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Abstract

Estimating out-of-distribution (OOD) performance is critical to safely deploying1

machine learning models. Recently, Baek et al. [2] showed that the phenomenon2

“agreement-on-the-line” can be a reliable method for predicting OOD accuracy of3

models in an ensemble consisting largely of CNNs trained from scratch. However,4

it is now increasingly common to lightly fine-tune foundation models, and it is5

unclear whether such fine-tuning is sufficient to produce enough diversity in models6

for such agreement-based methods to work properly. In this paper, we develop7

methods for reliably applying agreement-on-the-line-based performance estimation8

to fine-tuned foundation models. In particular, we first study the case of fine-tuning9

a single foundation model, where we extensively study how different types of10

randomness (linear head initialization, hyperparameter selection, data subsetting,11

and data shuffling) contribute to the agreement-on-the-line of the resulting model12

sets; we find, somewhat surprisingly, that it is typically possible to obtain strong13

agreement via random initialization of the linear head alone. Next, we study how14

multiple foundation models, pretrained on different data sets but fine-tuned on the15

same task, may or may not produce agreement; we show, again rather surprisingly,16

that the diversity of such models is already sufficient and not too disparate for them17

to all lie on the same agreement line. In total, these methods enable reliable and18

efficient estimation of OOD accuracy for fine-tuned foundation models, without19

leveraging any labeled OOD data.20

1 Introduction21

Foundation model (FM) approaches, where one first pretrains a large model on open world data22

then fine-tunes or prompts for a specific downstream task, have achieved state-of-the-art results on23

image classification [32, 25, 44], text classification [6], question answering [11], and others. They24

are particularly noted for their often strong performance on OOD data, that may vary substantially25

from the data used for fine-tuning (referred to as the in-distribution (ID) data) [5, 45]. Unfortunately,26

a significant practical problem arises precisely in this OOD setting: in many cases, one does not27

have access to labeled OOD data, but only has such data available in unlabeled form. Obtaining an28

explicitly labeled hold-out set for each potential OOD distribution shift is costly and impractical, and29

thus the field has explored other means for estimating OOD accuracy.30

Recently, Baek et al. [2] proposed a method for estimating the accuracy of deep network classifiers31

on OOD data using unlabeled data alone, by analyzing the agreement between pairs of classifiers32

in some collection (i.e., measuring how often two classifiers make the same prediction, with slight33

variants for alternate metrics such as F1 score). They showed that empirically, the OOD and ID34

agreement rates often observe a strong linear correlation, reminiscent of a similar trend for OOD and35

ID accuracy [30], and that the slopes and biases for these agreement and accuracy lines were often36
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Figure 1: ACL/AGL for CIFAR10C “Pixelate” with CLIP linear probing fine-tuned using different
sources of randomness

extremely similar. These effects are referred to as agreement-on-the-line (AGL) and accuracy-on-the-37

line (ACL) respectively, and together they provide a simple method for estimating OOD accuracy38

via unlabeled data alone. In particular, whenever the ID versus OOD accuracy is strongly linearly39

correlated, one may estimate the linear trend using agreement without labels. Unfortunately, the AGL40

approach requires a diverse collection of classifiers over which to compute agreement: classifiers41

must vary sufficiently in their incorrect predictions. As an extreme, consider an ensemble where42

ACL is observed and every pair of models achieves maximal ID and OOD agreement. Namely, say43

two models observe ID performances of 60% and 80% and OOD performances of 30% and 40%,44

respectively (linear fit of accuracy is aOOD = 0.5aID). Then the maximum agreement rate achievable45

is 80% ID and 90% OOD. The agreement rate is higher OOD than ID and does not capture the46

linear trend of ID versus OOD accuracy, in particular the decay under distribution shift. Baek et al.47

[2] achieve this diversity through training various models of different architectures from scratch.48

However, in the case of fine-tuned FMs, this diversity is seemingly lacking: we often want to lightly49

fine-tune just a single base foundation model for a downstream task. Such fine-tuning usually involves50

far fewer gradient steps than training from scratch and even after multiple runs would seemingly lead51

to highly correlated downstream models, making it unsuitable for AGL-based OOD performance52

estimation.53

In this work, we develop methods for extending AGL performance estimation to foundation models,54

thus enabling practitioners to estimate the OOD performance of fine-tuned models without any labeled55

data. We first investigate the ability to estimate performance using a single base foundation model.56

