)µ

(k)
X (ỹ)∑

y∈Y

∑
τ≥0 g(y, ỹ, τ)

(11)

which is also invariant with t. See Appendix A.6 for details and implementation.

Comparison between PMP and MMP. Both PMP and MMP adjust the weights of messages
collected from neighboring nodes that meet certain conditions, either doubling or ignoring their
impact. They can be implemented easily by reconstructing the graph according to the conditions
without altering the existing code. However, MMP collects less information since it only gathers
information only from the past, resulting a smaller ego-graph. Therefore, PMP will be used as the 1st
moment alignment method in the subsequent discussions. Furthermore, from Theorem 4.1, we will
denote Ê[Mpmp(k+1)

v ] as µpmp(k+1)
M (y) for target node v with label y in the following discussions.

4.3 THEORETICAL ANALYSIS OF PMP WHEN APPLIED IN MULTI-LAYER GNNS.

We will assume the messages and representations to be scalar in this discussion. Now suppose that
(i) |M (k)

v | ≤ C almost surely for ∀v ∈ V, M (k)
v ∼ Q

(k)
v , and (ii) var(M (k)

v ) ≤ V for ∀v ∈ V. Since
we are considering 1st moment alignment method PMP, we may assume E[M (k)

v ] = Ê[M (k)
v ] =

µ
(k)
M (y) for M (k)

v ∼ Q
(k)
v , ∀y ∈ Y,∀t ∈ T. Here, W1 is the Wasserstein-1 metric of probability

measures. We also assume G-Lipschitz condition for semantic aggregation functions f (k) for ∀k ∈
{1, 2, . . . ,K}. Detailed modelling of PMP with probability measures are in Appendix A.7, and

5
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proofs of the following theorems are in Appendix A.8. For now on, we will omit the details and
only state the theorems and provide interpretations of the theoretical results. v and v′ in this section
are nodes both having label y, but different times t and t′, respectively.
Theorem 4.3. W1(Q

(k)
v , Q

(k)
v′ ) ≤ O(C1/3V 1/3)

Theorem 4.4. W1(Q
(k)
v , Q

(k)
v′ ) ≤ O(τ

√
logC) if Q(k)

v , Q
(k)
v′ are sub-Gaussians with constant τ .

Without PMP, we can only guarantee W1(Q
(k)
v , Q

(k)
v′ ) ≤ 2C, or O(C). However, PMP gives

a tighter upper bound O(C1/3V 1/3). Furthermore, with additional assumption of sub-Gaussians,
PMP gives a more significant upper bound O(τ

√
logC).

Theorem 4.5. If W1(Q
(k)
v , Q

(k)
v′ ) ≤ W for ∀v with label y and time t, ∀v′ with label y and time t′,

then W1(Q
(k+1)
v , Q

(k+1)
v′ ) ≤ G

G(k)W where G(k) > 1 is a constant only depending on the layer k.

This theorem involves two steps. First, W1(Q
(k)
v , Q

(k)
v′ ) ≤ W gives W1(P

(k)
v , P

(k)
v′ ) ≤ GW . Sec-

ond, W1(P
(k)
v , P

(k)
v′ ) ≤ GW gives W1(Q

(k+1)
v , Q

(k+1)
v′ ) ≤ G

G(k)W for G(k) > 1, a constant only
depending on the layer k. The strength of this inequality is that the denominator G(k) is larger than
1. For example, if we assume 1-Lipschitz property of aggregation functions, the upper bound of W1

distance decreases layer by layer. The following corollary formulates this interpretation.

Corollary 4.5.1. W1(Q
(k)
v , Q

(k)
v′ ) ≤ GK−1

G(1)G(2)...G(K−1)O(min{C1/3V 1/3, τ
√
logC})

Therefore, we ensured that the W1 distance between train and test distributions of final representa-
tions are bounded when PMP is applied in multi-layer GNNs. In Section 2.2, we have previously
introduced that the generalization error can be upper bounded by the W1 distance. Hence, we have
established a theoretical upper bound of the generalization error when PMP method is applied.

4.4 GENERALIZED PMP: GENPMP

Here, we note that the first moment is a good approximation for the mean only when the number
of nodes with specific time label are similar to each other. Hence, if the dataset has a substantial
difference among the number of nodes with specific time label, duplicating the single nodes as PMP
will still adjust the 1st moment, but this will not be a good approximation for the mean. Therefore,
we propose the Generalized PMP (GenPMP) for such datasets.

For the target node v with time t, consider the time t̃ of some neighboring node. Instead of Tdouble
t

and Tsingle
t , we define T∆

t = {t̃ ∈ T | |t̃ − t| = ∆} for 0 ≤ ∆ ≤ |tmax − t|. By collecting the
nodes, we can get a discrete probability distribution Ps, where Ps(τ) is attained by adding |Tτ

s | for
all nodes with time label s, and then normalizing so that

∑
τ≥0 Ps(τ) = 1.

Definition 4.3. The generalized probabilistic message passing (GenPMP) from the k-th layer to the
(k + 1)-th layer of target node v is defined as:

M gpmp(k+1)
v =

∑
ỹ∈Y

∑
∆≥0

∑
t̃∈T∆

t

∑
w∈Nv(ỹ,t̃)

Ptmax(∆)

Pt̃(∆)
X(k)

w (12)

Here, we are giving a relative weight to nodes w in Nv

(
ỹ, t̃
)

by generating nodes with a ratio
of Ptmax(∆)/Pt̃(∆). Unlike PMP which distinguishes neighbor nodes into only two classes, this
method explicitly counts the nodes and adjusts the shape of distributions among train and test data.
However, GenPMP has reduced adaptability. Unlike PMP, which can be implemented by simply
adding or removing edges in the graph, GenPMP requires modifying the model to reflect real-valued
edge weights during the message passing process. Moreover, when the number of nodes per times-
tamp is equal, GenPMP behaves similarly to PMP. Theoretically, if the ratio Ptmax(∆)/Pt̃(∆) is too
large for a fixed ∆, the variance of aggregated message will increase by a factor roughly proportional
to the square of the ratio by definition. Therefore, V defined in Section 4.3 will increase substan-
tially, and hence the theoretical upper bound of generalization error will also increase substantially
since there is a factor V 1/3 in the bound. In conclusion, GenPMP is a method for exceptional usage
on graph data which shows large differences of node numbers with specific timestamps.

5 SECOND MOMENT ALIGNMENT METHODS

While 1st order alignment methods like PMP and MMP preserve the invariance of the 1st moment
of the aggregated message, they do not guarantee such property for the 2nd moment. Let’s suppose
that the 1st moment of the previous layer’s representation X is invariant with node’s time t, and

6
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2nd moment of the initial feature is invariant. That is, ∀w ∈ N
(
ỹ, t̃
)
, E[X(k)

w ] = µ
pmp(k)
X (ỹ)

for X(k)
w ∼ P

(k)
w , and Σ

pmp(0)
X

(
ỹ, t̃
)
= Σ

pmp(0)
X (ỹ, tmax) where Σ

pmp(k)
X

(
ỹ, t̃
)
= var(X(k)

w ) =

E
[
(X

(k)
w − µ

pmp(k)
X

(
ỹ, t̃
)
)(X

(k)
w − µ

pmp(0)
X

(
ỹ, t̃
)
)⊤
]

for X(k)
w ∼ P

(k)
w . Given that the invariance

of 1st moment is preserved after message passing by PMP or MMP, one naive idea for aligning
the 2nd moment is to calculate the covariance matrix of the aggregated message M

pmp(k+1)
v for

each time t of node v and adjust for the differences. However, when t = tmax, we cannot directly
estimate var(Mpmp(k+1)

v ) since the labels are unknown for nodes in the test set. We introduce PNY
and JJNORM, the methods for adjusting the aggregated message obtained using the PMP to achieve
invariant property even for the 2nd moment, when the invariance for 1st moment is preserved.

The second moment of aggregated message. The approximate variance of Mpmp(k+1)
v can also be

calculated rigorously by using the definition of approximate variance in Appendix A.5, as:

v̂ar(Mpmp(k+1)
v ) =

∑
ỹ∈Y

(∑
t̃∈T

single
t

4Pyt

(
ỹ, t̃

)
+

∑
t̃∈Tdouble

t
Pyt

(
ỹ, t̃

))
Σ

pmp(k)
X

(
ỹ, t̃

)
(∑

ỹ∈Y

∑
t̃∈T

single
t

2Pyt

(
ỹ, t̃

)
+

∑
ỹ∈Y

∑
t̃∈Tdouble

t
Pyt

(
ỹ, t̃

))2

|Nyt|
(13)

Hence, we can write v̂ar(Mpmp(k+1)
v )=Σpmp(k+1)

M (y, t). Since Σ
pmp(k+1)
M (y, t) is a covariance ma-

trix, it is positive semi-definite, orthogonally diagonalized as Σpmp(k+1)
M (y, t) = UytΛytU

−1
yt .

5.1 PERSISTENT NUMERICAL YIELD: PNY
If we can specify Pyt(ỹ, t̃) for ∀y, ỹ ∈ Y,∀t, t̃ ∈ T, transformation of covariance matrix during the
PMP process could be calculated. PNY numerically estimates the transformation of the covariance
matrix during the PMP process, and determines an affine transformation to correct this variation.
Definition 5.1. The PNY from the k-th layer to the k + 1-th layer of target node v is defined as:

For affine transformation matrix At = UytmaxΛ
1/2
ytmax

Λ
−1/2
yt U⊤

yt,

MPNY (k+1)
v = At(M

pmp(k+1)
v − µ

pmp(k+1)
M (y)) + µ

pmp(k+1)
M (y) (14)

Note that Mpmp(k+1)
v is a random vector defined as 8, so M

PNY (k+1)
v is also a random vector.

Theorem 5.1. The 1st and 2nd moments of aggregated message after PNY transform is invariant,
if the 1st and 2nd moments of previous representations are invariant.

Sketch of proof Ê[MPNY (k+1)
v ]=µpmp(k+1)

M (y), ˆvar(Mpmp(k+1)
v )=Σpmp(k+1)

M (y, tmax) holds,

so the 1st and 2nd moments of representations are invariant with t. See Appendix A.10 for details.

5.2 JUNCTION AND JUNCTION NORMALIZATION: JJNORM

A drawback of PNY is its complexity in handling covariance matrices, requiring computation of
covariance matrices and diagonalization for each label and time of nodes, leading to high compu-
tational overhead. Additionally, estimation of Pyt

(
ỹ, t̃
)

when t or t̃ is tmax, necessitates solving
overdetermined nonlinear systems of equations as Appendix A.9, making it difficult to analyze.

Assuming the function g
(
y, ỹ, |t̃− t|

)
to be consistent to y and ỹ significantly simplifies the align-

ment of the 2nd moment. Here, we introduce JJNORM as a practical implementation of this idea.
Assumption 4 : g (y, ỹ,∆) = g (y′, ỹ′,∆) ,∀y, ỹ, y′, ỹ′ ∈ Y,∀∆ ∈ {|t2 − t1| | t1, t2 ∈ T} (15)

Moreover, we will only consider GNNs with linear semantic aggregation functions. Formally,

Mpmp(k+1)
v ← PMP(Xpmp(k)

w , w ∈ Nv) (16)

Xpmp(k+1)
v ← A(k+1)Mpmp(k+1)

v , ∀k < K, v ∈ V (17)
Lemma 1. ∀t ∈ T, there exists a constant α(k+1)

t >0 only depending on t and layer k+1 such that(
α
(k+1)
t

)2
Σ

pmp(k+1)
M (y, t) = Σ

pmp(k+1)
M (y, tmax),∀y ∈ Y (18)

The covariance matrix of the aggregated message differs only by a constant factor depending on the
layer k and time t. Proof of this lemma is in Appendix A.11.2.

