
Published at ICLR 2023 Workshop on Domain Generalization

UNDERSTANDING AND IMPROVING FEATURE LEARN-
ING FOR OUT-OF-DISTRIBUTION GENERALIZATION

Yongqiang Chen∗1, Wei Huang∗2, Kaiwen Zhou∗1
1The Chinese University of Hong Kong 2RIKEN AIP
{yqchen,kwzhou,jcheng}@cse.cuhk.edu.hk wei.huang.vr@riken.jp

Yatao Bian3, Bo Han4, James Cheng1

3Tencent AI Lab 4Hong Kong Baptist University
yatao.bian@gmail.com bhanml@comp.hkbu.edu.hk

ABSTRACT

A common explanation for the failure of out-of-distribution (OOD) generalization
is that the model trained with empirical risk minimization (ERM) learns spurious
features instead of the desired invariant features. However, several recent studies
challenged this explanation and found that deep networks may have already learned
sufficiently good features for OOD generalization. To understand these seemingly
contradicting phenomena, we conduct a theoretical investigation and find that
ERM learns both spurious features and invariant features. On the other hand,
the quality of learned features during ERM pre-training significantly affects the
final OOD performance, as OOD objectives rarely learn new features. Failing
to capture all the useful features during pre-training will further limit the final
OOD performance. To remedy the issue, we propose Feature Augmented Training
(FAT), to enforce the model to learn all useful features by retaining the already
learned features and augmenting new ones multiple rounds. In each round, the
retention and augmentation are performed on different subsets of the training data
that capture distinct features. Extensive experiments show that FAT learns richer
features and consistently improves the OOD performance of various objectives.

1 INTRODUCTION

Understanding what features are learned by neural networks is crucial to understanding how they
generalize to different data distributions (Rosenblatt, 1957; Shwartz-Ziv & Tishby, 2017; Shah et al.,
2020; Allen-Zhu & Li, 2020). Deep networks trained with empirical risk minimization (ERM)
learn highly predictive features that generalize surprisingly well to in-distribution data (Vapnik,
1991; Goodfellow et al., 2016). However, ERM also tends to learn spurious features such as image
backgrounds (Beery et al., 2018; Geirhos et al., 2020) whose correlations with labels do not hold in
the out-of-distribution (OOD) data, and suffers serious performance degeneration (Koh et al., 2021).

A common explanation for the OOD failures of deep networks is that ERM fails to learn the desired
features that have invariant correlations with labels across different distributions (Beery et al., 2018).
However, Rosenfeld et al. (2022); Kirichenko et al. (2022); Izmailov et al. (2022) found that ERM-
trained models have already learned sufficiently good features that are able to generalize to OOD data.
In addition, in the optimization of OOD objectives (Rojas-Carulla et al., 2018; Koyama & Yamaguchi,
2020; Parascandolo et al., 2021; Krueger et al., 2021; Pezeshki et al., 2021; Ahuja et al., 2021; Wald
et al., 2021; Shi et al., 2022; Rame et al., 2021; Zhou et al., 2022; Chen et al., 2022a) that aim to
capture the invariant features, there also exists an interesting phenomenon that the performance of
OOD objectives largely relies on the pre-training with ERM (Zhang et al., 2022; Chen et al., 2022b).
As shown in Fig. 1(b), the number of ERM pre-training epochs has a large influence on the OOD
performance. These seemingly contradicting phenomena raise a challenging research question:

What features are learned by ERM and OOD objectives, respectively, and how do the learned
features generalize to in-distribution and out-of-distribution data?

To answer the question, we conducted a theoretical investigation using a variation of data model
of Allen-Zhu & Li (2020) that contains invariant and spurious features with different correlation

∗Equal contributions.

1

Published at ICLR 2023 Workshop on Domain Generalization

Pre-training OOD training

ϕFeaturizer
ERM IRMv1

ŷw

ϕFeaturizerFAT
IRMv1

Dtr

D
r

D
a

ŷw

Invariant Features
Spurious Features Learned Features

Underlying Features

Dtr

DtrDtr

0 50 100
150
200
250
FAT

0

20

40

60

IRMv1

0 50 100
150
200
250
FAT

VREx

0 50 100
150
200
250
FAT

0

20

40

60

IRMX

0 50 100
150
200
250
FAT

CLoVE

0 50 100
150
200
250
FAT

0

20

40

60

IGA
0 50 100
150
200
250
FAT

Fishr

0.0 0.2 0.4 0.6 0.8 1.0

pretrain epochs

0.0

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

Figure 1: (a) An illustration of FAT (top row) compared to ERM (bottom row). FAT first identifies
subsets containing distinct features by examining whether they are already learned by the model.
Then FAT iteratively augments the new features while keep retaining the already learned features,
and thus FAT learns richer features for OOD training. (b) OOD Performance vs. num. of pre-training
epochs. The performance of various OOD objectives largely relies on the quality of ERM-learned
features. When there exist underlying useful features poorly learned by ERM, the OOD performance
will be limited, while FAT learns all useful features and thus improves OOD performance.

degrees with labels (Kamath et al., 2021). We studied the feature learning of a two-layer CNN, when
trained with ERM and a representative OOD objective, IRMv1 (Arjovsky et al., 2019), respectively.

First, we found that ERM essentially learns both spurious features and invariant features (Theo-
rem 3.1). The degrees of spurious and invariant feature learning are mostly controlled by their
correlation strengths with labels. On the other hand, merely training with IRMv1 cannot learn new
features (Theorem 3.2). Therefore, the quality of ERM-learned features affects the final OOD per-
formance significantly. As the number of ERM pre-training epochs increases, the model also learns
invariant features better and thus the final OOD performance will also improve (Fig. 1). However,
when ERM training does not recover all useful features for OOD generalization, i.e., there exist some
useful features that are poorly learned during ERM pre-training, then the model is less likely to learn
these features during OOD training. In other words, OOD generalization requires the pre-training to
learn all useful features that have non-trivial correlations with labels presented in the training data.

To remedy the issue, we propose Feature Augmented Training (FAT), an iterative data-centric
training strategy to enforce the model to learn all useful features (Algorithm 1). As shown in Fig. 1(a),
in each round k, FAT separates the training data into two subsets according to whether the underlying
features are already learned (Retention set Dr

k) or not (Augmentation set Da
k), which is identified

by examining whether the model yields correct (Dr
k) or incorrect (Da

k) predictions for samples from
the subsets, respectively. Intuitively, different subsets contain distinct features that are discovered
in different rounds. Then, FAT performs distributionally robust optimization (DRO) (Namkoong &
Duchi, 2016; Zhang et al., 2022) on the grouped subsets {Da

k ,Dr
k} to augment the feature learning

by exploring new features. Meanwhile, FAT also needs to retain the already learned features by
minimizing the empirical risk at the retention sets {Dr

k}. FAT terminates when the model cannot
learn any new predictive features from the augmentation subsets. Extensive experiments verified that
FAT effectively learns richer features and improves OOD performance for various objectives (Sec. E).

2 PRELIMINARIES AND PROBLEM DEFINITION

We leave a detailed introduction of related work and backgrounds in Appendix A to Appendix B.
Notations. We use bold-faced letters for vectors and matrices otherwise scalars. We use ∥ · ∥2 to
denote the Euclidean norm of a vector or the spectral norm of a matrix.

We use the data modelD = {xi, yi}ni=1 that characterizes each data point xi as invariant and spurious
feature patches modified from (Allen-Zhu & Li, 2020; Kamath et al., 2021; Chen et al., 2022b).

Definition 2.1. D = {De}e∈Eall contains multiple subsets De from various environments e ∈ Eall,
where each De = {(xe

i , y
e
i)}

ne
i=1 is composed of i.i.d. samples (xe

i , y
e
i) ∼ Pe. Each (xe, ye) ∈ De

2

Published at ICLR 2023 Workshop on Domain Generalization

with xe ∈ R2d and ye ∈ {−1, 1} is generated as follows: (a) Sample ye ∈ {−1, 1} uniformly; (b)
Each input xe = [xe

1,x
e
2] contains a feature patch x1 and a noise patch x2, sampled as:

x1 = y · Rad(α) · v1 + y · Rad(β) · v2, x2 = ξ,

where Rad(δ) takes value −1 (+1) with probability δ (1 − δ), v1 = [1, 0, . . . 0]⊤ and v2 =
[0, 1, 0, . . . 0]⊤; (c) A noise vector ξ is sampled from N (0, σ2

p · (Id − v1v
⊤
1 − v2v

⊤
2))

Definition 2.1 is inspired by the structure of image data, where the inputs consist of different patches.
Each environment is denoted as Eα = {(α, βe) : 0 < βe < 1}, where v1 is the invariant feature as α
is fixed for different e, and v2 is the spurious feature as βe varies across different e.

CNN model. We consider training a two-layer convolutional neural network whose filters are
applied to x1, x2, respectively, 1 and the second layer parameters of the network are fixed as 1

m

and − 1
m , respectively. m is the width of the hidden layer. Then the network becomes f(W,x) =

F+1(W+1,x)− F−1(W−1,x), where F+1(W+1,x) and F−1(W−1,x) are defined as follows:

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(w⊤

j,rx1) + σ(w⊤
j,rx2)

]
, (1)

where σ(x) is the activation function. We focus on linear activation σ(x) = x since it is sufficient to
observe the desired feature learning behaviors of ERM and OOD objectives.2

ERM objective. We train the CNN model by minimizing the empirical cross-entropy loss function

LS(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ(yei · f(W,xe
i)), (2)

where ℓ(z) = log(1 + exp(−z)) and Dtr = {xi, yi}ni=1 is the training data set.

OOD objective. The goal of OOD generalization is, given the data from training environments
Dtr = {De}e∈Etr , with ne = |De| to find a predictor f : X → Y that generalizes well to all (unseen)
environments, or minimizes maxe∈Eall Le(f), where Le is the empirical risk under environment e.
The predictor f = w ◦ φ is usually composed of a featurizer φ : X → Z that learns to extract useful
features, and a classifier w : Z → Y that makes predictions from the extracted features.

Since we are interested in the feature learning process when the OOD objective succeeds, without loss
of generality, we analyze the IRMv1 objective and the data model where IRMv1 succeeds Arjovsky
et al. (2019). Given the CNN (Eq. 1) and logistic loss (Eq. 2), IRMv1 can be written as

LIRMv1(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ (yei · f(W,xe
i)) +

∑
e∈Etr

λ

n2
e

(
ne∑
i=1

ℓ′i · yei · f(W,xe
i)

)2

, (3)

where ℓ′
e
i = ℓ′(yei · f(W,xe

i)) = −
exp(−ye

i ·f(W,xe
i))

1+exp(−ye
i ·f(W,xe

i))
. Due to the complexity of IRMv1, in the

analysis below, we introduce Ce
IRMv1 for the ease of expressions. Specifically,

Ce
IRMv1 ≜

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ŷei ,

where ŷei ≜ f(W,xe
i). The convergence of CIRMv1 indicates the convergence of IRMv1 penalty.