Key to our approach is a detailed empirical study of different types of randomness that we can inject57

into the fine-tuning process, so as to encourage the needed diversity amongst models. Specifically,58

we analyze four different potential sources of randomness: 1) random linear head initialization;59

2) hyperparameter choice; 3) subsets of the ID data; and 4) permutations of the ID data. We find,60

somewhat surprisingly, that using different random linear heads is able to much more reliably induce61

AGL behavior for the resulting classifiers, despite all settings still resulting in the ACL phenomenon62

alone. We find that these results hold across multiple different foundation models and modalities,63

holding for CLIP-based image classification and LLM-based QA tasks. The end result is a simple64

and straightforward method for evaluating OOD performance for a fine-tuned foundation model,65

applicable to settings where we only one want to fine-tune a single such base model.66

Second, we analyze the ability of AGL-based method to predict OOD performance when using67

multiple different pretrained foundation models. Here the likely problem seems to be opposite to68

what occurred previously: whereas before we expected to have too little diversity in models, here we69

encounter a setting where the different base models are pretrained on potentially entirely different70

data sets, using different architectures, and different training regiments. We show, however, that this71

degree of diversity is also sufficient for producing AGL behavior. Thus, for settings where multiple72

pretrained models exist, they can all be fine-tuned for a given downstream task, and AGL can allow73

us to estimate their accuracies.74

In total, this work allows us to substantially expand the set of problems and models for which75

AGL-based OOD performance estimation is practical, and allows us to leverage much more powerful76

models for these settings where training models from scratch on tasks of interest is not feasible.77
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2 Preliminaries78

We are interested in mapping an input x ∈ X to a discrete output y ∈ Y. In particular, we consider79

fine-tuned foundation models. For a base model B, let f(B) denote a fine-tuned version of B. In this80

work, we study a variety of base foundation models: GPT2 [32], GPT-Neo, OPT [48], Llama2 [42],81

and CLIP [33].82

Fine-tuning We consider two types of fine-tuning techniques to adapt our foundation models for the83

downstream task: linear probing (LP) and full fine-tuning (FFT). Given features Bθ from the base84

model B, a linear head v is attached on top to map features to confidence scores f(B) = v⊤Bϕ(x).85

For classification tasks, f(B) ∈ Rk where k refers to the total number of classes, while in extractive86

question answering tasks, f(B) ∈ R2×k where k refers to the length of the context. 1 We refer to v as87

either a linear probe (classification) or span prediction head (question answering). For LP, the features88

are frozen and only the linear layer v is optimized by gradient updates. On the other hand, FFT89

updates all parameters including the backbone Bϕ. When infeasible to update all parameters natively,90

we use parameter efficient low-rank adaptation (LoRA) [19] which still effectively updates the feature91

extractor Bϕ. In this work, we do not distinguish between LoRA and FFT as they conceptually92

achieve the same effect, and seem to show similar empirical trends in our studies. Refer to Appendix93

6.3 for specific fine-tuning parameters.94

OOD performance estimation Given a labeled validation set from DID and unlabeled samples from95

a different distribution Dood, our goal is to estimate performance on Dood. We consider the standard96

performance metrics for various tasks: Zero-one loss ℓ0-1 for classification and Macro-averaged F197

score ℓF1 for question answering.98

Accuracy and agreement on the line ACL is a striking phenomenon, however, it does not99

immediately provide a practical method to estimate OOD performance—computing the slope and100

bias of the linear correlation requires access to labeled samples from Dood. Baek et al. [2] propose101

AGL which uses agreement between models rather than accuracy to estimate OOD performance.102

Formally, given a pair of models f1 and f2 that map inputs to labels, accuracy and agreement can be103

defined as104

Acc(f1) = Ex,y∼D[ℓ(f1(x), y)], Agr(f1, f2) = Ex,y∼D[ℓ(f1(x), f2(x))], (1)
where ℓ is the appropriate performance metric of interest (e.g. 1 minus the zero-one loss for105

classification). Note that while accuracy requires access to the labels y, agreement only requires106

access to unlabeled data and a pair of models. The key observation in Baek et al. [2] is that ACL and107