Definition 5.2. We define the constant of the final layer αt=α
(K)
t > 0 as the JJ constant of node v.
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Definition 5.3. The JJNORM is a normalization of the aggregated message to node v ∈ V \V·,tmax

after the final layer of PMP defined as:

MJJ
v = αt

(
Mpmp(K)

v − µJJ
M (y, t)

)
+ µJJ

M (y, t) (19)

where Vy,t = {u ∈ V | u has label y and time t}, V·,t = {u ∈ V | u has time t}, µJJ
M (y, t) =

1
|Vy,t|

∑
w∈Vy,t

M
pmp(K)
w , µJJ

M (·, t) = 1
|V·,t|

∑
w∈V·,t

M
pmp(K)
w , and αt is the JJ constant.

The 1st and 2nd moments of aggregated message processed by JJNORM, ˆ̂E
[
MJJ

v

]
and ˆ̂var

(
MJJ

v

)
,

are defined differently from the definition above. Refer to Appendix A.11.1 for details.
Theorem 5.2. The 1st and 2nd moments of aggregated message processed by JJNORM is invariant.

Sketch of proof We can calculate ˆ̂E
[
MJJ

v

]
= µ

pmp(K)
M (y), and ˆ̂var

(
MJJ

v

)
= Σ

pmp(K)
M (y, tmax).

So the 1st and 2nd moments of aggregated messages are invariant. See Appendix A.11.1 for details.

We further present an unbiased estimator α̂t of αt. Refer to Appendix A.11.3 for derivation.

α̂t =

1
|V·,tmax |−1

∑
i∈V·,tmax

(Mpmp(K)
v − µJJ

M (·, tmax))
2 − 1

|V·,t|−1

∑
y∈Y

∑
i∈Vy,t

(µJJ
M (y, t) − µJJ

M (·, t))2

1
|V·,t|−1

∑
y∈Y

∑
i∈Vy,t

(MJJ
v − µJJ

M (y, t))2
(20)

6 EXPERIMENTS

6.1 SYNTHETIC CHRONOLOGICAL SPLIT DATASET

Temporal Stochastic Block Model(TSBM). To assess the robustness and generalizability of pro-
posed IMPaCT methods on graphs satisfying assumptions 1, 2, and 3, we conducted experiments
on synthetic graphs. In order to create repeatable and realistic chronological graphs, we defined
the Temporal Stochastic Block Model(TSBM) as our graph generation algorithm. TSBM can be
regarded as a special case of the Stochastic Block Model(SBM) that incorporates temporal infor-
mation of nodes (Holland et al., 1983; Deshpande et al., 2018). In the SBM, the probability matrix
Pyỹ represents the probability of a connection between two nodes i and j, where y and ỹ denote
the communities to which the nodes belong. Our study extends this concept to account for temporal
information, differentiating communities based on both node labels and time. In the TSBM, the
connection probability is represented by a 4-dimensional tensor Ptt̃yỹ . We ensured that assump-
tions 1, 2, and 3 were satisfied. Specifically, the feature assigned to each node x ∈ Rf was sampled
from distributions depending solely on the label, defined as xi = µ(y) + kyZi. Here, Zi ∈ Rf is
an IID standard normal noise and ky represents the variance of features. To satisfy assumption 2,
the time and label of each node were determined independently. To satisfy assumption 3, we first
considered the possible forms of g(y, ỹ, |t− t̃|) and then determined Ptt̃yỹ accordingly. We used an
exponentially decaying function with decay factor γy,ỹ , defined as:

g(y, ỹ, |t− t̃|) = γ
|t−t̃|
y,ỹ g(y, ỹ, 0), ∀|t− t̃| > 0 (21)

Experimental Setup. For our experiments, we employed the fundamental decoupled GNN, Simple
Graph Convolution (SGC) (Wu et al., 2019), as the baseline model. Additionally, we investigated
whether the methods proposed in this study could improve the performance of general spatial GNNs.
Hence, we used a 2-layer GCN(Kipf & Welling, 2017) that performs averaging message passing as
another baseline model. We applied the MMP, PMP, PMP +PNY, and PMP +JJNORM methods to
the baselines. Since the semantic aggregation of GCN is nonlinear, layer-wise JJNORM was applied,
i.e. JJNORM could not be applied only to the aggregated message in the last layer but was applied
to the aggregated message in each layer. To test the generalizability of JJNORM which is based
on assumption 4, we experimented on graphs that both satisfy and do not satisfy assumption 4.
Furthermore, for cases where Assumption 4 was satisfied, common decay factor γ can be defined.
A smaller γ corresponds to a graph where the connection probability decreases drastically. We also
compared the trends in the performance of each IMPaCT method by varying the value of γ. Detailed
settings are provided in Appendix A.12. The results are presented in Table 3 and Figure 4.

6.2 REAL WORLD CHRONOLOGICAL SPLIT DATASET

To evaluate the performance of IMPaCT on real-world data, we used the ogbn-mag, ogbn-arxiv,
and ogbn-papers100m datasets from the OGB benchmark (Hu et al., 2020), which include temporal
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Table 2: Experimental results on real-world datasets. Bolded values represent SOTA.
Dataset Model Test Acc. ± Std. Valid Acc. ± Std.

ogbn-mag

LDHGNN (baseline) 0.8789 ± 0.0024 0.8836 ± 0.0028
LDHGNN+MMP 0.8945 ± 0.0018 0.8996 ± 0.0015
LDHGNN+PMP 0.9093 ± 0.0040 0.9173 ± 0.0027
LDHGNN+PMP+JJnorm 0.9178 ± 0.0019 0.9236 ± 0.0030

ogbn-arxiv
Linear-RevGAT+GIANT (baseline) 0.7065 ± 0.0010 0.7287 ± 0.0009
Linear-RevGAT+GIANT+GenPMP 0.7468 ± 0.0006 0.7568 ± 0.0010
RevGAT+SimTeG+TAPE 0.7803 ± 0.0007 0.7846 ± 0.0004

ogbn-papers100m
GAMLP+GIANT+RLU (baseline) 0.6967 ± 0.0006 0.7305 ± 0.0004
GAMLP+GIANT+RLU+GenPMP 0.6976 ± 0.0010 0.7330 ± 0.0006
GAMLP+GLEM+GIANT 0.7037 ± 0.0002 0.7354 ± 0.0001

information with chronological splits. The datasets used are summarized in Appendix A.3. While
these datasets cover different tasks, they share the common goal of predicting the labels of the most
recent papers in graphs with paper-type nodes, all framed as multi-class classification problems.

ogbn-mag The ogbn-mag dataset, which contains a balanced number of nodes from different time
periods, is well-suited for applying PMP and JJNORM. Given the large scale of the graph, scalable
approaches are essential, and many studies have utilized decoupled GNNs with linear semantic ag-
gregation to tackle this challenge (Yang et al., 2023; Hu et al., 2023; Wong et al., 2024). This makes
the IMPaCT method directly applicable. Consequently, ogbn-mag is a primary focus in our study.
More details on this dataset can be found in Appendix A.2. We adopted LDHGNN (Wang, 2024)
as the baseline model, which is built on RpHGNN (Hu et al., 2023) and incorporates a curriculum
learning approach. RpHGNN, a decoupled GNN, balances the trade-off between information re-
tention and computational efficiency in message passing by utilizing a random projection squashing
technique. Since RpHGNN’s overall semantic aggregation is linear, PMP and JJNORM can be seam-
lessly integrated. However, due to the graph’s immense size, PNY was not applicable. Therefore,
we applied MMP, PMP, and PMP +JJNORM to the baseline and compared their performance. Each
experiment was repeated 8 times, with hyperparameters set according to Wong et al. (Wang, 2024).
The details of the computing resources used for these experiments are described in Appendix A.3.

ogbn-arxiv and ogbn-papers100m: Both of these graph datasets exhibit significant variability in
node counts across different time periods, making it challenging to directly improve performance
using IMPaCT methods. Instead, we applied GenPMP to assess the generalizability of our approach.
For ogbn-arxiv, since most studies utilize non-linear semantic aggregation, we modified the model
to support GenPMP. Specifically, we utilized a linearized version of RevGAT (Li et al., 2021),
replacing the GAT convolution layer with a Graph Convolution layer that performs linear topological
aggregation. In the case of ogbn-papers100m, we selected the decoupled GNN, GAMLP+RLU, as
our baseline. Additionally, in both experiments, we used GIANT embeddings (Chien et al., 2022)
as initial features. We then applied GenPMP to these baselines to observe changes in test accuracy.

6.3 RESULTS

Figure 4: The left graphs show the performance gain of IMPaCT over the baseline. The right graphs
illustrate the gain of 2nd moment alignment methods over the 1st moment alignment method PMP.
Table 3: Prediction accuracy and training time on synthetic graphs generated by TSBM. "Fixed
γyiyj " represents scenarios satisfying Assumption 4, while "Random γyiyj " represents scenarios
that do not. Time is reported for the entire training process over 200 epochs.

SGC GCN
Baseline MMP PMP PNY JJnorm Baseline MMP PMP PNY JJnorm

Fixed γyiyj
0.2243 0.15 0.2653 0.2758 0.2777 0.2035 0.1439 0.2245 0.2178 0.2311

Random γyiyj
0.1331 0.1063 0.1854 0.1832 0.1862 0.1298 0.1022 0.1565 0.1613 0.1609

Time (sec) 0.325 0.315 0.303 1.178 0.538 0.771 0.728 0.773 268.5 448.81

Experimental results. IMPaCT methods on both real and synthetic graphs showed superior per-
formances. In the synthetic graph experiments, PMP provided a performance gain of 4.7% with
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Table 4: Scalability of IMPaCT methods. "Graph." indicates method is applied by graph reconstruc-
tion. Nc = |Y||T|, R is number of training epochs, and JJNORM †indicates layer-wise JJNORM.

Decoupled GNN General spatial GNNMethod Graph. Message passing Graph. Message passing
MMP O(|E|) O(|E|fK) O(|E|) O(R|E|fK)

PMP O(|E|) O(|E|fK) O(|E|) O(R|E|fK)

GenPMP O(|E|) O(|E|fK) O(|E|) O(R|E|fK)

PNY - O(Kf2(Ncf + N2
c + N) + |E|f) - O(RKf2(Ncf + N2

c + N) + R|E|f)
JJNORM - O(Nf) - O(RNf)
JJNORM † - O(NfK) - O(RNfK)

SGC and 2.4% with GCN over their respective baselines. 2nd moment alignment methods generally
performed better than 1st moment alignment methods alone. JJNORM mostly performed better than
PNY, except in cases where Assumption 4 did not hold and the baseline model was GCN. Experi-
mental results further support the generalizability of our methods. Even with general spatial GNNs
as the baseline, IMPaCT yielded significant performance gains. Furthermore, JJNORM improved
performance over PMP even when Assumption 4 was violated.

On the real-world ogbn-mag dataset, applying PMP +JJNORM to LDHGNN showed a significant
3.8% performance improvement over state-of-the-art methods. Further experiments on the ogbn-
arxiv and ogbn-papers100m datasets confirmed the generality of our assumptions across different
datasets. On ogbn-arxiv, applying GenPMP to Linear-RevGAT+GIANT improved test accuracy by
4.0%, while on ogbn-papers100m, applying GenPMP to baseline resulted in a 0.09% improvement.
All improvements were statistically significant. Based on these results, we offer guidelines for
selecting IMPaCT models for chronological split datasets in Appendix A.13.