3 ON FEATURE LEARNING IN OOD GENERALIZATION

ERM Feature Learning. We first study the feature learning process of ERM objective. We consider
a two training environments setup Etr = {(α, β1), (α, β2)} where the signal of invariant feature is
weaker than the average of spurious signals (i.e., α > β1+β2

2), which corresponds to Figure 2.

1When the environment e is not explicitly considered, we will omit it for clarity.
2It is also partially due to the complexity of IRMv1 dynamics, though to the best of our knowledge, we are

the first to directly study the IRMv1 dynamics.

3

Published at ICLR 2023 Workshop on Domain Generalization

0 2000 4000 6000
Epoch

−0.15

−0.10

−0.05

0.00

0.05

C I
RM

v1
C1
IRMv1

C2
IRMv1

(a) CIRMv1, w/ PT

0 2000 4000 6000
Epoch

0

2000

4000

6000

8000

10000

Fe
at

ur
e

Le
ar

ni
ng

0.0

0.2

0.4

0.6

0.8

1.0

Lo
ss

inv. feat.
spu. feat.
train loss
test loss

(b) FL, w/ PT

0 2000 4000 6000
Epoch

0.0000

0.0005

0.0010

0.0015

C I
RM

v1

C1
IRMv1

C2
IRMv1

(c) CIRMv1, w/o PT

0 2000 4000 6000
Epoch

−30

−20

−10

0

10

20

30

Fe
at

ur
e

Le
ar

ni
ng

0.650

0.675

0.700

0.725

0.750

0.775

Lo
ss

inv. feat.
spu. feat.
train loss
test loss

(d) FL, w/o PT

Figure 2: The convergences of CIRMv1 and feature learning coefficients (FL) with or without ERM
pre-training (PT). The training environments are Etr = {(0.25, 0.1), (0.25, 0.2)}. The black dashed
line indicates the end of pre-training. Details are given in Appendix C.1.

Theorem 3.1. (Informal) For ρ > 0, let n ≜ mine∈Etr
ne. Suppose that we run T iterations of GD

for the ERM objective. With sufficiently large n, assuming that (i) α, β1, β2 < 1
2 , and (ii) α > β1+β2

2 ,
with properly chosen σ2

0 and σ2
p, there exists a constant η, such that with probability at least 1− 2ρ,

both invariant and spurious features are converging and the increment of the spurious feature is
larger than that of the invariant feature at any iteration t ∈ {0, . . . , T − 1}.

The formal statement of this theorem and its proof are given in Appendix C.2. Theorem 3.1 states
that ERM training learns both invariant feature and spurious feature at the same time, and if the
average of spurious signals is stronger, the coefficient of spurious feature learning will dominate that
of invariant feature learning in the whole training process, corresponding to Figure 2(b).

Theorem 3.1 explains the seemingly contradicting observations for the OOD failures. On the one
hand, ERM fails since it learns the spurious features at a higher speed, when spurious correlations
are stronger than invariant correlations. Although spurious feature learning effectively reduces the
empirical risk, the learned features cannot generalize to OOD data where the correlations between
spurious features and labels no longer hold (Beery et al., 2018). On the other hand, the invariant
feature learning also happens, even when the spurious correlations are strong, so long as the invariant
feature has a non-trivial correlation strength with the labels. Therefore, simply re-training a classifier
based on a subset of unbiased data on top of the ERM-trained featurizer achieves impressive OOD
performance (Rosenfeld et al., 2022; Kirichenko et al., 2022; Izmailov et al., 2022).

IRM Feature Learning. We then study IRMv1 training from scratch (w/o pre-training).

Theorem 3.2. (Informal) Define c(t) ≜
[
C1

IRMv1(W, t), C2
IRMv1(W, t), · · · , C|Etr|

IRMv1(W, t)
]
, λ0 =

λmin(H
∞), where H∞

e,e′ ≜
1

nene′

∑ne

i=1 x
e⊤
1,i

∑ne′
i′=1 x

e′

1,i. Suppose that dimension d = Ω(log(m/δ)),
network width m = Ω(1/δ), regularization factor λ ≥ 1/σ0, noise variance σp = O(d−2), weight

initial scale σ0 = O(min{ λ2
0m

2

log(1/ϵ) ,
λ0m√

d log(1/ϵ)
}), then with probability at least 1− δ, after training

time T = Ω
(

log(1/ϵ)
ηλλ0

)
, we have ∥c(T)∥2 ≤ ϵ,Λt

j,r = od(1),Γ
t
j,r = od(1).

The formal statement of this theorem and its proof are given in Appendix C.3. Intuitively, Theorem 3.2
implies that, when a heavy regularization of IRMv1 is applied, the model will not learn any features,
corresponding to Figure 2(d). Then, what would happen when given a properly pre-trained network?
Proposition 3.3. (Informal) Given Λt

j,r = Λt−1
j,r and Γt

j,r = Γt−1
j,r at the end of ERM pre-train t1 and

Etr = {(0.25, 0.1), (0.25, 0.2)}. Then, in the limit of n → ∞, we have
∑

eC
e
IRMv1(t1) = 0,Λt

j,r >

Λt+1
j,r ,Γt

j,r < Γt+1
j,r .

The proof is given in Appendix ??, which takes converged feature learning terms from Theorem 3.1
as the inputs. Proposition 3.3 demonstrates that with sufficient ERM pre-train, IRMv1 promotes
invariant feature learning while suppressing spurious features learning, which is verified in Figure 2(b)
and 2(a). Therefore, IRMv1 tends to exacerbate the learned invariant features from ERM pre-training
and suppress the spurious features. Thus, when given the initialization with better learned invariant
features from ERM pre-training, i.e., longer pre-training epochs, IRMv1 exacerbates the invariant
features faster and better, Proposition 3.3 explains why the final OOD generalization performance
highly depends on the number of ERM pre-training epochs (Zhang et al., 2022; Chen et al., 2022b).

Limitations of ERM Feature Learning. Previous results show that the underlying invariant features
will be learned during ERM pre-training and discovered during OOD training, despite that IRMv1
will not learn any features at the beginning. The remaining curious question is, given a poorly learned
invariant feature, will IRMv1 still identify and exacerbate it? The answer is negative.

4

Published at ICLR 2023 Workshop on Domain Generalization

Table 1: OOD performance on COLOREDMNIST datasets initialized with different representations.
COLOREDMNIST-025 COLOREDMNIST-01

ERM-NF ERM BONSAI FAT ERM-NF ERM BONSAI FAT

ERM 17.14 (±0.73) 12.40 (±0.32) 11.21 (±0.49) 17.27 (±2.55) 73.06 (±0.71) 73.75 (±0.49) 70.95 (±0.93) 76.05 (±1.45)
IRMV1 67.29 (±0.99) 59.81 (±4.46) 70.28 (±0.72) 70.57 (±0.68) 76.89 (±3.25) 73.84 (±0.56) 76.71 (±4.10) 82.33 (±1.77)
V-REX 68.62 (±0.73) 65.96 (±1.29) 70.31 (±0.66) 70.82 (±0.59) 83.52 (±2.52) 81.20 (±3.27) 82.61 (±1.76) 84.70 (±0.69)
IRMX 67.00 (±1.95) 64.05 (±0.88) 70.46 (±0.42) 70.78 (±0.61) 81.61 (±1.98) 75.97 (±0.88) 80.28 (±1.62) 84.34 (±0.97)
IB-IRM 56.09 (±2.04) 59.81 (±4.46) 70.28 (±0.72) 70.57 (±0.68) 75.81 (±0.63) 73.84 (±0.56) 76.71 (±4.10) 82.33 (±1.77)
CLOVE 58.67 (±7.69) 65.78 (±0.00) 65.57 (±3.02) 65.78 (±2.68) 75.66 (±10.6) 74.73 (±0.36) 72.73 (±1.18) 75.12 (±1.08)
IGA 51.22 (±3.67) 62.43 (±3.06) 70.17 (±0.89) 67.11 (±3.40) 74.20 (±2.45) 73.74 (±0.48) 74.72 (±3.60) 83.46 (±2.17)
FISHR 69.38 (±0.39) 67.74 (±0.90) 68.75 (±1.10) 70.56 (±0.97) 77.29 (±1.61) 82.23 (±1.35) 84.19 (±0.66) 84.26 (±0.93)
ORACLE 71.97 (±0.34) 86.55 (±0.27)

Corollary 3.4. Given Λt
j,r = o(1) and Γt

j,r = Θ(1), at the end of ERM pre-train t1 and Etr =

{(0.25, 0.1), (0.25, 0.2)}. Then, in the limit of n→∞, we have Λt+1
j,r < Γt

j,r.
As a direct extension of Proposition 3.3, Corollary 3.4 shows that IRMv1 OOD generalization requires
sufficiently well-learned features. It is also consistent with the experimental results in Fig. 1, where
all the OOD objectives achieve only performance comparable to random guesses.

Improving Feature Learning for OOD Generalization. The results in Sec. 3 imply that the model
is expected to learn all potentially useful features during the pre-training in order to achieve the
optimal OOD performance. To this end, we propose Feature Augmented Training (FAT), that adopts
an iterative data-centric strategy to enforce the model to learn all useful features directly. We give a
brief introduction below while leaving the detailed description of FAT in Appendix D.

Intuitively, the potentially useful features presented in the training data are features that have non-
trivial correlations with labels. Moreover, the invariance principle assumes that the training data
comes from different environments (Arjovsky et al., 2019), which implies that each set of features can
only dominate the correlations with labels in a subset of data. Therefore, it is possible to differentiate
the distinct sets of useful features entangled in the training data into different subsets.

The intuition naturally motivates an iterative rich feature learning algorithm, i.e., FAT, that differenti-
ates the subsets and explores new features by multiple rounds. In round k, FAT first identifies the
subset that contains the already learned features by collecting the data points where f yields the cor-
rect prediction, denoted as Gr

k, and the subset that contains the other samples as Ga
k. Given a grouped

datasets G = {Gr, Ga} with 2k − 1 groups, where Ga = {Da
i }

k−1
i=0 and Gr = {Dr

i }
k−1
i=1 (notice

that Dr
0 is the empty set), FAT performs distributionally robust optimization (DRO) (Namkoong &

Duchi, 2016; Zhang et al., 2022) on Ga to explore new features that have not been learned in previous
rounds. Meanwhile, FAT also needs to retain the already learned features by ERM at Gr, as

ℓFAT = max
Da

i ∈Ga
ℓDa

i
(wk ◦ φ) + λ ·

∑
Dr

i ∈Gr
ℓDr

i
(wi ◦ φ), (4)

where ℓDi
(w◦φ) is the empirical risk of w◦φatDi, and {wi|1≤ i≤k−1} are the historical classifiers.