AGL share the same linear slope and bias. More details on AGL can be found in Appendix 6.2 while108

a discussion on prior OOD performance estimation methods is in Appendix 6.9.109

Since computing agreement does not require labels, one can compute the slope and bias using unla-110

beled data, then estimate the OOD performance when AGL and ACL hold by linearly transforming111

the ID validation performance. We refer the reader to [2] for formal ALine algorithms (ALine-S112

and ALine-D) to use AGL for OOD performance estimation (Appendix 6.7). Note that ACL is a113

prerequisite for good OOD performance estimation via ALine. However, as ACL only occurs coupled114

with AGL, we can only rely on ALine when agreements show strong linear correlation.115

3 Predicting OOD performance: single base foundation model116

Our first setting of interest concerns the case where we have a single foundation model that we117

would like to fine-tune for a given downstream task. Since AGL-methods cannot be applied to a118

single classifier (requiring a collection of classifiers over which to compute agreement between119

pairs), we need some method to introduce variability amongst multiple variants of this base model.120

Such variability can be introduced in many ways, but an overriding concern is that even with some121

randomness in the fine-tuning process, it may not be enough to overcome the underlying similarities122

in predictions due to the same base foundation model.123

To address this problem, in this section we evaluate multiple different possible sources of diversity in124

the fine-tuning process, to see what approach (if any) can lead to AGL. Specifically, we analyze four125

1The output of the foundation model for extractive QA is 2× k as the model predicts both the start and end
of the context span that contains the ground truth answer.
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Table 1: OOD accuracy prediction MAE (%) for image classification

OOD Dataset ALine-D ALine-S Naive Agr ATC AC DF

CIFAR10C (averaged across shifts) 3.34 3.40 15.46 8.00 23.37 10.85
CIFAR10.1 (averaged across v4, v6) 0.63 0.87 17.59 2.83 29.93 4.26

CIFAR100C (averaged across shifts) 3.11 2.87 11.94 4.04 21.86 10.48

ImageNetC (averaged across shifts) 2.16 2.87 11.94 4.04 21.86 10.48
ImageNet V2 (averaged across 3 format) 1.30 2.56 9.86 4.31 19.85 9.13

fMoW-WILDS (val OOD split) 0.99 0.91 20.39 2.66 9.59 1.26
Camelyon17-WILDS (val OOD split) 4.68 4.50 9.75 7.01 11.01 6.35
iWildCam-WILDS (val OOD split) 4.91 4.99 13.19 8.84 12.26 10.23

possible methods for introducing diversity into the fine-tuning process (which then lets us create a126

differentiated collection of classifiers by repeating the fine-tuning process multiple times):127

1. Random linear heads. Before fine-tuning, we initialize the last layer of the network (i.e.,128

the linear head) randomly, instead of via some zero-shot or pre-specified manner.129

2. Different fine-tuning hyperparameters. We use a variety of different learning rates and130

weight decays to encourage diversity of the resulting models.131

3. Data subsetting. We present each fine-tuned model to be fine-tuned with an independent132

subset of the (ID) fine-tuning data.133

4. Data shuffling. We present the same data to each model, but shuffle the order for the data134

differently within each fine-tuning optimization run.135

Note that we perturb only one source of diversity at a time. For example, in the random linear head136

setting, all models start with a different initialization, but the data used for training is the same and137

seen in the same order. In the data shuffling setting, all models start with the same (but random)138

initialization, but the data used for training is seen in different orders; and so on.139

When models are trained from scratch, it is well established that independent data subsetting tends to140

lead to the greatest diversity of classifiers [31]. Nonetheless, in this setting we find rather surprisingly,141

that just using different random linear heads achieves the highest diversity. We show that this finding142

persists over multiple models, multiple tasks, and indeed multiple modalities entirely.143

3.1 Experimental setup144

Models Given its well-established 0-shot capabilities, we use linear probing atop CLIP [33],145

specifically the ViT-B/32 model trained on LAION-2B [40] for our image classification tasks. For our146

QA tasks, we evaluate a collection of 50 fully fine-tuned models, wherein each model is obtained by147

fine-tuning from the same checkpoint of GPT2-Medium (links to the base FMs are in Appendix 6.8).148