Scalability. The time complexity of IMPaCT methods is summarized in Table 4. Detailed analyses
can be found in Appendix A.13. All methods exhibit linear complexity with respect to the number
of nodes and edges. In particular, 1st order alignment methods can be implemented solely through
graph modification, with no additional computational cost during the training process. Both MMP
and PMP can be realized by simply adding or removing edges in the graph, while GenPMP is im-
plemented by assigning weights to individual edges. Furthermore, when used in decoupled GNNs,
PNY can be applied by adjusting the aggregated feature at each layer, and JJNORM can correct the
final representation. Hence, all IMPaCT operations occur during preprocessing, offering not only
high scalability but also adaptability.

However, when applied to general spatial GNNs, operations of 2nd order alignment methods are
multiplied by the number of epochs, making it challenging to maintain scalability for PNY and
JJNORM. While parallelization could speed up the computations, PNY requires eigenvalue de-
composition of the covariance matrix, making parallelization difficult. In contrast, JJNORM can
be parallelized by precomputing the mean feature values for each community (based on labels and
time), allowing for efficient calculation of the scale factor αt and feature updates. With efficient
implementations, computation times can be reduced to an affordable level.

7 CONCLUSIONS

In this study, we addressed the domain adaptation challenges in graph data induced by chronolog-
ical splits by proposing invariant message passing functions, IMPaCT. We analyzed and tackled
the domain adaptation problem in graph datasets with chronological splits, presenting robust and
realistic assumptions based on observable properties in real-world graphs. Based on these assump-
tions, we proposed IMPaCT, which preserves the invariance of both the 1st and 2nd moments of
aggregated messages during the message passing step. We demonstrated its adaptability and scala-
bility through experiments on both real-world citation graphs and synthetic graphs. Notably, on the
ogbn-mag citation graph, we achieved substantial performance improvements over previous state-
of-the-art methods, with a 3.0% increase in accuracy using the 1st moment alignment method and a
3.8% improvement when combining 1st and 2nd moment alignment. Furthermore, we validated the
generality of our assumptions through experiments on the ogbn-arxiv and ogbn-papers100m.

Limitations. From an experimental standpoint, further investigation is needed to demonstrate the
robustness and generalizability of IMPaCT across a wider variety of baseline models. Additionally,
exploring the parallel implementation of JJNORM to assess how efficiently it can be applied to gen-
eral spatial GNNs could be a topic for future work. From a theoretical perspective, our discussions
were limited to spatial GNNs and assumed that the semantic aggregation satisfies the G-Lipschitz
condition. Future work could focus on deriving tighter bounds under more realistic constraints.
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A APPENDIX

A.1 MOTIVATION FOR ASSUMPTIONS

In this study, we make three assumptions regarding temporal graphs.
Assumption 1 :Pte(Y ) = Ptr(Y ) (22)
Assumption 2 :Pte(X | Y ) = Ptr(X | Y ) (23)

Assumption 3 :Pyt(ỹ, t̃) = f(y, t)g(y, ỹ, | t̃− t |), ∀t, t̃ ∈ T, y, ỹ ∈ Y (24)

Combining Assumption 1 and Assumption 2, we derive Pte(X,Y ) = Ptr(X,Y ). This is a funda-
mental assumption in machine learning problems, implying that the initial feature distribution does
not undergo significant shifts. However, in the real world graph dataset such as ogbn-mag dataset,
features are embeddings derived from the abstracts of papers using a language model. It is crucial
to verify whether these features remain constant over time, as per our assumption. Assumption 3
is a specific assumption derived from a close observation of the characteristics of temporal graphs,
which requires justification based on actual data. To address these questions, we conducted a vi-
sual analysis based on the real-world temporal graph data from the ogbn-mag dataset. Statistics for
ogbn-mag are provided in Appendix A.2.

A.1.1 INVARIANCE OF INITIAL FEATURES

First, to verify whether the distribution of features change over time, we calculated the average
node features for each community, i.e., for each unique (label, time) pair. Our objective was to
demonstrate that the distance between mean features of nodes with the same label but different
times is significantly smaller than the distance between mean features of nodes with different labels.
Given that the features are high-dimensional embeddings, using simple norms as distances might be
inappropriate. Therefore, we employed the unsupervised learning method t-SNE (Van der Maaten
& Hinton, 2008) to project these points onto a 2D plane, verifying that nodes with the same label
but different times form distinct clusters. For the t-SNE analysis, we set the maximum number of
iterations to 1000, perplexity to 30, and learning rate to 50.

We computed the mean feature for each community defined by the same (label, time) pair. Points
corresponding to communities with the same label are represented in the same color. Thus, there are
|T| points for each color, resulting in a total of |Y||T| points in the left part of figure 5.

Given that the number of labels is |Y| = 349, it is challenging to discern trends in a single graph
displaying all points. The figure on the right considers only the 15 labels with the most nodes,
redrawing the graph for clarity.

The clusters of nodes with the same color are clearly identifiable. While this analysis only consider
1st moment of initial feature of nodes, and does not confirm invariance for statistics other than the
mean, it does show that the distance between mean features of nodes with the same label but different
times is much smaller than the distance between mean features of nodes with different labels.

A.1.2 MOTIVATION FOR ASSUMPTION 3

Assumption 3 posits the separability of relative connectivity. Verifying this hypothesis numerically
without additional assumptions about the connection distribution is challenging. Therefore, we aim
to motivate Assumption 3 through a visualization of relative connectivity.

Consider fixing y and ỹ, and then examining the estimated relative connectivity Py,t(ỹ, t̃) as a func-
tion of t and t̃. Since Py,t(ỹ, t̃) = f(y, t)g(y, ỹ, | t̃ − t |), the graph of Py,t(ỹ, t̃) for different t
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Figure 5: 2D projection of each community’s mean feature by t-SNE. Points corresponding to com-
munities with the same label are represented in the same color. [Left] Plot for all 349 labels, [Right]
Plot for 15 labels with the most nodes.

should have similar shapes, differing only by a scaling factor determined by f(y, t). In other words,
by appropriately adjusting the scale, graphs for different t should overlap.

Given |Y| = 349, plotting this for all label pairs y, ỹ is impractical. Therefore we plotted graphs for
few labels connected by a largest number of edges, plotting their relative connectivity. Although the
ogbn-mag dataset is a directed graph, we treated it as undirected for defining neighboring nodes.

Graphs in different colors represent different target node times t, with the X-axis showing the relative
time t̃ − t for neighboring nodes. Nodes with times t = 2018 and t = 2019 were excluded since
they belong to the validation and test datasets, respectively. The data presented in graph 6 are the
unscaled relative connectivity.

While plotting these graphs for all label pairs is infeasible, we calculated the weighted average
relative connectivity for cases where y = ỹ and y ̸= ỹ to understand the overall distribution. Specif-
ically, for each t, we plotted the following values:

Figure 6: Estimated relative connectivity. [Left] when y = 1 and ỹ = 1, [Right] when y = 311 and
ỹ = 1.

PSame label(t, t̃) =
|{(u, v) ∈ E | u, v have same label, u has time t, v has time t̃}|

|{(u, v) ∈ E | u, v have same label}|
(25)

PDiff label(t, t̃) =
|{(u, v) ∈ E | u, v have different label, u has time t, v has time t̃}|

|{(u, v) ∈ E | u, v have different label}|
(26)

These statistics represent the weighted average relative connectivity for each y, t pair, weighted by
the number of communities defined by each (y, t) pair. Data for t = 2018 and t = 2019 were
excluded, and no scaling corrections were applied.

The graphs 6, 7 reveal that the shape of graphs for different t are similar and symmetric, supporting
Assumption 3. Although this analysis is not a formal proof, it serves as a necessary condition that
supports the validity of the separability assumption.
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Figure 7: Weighted average relative connectivity. [Left] when y = ỹ, [Right] when y ̸= ỹ.

A.2 TOY EXPERIMENT

The purpose of toy experiment was to compare test accuracy obtained when dataset was split chrono-
logically and split randomly regardless of time information. We further investigated whether incor-
porating temporal information in the form of time positional encoding significantly influences the
distribution of neighboring nodes.

We conduct this toy experiment on ogbn-mag, a chronological heterogeneous graph within the Open
Graph Benchmark (Hu et al., 2020), comprising Paper, Author, Institution, and Fields of study nodes.
Only paper nodes feature temporal information. Detailed node and edge statistics of ogbn-mag
dataset are provided in table 6 and 5. In this graph, paper nodes are divided into train, validation,
and test nodes based on publication year, with the objective of classifying test and validation nodes
into one of 349 labels. The performance metric is accuracy, representing the proportion of correctly
labeled nodes among all test nodes.

Initial features were assigned only to paper nodes. In the chronological split dataset, nodes from the
year 2019 were designated as the test set, while nodes from years earlier than 2018 were assigned
to the training set. Time positional embedding was implemented using sinusoidal signals with 20
floating-point numbers, and these embeddings were concatenated with the initial features.

Table 5: Type and number of nodes in ogbn-mag.

Node type #Train nodes #Validation nodes #Test nodes
Paper 59,965 64,879 41,939
Author 1,134,649 0 0
Institution 8,740 0 0
Field of study 59,965 0 0

Table 6: Type and number of edges in obgn-mag. * indicates the type of edges connect nodes with
temporal information.

Source type Edges type Destination type #Edges
Author affiliated with Institution 1,043,998
Author writes Paper 7,145,660
Paper cites* Paper 5,416,271
Paper has a topic of Fields of study 7,505,078

SeHGNN (Yang et al., 2023) was employed as baseline model for experimentation. The rationale
for employing SeHGNN lies in its ability to aggregate semantics from diverse metapaths, thereby
ensuring expressiveness, while also enabling fast learning due to neighbor aggregation operations
being performed only during preprocessing. Each experiment was conducted four times using dif-
ferent random seeds. The hyperparameters and settings used in the experiments were identical to
those presented by Yang et al. (Yang et al., 2023).

Preprocessing was performed on a 48 core 2X Intel Xeon Platinum 8268 CPU machine with 768GB
of RAM. Training took place on a NVIDIA Tesla P100 GPU machine with 28 Intel Xeon E5-2680
V4 CPUs and 128GB of RAM.

A.3 SETTINGS FOR EXPERIMENTS ON REAL-WORLD DATASETS.

Summary of statistics on ogbn-mag, ogbn-arxiv, and ogbn-papers100m are shown in table ??.
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Table 7: Summary of real-world graph datasets used in the experiments.

Dataset Type Task #Nodes #Edges
ogbn-mag Heterogeneous Classify 349 venues for each paper 1,939,743 21,111,007
ogbn-arxiv Homogeneous Classify 40 primary categories for arXiv papers 169,343 1,166,243
ogbn-papers100m Homogeneous Classify 172 subject areas for arXiv papers 111,059,956 1,615,685,872

The experiments on the ogbn-papers100m dataset, due to its large size, were conducted on a Tesla
A100 GPU machine with 88 Intel Xeon 2680 CPUs and 1007 GB of RAM. On average, training
one model took 5 hours and 10 minutes.

For the experiments on ogbn-mag and ogbn-arxiv, we used a Tesla P100 GPU machine with 28 Intel
Xeon 2680 CPUs and 128 GB of RAM. Training on the ogbn-mag dataset, using LDHGNN as the
baseline, took an average of 5 hours and 40 minutes per run. For the ogbn-arxiv dataset, experiments
using the Linearized RevGAT + GIANT-XRT baseline took approximately 8 hours per run.

A.4 FIRST AND SECOND MOMENT OF AVERAGING MESSAGE PASSING

A.4.1 FIRST MOMENT AS APPROXIMATE OF EXPECTATION

We define the first moment of averaging message as the following steps:

(a) Take the expectation of the averaged message.
(b) Approximate |Nv

(
ỹ, t̃
)
| as Pyt

(
ỹ, t̃
)
|Nv| until the discrete values, i.e., the number of elements

terms |Nv

(
ỹ, t̃
)
| and |Nv| disappear.