Empirical verification. We verified the effectiveness of FAT by applying the learned features to
various OOD objectives, based on COLOREDMNIST and WILDS datasets. The featurizer is frozen to
prevent feature distortion (Kumar et al., 2022). More results and details are given in Appendix E and
Appendix F, respectively. Table 1 presents the results in COLOREDMNIST datasets. We used both
the original COLOREDMNIST with Etr = {(0.25, 0.1), (0.25, 0.2)} (denoted as COLOREDMNIST-
025), where spurious correlations are stronger, and the modified COLOREDMNIST (denoted as
COLOREDMNIST-01) with Etr = {(0.1, 0.2), (0.1, 0.25)}, where invariant correlations are stronger.
We also include the common practice with non-frozen ERM learned features (denoted as ERM-NF).

It can be found that FAT significantly improves the OOD performance of all OOD objectives for all
COLOREDMNIST datasets over ERM. In contrast, although Bonsai boosts the OOD performance
for COLOREDMNIST-025, it also leads to suboptimal performances when invariant correlations are
stronger, which could be attributed to the uncontrolled feature learning with multiple initializations.

4 CONCLUSIONS

In this paper, we found that ERM learns both invariant and spurious features when OOD objectives
rarely learn new features. Thus, the features learned in the ERM pre-training can greatly influence
the final OOD performance. Having learned the limitations of ERM pre-training, we proposed FAT
to learn all potentially useful features. Extensive experimental results verified the superiority of FAT.

5

Published at ICLR 2023 Workshop on Domain Generalization

ACKNOWLEDGEMENTS

We thank the reviewers for their valuable comments. This work was supported by CUHK direct grant
4055146. BH were supported by the NSFC Young Scientists Fund No. 62006202, Guangdong Basic
and Applied Basic Research Foundation No. 2022A1515011652, RGC Early Career Scheme No.
22200720, and Tencent AI Lab Rhino-Bird Gift Fund.

REFERENCES

Kartik Ahuja, Ethan Caballero, Dinghuai Zhang, Jean-Christophe Gagnon-Audet, Yoshua Bengio,
Ioannis Mitliagkas, and Irina Rish. Invariance principle meets information bottleneck for out-of-
distribution generalization. In Advances in Neural Information Processing Systems, 2021.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020.

Martı́n Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improving
model selection and boosting performance in domain generalization. In Advances in Neural
Information Processing Systems, 2022.

Péter Bándi, Oscar Geessink, Quirine Manson, Marcory Van Dijk, Maschenka Balkenhol, Meyke
Hermsen, Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun Paeng, Aoxiao Zhong,
Quanzheng Li, Farhad Ghazvinian Zanjani, Svitlana Zinger, Keisuke Fukuta, Daisuke Komura,
Vlado Ovtcharov, Shenghua Cheng, Shaoqun Zeng, Jeppe Thagaard, Anders B. Dahl, Huangjing
Lin, Hao Chen, Ludwig Jacobsson, Martin Hedlund, Melih Çetin, Eren Halici, Hunter Jackson,
Richard Chen, Fabian Both, Jörg Franke, Heidi Küsters-Vandevelde, Willem Vreuls, Peter Bult,
Bram van Ginneken, Jeroen van der Laak, and Geert Litjens. From detection of individual metas-
tases to classification of lymph node status at the patient level: The CAMELYON17 challenge.
IEEE Trans. Medical Imaging, 38(2):550–560, 2019.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. In Computer Vision
European Conference, Part XVI, pp. 472–489, 2018.

Sara Beery, Elijah Cole, and Arvi Gjoka. The iwildcam 2020 competition dataset. arXiv preprint
arXiv:2004.10340, 2020.

Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
metrics for measuring unintended bias with real data for text classification. In Companion of The
2019 World Wide Web Conference, pp. 491–500, 2019.

Alon Brutzkus, Amir Globerson, Eran Malach, and Shai Shalev-Shwartz. SGD learns over-
parameterized networks that provably generalize on linearly separable data. In International
Conference on Learning Representations, 2018.

Yuan Cao, Zixiang Chen, Mikhail Belkin, and Quanquan Gu. Benign overfitting in two-layer
convolutional neural networks. In Advances in Neural Information Processing Systems, 2022a.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convolu-
tional neural networks. In Advances in Neural Information Processing Systems, 2022b.

Yongqiang Chen, Yonggang Zhang, Yatao Bian, Han Yang, Kaili Ma, Binghui Xie, Tongliang Liu,
Bo Han, and James Cheng. Learning causally invariant representations for out-of-distribution
generalization on graphs. In Advances in Neural Information Processing Systems, 2022a.

Yongqiang Chen, Kaiwen Zhou, Yatao Bian, Binghui Xie, Kaili Ma, Yonggang Zhang, Han Yang,
Bo Han, and James Cheng. Pareto invariant risk minimization. arXiv preprint arXiv:2206.07766,
2022b.

Gordon A. Christie, Neil Fendley, James Wilson, and Ryan Mukherjee. Functional map of the world.
In IEEE Conference on Computer Vision and Pattern Recognition, pp. 6172–6180, 2018.

6

Published at ICLR 2023 Workshop on Domain Generalization

Spencer Frei, Yuan Cao, and Quanquan Gu. Provable generalization of sgd-trained neural networks
of any width in the presence of adversarial label noise. In International Conference on Machine
Learning, pp. 3427–3438, 2021.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard S. Zemel, Wieland Brendel,
Matthias Bethge, and Felix A. Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021.

Arushi Gupta, Nikunj Saunshi, Dingli Yu, Kaifeng Lyu, and Sanjeev Arora. New definitions and
evaluations for saliency methods: Staying intrinsic and sound, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kilian Q. Weinberger. Densely connected
convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition, pp.
2261–2269, 2017.

Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew Gordon Wilson. On feature learning
in the presence of spurious correlations. In Advances in Neural Information Processing Systems,
2022.

Pritish Kamath, Akilesh Tangella, Danica Sutherland, and Nathan Srebro. Does invariant risk
minimization capture invariance? In International Conference on Artificial Intelligence and
Statistics, pp. 4069–4077, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training is sufficient
for robustness to spurious correlations. arXiv preprint arXiv:2204.02937, 2022.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M. Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
benchmark of in-the-wild distribution shifts. In International Conference on Machine Learning,,
pp. 5637–5664, 2021.

Masanori Koyama and Shoichiro Yamaguchi. Out-of-distribution generalization with maximal
invariant predictor. arXiv preprint arXiv:2008.01883, 2020.

David Krueger, Ethan Caballero, Jörn-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Dinghuai Zhang,
Rémi Le Priol, and Aaron C. Courville. Out-of-distribution generalization via risk extrapolation
(rex). In International Conference on Machine Learning, pp. 5815–5826, 2021.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In International
Conference on Learning Representations, 2022.

Hongseok Namkoong and John C. Duchi. Stochastic gradient methods for distributionally robust
optimization with f-divergences. In Advances in Neural Information Processing Systems, pp.
2208–2216, 2016.

Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using distantly-labeled
reviews and fine-grained aspects. In Conference on Empirical Methods in Natural Language
Processing and International Joint Conference on Natural Language Processing, pp. 188–197,
2019.

7

http://www.deeplearningbook.org
http://www.deeplearningbook.org

Published at ICLR 2023 Workshop on Domain Generalization

Giambattista Parascandolo, Alexander Neitz, Antonio Orvieto, Luigi Gresele, and Bernhard
Schölkopf. Learning explanations that are hard to vary. In International Conference on Learning
Representations, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems, pp. 8024–8035, 2019.

Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron C. Courville, Doina Precup, and
Guillaume Lajoie. Gradient starvation: A learning proclivity in neural networks. In Advances in
Neural Information Processing Systems, pp. 1256–1272, 2021.

Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for
out-of-distribution generalization. arXiv preprint arXiv:2109.02934, 2021.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, patrick gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. In Advances
in Neural Information Processing Systems, 2022.

Mateo Rojas-Carulla, Bernhard Schölkopf, Richard Turner, and Jonas Peters. Invariant models for
causal transfer learning. Journal of Machine Learning Research, 19(36):1–34, 2018.

F. Rosenblatt. The perceptron - a perceiving and recognizing automaton. Technical Report 85-460-1,
Cornell Aeronautical Laboratory, 1957.

Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Domain-adjusted regression or: Erm
may already learn features sufficient for out-of-distribution generalization. arXiv preprint
arXiv:2202.06856, 2022.

Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks. In International Conference on Learning Representations, 2020.

Wojciech Samek, Gregoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Muller.
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Springer Publishing
Company, Incorporated, 1st edition, 2019. ISBN 3030289532.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Harshay Shah, Kaustav Tamuly, Aditi Raghunathan, Prateek Jain, and Praneeth Netrapalli. The
pitfalls of simplicity bias in neural networks. In Advances in Neural Information Processing
Systems, pp. 9573–9585, 2020.

Ruoqi Shen, Sebastien Bubeck, and Suriya Gunasekar. Data augmentation as feature manipulation.
In International Conference on Machine Learning, pp. 19773–19808, 2022.

Yuge Shi, Jeffrey Seely, Philip Torr, Siddharth N, Awni Hannun, Nicolas Usunier, and Gabriel
Synnaeve. Gradient matching for domain generalization. In International Conference on Learning
Representations, 2022.

Ravid Shwartz-Ziv and Naftali Tishby. Opening the black box of deep neural networks via information.
arXiv preprint arXiv:1703.00810, 2017.

James Taylor, Berton Earnshaw, Ben Mabey, Mason Victors, and Jason Yosinski. Rxrx1: An image set
for cellular morphological variation across many experimental batches. In International Conference
on Learning Representations, 2019.

Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in Neural
Information Processing Systems, pp. 831–838, 1991.

Yoav Wald, Amir Feder, Daniel Greenfeld, and Uri Shalit. On calibration and out-of-domain
generalization. In Advances in Neural Information Processing Systems, pp. 2215–2227, 2021.

8

Published at ICLR 2023 Workshop on Domain Generalization

Zixin Wen and Yuanzhi Li. Toward understanding the feature learning process of self-supervised
contrastive learning. In International Conference on Machine Learning, pp. 11112–11122, 2021.

Haotian Ye, James Zou, and Linjun Zhang. Freeze then train: Towards provable representation
learning under spurious correlations and feature noise. arXiv preprint arXiv:2210.11075, 2022.

Jianyu Zhang and Leon Bottou. Learning useful representations for shifting tasks and distributions.
2022.

Jianyu Zhang, David Lopez-Paz, and Leon Bottou. Rich feature construction for the optimization-
generalization dilemma. In International Conference on Machine Learning, pp. 26397–26411,
2022.