Datasets We fine-tune and test our models on several different image classification datasets. We149

fine-tune models on CIFAR10 [23], and then evaluate on CIFAR10C and CIFAR10.1. We repeat150

the same for CIFAR100 [22], ImageNet-1k [38] and their respective shifted datasets CIFAR100C,151

ImageNetC [16], and ImageNetV2 [36]. We additionally validate our finding by testing on three real152

world shifts from the WILDS benchmark (FMoW, iWildCam, Camelyon17) [21]. For extractive QA,153

we fine-tune on the SQuAD v1.1 dataset [34]. We evaluate the fine-tuned LLMs on four distribution154

shifts present in SQuAD-Shifts (New Wiki, New York Times, Amazon, and Reddit) [29].155

3.2 Results156

In Figure 1, we observe the ID and OOD agreements and accuracies of linear probes trained on top157

of CIFAR10 CLIP representations. One may suspect that in this setting, the simple linear models158

would agree highly and AGL may break. For example, Baek et al. [2] has shown previously that159

AGL is a phenomenon that is specific to neural networks (e.g. linear models trained on top of the160

flattened CIFAR10 images do not observe AGL). Indeed, while ACL holds with strong correlation161

for each of the ensembles constructed with the four sources of diversity, AGL does not hold for all162
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Table 2: ALine-D MAE for fine-tuning with different sources of randomness for extractive QA

Source of Diversity SQuAD-Shifts Amazon (%) SQuAD-Shifts Reddit (%)

Random Linear Heads 0.69 0.79
Different fine-tuning hyperparameters 2.55 2.06

Data Shuffling 4.18 4.32
Data Subsetting 5.2 4.71

ensembles. However, AGL interestingly does hold strongly for the case of random head initialization.163

Thus, contrary to the findings of Baek et al. [2], even in linear models, when on top of neural network164

features (in this case CLIP) with the right type of diversity, one may observe AGL and use the related165

ALine algorithms to predict OOD estimation.166

On the other hand, for the other sources of diversity, we observe a consistent trend where agreement167

is also strongly linearly correlated but the OOD agreement rate is too high, and the slope of the linear168

fit of agreement surpasses that of accuracy. In fact, all ensembles achieved through data subsetting,169

data shuffling, and hyperparameter changes, strictly lie on the diagonal y = x line. In some sense,170

this is particularly very surprising for linear models. Intuition may suggest that independent data171

subsetting leads to the greatest diversity as the other sources of diversity optimize over the same172

convex landscape. Yet, even when we distribute the number of epochs trained to achieve a wide173

spread of ID accuracy models, AGL only holds for models that start at different random initialization.174

The averaged Mean Absolute Error (MAE) between the AGL-interpolated and actual OOD accuracies175

for the CIFAR10C shifts with these sources of diversity, can be found in Appendix 6.4, further176

quantifying these visually apparent results. We refer the reader to Appendix 6.10 which contains177

the ACL/AGL plots with the random-head initialized ensembles for other datasets. Furthermore,178

Table 1 shows the averaged MAE for the OOD accuracies as calculated using the ALine algorithms179

and other OOD performance estimation methods for the image classification dataset shifts. We find180

that when ACL holds, ALine estimates the OOD accuracy significantly better than baselines, thus181

lending support for utilizing AGL induced by random initialization to evaluate the performance of182

lightly fine-tuned models.183

We similarly find that not all sources of diversity are equally likely to yield sufficient diversity184

in fully fine-tuned LLMs for extractive QA. As seen in CLIP linear probing, varying the random185

initialization of the span head consistently provides sufficient stochasticity during fine-tuning to186

obtain a suitably diverse ensemble that demonstrates AGL and enables accurate prediction of OOD187

accuracy. On the other hand, stochasticity arising from data shuffling, data subsetting, and from188

varying hyperparameters may not always yield an ensemble that is amenable to accurately estimating189

OOD accuracy (see Table 2). Specifically, these sources tend to yield ensembles with correlated190

errors which results in the agreement line often lying above the accuracy line and on the y = x line,191

although the trend is less stark than the one observed in image classification by linear probing. We192

refer the reader to Appendix 6.5 to observe these trends on all shifts within the SQuaD-Shifts dataset.193