Because of step (b), we are defining the "approximate of expectation" as the first moment of a mes-
sage. Denote the first moment of averaged message M

(k+1)
v as Ê[M (k+1)

v ]. Deliberate calculations
are as follows:

Ê[M (k+1)
v ]

(a)
= E

∑ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)X

(k)
w∑

ỹ∈Y

∑
t̃∈T |Nv

(
ỹ, t̃
)
|

 (27)

(b)
= E

∑ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)X

(k)
w∑

ỹ∈Y

∑
t̃∈T Pyt

(
ỹ, t̃
)
|Nv|

 (28)

=
1

|Nv|
E

∑
ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)

X(k)
w

 (29)

=
1

|Nv|
∑
ỹ∈Y

∑
t̃∈T

E

 ∑
w∈Nv(ỹ,t̃)

X(k)
w

 (30)

=
1

|Nv|
∑
ỹ∈Y

∑
t̃∈T

|Nv

(
ỹ, t̃
)
|µ(k)

X (ỹ) (31)

=
∑
ỹ∈Y

∑
t̃∈T

|Nv

(
ỹ, t̃
)
|

|Nv|
µ
(k)
X (ỹ) (32)

(b)
=
∑
ỹ∈Y

∑
t̃∈T

Pyt

(
ỹ, t̃
)
µ
(k)
X (ỹ) (33)

The final term of the equation above does not incorporate any discrete values |Nv

(
ỹ, t̃
)
| and |Nv|,

so the step ends.
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Note that we can calculate the first moment reversely as follows:

M (k+1)
v =

∑
ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)X

(k)
w∑

ỹ∈Y

∑
t̃∈T |Nv

(
ỹ, t̃
)
|

(34)

=

∑
ỹ∈Y

∑
t̃∈T

|Nv(ỹ,t̃)|
|Nv|

∑
w∈Nv(ỹ,t̃)

X(k)
w

|Nv(ỹ,t̃)|∑
ỹ∈Y

∑
t̃∈T

|Nv(ỹ,t̃)|
|Nv|

(35)

≃

∑
ỹ∈Y

∑
t̃∈T Pyt

(
ỹ, t̃
)∑

w∈Nv(ỹ,t̃)
X(k)

w

|Nv(ỹ,t̃)|∑
ỹ∈Y

∑
t̃∈T Pyt

(
ỹ, t̃
) (36)

=
∑
ỹ∈Y

∑
t̃∈T

Pyt

(
ỹ, t̃
) ∑
w∈Nv(ỹ,t̃)

X
(k)
w

|Nv

(
ỹ, t̃
)
|

 (37)

Take the expectation on both sides to derive

E
[
M (k+1)

v

]
≃ E

∑
ỹ∈Y

∑
t̃∈T

Pyt

(
ỹ, t̃
) ∑
w∈Nv(ỹ,t̃)

X
(k)
w

|Nv

(
ỹ, t̃
)
|


 (38)

=
∑
ỹ∈Y

∑
t̃∈T

Pyt

(
ỹ, t̃
) ∑
w∈Nv(ỹ,t̃)

E[X(k)
w ]

|Nv

(
ỹ, t̃
)
|

 (39)

=
∑
ỹ∈Y

∑
t̃∈T

(
Pyt

(
ỹ, t̃
)
µ
(k)
X (ỹ)

)
(40)

A.4.2 SECOND MOMENT AS APPROXIMATE OF VARIANCE

We define the second moment of averaging message as the following steps:

(a) Take the variance of the averaged message.
(b) Approximate |Nv

(
ỹ, t̃
)
| as Pyt(ỹ, t̃)|Nv| until the discrete value terms |Nv

(
ỹ, t̃
)
| disappear.

Because of step (b), we are defining the "approximate of variance" as the second moment of a
message. Denote the second moment of averaged message M

(k+1)
v as v̂ar(M (k+1)

v ). Deliberate
calculations are as follows:

v̂ar(M (k+1)
v )

(a)
= var

(∑
ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)

X
(k)
w∑

ỹ∈Y

∑
t̃∈T |Nv(ỹ, t̃)|

)
(41)

(b)
= var

(∑
ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)

X
(k)
w∑

ỹ∈Y

∑
t̃∈T Pyt(ỹ, t̃)|Nv|

)
(42)

=

∑
ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)

var(X(k)
w )(∑

ỹ∈Y

∑
t̃∈T Pyt(ỹ, t̃)|Nv|

)2 (43)

=
1

|Nv|2
∑
ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)

var(X(k)
w ) (44)

If we assume var(Xw) = Σ
(k)
X (ỹ) for ∀w ∈ Nv(ỹ, t̃),
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v̂ar(M (k+1)
v ) =

1

|Nv|2
∑
ỹ∈Y

∑
t̃∈T

∑
w∈Nv(ỹ,t̃)

Σ
(k)
X (ỹ) (45)

=
1

|Nv|2
∑
ỹ∈Y

∑
t̃∈T

|Nv(ỹ, t̃)|Σ(k)
X (ỹ) (46)

(b)
=

1

|Nv|2
∑
ỹ∈Y

∑
t̃∈T

|Nv|Pyt(ỹ, t̃)Σ
(k)
X (ỹ) (47)

=
1

|Nv|
∑
ỹ∈Y

∑
t̃∈T

Pyt(ỹ, t̃)Σ
(k)
X (ỹ) (48)

A.5 EXPLANATION OF PMP

A.5.1 1ST MOMENT OF AGGREGATED MESSAGE OBTAINED BY PMP LAYER.

We define the 1st moment of PMP with the identical steps of the 1st moment of averaging message
passing, as in Appendix A.4.

A.5.2 PROOF OF THEOREM 4.1

From now on, we will denote y and t as the label and time belongs to target node, v, if there are no
other specifications.

Suppose that the 1st moment of the representations from the previous layer is invariant. In other
words, µ(k)

X (y, t) = µ
(k)
X (y, tmax), ∀t ∈ T.

Formally, when defined as N single
v ={u ∈ Nv

∣∣u has time in Tsingle
v }, and N double

v ={u ∈
Nv

∣∣u has time in Tdouble
v }, the message passing mechanism of PMP can be expressed as:

Mpmp(k+1)
v =

∑
ỹ∈Y

∑
t̃∈Tsingle

t

∑
w∈Nv(ỹ,t̃) 2X

(k)
w +

∑
ỹ∈Y

∑
t̃∈Tdouble

t

∑
w∈Nv(ỹ,t̃)X

(k)
w∑

ỹ∈Y

∑
t̃∈Tsingle

t
2|Nv

(
ỹ, t̃
)
|+
∑

ỹ∈Y

∑
t̃∈Tdouble

t
|Nv

(
ỹ, t̃
)
|

(49)

The representations from the previous layer are invariant, i.e., E[X(k)
w ] = µ

(k)
X (y).The first moment

is calculated rigorously as shown in Appendix A.4 as follows.

Ê
[
Mpmp(k+1)

v

]
=

∑
ỹ∈Y

∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃)µ

(k)
X (ỹ) +

∑
ỹ∈Y

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)µ

(k)
X (ỹ)∑

ỹ∈Y

∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃) +

∑
ỹ∈Y

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)

(50)

=

∑
ỹ∈Y

(∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃) +

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)

)
µ
(k)
X (ỹ)∑

ỹ∈Y

(∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃) +

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)

) (51)

By assumption 3,
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∑
t̃∈Tsingle

t

2Pyt(ỹ, t̃) +
∑

t̃∈Tdouble
t

Pyt(ỹ, t̃) (52)

= f(y, t)

 ∑
t̃∈Tsingle

t

2g(y, ỹ, |t̃− t|) +
∑

t̃∈Tdouble
t

g(y, ỹ, |t− t|)

 (53)

= f(y, t)

2g(y, ỹ, 0) + 2
∑

τ>|tmax−t|

g(y, ỹ, τ) +
∑

0<τ≤|tmax−t|

g(y, ỹ, τ)

 (54)

= 2f(y, t)
∑
τ≥0

g(y, ỹ, τ) (55)

Substituting this into the previous expression yields,

Ê
[
Mpmp(k+1)

v

]
=

∑
ỹ∈Y

∑
τ≥0 g(y, ỹ, τ)µ

(k)
X (ỹ)∑

ỹ∈Y

∑
τ≥0 g(y, ỹ, τ)

(56)

Since there is no t term in this expression, the mean of this aggregated message is invariant with
respect to the target node’s time.

Algorithm 1: Persistent Message PassingPersistent Message Passing as neighbor aggregation
Input : Undirected graph G(V,E); input features Xv,∀v ∈ V; number of layers K; node

time function time : V→ R; maximum time value tmax; minimum time value tmin;
aggregate functions AGG; combine functions COMBINE; multisets of neighborhood
Nv,∀v ∈ V

Output: Final embeddings zv,∀v ∈ V

1 h0
v ← Xv,∀v ∈ V;

2 for k = 0...K − 1 do
3 for v ∈ V do
4 N ′(v)← N (v);
5 if |time(u)− time(v)| > min(tmax − time(v), time(v)− tmin) then
6 N ′(v).insert(u) ;
7 M

(k+1)
v ← AGG({h(k)

u ,∀u ∈ N ′(v)});
8 X

(k+1)
v ← COMBINE({X(k)

v ,M
(k+1)
v });

9 end
10 end
11 zv ← XK

v ,∀v ∈ V ;

Algorithm 2: Persistent Message PassingPersistent Message Passing as graph reconstruction

Input : Undirected graph G(V,E); adjacency matrix AG ∈ RN×N ; node time function
time : V→ R; maximum time value tmax; minimum time value tmin

Output: New directed graph G′(V,E′); new adjacency matrix AG′

1 AG′ ← AG ;
2 for (u, v) ∈ V2 do
3 if |time(u)− time(v)| > min(tmax − time(v), time(v)− tmin) then
4 AG′

uv ← 2AG′

uv ;
5 end
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A.5.3 2ND MOMENT OF AGGREGATED MESSAGE OBTAINED BY PMP LAYER

We define the 2nd moment of PMP incorporating the steps of the 2nd moment of averaging message
passing as in Appendix A.4, and define an additional step as:

(c) Consider |Nv| as a value only dependent to y and t, namely |Nyt|.

Background of step (c) is that in practice, |Nv| can vary for each node, but they will follow a
distribution determined by the node’s label y and time t. For simplicity in our discussion, we will
use the expectation of these values within each community as in step (c).

This 2nd moment is calculated rigorously as shown in Appendix A.4.

v̂ar(Mpmp(k+1)
v ) =

∑
ỹ∈Y

(∑
t̃∈Tsingle

t
4Pyt

(
ỹ, t̃
)
+
∑

t̃∈Tdouble
t
Pyt

(
ỹ, t̃
))

Σ
pmp(k)
X (ỹ)(∑

ỹ∈Y

∑
t̃∈Tsingle

t
2Pyt

(
ỹ, t̃
)
+
∑

ỹ∈Y

∑
t̃∈Tdouble

t
Pyt

(
ỹ, t̃
))2
|Nyt|

(57)

Therefore, we can write v̂ar(Mpmp(k+1)
v )=Σpmp(k+1)

M (y, t).

A.6 EXPLANATION OF MMP

A.6.1 1ST MOMENT OF AGGREGATED MESSAGE OBTAINED BY MMP LAYER.

We define the 1st moment of MMP with the identical steps of the 1st moment of averaging message
passing, as in Appendix A.4.

A.6.2 PROOF OF THEOREM 4.2

Suppose that the 1st moment of the representations from the previous layer is invariant. In other
words, µ(k)

X (y, t) = µ
(k)
X (y, tmax), ∀t ∈ T. The message passing mechanism of PMP can be

expressed as follows:

Figure 8: Graphical explanation of Mono-directional Message Passing(MMP).