Xiao Zhou, Yong Lin, Renjie Pi, Weizhong Zhang, Renzhe Xu, Peng Cui, and Tong Zhang. Model
agnostic sample reweighting for out-of-distribution learning. In International Conference on
Machine Learning, pp. 27203–27221, 2022.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

9

Published at ICLR 2023 Workshop on Domain Generalization

A RELATED WORK

On Feature Learning and Generalization. Understanding what features are learned by deep
networks is crucial to understanding their generalization (Rosenblatt, 1957; Shwartz-Ziv & Tishby,
2017; Brutzkus et al., 2018; Frei et al., 2021; Allen-Zhu & Li, 2020; Cao et al., 2022b). Beyond the
empirical probing (Samek et al., 2019; Gupta et al., 2022), Allen-Zhu & Li (2020) proposed a new
theoretical framework that characterizes the feature learning process of deep networks, which has
been widely adopted to analyze behaviors of deep networks (Wen & Li, 2021; Zou et al., 2021; Cao
et al., 2022b) However, how the learned features from in-distribution data can generalize to OOD data
remains elusive. The only exception is Shen et al. (2022), which focuses on how data augmentation
helps promote good but hard to learn features and improve OOD generalization. In contrast, we study
the direct influence of ERM and OOD objectives to feature learning and aim to provide a theoretical
explanation to the phenomenon that ERM may have already learned good features (Rosenfeld et al.,
2022; Kirichenko et al., 2022; Izmailov et al., 2022).

Rich Feature Learning. Recently many OOD objectives have been proposed to regularize ERM
such that the model can focus on learning invariant features (Arjovsky et al., 2019; Krueger et al.,
2021; Pezeshki et al., 2021; Wald et al., 2021; Rame et al., 2021). However, due to the intrinsic
conflicts of ERM and OOD objectives, it often requires exhaustive hyperparameter tuning of ERM
pre-training epochs and regularization weights (Zhang et al., 2022; Chen et al., 2022b). Especially,
the final OOD performance has a large dependence on the number of pre-training epochs. To remedy
the issue, Zhang et al. (2022) proposed Bonsai to construct rich feature representations with plentiful
potentially useful features as network initialization. Although both Bonsai and FAT perform DRO
on grouped subsets, Bonsai rely on multiple initializations of the whole network to capture diverse
features from the subsets, and complicated ensembling of the features, which requires much more
training epochs for the convergence. In contrast, FAT relieves the requirements by performing direct
augmentation-retention on the grouped subsets, and thus obtains better performance. More crucially,
although Bonsai and other rich feature learning algorithms such as weight averaging (Rame et al.,
2022; Arpit et al., 2022; Zhang & Bottou, 2022) have gained impressive successes in mitigating
the dilemma, explanations about the reliance on ERM pre-training and why rich feature learning
mitigates the dilemma remain elusive. Our work provides novel theoretical explanations for the
success of rich feature learning algorithms for OOD generalization.

B PRELIMINARIES AND PROBLEM DEFINITION

Notations. We use bold-faced letters for vectors and matrices otherwise representing scalar. We
use ∥ · ∥2 to denote the Euclidean norm of a vector or the spectral norm of a matrix, while denoting
∥ · ∥F as the Frobenius norm of a matrix. For a neural network, we denote σ(x) as the activation
function. Let Id be the identity matrix with dimension of Rd×d. We denote [n] = {1, 2, . . . , n}.
Our data model D = {xi, yi}ni=1 is adapted from (Allen-Zhu & Li, 2020) and further characterizes
each data point xi as invariant and spurious feature patches from the two-bit model (Kamath et al.,
2021; Chen et al., 2022b).

Definition B.1. D = {De}e∈Eall is composed of multiple subsets De from different environments
e ∈ Eall, where each De = {(xe

i , y
e
i)}

ne
i=1 is composed of i.i.d. samples (xe

i , y
e
i) ∼ Pe. Each data

(xe, ye) ∈ De with xe ∈ R2d and ye ∈ {−1, 1} is generated as follows:

(a) Sample ye ∈ {−1, 1} uniformly;

(b) Given ye, each input xe = [xe
1,x

e
2] contains a feature patch x1 and a noise patch x2, that

are sampled as:

x1 = y · Rad(α) · v1 + y · Rad(β) · v2 x2 = ξ

where Rad(δ) is a random variable taking value −1 with probability δ and +1 with proba-
bility δ, v1 = [1, 0, . . . 0]⊤ and v2 = [0, 1, 0, . . . 0]⊤.

(c) A noise vector ξ is generated from the Gaussian distributionN (0, σ2
p ·(Id−v1v

⊤
1 −v2v

⊤
2))

10

Published at ICLR 2023 Workshop on Domain Generalization

Definition B.1 is inspired by the structure of image data, where the inputs consist of different patches,
some of the patches consist of features that are related to the class label of the image, and the others
are noises that are irrelevant to the label. In particular, v1 and v2 are feature vectors, in which v1

simulates the underlying invariant feature while v2 simulates the spurious feature. Although our data
model focuses on two feature vectors, the discussion and results can be further generalized to multiple
invariant and spurious features with fine-grained characteristics (Shen et al., 2022). Besides, we
assume that the noise patch is generated from the Gaussian distributionN (0, σ2

p ·(Id−v1v
⊤
1 −v2v

⊤
2))

to ensure that the noise vector is orthogonal to the signal vectors v1 and v2 for simplicity. Each
environment is denoted as Eα = {(α, βe) : 0 < βe < 1}, where v1 is the invariant feature as α is
fixed for different environment e, and v2 is the spurious feature as βe varies across different e.

CNN model. We consider training a two-layer convolutional neural network whose filters are
applied to x1, x2, respectively, 3 and the second layer parameters of the network are fixed as 1

m and
− 1

m , respectively, with m being the width of the hidden layer. Then the network can be written as
f(W,x) = F+1(W+1,x) − F−1(W−1,x), where F+1(W+1,x) and F−1(W−1,x) are defined
as follows:

Fj(Wj ,x) =
1

m

m∑
r=1

[
σ(w⊤

j,rx1) + σ(w⊤
j,rx2)

]
, (5)

where σ(x) is the activation function. We assume that all network weights are initialized asN (0, σ2
0).

In this work, we focus on linear activation σ(x) = x since it is sufficient to observe the desired
feature learning behaviors of ERM and OOD objectives.4 Nevertheless, our framework can also be
extended to non-linear activation functions, such as q-ReLU (Zou et al., 2021; Cao et al., 2022a).

ERM objective. We train the above CNN model by minimizing the empirical cross-entropy loss
function

LS(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ(yei · f(W,xe
i)), (6)

where ℓ(z) = log(1 + exp(−z)) and Dtr = {De}e∈Etr = {xi, yi}ni=1 is the training data set with∑
e∈Etr

ne = n.

OOD objective. The goal of OOD generalization is, given the data from training environments
{De}e∈Etr , to find a predictor f : X → Y that generalizes well to all (unseen) environments, or
minimizes maxe∈Eall Le(f), where Le is the empirical risk under environment e. The predictor
f = w ◦ φ is usually composed of a featurizer φ : X → Z that learns to extract useful features, and
a classifier w : Z → Y that makes predictions from the extracted features.

Since we are interested in analyzing the feature learning process where the OOD objective succeeds
in learning the invariant features. In the discussion below, without loss of generality, we analyze
the IRMv1 objective and the data model where IRMv1 succeeds, as IRMv1 is one of the most
widely discussed OOD objective from IRM frameworkArjovsky et al. (2019). Specifically, the IRM
framework approaches OOD generalization by finding an invariant representation φ, such that there
exists a classifier acting on φ that is simultaneously optimal in Etr. Hence, IRM leads to a challenging
bi-level optimization problem as

min
w,φ

∑
e∈Etr

Le(w ◦ φ), s.t. w ∈ argmin
w̄:Z→Y

Le(w̄ ◦ φ), ∀e ∈ Etr. (7)

Due to the optimization difficulty of Eq. (7), Arjovsky et al. (2019) relax Eq. (7) into IRMv1 as
follows:

min
φ

∑
e∈Etr

Le(φ) + λ|∇w|w=1Le(w · φ)|2. (8)

3When the environment e is not explicitly considered, we will omit it for clarity.
4It is also partially due to the complexity of IRMv1 dynamics, though to the best of our knowledge, we are

the first to directly study the IRMv1 dynamics.

11

Published at ICLR 2023 Workshop on Domain Generalization

Given the convolutional neural network (Eq. 5) and logistic loss (Eq. 6), IRMv1 can be written as

LIRMv1(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ (yei · f(W,xe
i))

+
∑
e∈Etr

λ

n2
e

(
ne∑
i=1

ℓ′i · yei · f(W,xe
i)

)2

,

(9)

where ℓ′
e
i = ℓ′(yei · f(W,xe

i)) = −
exp(−ye

i ·f(W,xe
i))

1+exp(−ye
i ·f(W,xe

i))
. In other words, we define the featurizer φ

as the whole CNN model and the classifier w as the scalar 1, following the relaxations introduced in
IRMv1. Due to the complexity of IRMv1, in the analysis below, we introduce Ce

IRMv1 for the ease of
expressions. Specifically,

Ce
IRMv1 ≜

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ŷei ,

where ŷei ≜ f(W,xe
i) is the logit of sample i from environment e. The convergence of CIRMv1

indicates the convergence of IRMv1 penalty. The following definition will be useful in our analysis
of IRMv1 objective.
Definition B.2. Let wj,r(t)

5 for j ∈ {+1,−1} and r ∈ [m] be the convolution filters of the CNN at
the t-th iteration of gradient descent. Then there exists unique coefficients γj,r,1(t), γj,r,2(t) ≥ 0 and
ρj,r,i(t) such that,

wj,r(t) = wj,r(0) + j · γj,r,1(t) · v1 + j · γj,r,2(t) · v2

+

n∑
i=1

ρj,r,i(t) · ∥ξi∥−2
2 · ξi. (10)

We refer Eq.(10) as the signal-noise decomposition of wj,r(t). We add normalization factor ∥ξi∥−2
2

in the definition so that ρ(t)j,r ≈ ⟨w
(t)
j,r, ξi⟩. Note that ∥v1∥2 = ∥v2∥2 = 1, the corresponding

normalization factors are thus neglected.

C PROOFS FOR THEORETICAL RESULTS

C.1 IMPLEMENTATION DETAILS OF THE SYNTHETIC CNN EXPERIMENTS

The logit ŷei (which is a function of W) of sample i in the environment e can be explicitly written as

ŷei = f(W,xe
i) = F+1(W+1,x

e
i)− F−1(W−1,x

e
i) =

∑
j∈{±1}

j

m

m∑
r=1

[
w⊤

j,r(x
e
i,1 + xe

i,2)
]
,

where W ≜ {W+1,W−1} and Wj ≜

w
⊤
j,1
...

w⊤
j,m

 for j ∈ {±1}. We initialized all the network

weights as N (0, σ2
0) and we set σ0 = 0.01.

The test dataset (x, y) is generated through
xi,1 = yi · v1 + yi · Rad(1− βe) · v2, xi,2 = ξ,

where half of the dataset uses Rad(1− β1) and the other half uses Rad(1− β2). Here ξ ∼ N (0, σ2
p ·

(Id − v1v
⊤
1 − v2v

⊤
2)) and we chose σp = 0.01.