4 Predicting OOD performance: multiple foundation models194

Alternatively, with multiple base foundation models pretrained on different text corpora, agreement-195

on-the-line may potentially fail due to an opposite failure mode of different model pairs disagreeing196

too highly or in unstructured ways on OOD data. Moreover, models heavily pretrained on different197

corpora may lie on different accuracy lines to begin with. But to the contrary, we observe that198

foundation models fine-tuned from a wide range of base models observe both ACL and AGL.199

4.1 Experimental Setup200

Models We fine-tune 41 models on the extractive QA task with SQuAD v1.1 as the ID dataset201

and observe their OOD performance on SQuAD-Shifts; specifically OPT-125M, OPT-350M, OPT-202

1.3B, GPT2-XL, GPT2-Large, GPT2-Medium, GPT2, GPT-Neo-135M, Llama2-7B, Alpaca-7B,203

and Vicuna-7B. OPT was pretrained on a wide variety of data including BookCorpus [49], Stories204

[43], a subset of PILE [13], CCNews v2 corpus, and PushShift.io Reddit [3]. GPT2 was pretrained205

on BookCorpus while GPT-Neo was trained on PILE. Llama2 was trained on an undisclosed set206

of publicly available data. Finally, Alpaca and Vicuna are additionally trained from Llama2 on207

instruction-following demonstrations and user-shared conversations from ShareGPT, respectively.208
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4.2 Results209
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Figure 2: ACL/AGL when using different base models for SQuAD-Shifts
In Figure 2, we see that base LLM models pretrained on different sources of text corpora lead to210

fine-tuned models that lie on the same linear trend in accuracy on SQuAD. This is in contradiction211

to previous works that indicate (benchmarking the performance of foundation models on image212

classification tasks [33, 41]) that models heavily pretrained on differerent image corpora may lie on213

different lines. We suspect that the pretraining datasets for the models in our study exhibit much214

more homogeneity. Second, the ID versus OOD agreement for pairs of fine-tuned models (even215

with different bases) retain a strong linear correlation, and the slope and bias closely match that of216

accuracy; i.e., different pretraining does not break AGL (also see Appendix 6.6). As reported in217

Table 3, using ALine-S and ALine-D with AGL yields better OOD estimation performance than other218

baselines over SQuAD-Shifts overall.219

Table 3: OOD accuracy prediction MAE (%) for extractive QA

OOD Dataset ALine-D ALine-S Naive Agr ATC AC DF

SQuAD-Shifts Reddit 0.76 1.19 9.18 6.21 24.35 2.99
SQuAD-Shifts Amazon 0.97 1.44 9.22 7.15 24.86 3.69
SQuAD-Shifts New York Times 0.52 0.68 9.56 1.32 19.94 1.54
SQuAD-Shifts New Wiki 1.97 1.98 10.01 2.42 21.03 0.71

5 Conclusion220

We develop methods for extending AGL to foundation models to enable OOD performance prediction221

in this emerging paradigm. We found that applying AGL directly may sometimes fail and properly222

utilizing this phenomenon for performance estimation requires careful tuning of the distribution of223

models in the ensemble for their errors to be uncorrelated. Unlike the original paradigm of AGL,224

where models observed tens or hundreds of epochs of training on the in-distribution dataset, we225

find that stochasticity in specific optimization choices, specifically random head initialization, is226

crucial for lightly fine-tuned foundation models. Second, though Baek et al. [2] posed AGL as a227

model centric phenomenon that is specifically only observed in neural network ensembles, we find228

that linear models could also observe AGL when the data and the distribution shift contain certain229

structures (as is possible in the CLIP representation space).230

Our conclusion on AGL also sheds light on ACL, a phenomenon that is of independent interest.231

Recent works that study the effect of pretraining on ACL [33, 41] indicate that models pretrained232

on different datasets lead to different slopes in the linear correlations, a term that is often called233

“effective robustness”. In our results, we find that when fine-tuned the same way, models obtained234

from different base foundation models all (OPT, GPT2, GPT2-Neo, and Llama2) lie on the same235

accuracy and agreement line. This is particularly intriguing because it goes against the common236

wisdom that the amount of pretraining data determines the effective robustness. Additionally, though237

our findings help us utilize AGL for predicting the performance of foundation models, they also238

raise potential concerns about the robustness of fine-tuned foundation models – even light linear239

probing over these base models could lead to models disagreeing highly on OOD data. We leave240

these questions for future analysis.241
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6 Appendix394