Mmmp(k+1)
v =

∑
ỹ∈Y

∑
t̃≤t

∑
v∈Nv(ỹ,t̃)

Xw∑
ỹ∈Y

∑
t̃≤t |Nv(ỹ, t̃)|

(58)

Applying assumption 3 as in PMP, the expectation is as follows. This expectation is calculated
rigorously as shown in Appendix A.4.

Ê
[
Mmmp(k+1)

v

]
=

∑
ỹ∈Y

∑
t̃≤t Pyt(ỹ, t̃)µ

(k)
X (ỹ)∑

ỹ∈Y

∑
t̃≤t Pyt(ỹ, t̃)

=

∑
ỹ∈Y

∑
τ≥0 g(y, ỹ, τ)µ

(k)
X (ỹ)∑

ỹ∈Y

∑
τ≥0 g(y, ỹ, τ)

(59)

This also lacks the t term, thus it is invariant.
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A.7 MATHEMATICAL MODELING OF PMP.

Let M(k) as the space of messages at k-th layer, and X (k) as the space of representations at k-
th layer, and let us define probability measure spaces (M(k),

∑
M(k) ,m

(k)
yt ), (X (k),

∑
X (k) , x

(k)
yt )

where
∑

M(k) and
∑

X (k)are σ-algebras with probability measures m(k)
yt and x

(k)
yt , respectively.

That is, m(k)
yt is the probability measure of the message of node v with label y and time t, and x

(k)
yt

is the probability measure of the representation of node v with label y and time t, as defined in the
main body. We are assuming that there is a "true" distribution for nodes with the same label and
time. In other words, for node v with label y and time t, the assumption of this theoretical analysis
is that X(k)

v ∼ x
(k)
yt and M

(k)
v ∼ m

(k)
yt .

A.7.1 m
(k)
yt TO x

(k)
yt

f (k) is the function which transfers the message M
(k)
v ∈ M(k) to the k-th layer representation

X
(k)
v ∈ X (k).

Hence, f (k) :M(k) → X (k) gives a pushforward of measure as x(k)
yt = (f

(k)
∗ )(m

(k)
yt ) :

∑
X (k) →

[0, 1], given by
(
(f

(k)
∗ )(m

(k)
yt )
)
(B) = m

(k)
yt

(
(f (k))−1(B)

)
, for ∀B ∈

∑
X (k)

Here, we assume f (k) is G-Lipschitz for ∀k ∈ {1, 2, . . . ,K}.

A.7.2 x
(k)
yt TO m

(k+1)
yt

This is given as the message passing function of PMP. That is,

m
(k+1)
yt =

∑
ỹ∈Y

∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃)x

(k)

ỹt̃
+
∑

ỹ∈Y

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)x

(k)

ỹt̃∑
ỹ∈Y

∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃) +

∑
ỹ∈Y

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)

(60)

A.8 THEORETICAL ANALYSIS OF PMP WHEN APPLIED IN MULTI-LAYER GNNS.

A.8.1 LEMMAS

Lemma 2.
∀ϵ > 0, P (|M (k)

v −M
(k)
v′ | > ϵ) ≤ 8V

ϵ2
for M (k)

v ∼ m
(k)
yt ,M

(k)
v′ ∼ m

(k)
yt′ (61)

Proof. By chebyshev’s inequality,

P (|M (k)
v − µ

(k)
M (y)| > ϵ

2 ) ≤
4V
ϵ2 , P (|M (k)

v′ − µ
(k)
M (y)| > ϵ

2 ) ≤
4V
ϵ2 .

Therefore,
P (|M (k)

v −M
(k)
v′ | > ϵ) (62)

≤ P (|M (k)
v − µM (y)|+ |M (k)

v′ − µM (y)| > ϵ) ∵ Triangle inequality (63)

≤ P (|M (k)
v − µM (y)| > ϵ

2
or |M (k)

v′ − µM (y)| > ϵ

2
) (64)

≤ P (|M (k)
v − µM (y)| > ϵ

2
) + P (|M (k)

v′ − µM (y)| > ϵ

2
) ≤ 8V

ϵ2
(65)

Lemma 3.
W1(x

(k)
yt , x

(k)
yt′ ) ≤ GW1(m

(k)
yt ,m

(k)
yt′ ) (66)

Proof. Follows directly from G-Lipshitz property of f (k) and definition of pushforward measures.
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Lemma 4. µ1, . . . , µn are distributions with cumulative distribution functions F1, . . . , Fn. If
W1(µi, µj) ≤ D, ∀i, j,

For arbitrary real numbers satisfying 0 < ηi, νi < S, s.t. η1 + · · ·+ ηn = ν1 + · · ·+ νn = S,

W1(η1µ1 + · · ·+ ηnµn, ν1µ1 + · · ·+ νnµn) < (S − δ)D (67)

for some positive real number δ.

Proof. ∫
R

∣∣ n∑
i=1

(ηi − νi)Fi(x)
∣∣dx (68)

=

∫
R

∣∣ n∑
i=1

δiFi(x)
∣∣dx, where δi = ηi − νi (69)

=

∫
R

∣∣ ∑
{i|δi≥0}

δiFi(x) +
∑

{j|δj<0}

δjFj(x)
∣∣dx (70)

=

∫
R

∣∣ ∑
{i|δi≥0}

δi
(
δi,1(Fi(x)− Fi,1(x)) + · · ·+ δi,n(i)(Fi(x)− Fi,n(i)(x))

)∣∣dx (71)

for some δi,1, . . . , δi,n(i) > 0, s.t. δi,1 + · · ·+ δi,n(i) = 1.∫
R

∣∣ ∑
{i|δi≥0}

δi
(
δi,1(Fi(x)− Fi,1(x)) + · · ·+ δi,n(i)(Fi(x)− Fi,n(i)(x))

)∣∣dx (72)

≤
∫
R

∑
{i|δi≥0}

δi
(
δi,1|Fi(x)− Fi,1(x)|+ · · ·+ δi,n(i)|Fi(x)− Fi,n(i)(x)|

)
dx (73)

≤
∑

{i|δi≥0}

δi
(
δi,1 + · · ·+ δi,n(i)

)
D (74)

=
∑

{i|δi≥0}

δiD (75)

=
∑

{i|ηi−νi≥0}

(ηi − νi)D (76)

<
∑

{i|ηi−νi≥0}

(ηi)D (77)

< SD (78)

A.8.2 PROOF OF THEOREM 4.3.

E[|M(k)
v − M

(k)

v′ |] = E
[
|M(k)

v − M
(k)

v′ |1
{|M(k)

v −M
(k)

v′ |≤ϵ}

]
+ E

[
|M(k)

v − M
(k)

v′ |1
{|M(k)

v −M
(k)

v′ |>ϵ}

]
≤ ϵ +

16CV

ϵ2

(79)

since E
[
|M (k)

v −M
(k)
v′ |1{|M (k)

v −M
(k)
v′ | ≤ ϵ}

]
≤ ϵ, and

E
[
|M (k)

v −M
(k)
v′ |1{|M (k)

v −M
(k)
v′ | > ϵ}

]
≤ 2C P (|M (k)

v −M
(k)
v′ | > ϵ) ≤ 16CV

ϵ2 by Lemma 2.

Plugging in 2(4CV )1/3 to ϵ gives us, E[|M (k)
v −M

(k)
v′ |] ≤ 3(4CV )1/3.

∴ W1(m
(k)
yt ,m

(k)
yt′ ) ≤ E[|M (k)

v −M
(k)
v′ |] ≤ O(C1/3V 1/3) (80)
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A.8.3 PROOF OF THEOREM 4.4

By Hoeffding’s inequality, P (|M (k)
v −M

(k)
v′ | > ϵ

2 ) ≤ 2 exp(− ϵ2

8τ2 ).

So with the same steps of Theorem 4.3, E[|M (k)
v −M

(k)
v′ |] ≤ ϵ+ 4C exp(− ϵ2

8τ2 ).

Plug in (8τ2 logC)1/2 to ϵ. Then E[|M (k)
v −M

(k)
v′ |] ≤ (8τ2 logC)1/2 + 4.

∴ W1(m
(k)
yt ,m

(k)
yt′ ) ≤ O(τ

√
logC) (81)

A.8.4 PROOF OF THEOREM 4.5

m
(k+1)
yt =

∑
ỹ∈Y

∑
t̃∈T

single
t

2Pyt(ỹ, t̃)x
(k)

ỹt̃
+

∑
ỹ∈Y

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)x

(k)

ỹt̃∑
ỹ∈Y

∑
t̃∈T

single
t

2Pyt(ỹ, t̃) +
∑

ỹ∈Y

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)

(82)

=

∑
ỹ∈Y

∑
t̃∈T

single
t

2f(y, t)g(y, ỹ, |t̃ − t|)x(k)

ỹt̃
+

∑
ỹ∈Y

∑
t̃∈Tdouble

t
f(y, t)g(y, ỹ, |t̃ − t|)x(k)

ỹt̃∑
ỹ∈Y

∑
t̃∈T

single
t

2f(y, t)g(y, ỹ, |t̃ − t|) +
∑

ỹ∈Y

∑
t̃∈Tdouble

t
f(y, t)g(y, ỹ, |t̃ − t|)

(83)

=

∑
ỹ∈Y

∑
t̃∈T

single
t

2g(y, ỹ, |t̃ − t|)x(k)

ỹt̃
+

∑
ỹ∈Y

∑
t̃∈Tdouble

t
g(y, ỹ, |t̃ − t|)x(k)

ỹt̃∑
ỹ∈Y

∑
t̃∈T

single
t

2g(y, ỹ, |t̃ − t|) +
∑

ỹ∈Y

∑
t̃∈Tdouble

t
g(y, ỹ, |t̃ − t|)

(84)

let
=

∑
ỹ∈Y

∑
t̃∈T

λytỹt̃x
(k)

ỹt̃
(85)

Where 0 < λytỹt̃ < 1 is effective message passing weight in PMP, hence satisfying∑
ỹ∈Y

∑
t̃∈T λytỹt̃ = 1.

Furthermore, since
∑

t̃∈Tsingle
t

2g(y, ỹ, |t̃ − t|) +
∑

t̃∈Tdouble
t

g(y, ỹ, |t̃ − t|) = 2
∑

τ≤0 g(y, ỹ, τ),
the following relation holds:

∑
t̃∈T

λytỹt̃ =

∑
τ≥0 g(y, ỹ, τ)∑

y′∈Y

∑
τ≥0 g(y, y

′, τ)
(86)

Thus,
∑

t̃∈T λytỹt̃ =
∑

t̃∈T λyt′ỹt̃, ∀t, t′ ∈ T. We can let
∑

t̃∈T λytỹt̃ = ρyỹ .

W1(m
(k+1)
yt ,m

(k+1)
ytmax

) = W1

∑
ỹ∈Y

∑
t̃∈T

λytỹt̃x
(k)

ỹt̃
,
∑
ỹ∈Y

∑
t̃∈T

λyt′ỹt̃x
(k)

ỹt̃

 (87)

=

∫
R

∣∣ ∑
ỹ∈Y

∑
t̃∈T

λytỹt̃F
(k)

ỹt̃
(x)−

∑
ỹ∈Y

∑
t̃∈T

λyt′ỹt̃F
(k)

ỹt̃
(x)
∣∣dx (88)

=

∫
R

∣∣ ∑
ỹ∈Y

∑
t̃∈T

(λytỹt̃ − λyt′ỹt̃)F
(k)

ỹt̃
(x)
∣∣dx (89)

Where F
(k)

ỹt̃
is the cumulative distribution function of x(k)

ỹt̃
.