From the definition of IRMv1, we take derivative wrt the scalar 1 of the logit 1 · ŷei . Thus, for
environment e, the penalty is(

1

ne

ne∑
i=1

∇w|w=1ℓ
(
yei (w · ŷei)

))2

=

(
1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ŷei

)2

.

5We use wj,r(t), w
(t)
j,r and wt

j,r interchangeably.

12

Published at ICLR 2023 Workshop on Domain Generalization

Then, the IRMv1 objective is (we set n1 = n2 = 2500 in the simulation)

LIRMv1(W) =
∑
e∈Etr

1

ne

ne∑
i=1

ℓ
(
yei ŷ

e
i

)
+ λ

∑
e∈Etr

(
1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ŷei

)2

.

We used constant stepsize GD to minimize LIRMv1(W), and we chose λ = 108 (heavy regularization
setup).

Let Ce
IRMv1 ≜ 1

ne

∑ne

i=1 ℓ
′(yei ŷei) · yei ŷei . The gradient of LIRMv1(W) with respect to each wj,r can

be explicitly written as

∇wj,r
LIRMv1(W) =

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei ·

j

m
(xe

i,1 + xe
i,2)

+ 2λ
∑
e∈Etr

Ce
IRMv1

ne

ne∑
i=1

(
ℓ′′
(
yei ŷ

e
i

)
· ŷei ·

j

m
(xe

i,1 + xe
i,2) + ℓ′

(
yei ŷ

e
i

)
· yei ·

j

m
(xe

i,1 + xe
i,2)
)

=
∑
e∈Etr

j

nem

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · (xe

i,1 + xe
i,2) + 2λ

∑
e∈Etr

jCe
IRMv1

nem

ne∑
i=1

ℓ′′
(
yei ŷ

e
i

)
· ŷei · (xe

i,1 + xe
i,2)

+ 2λ
∑
e∈Etr

jCe
IRMv1

nem

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · (xe

i,1 + xe
i,2)

=
∑
e∈Etr

j(1 + 2λCe
IRMv1)

nem

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · (xe

i,1 + xe
i,2)

+ 2λ
∑
e∈Etr

jCe
IRMv1

nem

ne∑
i=1

ℓ′′
(
yei ŷ

e
i

)
· ŷei · (xe

i,1 + xe
i,2).

Observe that Ce
IRMv1 is in fact the scalar gradient Ce

IRMv1 = ∇w|w=1L
e
ERM(W) that we want to force

zero, whose effect can be understood as a dynamic re-weighting of the ERM gradient. Due to its
importance in the analysis and interpretation of IRMv1, we tracked Ce

IRMv1 in our simulations.

The invariant and spurious feature learning terms that we tracked are the mean of ⟨wj,r, jv1⟩ and
⟨wj,r, jv2⟩ for j ∈ {±1}, r ∈ [m], respectively.

13

Published at ICLR 2023 Workshop on Domain Generalization

C.2 PROOF FOR THEOREM 3.1

Theorem C.1 (Formal statement of Theorem 3.1). For ρ > 0, denote n ≜ mine∈Etr
ne, n ≜∑

e∈Etr
ne, ϵC ≜

√
2 log (16/ρ)

n and δ ≜ exp{O(n−1)} − 1. Define the feature learning terms

Λt
j,r ≜ ⟨wt

j,r, jv1⟩ and Γt
j,r ≜ ⟨wt

j,r, jv2⟩ for j ∈ {±1}, r ∈ [m]. Suppose we run T iterations of
GD for the ERM objective. With sufficiently large n, assuming that

α, β1, β2 <
1− ϵC − δ(14 + ϵC

2)

2
(α, β1, β2 are sufficiently smaller than

1

2
),

α >
β1 + β2

2
+ ϵC +

δ(1 + ϵC)

2
(α is sufficiently larger than

β1 + β2

2
),

and choosing

σ2
0 = O

(
n−2 log−1 (m/ρ)

)
,

σ2
p = O

(
min

{
d−1/2 log−1/2 (nm/ρ), T−1η−1m

(
d+ n

√
d log(n2/ρ)

)−1
})

,

there exists a constant η, such that for any j ∈ {±1}, r ∈ [m], with probability at least 1− 2ρ, Λt
j,r

and Γt
j,r are converging and the increment of the spurious feature Γt+1

j,r − Γt
j,r is larger than that of

the invariant feature Λt+1
j,r − Λt

j,r at any iteration t ∈ {0, . . . , T − 1}.

Proof of Theorem C.1. We begin with checking the feature learning terms in the ERM stage using
constant stepsize GD: Wt+1 = Wt − η · ∇WLIRMv1(W

t). Note that the update rule for each
wj,r,∀j ∈ {+1,−1}, r ∈ [m] can be written as

wt+1
j,r = wt

j,r −
jη

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · (xe

i,1 + xe
i,2)

= wt
j,r −

jη

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· (Rad(α)i · v1 + Rad(βe)i · v2 + yei ξ

e
i).

Define the quantities of interest (the feature learning terms): Λt
j,r ≜ ⟨wt

j,r, jv1⟩,Γt
j,r ≜

⟨wt
j,r, jv2⟩,Ξt,e

j,r,i ≜ ⟨wt
j,r, jξ

e
i ⟩. From our data generating procedure (Definition B.1), we know

that the first two coordinates of ξei are zero. Thus, we can write down the update rule for each feature
learning term as follows.

Λt+1
j,r = Λt

j,r −
η

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· Rad(α)i,

Γt+1
j,r = Γt

j,r −
η

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· Rad(βe)i,

Ξt+1,e′

j,r,i′ = Ξt,e′

j,r,i′ −
η

m

∑
e∈Etr

1

ne

ne∑
i=1

ℓ′
(
yei ŷ

e
i

)
· yei · ⟨ξei , ξe

′

i′ ⟩.

More explicitly, we can write

Λt+1
j,r = Λt

j,r +
η

m

∑
e∈Etr

1

ne

ne∑
i=1

Rad(α)i
1 + exp{yei ŷei }

, (11)

Γt+1
j,r = Γt

j,r +
η

m

∑
e∈Etr

1

ne

ne∑
i=1

Rad(βe)i
1 + exp{yei ŷei }

, (12)

Ξt+1,e′

j,r,i′ = Ξt,e′

j,r,i′ +
η

m

∑
e∈Etr

1

ne

ne∑
i=1

yei · ⟨ξei , ξe
′

i′ ⟩
1 + exp{yei ŷei }

. (13)

14

Published at ICLR 2023 Workshop on Domain Generalization

Notice that the updates (11), (12) for Λj,r,Γj,r are independent of j, r. Denoting

∆t
Λ ≜

1

m

∑
e∈Etr

1

ne

ne∑
i=1

Rad(α)i
1 + exp{yei ŷei }

,

∆t
Γ ≜

1

m

∑
e∈Etr

1

ne

ne∑
i=1

Rad(βe)i
1 + exp{yei ŷei }

,

we can conclude that for any j ∈ {+1,−1}, r ∈ [m],

Λt+1
j,r = Λt

j,r + η ·∆t
Λ = η ·

t∑
k=0

∆k
Λ + Λ0

j,r,

Γt+1
j,r = Γt

j,r + η ·∆t
Γ = η ·

t∑
k=0

∆k
Γ + Γ0

j,r.

(14)

Then, we write the logit ŷei as

ŷei =
∑

j∈{±1}

j

m

m∑
r=1

[〈
wt

j,r, y
e
i · Rad(α)i · v1 + yei · Rad(βe)i · v2 + xe

i,2

〉]
=

∑
j∈{±1}

j

m

m∑
r=1

[
jyei · Rad(α)i · Λt

j,r + jyei · Rad(βe)i · Γt
j,r + j · Ξt,e

j,r,i

]
=

∑
j∈{±1}

1

m

m∑
r=1

[
yei · Rad(α)i · Λt

j,r + yei · Rad(βe)i · Γt
j,r + Ξt,e

j,r,i

]
= yei · Rad(α)i ·

∑
j∈{±1}

m∑
r=1

Λt
j,r

m
+ yei · Rad(βe)i ·

∑
j∈{±1}

m∑
r=1

Γt
j,r

m
+

∑
j∈{±1}

m∑
r=1

Ξt,e
j,r,i

m

= yei · Rad(α)i · 2η ·
t−1∑
k=0

∆k
Λ + yei · Rad(βe)i · 2η ·

t−1∑
k=0

∆k
Γ

+ yei · Rad(α)i ·
∑

j∈{±1}

m∑
r=1

Λ0
j,r

m
+ yei · Rad(βe)i ·

∑
j∈{±1}

m∑
r=1

Γ0
j,r

m
+

∑
j∈{±1}

m∑
r=1

Ξt,e
j,r,i

m
.

Denoting Qe
i ≜ Rad(α)i

∑
j∈{±1}

∑m
r=1

Λ0
j,r

m + Rad(βe)i
∑

j∈{±1}
∑m

r=1

Γ0
j,r

m + yei ·∑
j∈{±1}

∑m
r=1

Ξt,e
j,r,i

m , we have

ŷei = yei ·

(
Rad(α)i · 2η ·

t−1∑
k=0

∆k
Λ + Rad(βe)i · 2η ·

t−1∑
k=0

∆k
Γ +Qe

i

)
,

We need the following concentration lemma to control the scale of Qe
i , whose proof is given in

Appendix C.2.1.

Lemma C.2. Denote n ≜ mine∈Etr
ne, n ≜

∑
e∈Etr

ne. For ρ > 0, if

σ2
0 = O

(
n−2 log−1 (m/ρ)

)
,

σ2
p = O

(
min

{
d−1/2 log−1/2 (nm/ρ), T−1η−1m

(
d+ n

√
d log(n2/ρ)

)−1
})

,

then with probability at least 1− ρ, for any e ∈ Etr, i ∈ [ne], it holds that |Qe
i | = O(n−1).

15

Published at ICLR 2023 Workshop on Domain Generalization

Then ∆t
Λ and ∆t

Γ can be explicitly written as

∆t
Λ =

∑
e∈Etr

1

nem

ne∑
i=1

Rad(α)i

1 + exp
{

Rad(α)i · 2η ·
∑t−1

k=0 ∆
k
Λ

}
· exp

{
Rad(βe)i · 2η ·

∑t−1
k=0 ∆

k
Γ

}
· exp {Qe

i}
,

∆t
Γ =

∑
e∈Etr

1

nem

ne∑
i=1

Rad(βe)i

1 + exp
{

Rad(α)i · 2η ·
∑t−1

k=0 ∆
k
Λ

}
· exp

{
Rad(βe)i · 2η ·

∑t−1
k=0 ∆

k
Γ

}
· exp {Qe

i}
.