6.1 Background on OOD accuracy estimation395

There is a rich literature on OOD performance estimation, with a variety of proposed approaches.396

One family of approaches attempts to quantify the degree of distribution shift through data and/or397

model dependent metrics e.g. uniform convergence bounds using metrics such as H-divergence398

[4, 28, 8, 24]. However, these approaches only provide upper bounds on the OOD error, and these399

bounds tend to be loose when evaluated on deep networks used in practice [30].400

Another line of work looks at leveraging the model’s own softmax predictions a.k.a the model’s401

confidence to predict the OOD performance [17, 16, 14, 12, 15]. Since models are typically over-402

confident, it is common practice to first calibrate these models using ID validation data to further403

improve the reliability of such approaches. While these approaches show empirical promise in some404

settings, they are not expected to work in general and often fail in the presence of large shifts [14].405

There are other heuristic OOD estimation strategies that are reported to work in some datasets such406

as using performance on auxiliary self-supervised tasks [39, 9, 10, 47] or leveraging characteristics407

of self-trained models on the OOD data [47, 7].408

6.2 Accuracy on the Line409

In recent work, Baek et al. [2] propose a different approach for estimating OOD performance, that is410

empirically reliable across a variety of shifts and outperforms prior approaches. This approach is411

based on an earlier intriguing observation from [30, 35, 36, 37, 46, 41, 29]—there is a strong linear412

correlation between the ID and OOD performance of models for several distribution shifts. We call413

this phenomenon “accuracy-on-the-line” (ACL). ACL has been observed for image classification414

shifts such as some common corruptions on CIFAR10, ImageNetV2, FMoW-WILDS, and question415

answering shifts such as SQuAD-Shifts. However, ACL does not always hold e.g. Camelyon-WILDS416

[30] and SearchQA [1] do not show ACL.417

6.3 Finetuning Specifics418

We state here the specific parameters used in finetuning GPT2-Medium for extractive QA and CLIP419

for image classification. Across the four different sources of diversity, the epochs are varied regardless420

of the experiment. We train with AdamW as the optimizer [26]. For randomly initializing linear421

heads we vary the seed for the head and keep all other values fixed. For changing the finetuning422

hyperparameters, we vary the learning rate and weight decay. To shuffle the data, we change the data423

seed that control the data ordering during training. And finally for data subsetting, we get different424

proportions of the dataset which are independently sampled.425

For the GPT2-Medium models, we train a total of 50 models for studying the sources of diversity.426

For the CLIP models, we fine-tune upwards of 200 models (i.e. linear heads on top of the CLIP427

representation) for the different vision datasets.428
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Table 4: Finetuning specifics for extractive QA (LR: learning rate, WD: weight decay, LS: linear head
initialization seed, DS: data shuffling seed, DP: data subsetting proportion, EP: epochs, B: batch size)

Source of Diversity GPT2-Medium
Varied Fixed

Random linear heads

LS: varied LR: 3× 10−6

WD: 2× 10−4

DS: fixed
DP: 20%
EP: 0–3

B: 4

Finetuning hyperparameters

LR: 2× 10−6 − 2× 10−4 DS: fixed
WD: 1× 10−5 − 1× 10−2 LS: fixed

DP: 90%
EP: 0.2

B: 4

Data shuffling

DS: varied LR: 4× 10−6

WD: 1× 10−4

LS: fixed
DP: 10%
EP: 0–3

B: 4

Data subsetting

DP: 4.5%− 50% LR: 2× 10−6

WD: 1× 10−4

DS: varied
LS: fixed

EP: 1
B: 4
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Table 5: Finetuning specifics for image classification (LR: learning rate, WD: weight decay, LS:
linear head initialization seed, DS: data shuffling seed, DP: data subsetting proportion, EP: epochs, B:
batch size)