By Lemma 3 and Lemma 4,∫
R

∣∣∑
t̃∈T

(λytỹt̃ − λyt′ỹt̃)F
(k)

ỹt̃
(x)
∣∣dx ≤ (ρyỹ − ϵyỹtt′)GW (90)

For some 0 < ϵyỹtt′ < ρyỹ .
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∴ W1(m
(k+1)
yt ,m

(k+1)
ytmax

) ≤
∫
R

∑
ỹ∈Y

∑
t̃∈T

∣∣(λytỹt̃ − λyt′ỹt̃)F
(k)

ỹt̃
(x)
∣∣dx (91)

≤
∑
ỹ∈Y

(ρyỹ − ϵyỹtt′)GW (92)

= G(1−
∑
ỹ∈Y

ϵyỹtt′)W (93)

Let ϵytt′ =
∑

ỹ∈Y ϵyỹtt′ and miny∈Y,t,t′∈T ϵytt′ = ϵ.

Then, W1(m
(k+1)
yt ,m

(k+1)
yt′ ) ≤ G(1− ϵ)W .

Let G(k) = 1
1−ϵ > 1.

Then, ∀y, t, t′, W1(m
(k+1)
yt ,m

(k+1)
ytmax

) ≤ G
G(k)W

A.9 ESTIMATION OF RELATIVE CONNECTIVITY

When t ̸= tmax and t̃ ̸= tmax, Pyt(ỹ, t̃) has the following best unbiased estimator:

P̂yt(ỹ, t̃) =

∑
u∈{u′∈V|u′ has label y,u′ has time t} |Nu(ỹ, t̃)|∑

u∈{u′∈V|u′ has label y,u′ has time t} |Nu|
, ∀t, t̃ ̸= tmax (94)

We can regard this problem as a nonlinear overdetermined system P̂yt

(
ỹ, t̃
)

=

f(y, t)g
(
y, ỹ, |t̃− t|

)
, ∀y, ỹ ∈ Y,∀t, t̃ ∈ T, with the constraint of

∑
ỹ∈Y

∑
t̃∈T P̂yt

(
ỹ, t̃
)
= 1.

When t = tmax or t̃ = tmax is not feasible due to the unavailability of labels in the test set, we
utilize assumption 3 to compute P̂yt(ỹ, t̃) for this cases. Let’s first consider the following equation:∑

ỹ∈Y

Pyt(ỹ, t) =
∑
ỹ∈Y

f(y, t)g(y, ỹ, 0) = f(y, t)
∑
ỹ∈Y

g(y, ỹ, 0) (95)

Earlier, when introducing assumption 3, we defined
∑

ỹ∈Y g(y, ỹ, 0) = 1. Therefore, when t <

tmax, we can express f(y, t) as follows:

f(y, t) =
∑
ỹ∈Y

Pyt(ỹ, t) (96)

For any ∆ ∈ {|t̃− t| | t, t̃ ∈ T}, we have:∑
t<tmax−∆

Pyt(ỹ, t+∆) =
∑

t<tmax−∆

f(y, t)g(y, ỹ,∆) (97)

∑
t<tmax

Pyt(ỹ, t−∆) =
∑

t<tmax

f(y, t)g(y, ỹ,∆) (98)

The reason we consider up to t = tmax − 1−∆ in the first equation and up to t = tmax − 1
in the second equation is because we assume situations where Pyt(ỹ, t̃) cannot be estimated when
t = tmax or t̃ = tmax. Utilizing both equations aims to construct an estimator using as many
measured values as possible when t ̸= tmax.

Thus,

g(y, ỹ,∆) =

∑
t<tmax−∆ Pyt(ỹ, t+∆) +

∑
t<tmax

Pyt(ỹ, t−∆)∑
t<tmax−∆ f(y, t) +

∑
t<tmax

f(y, t)
(99)

Since f(y, t) =
∑

ỹ∈Y Pyt(ỹ, t),
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g(y, ỹ,∆) =

∑
t<tmax−∆ Pyt(ỹ, t+∆) +

∑
t<tmax

Pyt(ỹ, t−∆)∑
t<tmax−∆

∑
y′∈Y Pyt(y′, t) +

∑
t<tmax

∑
y′∈Y Pyt(y′, t)

(100)

For any y, ỹ ∈ Y and ∆ ∈ {|t̃ − t| | t, t̃ ∈ T}, we can construct an estimator ĝ(y, ỹ,∆) for
g(y, ỹ,∆) as follows:

ĝ(y, ỹ,∆) =

∑
t<tmax−∆ P̂yt(ỹ, t+∆) +

∑
t<tmax

P̂yt(ỹ, t−∆)∑
t<tmax−∆

∑
y′∈Y P̂yt(y′, t) +

∑
t<tmax

∑
y′∈Y P̂yt(y′, t)

(101)

This estimator is designed to utilize as many measured values P̂yt(ỹ, t̃) as possible, excluding cases
where t = tmax or t̃ = tmax.

Pyt(ỹ, t̃) =
Pyt(ỹ, t̃)∑

y′∈Y

∑
t′∈T Pyt(y′, t′)

=
g(y, ỹ, |t̃− t|)∑

y′∈Y

∑
t′∈T g(y, y′, |t′ − t|)

(102)

Therefore, for all y, ỹ ∈ Y and |t̃ − t| ∈ {|t̃ − t| | t, t̃ ∈ T}, we can define the estimator P̂yt(ỹ, t̃)
of Pyt(ỹ, t̃) as follows:

P̂yt(ỹ, t̃) =
ĝ(y, ỹ, |t̃− t|)∑

y′∈Y

∑
t′∈T ĝ(y, y′, |t′ − t|)

(103)

A.10 EXPLANATION OF PNY

A.10.1 1ST AND 2ND MOMENT OF AGGREGATED MESSAGE OBTAINED THROUGH PNY
TRANSFORM.

We define the 1st and 2nd moment of PNY with the identical steps of the 1st and 2nd moment of
averaging message passing, as in Appendix A.4.2.

A.10.2 PROOF OF THEOREM 5.1

Ê[MPNY (k+1)
v ]

(a)
= E[At(M

pmp(k+1)
v − µ

pmp(k+1)
M )] + E[Mpmp(k+1)

v ] (104)

= At(E[Mpmp(k+1)
v ]− µ

pmp(k+1)
M ) + µ

pmp(k+1)
M (105)

(b)
= At(µ

pmp(k+1)
M − µ

pmp(k+1)
M ) + µ

pmp(k+1)
M (106)

= µ
pmp(k+1)
M (107)
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Algorithm 3: Persistent Message PassingEstimation of relative connectivity.
Input : Neighboring node sets Nu, ∀u ∈ V; node time function time : V → T; train, test

split V tr = {v | v ∈ V, time(v) < tmax} and V te = {v | v ∈ V, time(v) = tmax};
node label function label : Vtr → Y.

Output: Estimated relative connectivity P̂y,t(ỹ, t̃), ∀y, ỹ ∈ Y, t, t̃ ∈ T.

1 Estimate P̂y,t(ỹ, t̃) when t ̸= tmax and t̃ ̸= tmax.
2 for t ∈ T \ {tmax} do
3 for t̃ ∈ T \ {tmax} do
4 P̂y,t(ỹ, t̃)←

∑
u∈{v∈V|v has label y,v has time t} |{v∈Nu|v has label ỹ,v has time t̃}|∑

u∈{v∈V|v has label y,v has time t} |Nu| ;

5 end
6 end
7 Estimate g function.
8 for y ∈ Y do
9 for ỹ ∈ Y do

10 for ∆ ∈ {|t̃− t| | t, t̃ ∈ T} do

11 ĝ(y, ỹ,∆)←
∑

t<tmax−∆ P̂y,t(ỹ,t+∆)+
∑

t<tmax
P̂y,t(ỹ,t−∆)∑

t<tmax−∆

∑
y′∈Y P̂y,t(y′,t)+

∑
t<tmax

∑
y′∈Y P̂y,t(y′,t)

;

12 end
13 end
14 end

15 Estimate P̂y,t(ỹ, t̃) when t = tmax or t̃ = tmax.
16 for y ∈ Y do
17 for ỹ ∈ Y do
18 for t ∈ T do
19 P̂y,t(ỹ, tmax)← ĝ(y,ỹ,|tmax−t|)∑

y′∈Y

∑
t′∈T ĝ(y,y′,|t′−t|) ;

20 end
21 end
22 end
23 for y ∈ Y do
24 for ỹ ∈ Y do
25 for t̃ ∈ T do
26 P̂y,tmax

(ỹ, t̃)← ĝ(y,ỹ,|t̃−tmax|)∑
y′∈Y

∑
t′∈T ĝ(y,y′,|t′−tmax|) ;

27 end
28 end
29 end
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v̂ar[MPNY (k+1)
v ]

(a)
= var

(
At(M

pmp(k+1)
v − µ

pmp(k+1)
M (y)) + µ

pmp(k+1)
M (y)

)
(108)

(b)
= E[At(M

pmp(k+1)
v − µ

pmp(k+1)
M (y))(Mpmp(k+1)

v − µ
pmp(k+1)
M (y))⊤A⊤

t ]
(109)

= AtE[(Mpmp(k+1)
v − µ

pmp(k+1)
M (y))(Mpmp(k+1)

v − µ
pmp(k+1)
M (y))⊤]A⊤

t
(110)

(b)
= Atv̂ar(Mpmp(k+1)

v )A⊤
t (111)

= (Uytmax
Λ
1/2
ytmax

Λ
−1/2
yt U⊤

yt)Σ
pmp(k+1)
M (UytΛ

−1/2
yt Λ

1/2
ytmax

U⊤
ytmax

) (112)

= (Uytmax
Λ
1/2
ytmax

Λ
−1/2
yt U⊤

yt)(UytΛytU
−1
yt )(UytΛ

−1/2
yt Λ

1/2
ytmax

U⊤
ytmax

) (113)

= (UytmaxΛ
1/2
ytmax

Λ
−1/2
yt )Λyt(Λ

−1/2
yt Λ

1/2
ytmax

U⊤
ytmax

) (114)

= (Uytmax
Λ
1/2
ytmax

)(Λ
1/2
ytmax

U⊤
ytmax

) (115)

= UytmaxΛytmaxU
⊤
ytmax

(116)

= Σ
pmp(k+1)
M (y, tmax) (117)

A.11 EXPLANATION OF JJNORM

A.11.1 1ST AND 2ND MOMENT OF AGGREGATED MESSAGE OBTAINED THROUGH JJNORM.

We define the first moment of JJNORM message as the following steps:
1st moment of aggregated message obtained through JJNORM.
(a) Take the expectation of the averaged message.
(b) Approximate the expectation of every PMP message to the 1st moment of PMP message.

ˆ̂E[MJJ
v ]

(a)
= E[αt(M

pmp(K)
v − µJJ

M (y, t)) + µJJ
M (y, t)] (118)

= αtE[Mpmp(K)
v ] + (1− αt)E[µJJ

M (y, t)] (119)

= αtE[Mpmp(K)
v ] + (1− αt)

1

|Vy,t|
E

 ∑
x∈Vy,t

Mpmp(K)
w

 (120)

= αtE[Mpmp(K)] + (1− αt)
1

|Vy,t|
∑

x∈Vy,t

E
[
Mpmp(K)

w

]
(121)

(b)
= αtE[Mpmp(K)] + (1− αt)

1

|Vy,t|
∑

x∈Vy,t

Ê
[
Mpmp(K)

w

]
(122)

= αtE[Mpmp(K)] + (1− αt)
1

|Vy,t|
∑

w∈Vy,t

µ
pmp(K)
M (y) (123)

= αtµ
pmp(K)
M (y) + (1− αt)µ

pmp(K)
M (y) (124)

= µ
pmp(K)
M (y) (125)

2nd moment of aggregated message obtained through JJNORM.
We define the second moment of the JJNORM message as the following steps:

(a) Take the variance of the averaged message.
(b) Consider µJJ

M (y, t) as a constant.
(c) Approximate the variance of the PMP message to the 2nd moment of the PMP message.
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Algorithm 4: Persistent Message PassingPNY transformation
Input : Previous layer’s representation Xv,∀v ∈ V; Aggregated message Mv,∀v ∈ V,

obtained from 1st moment alignment message passing; node time function
time : V→ T; train, test split Vtr = {v | v ∈ V, time(v) < tmax} and
Vte = {v | v ∈ V, time(v) = tmax}; node label funtion label : Vtr → Y; Estimated
relative connectivity P̂y,t(ỹ, t̃), ∀y, ỹ ∈ Y, t, t̃ ∈ T.