We are going to analyze the convergences of two sequences {∆t
Γ +∆t

Λ} and {∆t
Γ −∆t

Λ}. Notice
that

∆t
Γ +∆t

Λ =
∑
e∈Etr

1

nem

ne∑
i=1

Rad(βe)i + Rad(α)i

1 + exp
{

Rad(α)i · 2η ·
∑t−1

k=0 ∆
k
Λ

}
· exp

{
Rad(βe)i · 2η ·

∑t−1
k=0 ∆

k
Γ

}
· exp {Qe

i}
,

∆t
Γ −∆t

Λ =
∑
e∈Etr

1

nem

ne∑
i=1

Rad(βe)i − Rad(α)i

1 + exp
{

Rad(α)i · 2η ·
∑t−1

k=0 ∆
k
Λ

}
· exp

{
Rad(βe)i · 2η ·

∑t−1
k=0 ∆

k
Γ

}
· exp {Qe

i}
.

We can further write these two terms as

∆t
Γ +∆t

Λ =
∑
e∈Etr

2

nem

∑
i∈[ne]

Rad(βe)i=+1
Rad(α)i=+1

1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {Qe

i}

−
∑
e∈Etr

2

nem

∑
i∈[ne]

Rad(βe)i=−1
Rad(α)i=−1

1

1 + exp
{
−2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {Qe

i}
,

∆t
Γ −∆t

Λ =
∑
e∈Etr

2

nem

∑
i∈[ne]

Rad(βe)i=+1
Rad(α)i=−1

1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {Qe

i}

−
∑
e∈Etr

2

nem

∑
i∈[ne]

Rad(βe)i=−1
Rad(α)i=+1

1

1 + exp
{
−2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {Qe

i}
.

According to Lemma C.2, for all e ∈ Etr, i ∈ [ne], ρ > 0, letting δ ≜ exp{O(n−1)} − 1, we
have 1 + δ ≥ exp {Qe

i} ≥ (1 + δ)−1 with probability at least 1 − ρ. Let Ce
jℓ ≜ |{i | Rad(α)i =

j,Rad(βe)i = ℓ, i ∈ Ee}| for any j ∈ {±1}, ℓ ∈ {±1}, e ∈ Etr, and then define Cjℓ ≜
∑

e∈Etr

Ce
jℓ

ne
.

We can upper bound and formulate ∆t
Γ +∆t

Λ and ∆t
Γ −∆t

Λ as

∆t
Γ +∆t

Λ ≤
2

m

 C+1+1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· (1 + δ)−1

− C−1−1

1 + exp
{
−2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· (1 + δ)

=

2

m
·
C+1+1(1 + δ)− C−1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}

1 + δ + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
} , (15)

∆t
Γ −∆t

Λ ≤
2

m

 C−1+1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· (1 + δ)−1

− C+1−1

1 + exp
{
−2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· (1 + δ)

=

2

m
·
C−1+1(1 + δ)− C+1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}

1 + δ + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
} . (16)

16

Published at ICLR 2023 Workshop on Domain Generalization

Based on similar arguments, we can also establish lower bounds for these two terms,

∆t
Γ +∆t

Λ ≥
2

m
·
C+1+1 − C−1−1(1 + δ) · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· (1 + δ)

, (17)

∆t
Γ −∆t

Λ ≥
2

m
·
C−1+1 − C+1−1(1 + δ) · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· (1 + δ)

. (18)

The upper and lower bounds (15), (16), (17) and (18) imply that the convergences of {∆t
Γ +∆t

Λ} and

{∆t
Γ −∆t

Λ} are determined by recursive equations of the form Qt =
C1−C2·exp {η

∑t−1
k=0 Qk}

1+C3·exp {η
∑t−1

k=0 Qk} . We

first establish that with suitably chosen η, the sequences {∆t
Γ +∆t

Λ} and {∆t
Γ−∆t

Λ} are guaranteed
to be positive. Observed that for the Qt-type recursive equation, the sign of Q0 is independent of η,
and only determined by the constants C1, C2, C3. At iteration 0, (17) and (18) give

∆0
Γ +∆0

Λ ≥
2

m
· C+1+1 − C−1−1(1 + δ)

2 + δ
, (19)

∆0
Γ −∆0

Λ ≥
2

m
· C−1+1 − C+1−1(1 + δ)

2 + δ
. (20)

To proceed, we need the following concentration lemma to control the deviations of the constants
C+1+1, C+1−1, C−1+1 and C−1−1 from their expectations, whose proof is given in Appendix C.2.2.

Lemma C.3. For ρ > 0, considering two environments and denoting ϵC ≜
√

2 log (16/ρ)
n , with

probability at least 1− ρ, we have∣∣C+1+1 − (1− α)(2− β1 − β2)
∣∣ ≤ ϵC ,∣∣C+1−1 − (1− α)(β1 + β2)
∣∣ ≤ ϵC ,∣∣C−1+1 − α(2− β1 − β2)
∣∣ ≤ ϵC ,∣∣C−1−1 − α(β1 + β2)
∣∣ ≤ ϵC .

(21)

Using Lemma C.3, with probability at least 1− ρ, the constants C+1+1, C+1−1, C−1+1 and C−1−1

are close to their expectations.

Based on our assumptions that

α, β1, β2 <
1− ϵC − δ(14 + ϵC

2)

2
(α, β1, β2 are sufficiently smaller than

1

2
),

α >
β1 + β2

2
+ ϵC +

δ(1 + ϵC)

2
(α is sufficiently larger than

β1 + β2

2
),

it can be verified that with probability at least 1− 2ρ, ∆0
Γ +∆0

Λ > 0,∆0
Γ −∆0

Λ > 0.

Then, at iteration 1, from (17) and (18), we see that as long as we require

η < min

{
1

2(∆0
Γ +∆0

Λ)
log

C+1+1

C−1−1(1 + δ)
,

1

2(∆0
Γ −∆0

Λ)
log

C−1+1

C+1−1(1 + δ)

}
,

it holds that ∆1
Γ + ∆1

Λ > 0,∆1
Γ − ∆1

Λ > 0. By recursively applying this argument, we see the
requirement for η to ensure that ∆t

Γ +∆t
Λ > 0 and ∆t

Γ −∆t
Λ > 0 for any t ∈ {0, . . . , T} is

η < min

{
1

2
∑T−1

k=0 (∆k
Γ +∆k

Λ)
log

C+1+1

C−1−1(1 + δ)
,

1

2
∑T−1

k=0 (∆k
Γ −∆k

Λ)
log

C−1+1

C+1−1(1 + δ)

}
.

(22)
In other words, for theQt-type recursive equation, as long asQ0 ≥ 0, there always exists a sufficiently
small η to guarantee that the whole sequence {Qt} is positive. From now on, we will focus on
the case where the two sequences {∆t

Γ +∆t
Λ} and {∆t

Γ −∆t
Λ} decrease to an ϵ∆ > 0 error, i.e.,

mint∈{0,...,T} {∆t
Γ +∆t

Λ,∆
t
Γ −∆t

Λ} = ϵ∆.

17

Published at ICLR 2023 Workshop on Domain Generalization

Then, we show that the two sequences {∆t
Γ +∆t

Λ} and {∆t
Γ −∆t

Λ} decrease monotonically, which
thus leads to a more refined upper bound for η at (22). Inspect the upper bounds (15), (16) at iteration
t+ 1, which can be written as

∆t+1
Γ +∆t+1

Λ ≤ 2

m
·
C+1+1 − C−1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {2η · (∆t

Γ +∆t
Λ)}(1 + δ)−1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {2η · (∆t

Γ +∆t
Λ)}(1 + δ)−1

≜ ♠t+1,

∆t+1
Γ −∆t+1

Λ ≤ 2

m
·
C−1+1 − C+1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {2η · (∆t

Γ −∆t
Λ)}(1 + δ)−1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {2η · (∆t

Γ −∆t
Λ)}(1 + δ)−1

≜ ♣t+1.

Requiring that η > max
{

1
∆t

Γ+∆t
Λ
log (1 + δ), 1

∆t
Γ−∆t

Λ
log (1 + δ)

}
,∀t ∈ {0, . . . , T} ⇒ η >

ϵ−1
∆ log (1 + δ), we have

♠t+1 <
2

m
·
C+1+1 − C−1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· exp {2η · (∆t

Γ +∆t
Λ)}(1 + δ)−1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ +∆k

Λ)
}
· (1 + δ)

< ∆t
Γ +∆t

Λ,

♣t+1 <
2

m
·
C−1+1 − C+1−1 · exp

{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· exp {2η · (∆t

Γ −∆t
Λ)}(1 + δ)−1

1 + exp
{
2η ·

∑t−1
k=0 (∆

k
Γ −∆k

Λ)
}
· (1 + δ)

< ∆t
Γ −∆t

Λ,

where the last inequalities use the lower bounds (17) and (18).

Based on the above discussion and (22), we can now clarify the requirements of η for the sequences
{∆t

Γ +∆t
Λ} and {∆t

Γ −∆t
Λ} to be positive and monotonically decreasing:

ϵ−1
∆ log (1 + δ) < η < min

{
m(2 + δ)

4T (C+1+1(1 + δ)− C−1−1)
log

C+1+1

C−1−1(1 + δ)
,

m(2 + δ)

4T (C−1+1(1 + δ)− C+1−1)
log

C−1+1

C+1−1(1 + δ)

}
,

(23)

which uses the upper bounds (15) and (16) at iteration 0. The constants C+1+1, C+1−1, C−1+1 and
C−1−1 can be substituted using the concentration bounds at (21) to generate an upper bound for η
that only involves α, β1, β2,m, δ, T, ϵC . Here we omit the precise upper bound for clarity. Note that
the left hand side of (23) approaches 0 if δ → 0, which means that there exists a constant choice of η
in (23) if n is sufficiently large in Lemma C.2 and C.3.

To conclude, in view of (14), the convergences of the sequences {∆t
Γ +∆t

Λ} and {∆t
Γ −∆t

Λ} imply
that Λt

j,r and Γt
j,r are converging, and the positive sequence {∆t

Γ −∆t
Λ} indicates that the increment

of the spurious feature Γt+1
j,r − Γt

j,r is larger than that of the invariant feature Λt+1
j,r − Λt

j,r at any
iteration t ∈ {0, . . . , T − 1}.

C.2.1 PROOF OF LEMMA C.2

First, we recall some concentration inequalities for sub-Gaussian random variables. Since ξei ∼
N (0, σ2

p · (Id−v1v
⊤
1 −v2v

⊤
2)), for (i′, e′) ̸= (i, e), using Bernstein’s inequality for sub-exponential

random variables, we have for sufficiently small a ≥ 0,

Pr
{
|⟨ξei , ξe

′

i′ ⟩| ≥ a
}
≤ 2 exp

{
− a2

4σ4
p(d− 2)

}
,

Pr
{∣∣∥ξei ∥22 − σ2

p(d− 2)
∣∣ ≥ a

}
≤ 2 exp

{
− a2

512σ4
p(d− 2)

}
.