Source of Diversity CLIP + ViT-B/32 (LAION-2B)
Varied Fixed

Random linear heads

LS: varied LR: different per dataset
WD: 0

DS: fixed
DP: 100%
EP: 1–100

B: 1024

Finetuning hyperparameters

LR: 1× 10−4 − 1× 10−3 DS: fixed
WD: 0− 0.5 LS: fixed

DP: 100%
EP: 1–100

B: 1024

Data shuffling

DS: varied LR: different per dataset
WD: 0

LS: fixed
DP: 100%
EP: 1–100

B: 1024

Data subsetting

DP: 10%− 50% LR: different per dataset
WD: 0

DS: varied
LS: fixed

EP: 1–100
B: 1024
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6.4 Sources of Diversity (Image Classification)429

Figure 3 shows the four sources of diversity for the “Pixelate” and “JPEG-Compression” shifts in430

the CIFAR 10C OOD dataset. Table 6 shows the ALine-D MAE (%) for image classification on431

CIFAR10C (average across all 19 shifts).432

Table 6: ALine-D MAE for CLIP linear fine-tuned for CIFAR10 image classification with different
sources of diversity. Note that the reported MAE is averaged across all 19 CIFAR10C shifts.

Source of Diversity CIFAR10C (%)

Random linear heads 3.96
Different fine-tuning hyperparameters 12.47

Data shuffling 11.09
Data subsetting 10.91
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Figure 3: The ACL and AGL plots for the “JPEG Compression” (top row) and “Pixelate” (bottom
row) fine-tuned using different sources of randomness
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6.5 Sources of Diversity (Question Answering)433

Figure 4 shows the four sources of diversity for all SQuAD-Shifts OOD datasets.434
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Figure 4: ID vs OOD trends of accuracy and agreement of LLMs finetuned for Question Answering
from a single pretrained base model. Each column presents trends for different sources of stochasticity
employed to obtain a diverse ensemble of finetuned models.
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6.6 Multiple Foundation Models435

Figure 5 shows AGL and ACL for different base models for all SQuAD-Shifts OOD datasets. We436

have fine-tuned OPT-125M, OPT-350M, OPT-1.3B, GPT2-XL, GPT2-Large, GPT2-Medium, GPT2,437

GPT-Neo-135M, Llama2-7B, Alpaca-7B, and Vicuna-7B. The links to the models are in Appendix438

6.8.439
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Figure 5: AGL when using different base models for SQuAD-Shifts
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6.7 ALine-S/D440

ALine is the OOD accuracy estimating metric that utilizes AGL [2]. There are two methods within441

ALine: ALine-S and ALine-D442

Given AccID(f1) and AgrOOD(f1, f2), when agreement holds, the relationship between the agree-443

ment line and accuracy line is as follows.444

Φ−1(AccOOD(f1)) = a·Φ−1(AccID(f1))+b ⇔ Φ−1(AgrOOD(f1, f2)) = a·Φ−1(AgrID(f1, f2))+b
(2)

To find AccOOD(f2), we can estimate the slope a and bias b as follows and445

â, b̂ = arg min
a,b∈R

∑
i ̸=j

(
Φ−1(ÂgrOOD(hi, hj))− a · Φ−1(ÂgrID(hi, hj))− b

)2

(3)

With â and b̂, we can find AccOOD(f2) with the estimator for the ID accuracy ˆAccID(f1). This446

method is called Aline-S.447

A similar method, ALine-D, uses pointwise accuracies and agreement of the model of interest instead448

of estimating the entire agreement line. If the models of interest are h and h′, then the following449

holds.450

1

2

(
Φ−1(AccOOD(h)) + Φ−1(AccOOD(h

′))
)
=

a

2

(
Φ−1(AccID(h)) + Φ−1(AccID(h

′))
)
+

b

2
(4)

With the fact that b = Φ−1(AgrOOD(h, h
′))− a · Φ−1(AgrID(h, h

′)), we have451

1

2

(
Φ−1(AccOOD(h)) + Φ−1(AccOOD(h

′))
)

= Φ−1(AgrOOD(h, h
′)) + a ·

(
Φ−1(AccID(h)) + Φ−1(AccID(h

′))

2
− Φ−1(AgrID(h, h

′))

) (5)

With the two unknowns, AccOOD(h) and AccOOD(h
′), and one equation we cannot find the unknowns.452