Output: Modified aggregated message M ′
v,∀v ∈ V

1 Let Vy,t = {u ∈ V | label(u) = y, time(u) = t};
2 Let V·,t = {u ∈ V | time(u) = t};
3 Let Tsingle

τ = {t ∈ T
∣∣ t = τ or t < 2τ − tmax};

4 Let Tdouble
τ = {t ∈ T

∣∣ |t− τ | ≤ |tmax − τ |, t ̸= τ};
5 Let |Nyt| = 1

|Vy,t|
∑

u∈Vy,t
|Nu|;

6 Estimate covariance matrices of previous layer’s representation.
7 for t ∈ T do
8 µ̂X(·, t)← µ̂M (·, t) = 1

|V·,t|
∑

v∈V·,t
Xv;

9 Σ̂XX(y)← 1
|V·,t|−1

∑
v∈V·,t

(Xv − µ̂X(·, t))(Xv − µ̂X(·, t))⊤;
10 end
11 Estimate covariance matrices of aggregated message.
12 for y ∈ Y do
13 for t ∈ T do

14 Σ̂MM (y, t)←
∑

ỹ∈Y

(∑
t̃∈T

single
t

4P̂y,t(ỹ,t̃)+
∑

t̃∈Tdouble
t

P̂y,t(ỹ,t̃)

)
Σ̂XX(ỹ)(∑

ỹ∈Y

∑
t̃∈T

single
t

2P̂y,t(ỹ,t̃)+
∑

ỹ∈Y

∑
t̃∈Tdouble

t
P̂y,t(ỹ,t̃)

)2

|Nyt|
;

15 end
16 end
17 Orthogonal diagonalization.
18 for y ∈ Y do
19 for t ∈ T do
20 Find P̂y,t, D̂y,t s.t. Σ̂MM (y, t) = P̂y,tD̂y,tP̂

−1
y,t and P̂−1

y,t = P̂⊤
y,t;

21 end
22 end
23 Update aggregated message.
24 for v ∈ V \V·,tmax

do
25 Let y = label(v);
26 Let t = time(v);
27 M

′

v ← P̂y,tmax
D̂

1/2
y,tmax

D̂
−1/2
y,t P̂⊤

y,t(Mv − µ̂M (y)) + µ̂M (y);
28 end
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ˆ̂var(MJJ
v )

(a)
= var

(
αt(M

pmp(k)
v − µJJ

M ) + µJJ
M (y, t)

)
(126)

(b)
= var

(
αtM

pmp(K)
v

)
(127)

= α2
t var

(
Mpmp(K)

v

)
(128)

(c)
= α2

t v̂ar
(
Mpmp(K)

v

)
(129)

= α2
tΣ

pmp(K)
M (y, t) (130)

A.11.2 PROOF OF LEMMA 1

Consider GNNs with linear semantic aggregation functions.
Mpmp(k+1)

v ← PMP(Xpmp(k)
w , w ∈ Nv) (131)

Xpmp(k+1)
v ← A(k+1)Mpmp(k+1)

v , ∀k < K, v ∈ V (132)

Let’s use mathematical induction. First, for initial features, Σpmp(0)
X (y, tmax) = Σ

pmp(0)
X (y, t)

holds. Suppose that in the k-th layer, representation X(k) satisfies β
(k)
t Σ

pmp(k)
X (y, tmax) =

Σ
pmp(k)
X (y, t). This assumes that the expected covariance matrix of representations of nodes with

identical labels but differing time information only differs by a constant factor.

Σ
pmp(k+1)
M (y, t) =

∑
ỹ∈Y

 ∑
t̃∈Tsingle

t

4Pyt

(
ỹ, t̃
)
+

∑
t̃∈Tdouble

t

Pyt

(
ỹ, t̃
)Σ

pmp(k)
X (ỹ) (133)

/∑
ỹ∈Y

∑
t̃∈Tsingle

t

2Pyt

(
ỹ, t̃
)
+
∑
ỹ∈Y

∑
t̃∈Tdouble

t

Pyt

(
ỹ, t̃
)2

|Nv| (134)

Σ
pmp(k+1)
M (y, t) =

∑
ỹ∈Y

(∑
t̃∈Tsingle

t
4Pyt(ỹ, t̃)Σ

pmp(k)
X (ỹ, t̃) +

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)Σ

pmp(k)
X (ỹ, t̃)

)
(∑

ỹ∈Y

(∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃) +

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)

))2
|Nyt|

(135)

=

∑
ỹ∈Y

(∑
t̃∈Tsingle

t
4Pyt(ỹ, t̃)β

(k)

t̃
+
∑

t̃∈Tdouble
t
Pyt(ỹ, t̃)β

(k)

t̃

)
Σ

pmp(k)
X (y, tmax)(∑

ỹ∈Y

(∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃) +

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)

))2
|Nyt|

(136)∑
t̃∈Tsingle

t
4Pyt(ỹ, t̃)β

(k)

t̃
+
∑

t̃∈Tdouble
t
Pyt(ỹ, t̃)β

(k)

t̃∑
t̃∈T 4Pytmax

(ỹ, t̃)β
(k)

t̃

(137)

=

∑
t̃∈Tsingle

t
4g(y, ỹ, |t̃− t|)β(k)

t̃
+
∑

t̃∈Tdouble
t

g(y, ỹ, |t̃− t|)β(k)

t̃∑
t̃∈T 4g(y, ỹ, |t̃− tmax|)β(k)

t̃

(138)

Since it is unrelated to y by Assumption 4, we can define it as γ(k)
t .
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√
|Nyt|√
|Nytmax

|

∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃) +

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)∑

t̃∈T 2Pytmax
(ỹ, t̃)

(139)

(c)
=

√
P (t)√

P (tmax)

∑
t̃∈Tsingle

t
2Pyt(ỹ, t̃) +

∑
t̃∈Tdouble

t
Pyt(ỹ, t̃)∑

t̃∈T 2Pytmax
(ỹ, t̃)

(140)

=

√
P (t)√

P (tmax)

∑
t̃∈Tsingle

t
2g(y, ỹ, |t̃− t|) +

∑
t̃∈Tdouble

t
g(y, ỹ, |t̃− t|)∑

t̃∈T 2g(y, ỹ, |t̃− tmax|)(ỹ, t̃)
(141)

Since it is unrelated to y by assumption 4, we can define it as λt.

1st equality holds by step (c) of 2nd moment of PMP, as defined in Appendix A.4.2

Σ
pmp(k+1)
M (y, t) =

γ
(k)
t

λ2
t

∑
ỹ∈Y

∑
t̃∈T 4Pyt(ỹ, t̃)β

(k)
t Σ

pmp(k)
X (ỹ, tmax)(∑

ỹ∈Y

∑
t̃∈T 2Pyt(ỹ, t̃)

)2
(142)

Using T double
tmax

= ϕ,

Σ
pmp(k+1)
M (y, t) =

γ
(k)
t

λ2
t

Σ
pmp(k+1)
M (y, tmax) (143)

Since X
(k+1)
v = A(k+1)M

(k+1)
v , the following equation holds.

Σ
pmp(k+1)
X (y, t) = A(k+1)Σ

pmp(k+1)
M (y, t)A(k+1)⊤ (144)

= A(k+1) γ
(k)
t

λ2
t

Σ
pmp(k+1)
M (y, tmax)A

(k+1)⊤ (145)

=
γ
(k)
t

λ2
t

Σ
pmp(k+1)
X (y, tmax) (146)

Therefore, we proved that if β(k)
t Σ

pmp(k)
X (y, tmax) = Σ

pmp(k)
X (y, t) holds for k, then for constants

γ
(k)
t , λt, β

(k+1)
t which depends only on time and layer, Σpmp(k+1)

M (y, t) =
γ
(k)
t

λ2
t
Σ

pmp(k+1)
M (y, tmax)

and β
(k+1)
t Σ

pmp(k+1)
X (y, tmax) = Σ

pmp(k+1)
X (y, t) holds. By induction, lemma is proved.

A.11.3 PROOF OF THEOREM 5.2

In this discussion, we will regard µJJ
M (·, t) and µJJ

M (y, t) as constant, since generally there are
sufficient number of samples in each community, especially for large-scale graphs.
As shown earlier, when passing through PMP, the covariance matrix of the aggregated message is
as follows.

Figure 9: Graphical explanation of JJNORM. Under assumption 4, covariance matrices of aggregated
message on each community differs only by a constant factor αt.
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Unlike PNY, which estimates an affine transformation using P̂yt(ỹ, t̃) to align the covariance matrix
to be invariant, JJNORM provides a more direct method to obtain an estimate α̂t of αt. Since the
objective of this section is to get a sufficiently good estimator for implementation, the equations here
may be heuristic but are proceeded with intuitive reasons.

Since we know that the covariance matrix differs only by a constant factor, we can simply use norms
in multidimensional space rather than the covariance matrix to estimate αt.

Firstly, let’s define Vy,t = {u ∈ V | u has label y, u has time t}, V·,t = {u ∈ V | u has time t}.
Let us define

σ2
y,t = Ev∼Vy,t

[(Mv − µM (y, t))2] =
1

|Vy,t|
∑

v∈Vy,t

(Mv − µM (y, t))2 (147)

σ2
·,t = Ev∼V·,t [(Mv − µM (t))2] =

1

|V·,t|
∑

v∈V·,t

(Mv − µM (t))2 (148)

µy,t = Ev∼Vy,t [Mv] =
1

|Vy,t|
∑

v∈Vy,t

Mv (149)

µy,t = Ev∼V·,t [Mv] =
1

|Vy,t|
∑

v∈V·,t

Mv (150)

Note that definition of mean and variance here, are different with the definitions stated in A.11.1.
Here, JJNORM is a process of transforming the aggregated message, which is aggregated through
PMP, into a time-invariant representation. Hence, we can suppose that µM (y, t) is invariant to
t. That is, for all t ∈ T, µM (y, t) = µM (y, tmax). Additionally, we can define the variance of
distances as follows: σ2

y,t = Ev∈Vy,t

[
(Mv − µM (y, t))2

]
and σ2

·,t = Ev∈V·,t

[
(Mv − µM (t))2

]
.

Here, the square operation denotes the L2-norm.

Ev∈V·,t

[
(Mv − µM (t))2

]
=
∑
y∈Y

P (y)Ev∈Vy,t

[
(Mv − µM (y, t) + µM (y, t)− µM (t))2

]
(151)

=
∑
y∈Y

P (y)
(
Ev∈Vy,t

[
(Mv − µM (y, t))2

]
+ (µM (y, t)− µM (t))2

)
(152)

Since Ev∈Vy,t

[
(Mv − µM (y, t))⊤(µM (y, t)− µM (t))

]
= 0.