18

Published at ICLR 2023 Workshop on Domain Generalization

Moreover, for ξr ∼ N (0, σ2
0) (indicating the initial weights w0

j,r), the standard Gaussian tail gives

Pr

{∣∣∣∣∣ 1m
m∑
r=1

ξr

∣∣∣∣∣ ≥ a

}
≤ 2 exp

{
−ma2

2σ2
0

}
.

Denote n ≜
∑

e∈Etr
ne, n ≜ mine∈Etr

ne, by properly choosing a for each tail bound and applying a
union bound, we can conclude that for ρ > 0, with probability at least 1−ρ, it holds that ∀i, e, i′, e′, r,

|⟨ξei , ξe
′

i′ ⟩| ≤ 2σ2
p

√
(d− 2) log

8n2

ρ
, ∥ξei ∥22 ≤ σ2

p(d− 2) + 16σ2
p

√
2(d− 2) log

8n

ρ
,∣∣∣∣∣ 1m

m∑
r=1

ξr

∣∣∣∣∣ ≤ σ0

√
2

m
log

32m

ρ
, |⟨ξr, ξe

′

i′ ⟩| ≤ 2σpσ0

√
(d− 2) log

16nm

ρ
.

We start with bound the growth of Ξt,e
j,r,i. By bounding the update rule (13), with probability at least

1− ρ, we have∣∣∣Ξt+1,e′

j,r,i′

∣∣∣ ≤ ∣∣∣Ξt,e′

j,r,i′

∣∣∣+ η

m

∑
e∈Etr

1

ne

ne∑
i=1

1

1 + exp{yei ŷei }
· |⟨ξei , ξe

′

i′ ⟩|

≤
∣∣∣Ξt,e′

j,r,i′

∣∣∣+ η

m

∑
e∈Etr

1

ne

ne∑
i=1

|⟨ξei , ξe
′

i′ ⟩|

=
∣∣∣Ξ0,e′

j,r,i′

∣∣∣+ (t+ 1) · η
m

∑
e∈Etr

1

ne

ne∑
i=1

|⟨ξei , ξe
′

i′ ⟩|

= |⟨ξr, ξe
′

i′ ⟩|+ (t+ 1) ·

 η

mne′
∥ξe

′

i′ ∥22 +
∑

(i,e) ̸=(i′,e′)

η

mne
|⟨ξei , ξe

′

i′ ⟩|

≤ 2σpσ0

√
(d− 2) log

16nm

ρ

+
Tησ2

p

mn

(
(d− 2) + 16

√
2(d− 2) log

8n

ρ
+ 2n

√
(d− 2) log

8n2

ρ

)
.

Then, we can bound |Qe
i | as

|Qe
i | ≤ 2 ·

∣∣∣∣∣ 1m
m∑
r=1

ξr

∣∣∣∣∣+ 2 ·

∣∣∣∣∣ 1m
m∑
r=1

ξr

∣∣∣∣∣+ 2

m

m∑
r=1

∣∣Ξt,e
j,r,i

∣∣
≤ 4σ0

√
2

m
log

32m

ρ
+ 4σpσ0

√
(d− 2) log

16nm

ρ

+
2Tησ2

p

mn

(
(d− 2) + 16

√
2(d− 2) log

8n

ρ
+ 2n

√
(d− 2) log

8n2

ρ

)
.

Thus, with sufficient small σ0, σp, i.e.,

σ2
0 = O

(
n−2 log−1 (m/ρ)

)
,

σ2
p = O

(
min

{
d−1/2 log−1/2 (nm/ρ), T−1η−1m

(
d+ n

√
d log(n2/ρ)

)−1
})

,

we ensured that |Qe
i | = O(n−1).

C.2.2 PROOF OF LEMMA C.3

For e ∈ Etr, using Hoeffding’s inequality, it holds that

Pr

{∣∣∣∣∣ 1ne

ne∑
i=1

1{Rad(α)i=+1,Rad(βe)i=+1} − (1− α)(1− βe)

∣∣∣∣∣ ≥ a

}
≤ 2 exp {−2a2ne}.

19

Published at ICLR 2023 Workshop on Domain Generalization

Considering two environments, using a union bound, we can conclude that

Pr
{∣∣C+1+1 − (1− α)(2− β1 − β2)

∣∣ ≤ a
}
≥ 1− 4 exp

{
−a2n

2

}
.

Thus, for ρ > 0, with probability at least 1− ρ
4 , we can conclude that

∣∣C+1+1 − (1− α)(2− β1 − β2)
∣∣ ≤√2 log (16/ρ)

n
.

Using the above arguments for other constants C+1−1, C−1+1 and C−1−1, and applying a union
bound, we obtain the desired results.

20

Published at ICLR 2023 Workshop on Domain Generalization

C.3 PROOF FOR THEOREM 3.2

Theorem C.4 (Restatement of Theorem 3.2). Consider training a CNN model with the same data as
in Theorem 3.1, define

c(t) ≜
[
C1

IRMv1(W, t), C2
IRMv1(W, t), · · · , C|Etr|

IRMv1(W, t)
]
,

and λ0 = λmin(H
∞), where H∞

e,e′ ≜ 1
2mnene′

∑ne

i=1 x
e⊤
1,i

∑ne′
i′=1 x

e′

1,i. Suppose that dimension
d = Ω(log(m/δ)), network width m = Ω(1/δ), regularization factor λ ≥ 1/σ0, noise variance
σp = O(d−2), weight initial scale σ0 = O(min{ λ2

0m
2

log(1/ϵ) ,
λ0m√

d log(1/ϵ)
}), then with probability at least

1− δ, after training time T = Ω
(

log(1/ϵ)
ηλλ0

)
, we have:

∥c(T)∥2 ≤ ϵ, γj,r,1(T) = od(1), γj,r,2(T) = od(1).

Before proving Theorem C.4, we first provide some useful lemmas as follows:

Lemma C.5. Suppose that δ > 0 and d = Ω(log(4n/δ)). Then with probability at least 1− δ,

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2

for all i, i′ ∈ [n].

Proof of Lemma C.5. By Bernstein’s inequality, with probability at least 1− δ/(2n) we have∣∣∥ξi∥22 − σ2
pd
∣∣ = O(σ2

p ·
√

d log(4n/δ)).

Therefore, as long as d = Ω(log(4n/δ)), we have

σ2
pd/2 ≤ ∥ξi∥22 ≤ 3σ2

pd/2.

Lemma C.6. Suppose that d ≥ Ω(log(mn/δ)), m = Ω(log(1/δ)). Then with probability at least
1− δ,

|⟨w(0)
j,r ,v1⟩| ≤

√
2 log(8m/δ) · σ0∥v1∥2,

|⟨w(0)
j,r ,v2⟩| ≤

√
2 log(8m/δ) · σ0∥v2∥2,

|⟨w(0)
j,r , ξi⟩| ≤ 2

√
log(8mn/δ) · σ0σp

√
d

for all r ∈ [m], j ∈ {±1} and i ∈ [n].

Proof of Lemma C.6. It is clear that for each r ∈ [m], j · ⟨w(0)
j,r ,v1⟩ is a Gaussian random variable

with mean zero and variance σ2
0∥v1∥22. Therefore, by Gaussian tail bound and union bound, with

probability at least 1− δ,

j · ⟨w(0)
j,r ,v1⟩ ≤ |⟨w(0)

j,r ,v1⟩| ≤
√

2 log(8m/δ) · σ0∥v1∥2.

Similarly, we have

j · ⟨w(0)
j,r ,v2⟩ ≤ |⟨w(0)

j,r ,v2⟩| ≤
√

2 log(8m/δ) · σ0∥v2∥2.

By Lemma C.5, with probability at least 1− δ, σp

√
d/
√
2 ≤ ∥ξi∥2 ≤

√
3/2 · σp

√
d for all i ∈ [n].

Therefore, the result for ⟨w(0)
j,r , ξi⟩ follows the same proof as j · ⟨w(0)

j,r ,v1⟩.

21

Published at ICLR 2023 Workshop on Domain Generalization

Proof. The proof is by induction method. First we show the gradient flow of weights by IRMv1
objective function (3):

dwj,r(t)

dt
= −η · ∇wj,rLIRMv1(W(t))

= − η

nm
·
∑
e∈Etr

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), y

e
i v

e
i) · jve

i −
η

nm
·
∑
e∈Etr

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), ξi) · jyei ξi

− ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′′i ŷ
e
i σ

′(⟨wj,r(t), y
e
i v

e
i) · jyei vei −

ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′′i ŷ
e
i σ

′(⟨wj,r(t), ξi) · jξi

− ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), y

e
i v

e
i) · jve

i −
ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), ξi) · jyei ξi

= − η

nm
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), y

e
i v

e
i) · jve

i

− η

nm
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), ξi) · jyei ξi

− ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′′i ŷ
e
i σ

′(⟨wj,r(t), y
e
i v

e
i) · jyei vei −

ηλ

nm
·
∑
e∈Etr

Ce
IRMv1

ne∑
i=1

ℓ′′i ŷ
e
i σ

′(⟨wj,r(t), ξi) · jξi,

where Ce
IRMv1 = 1

ne

∑ne

i=1 ℓ
′
iŷ

e
i y

e
i and ve

i = Rad(α)i · v1 + Rad(βe)i · v2. Note that ℓ′′ has the
opposite sign to ℓ′.

Then we look at the dynamics of Ce
IRMv1(t) according to the gradient flow update rule:

dCe
IRMv1(W, t)

dt
=
∑
j=±1

m∑
r=1

〈
∂Ce

IRMv1(W, t)

∂wj,r(t)
,
dwj,r(t)

dt

〉

=
∑
e′

2λCe′

IRMv1(W, t)
∑
j

m∑
r=1

〈
∂Ce

IRMv1(W, t)

∂wj,r(t)
,
∂Ce′

IRMv1(W, t)

∂wj,r(t)

〉

+
∑
j=±1

m∑
r=1

〈
∂Ce

IRMv1(W, t)

∂wj,r(t)
,
∂Ls(W, t)

∂wj,r(t)

〉
= 2λ

∑
e′

Ce′

IRMv1(W, t) ·He,e′(t) + ge(t),

where we define He,e′(t) =
∑

j

∑m
r=1

〈
∂Ce

IRMv1(W,t)
∂wj,r(t)

,
∂Ce′

IRMv1(W,t)
∂wj,r(t)

〉
and ge(t) =∑

j=±1

∑m
r=1

〈
∂Ce

IRMv1(W,t)
∂wj,r(t)

, ∂Ls(W,t)
∂wj,r(t)

〉
. Thus H(t) is an |Etr| × |Etr| matrix. We can write

the dynamics of c(t) =
[
C1

IRMv1(W, t), C2
IRMv1(W, t), · · · , C|Etr|

IRMv1(W, t)
]

in a compact way:

dc(t)

dt
= 2λ ·H(t)c(t) + g(t).