However, with more overlapping pairs, we can get the same number of equations as variables and453

find the OOD accuracy of a model of interest.454

6.8 Model Links455

Here are the links to the pretrained base foundation models we finetuned: CLIP (https:456

//github.com/mlfoundations/open_clip), GPT2 (https://huggingface.co/gpt2),457

GPT2-Medium (https://huggingface.co/gpt2-medium), GPT2-Large (https:458

//huggingface.co/gpt2-large), GPT2-XL (https://huggingface.co/gpt2-xl), GPT-459

Neo-125M (https://huggingface.co/EleutherAI/gpt-neo-125m), GPT-Neo-1.3B (https:460

//huggingface.co/EleutherAI/gpt-neo-1.3B), OPT-125M (https://huggingface.461

co/facebook/opt-125m), OPT-1.3B (https://huggingface.co/facebook/opt-1.3b),462

Llama2-7B (https://huggingface.co/meta-llama/Llama-2-7b-hf), Alpaca-7B463

(https://huggingface.co/WeOpenML/Alpaca-7B-v1), Vicuna-7B (https://huggingface.464

co/lmsys/vicuna-7b-v1.3)465

6.9 OOD Accuracy Estimation Methods (Baselines)466

With sufficient diversity residing in the ensemble, we observe that ALine succeeds over other OOD467

estimation baselines in terms of predicting the performance of the models in the ensemble. We468

compare the algorithms ALine-S and ALine-D [2] on this sufficiently diverse ensemble of models469

to other existing methods that estimate the accuracy of OOD performance: ATC [14], AC [18] and470

DOC-Feat [15] that utilize model confidence to estimate OOD accuracy in addition to directly using471
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agreement to predict accuracy, dubbed naive agreement [20] [27]. We observe that with sufficient472

diversity in the ensembles, variants of the ALine algorithm surpass confidence/probability based473

methods by achieving the lowest error of predicting the OOD performance of fine-tuned foundation474

models on all tasks as seen in Table 7. For this comparison, the lowest error rate picked from the475

errors found prior and post the application of temperature scaling is reported for confidence based476

methods. Though temperature scaling can be applied to calibrate models in terms of their accuracy,477

calibrating models for the F1 score by temperature scaling is not directly obvious. As a result, we478

observe that for extractive QA datasets, confidence based methods particularly suffer.479

Table 7: OOD accuracy prediction MAE (%) of various methods

OOD Dataset ALine-D ALine-S Naive Agr ATC AC DF

SQuAD-Shifts Reddit 0.76 1.19 9.18 6.21 24.35 2.99
SQuAD-Shifts Amazon 0.97 1.44 9.22 7.15 24.86 3.69
SQuAD-Shifts Nyt 0.52 0.68 9.56 1.32 19.94 1.54
SQuAD-Shifts New Wiki 1.97 1.98 10.01 2.42 21.03 0.71

CIFAR10C (averaged across shifts) 3.34 3.40 15.46 8.00 23.37 10.85
CIFAR10.1 (averaged across v4, v6) 0.63 0.87 17.59 2.83 29.93 4.26

CIFAR100C (averaged across shifts) 3.11 2.87 11.94 4.04 21.86 10.48

ImageNetC (averaged across shifts) 2.16 2.87 11.94 4.04 21.86 10.48
ImageNet V2 (averaged across 3 format) 1.30 2.56 9.86 4.31 19.85 9.13

fMoW-WILDS (val OOD split) 0.99 0.91 20.39 2.66 9.59 1.26
Camelyon17-WILDS (val OOD split) 4.68 4.50 9.75 7.01 11.01 6.35
iWildCam-WILDS (val OOD split) 4.91 4.99 13.19 8.84 12.26 10.23
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Figure 6: AGL and ACL for all CIFAR10C shifts with random head initialization fine-tuning.
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Figure 7: AGL and ACL for the CIFAR10.1 shifts with random head initialization fine-tuning.
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Figure 8: AGL and ACL for the CIFAR100C shifts with random head initialization fine-tuning.
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Figure 9: AGL and ACL for the ImageNetC shifts with random head initialization fine-tuning.
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Figure 10: AGL and ACL for the ImageNet V2 shifts with random head initialization fine-tuning.
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Figure 11: AGL and ACL for 3 benchmarks from the WILDS dataset with random head initialization
fine-tuning.
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