Here, mean of the aggregated messages during training and testing times satisfies the following
equation: µM (t) = µM (tmax)

µM (t) =
∑
y∈Y

P (y)µM (y, t) =
∑
y∈Y

P (y)µM (y, tmax) = µM (tmax) (153)

This equation is derived from the assumption that µM (y, t) is invariant to t and from Assumption 1
regarding P (y). Furthermore, by using Assumption 1 again, we can show that the variance of the
mean computed for each label is also invariant to t:∑
y∈Y

P (y)Ev∈Vy,t

[
(µM (y, t)− µM (t))2

]
=
∑
y∈Y

P (y)Ev∈Vy,tmax

[
(µM (y, tmax)− µM (tmax))

2
]

(154)

Ev∈Vy,t

[
(µM (y, t)− µM (t))2

]
= Ev∈Vy,tmax

[
(µM (y, tmax)− µM (tmax))

2
]
= ν2, t ∈ T

(155)

Here, ν2 can be interpreted as the variance of the mean of messages from nodes with the same t ∈ T
for each label. According to the above equality, this is a value invariant to t.

Meanwhile, from Assumption 4,
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αtEv∈Vy,t

[
(M − µM (y, t))2

]
= Ev∈Vy,tmax

[
(M − µM (y, tmax))

2
]
,∀t ∈ T (156)

αt

∑
y∈Y

P (y)Ev∈Vy,t

[
(Mv − µM (y, t))2

]
=
∑
y∈Y

P (y)Ev∈Vy,tmax

[
(Mv − µM (y, tmax))

2
]

(157)

Adding ν2 to both sides,

αt

∑
y∈Y

P (y)Ev∈Vy,t

[
(Mv − µM (y, t))2

]
+
∑
y∈Y

P (y)Ev∈Vy,t

[
(µM (y, t)− µM (t))2

]
= σ2

·,tmax

(158)

Thus,

αt =
σ2
·,tmax

− ν2∑
y∈Y P (y)Ev∈Vy,t

[(Mv − µM (y, t))2]
(159)

Here, α̂t is an unbiased estimator of αt.

ν̂2 =
1

| V·,t | −1
∑
y∈Y

∑
v∈Vy,t

(µ̂M (y, t)− µ̂M (t))2 (160)

α̂t =

(
1

|V·,tmax |−1

∑
v∈V·,tmax

(Mv − µ̂M (tmax))
2 − ν̂2

)
1

|V·,t|−1

∑
y∈Y

∑
v∈Vy,t

(Mv − µ̂M (y, t))2
(161)

Where µ̂M (y, t) = 1
|Vy,t|

∑
v∈Vy,t

Mv and µ̂M (t) = 1
|V·,t|

∑
v∈V·,t

Mv .

Note that all three terms in the above equation can be directly computed without requiring test labels.

By using α̂t, we can update the aggregated message from PMP to align the second-order statistics.

MJJnorm
v ← µ̂M (y, t) + α̂t(Mv − µ̂M (y, t)), ∀i ∈ V \V·,tmax

(162)

A.12 DETAILED EXPERIMENTAL SETUP FOR SYNTHETIC GRAPH EXPERIMENTS.

In our experiments, we set f = 5, ky was sampled from a uniform distribution in [0, 8], and the
center of features for each label µ(y) ∈ Rf was sampled from a standard normal distribution. Each
graph consisted of 2000 nodes, with a possible set of times T = {0, 1, . . . , 9} and a set of labels Y =
{0, 1, . . . , 9}, with time and label uniformly distributed. Therefore, the number of communities is
100, each comprising 20 nodes. Additionally, we defined Vte = {u ∈ V | u has time ≥ 8}
and Vtr = {u ∈ V | u has time < 8}. When communities have an equal number of nodes, the
following relationship holds:

Ptt̃yỹ = γ
|t−t̃|
y,ỹ Pttyỹ, ∀|t− t̃| > 0 (163)

To fully determine the tensor Ptt̃yỹ , we needed to specify the values when t = t̃. In order to imbue
the graph with topological information, we defined two hyperparameters,K and G, such thatK < G.
For any y, ỹ ∈ Y, if y = ỹ, we sampled Py,t,ỹ,t from a uniform distribution in [0,K], and if y ̸= ỹ,
we sampled Py,t,ỹ,t from a uniform distribution in [0,G]. In our experiments, we used K = 0.6 and
G = 0.24.

For cases where Assumption 4 was not satisfied, γy,ỹ was sampled from a uniform distribution
[0.4, 0.7]. For cases where Assumption 4 was satisfied, all decay factors were the same, i.e., γy,ỹ =
γ, ∀y, ỹ ∈ Y. In this case, γ indicates the extent to which the connection probability varies with
the time difference between two nodes. A smaller γ corresponds to a graph where the connection
probability decreases drastically. We also compared the trends in the performance of each IMPaCT
method by varying the value of γ. The baseline SGC consisted of 2 layers of message passing and
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Algorithm 5: Persistent Message PassingJJ normalization
Input : Aggregated message Mv,∀v ∈ V, obtained from 1st moment alignment message

passing; node time function time : V→ T; train, test split
Vtr = {v | v ∈ V, time(v) < tmax} and Vte = {v | v ∈ V, time(v) = tmax}; node
label funtion label : Vtr → Y.

Output: Modified aggregated message M ′
v,∀v ∈ V.

1 Let Vy,t = {u ∈ V | label(u) = y, time(u) = t};
2 Let V·,t = {u ∈ V | time(u) = t};
3 Estimate mean and variance for each community.
4 for t ∈ T do
5 µ̂M (·, t)← µ̂M (·, t) = 1

|V·,t|
∑

v∈V·,t
Mv;

6 end
7 for y ∈ Y do
8 for t ∈ {. . . , tmax − 1} do
9 ν̂2t ← 1

|V·,t|−1

∑
y∈Y

∑
v∈Vy,t

(µ̂M (y, t)− µ̂M (·, t))2;
10 end
11 end
12 for y ∈ Y do
13 for t ∈ {. . . , tmax − 1} do
14 µ̂M (y, t)← 1

|Vy,t|
∑

v∈Vy,t
Mv;

15 σ̂2
y,t ← 1

|V·,t|−1

∑
y∈Y

∑
v∈Vy,t

(Mv − µ̂M (y, t))2;
16 end
17 end
18 σ̂2

tmax
← 1

|V·,tmax |−1

∑
v∈V·,tmax

(Mv − µ̂M (·, tmax))
2 − 1

|V·,t|−1

∑
y∈Y

∑
v∈Vy,t

(µ̂M (y, t)−
µ̂M (·, t))2;

19 Estimate α̂t for t < tmax.
20 for t ∈ {. . . , tmax − 1} do
21 α̂2

t ←
σ̂2
tmax

−ν̂2
t

σ̂2
y,t

;

22 end
23 Update aggregated message.
24 for v ∈ V \V·,tmax

do
25 Let y = label(i);
26 Let t = time(i);
27 M

′

v ← µ̂M (y, t) + α̂t(Mv − µ̂M (y, t)), ∀v ∈ V \V·,tmax
;

28 end
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2 layers of MLP, with the hidden layer dimension set to 16. The baseline GCN also consisted of
2 layers with the hidden layer dimension set to 16. Adam optimizer was used for training with a
learning rate of 0.01 and a weight decay of 0.0005. Each model was trained for 200 epochs, and
each data was obtained by repeating experiments on 200 random graph datasets generated through
TSBM. The training of both models were conducted on a 2X Intel Xeon Platinum 8268 CPU with
48 cores and 192GB RAM.

A.13 SCALABILITY OF INVARIANT MESSAGE PASSING METHODS

First moment alignment methods such as MMP and PMP have the same complexity and can be
easily applied by modifying the graph. By adding or removing edges according to the conditions,
only O(|E|) additional preprocessing time is required, which is necessary only once throughout the
entire training process. If the graph cannot be modified and the message passing function needs to
be modified instead, it would require O(|E|fK), which is equivalent to the traditional averaging
message passing. Similarly, the memory complexity remainsO(|E|fK), consistent with traditional
averaging message passing. Despite having the same complexity, PMP is much more expressive than
MMP. Unless there are specific circumstances, PMP is recommended for first moment alignment.

In PNY, estimating the relative connectivity P̂y,t(ỹ, t̃) requires careful consideration. If both
t ̸= tmax and t̃ ̸= tmax, calculating the relative connectivity for all pairs involves O((N + |E|)f)
operations, while computing for cases where either time is tmax requires O(|Y |2|T |2) computa-
tions. Therefore, the total time complexity becomes O(|Y |2|T |2 + (N + |E|)f). Additionally,
for each message passing step, the covariance matrix of the previous layer’s representation and
the aggregated message needs to be computed for each label-time pair. Calculating the covari-
ance matrix of the representation from the previous layer requires O((|Y ||T | + N)f2) operations.
Subsequently, computing the covariance matrix of the aggregated message obtained through PMP
via relative connectivity requires O(|Y |2|T |2f2) operations. Diagonalizing each of them to cre-
ate affine transforms requires O(|Y ||T |f3), and transforming all representations requires O(Nf2).
Thus, with a total of K layers of topological aggregation, the time complexity for applying PNY
becomes O(K(|Y ||T |f3 + |Y |2|T |2f2 +Nf2) + |E|f). Additionally, the memory complexity in-
cludes storing covariance matrices based on relative connectivity and label-time information, which
is O(|Y ||T |f2 + |Y |2|T |2).
Now, let’s consider applying PNY to real-world massive graph data. For instance, in the ogbn-mag
dataset, |Y | = 349, |T | = 11, N = 629571, and |E| = 21111007. Assuming a representation
dimension of f = 512, it becomes apparent that performing at least several trillion floating-point
operations is necessary. Without approximation or transformations, applying PNY to large graphs
becomes challenging in terms of scalability.

Lastly, for JJNORM, computing the sample mean of aggregated messages for each label and time pair
requires O(Nf) operations. Based on this, computing the total variance, variance of the mean, and
mean of representations with each time requires O(Nf) operations. Calculating each α̂t requires
O(|T |) operations, and modifying the aggregated message based on this requiresO(Nf) operations,
resulting in a total of O(Nf + |T |) ≃ O(Nf) operations. For GNNs with nonlinear node-wise
semantic aggregation function with a total of K layers, layer-wise JJNORM have to be applied,
which results in O(NfK) operations. Additionally, the memory complexity becomes O(|Y ||T |f).
Considering that most operations in JJNORM can be parallelized, it exhibits excellent scalability.

In experiments with synthetic graphs, it was shown that invariant message passing methods can be
applied to general spatial GNNs, not just decoupled GNNs. For 1st moment alignment methods
such as PMP and MMP, which can be applied by reconstructing the graph, they have the same
time and memory complexity as calculated above. However, for 2nd moment alignment methods
such as JJNORM or PNY, transformation is required for each message passing step, resulting in
a time complexity multiplied by the number of epochs as calculated above. Therefore, when using
general spatial GNNs on real-world graphs, only 1st moment alignment methods may be realistically
applicable.

Guidelines for deciding which IMPaCT method to use. Based on these findings, we propose
guidelines for deciding which invariant message passing method to use. If the graph exhibits differ-
ences in environments due to temporal information, we recommend starting with PMP to make the
representation’s 1st moment invariant during training. MMP is generally not recommended. Next,
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if using Decoupled GNNs, PNY and JJNORM should be compared. If the graph is too large to
apply PNY, compare the results of using PMP alone with using both PMP and JJNORM. In cases
where there are no nonlinear operations in the message passing stage, JJNORM needs to be applied
only once at the end. Using 2nd moment alignment methods with General Spatial GNNs may be
challenging unless scalability is improved.

Caution is warranted when applying invariant message passing methods to real-world data. If As-
sumptions do not hold or if the semantic aggregation functions between layers exhibit loose Lip-
schitz continuity, the differences in the distribution of final representations over time cannot be
ignored. Therefore, rather than relying on a single method, exploring various combinations of the
proposed invariant message passing methods to find the best-performing approach is recommended.
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