Our next step is to show H(t) is stable in terms of W(t). To proceed with the analysis, we write
down the expression for ∂Ce

IRMv1(W,t)
∂wj,r(t)

∈ Rd:

∂Ce
IRMv1(W(t))

∂wj,r(t)
=

η

nem
·

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), y

e
i v

e
i ⟩) · jve

i +
η

nem

ne∑
i=1

ℓ′i(t)σ
′(⟨wj,r(t), ξi⟩) · jyei ξi

+
η

nem
·

ne∑
i=1

ℓ′′i y
e
i σ

′(⟨wj,r(t), y
e
i v

e
i ⟩) · jyei ve

i +
η

nem
·

ne∑
i=1

ℓ′′i y
e
i σ

′(⟨wj,r(t), ξi⟩) · jξi.

22

Published at ICLR 2023 Workshop on Domain Generalization

When we consider linear activation function σ(x) = x, the entry of matrix H(t) reduces to:

He,e′(t) =
∑
j

m∑
r=1

〈
∂Ce

IRMv1(W, t)

∂wj,r(t)
,
∂Ce′

IRMv1(W, t)

∂wj,r(t)

〉

=
∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ne∑
i=1

ℓ′i(t) · jve⊤
i

ne′∑
i=1

ℓ′i(t) · jve
i +

ne∑
i=1

ℓ′′i (t)y
e
i (t) · jyei ve⊤

i

ne′∑
i=1

ℓ′′i (t)y
e
i (t) · jyei ve

i

]

+
∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ne∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jyei ve⊤

i

ne′∑
i=1

ℓ′i(t) · jve
i +

ne∑
i=1

ℓ′i(t) · jve⊤
i

ne′∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jve

i

]

+
∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ne∑
i=1

ℓ′i(t) · jyei ξe⊤i
ne′∑
i=1

ℓ′i(t) · jyei ξei +
ne∑
i=1

ℓ′′i (t)y
e
i (t) · jξe⊤i

ne′∑
i=1

ℓ′′i (t) · jξei

]

+
∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ne∑
i=1

ℓ′′i (t) · jξe⊤i
ne′∑
i=1

ℓ′i(t) · jyei ξei +
ne∑
i=1

yei ℓ
′
i(t) · jξe⊤i

ne′∑
i=1

ℓ′′i (t) · jξei

]
≜ H1

e,e′(t) +H2
e,e′(t) +H3

e,e′(t) +H4
e,e′(t) +H5

e,e′(t) +H6
e,e′(t) +H7

e,e′(t) +H8
e,e′(t).

Define

H1,∞
e,e′ =

∑
j

m∑
r=1

(
1

nem

)(
1

ne′m

)[ne∑
i=1

−1

2
· jve⊤

i

ne′∑
i=1

−1

2
· jve

i

]

=
1

2mnene′

ne∑
i=1

ve⊤
i

ne′∑
i′=1

ve′

i .

Then we can show that∣∣∣H1
e,e′(t)−H1,∞

e,e′

∣∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t)v
e⊤
i

ne′∑
i′=1

ℓ′i(t)v
e′

i −
ne∑
i=1

1

2
ve⊤
i

ne′∑
i′=1

1

2
ve′

i

∣∣∣∣∣
≤ 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t)v
e⊤
i

ne′∑
i′=1

ℓ′i(t)v
e′

i −
ne∑
i=1

ℓ′iv
e⊤
i

ne′∑
i′=1

1

2
ve′

i

∣∣∣∣∣
+

2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t)v
e⊤
i

ne′∑
i′=1

1

2
ve′

i −
ne∑
i=1

1

2
ve⊤
i

ne′∑
i′=1

1

2
ve′

i

∣∣∣∣∣
≤ 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t)v
e⊤
i

ne′∑
i′=1

(
ℓ′i(t) +

1

2

)
ve′

i

∣∣∣∣∣+ 2

mnene′

∣∣∣∣∣
ne∑
i=1

(
ℓ′i(t) +

1

2

)
ve⊤
i

ne′∑
i′=1

1

2
ve′

i

∣∣∣∣∣
≤ C

2γ

m
,

where C is an absolute constant, γ is defined as follows:

|ŷei (t)| = |f(xi, t)| =

∣∣∣∣∣∣ 1m
∑
j

m∑
r=1

[
σ(w⊤

j,r(t)x1) + σ(w⊤
j,r(t)x2)

]∣∣∣∣∣∣ ≤ γ,

and we have used the bound for ℓ′i(t) +
1
2 :∣∣∣∣ℓ′i(t) + 1

2

∣∣∣∣ = ∣∣∣∣− exp(−yei · f(W,xi, t))

1 + exp(−yei · f(W,xi, t))
+

1

2

∣∣∣∣
=

∣∣∣∣12 − 1

1 + exp(yei · f(W,xi, t))

∣∣∣∣
≤ max

{∣∣∣∣12 − 1

1 + exp(γ)

∣∣∣∣ , ∣∣∣∣12 − 1

1 + exp(−γ)

∣∣∣∣}
≤ max

{∣∣∣∣12 − 1

2 + 7
4γ

∣∣∣∣ , ∣∣∣∣12 − 1

2− γ

∣∣∣∣} = Θ(γ).

23

Published at ICLR 2023 Workshop on Domain Generalization

and we provide the bound of ℓ′′i (t)− 1
4 :∣∣∣∣ℓ′′i (t)− 1

4

∣∣∣∣ = ∣∣∣∣ exp(−yei · f(W,xi, t))

(1 + exp(−yei · f(W,xi, t)))2
− 1

4

∣∣∣∣
=

∣∣∣∣ 1

exp(yei · f(W,xi, t)) + 2 + exp(−yei · f(W,xi, t))
− 1

4

∣∣∣∣
≤
∣∣∣∣14 − 1

2 + 2 exp(γ2/2)

∣∣∣∣ = Θ(γ2).

Similarly, we have:∣∣H2
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jyei ve⊤

i

ne′∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jyei ve

i

∣∣∣∣∣ ≤ C
2γ2

m
,

∣∣H3
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jyei ve⊤

i

ne′∑
i=1

ℓ′i(t) · jve
i

∣∣∣∣∣ ≤ C
2γ

m
,

∣∣H4
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣+
ne∑
i=1

ℓ′i(t) · jve⊤
i

ne′∑
i=1

ℓ′′i (t)ŷ
e
i (t) · jve

i

∣∣∣∣∣ ≤ C
2γ

m
,

∣∣H5
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′i(t) · jyei ξe⊤i
ne′∑
i=1

ℓ′i(t) · jyei ξei

∣∣∣∣∣ ≤ C
2

m
σ2
qd,

∣∣H6
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′′i (t)y
e
i (t) · jξe⊤i

ne′∑
i=1

ℓ′′i (t) · jξei

∣∣∣∣∣ ≤ C
2

m
σ2
qdγ

2,

∣∣H7
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

ℓ′′i (t) · jξe⊤i
ne′∑
i=1

ℓ′i(t) · jyei ξei

∣∣∣∣∣ ≤ C
2

m
σ2
qdγ,

∣∣H8
e,e′(t)

∣∣ = 2

mnene′

∣∣∣∣∣
ne∑
i=1

yei ℓ
′
i(t) · jξe⊤i

ne′∑
i=1

ℓ′′i (t) · jξei

∣∣∣∣∣ ≤ C
2

m
σ2
qdγ.

To summarize, we have that,∣∣He,e′(t)−H∞
e,e′

∣∣ ≤ C1
2

m
γ + C2

2

m
σ2
qγ.

Furthermore, we have that

|ge(t)| ≤ C
2

m
max{σ2

qd, γ}.

Finally, we have the dynamics for ∥c(t)∥22
d∥c(t)∥22

dt
= −2λc⊤(t)H(t)c(t)− c(t)g(t) ≤ −λ0λ∥c(t)∥22,

which requires that:

C1
2

m
γ < λ0; λ >

1

∥c(0)∥2
.

According to the gradient descent for IRMV1 objective function, the evolution of coefficients can be
expressed as:

γj,r,1(t+ 1) = γj,r,1(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(α)i −
ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(α)i,

γj,r,2(t+ 1) = γj,r,2(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(βe)−
ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(βe)i.

24

Published at ICLR 2023 Workshop on Domain Generalization

Then we have,

|γj,r,1(t+ 1)| ≤ |γj,r,1(t)|+

∣∣∣∣∣ ηm · ∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(α)i

∣∣∣∣∣
+

∣∣∣∣∣ηλm · ∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(α)i

∣∣∣∣∣
≤ |γj,r,1(t)|+ C

ηλ

m
∥c(t)∥2.

Similarly, we have,

|γj,r,2(t+ 1)| ≤ |γj,r,2(t)|+ C
ηλ

m
∥c(t)∥2.

Taking the convergence time T = Ω
(

log(σ0/ϵ)
ηλλ0

)
we have that:

∥c(T)∥2 ≤ ϵ.

Besides, at the time step T , the feature learning satisfies that:

γj,r,1(T) ≤ C
ηλT

m
∥c(0)∥2; γj,r,1(T) ≤ C

ηλT

m
∥c(0)∥2.

To make sure that γj,r1,1(T) = od(1) and γj,r1,2(T) = od(1), we need the following condition:

C
ηλT

m
∥c(0)∥2 ≤ d−

1
2 ,

which results in σ0 ≤ mλ0

d−1/2 log(1/ϵ)
. Furthermore, we have that:

|f(xi, T)| ≤ γj,r,1(T) + γj,r,2(T) ≤ γ.

Combined with the condition that C 2γ
m < λ0, we obtain that:

σ0 ≤
λ2
0m

2

log(1/ϵ)
.

C.4 POOR INVARIANT FEATURE + IRMV1

Corollary C.7 (Restatement of Corollary 3.4). Consider training the CNN model with the same data
as Theorem 3.1, suppose that γj,r,1(t1) = o(1) and γj,r,2(t1) = Θ(1) at the end of ERM pre-train t1
and Etr = {(0.25, 0.1), (0.25, 0.2)}. Then, in the limit of n→∞, we have

γj,r,1(t1 + 1) < γj,r,1(t1).

Proof of Corollary C.7. Recall that the feature learning update rule:

γj,r,1(t+ 1) = γj,r,1(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(α)i −
ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(α)i,

γj,r,2(t+ 1) = γj,r,2(t)−
η

m
·
∑
e∈Etr

(1 + 2λCe
IRMv1(t))

1

ne

ne∑
i=1

ℓ′i(t)Rad(βe)−
ηλ

m
·
∑
e∈Etr

2Ce
IRMv1

1

ne

ne∑
i=1

ℓ′′i ŷ
e
i · yei Rad(βe)i,

25

Published at ICLR 2023 Workshop on Domain Generalization

Taking the value of γj,r,1(t1), γj,r,2(t1) and, we can conclude that:
lim
n→∞

A1
1(t1) = −1/(1 + eγ2)(1− α)(1− β1)− 1/(1 + e−γ2)(1− α)β1 + 1/(1 + eγ2)α(1− β1) + 1/(1 + e−γ2)αβ1

= 1/(1 + eγ2)(2α− 1)(1− β1) + 1/(1 + e−γ2)(2α− 1)(β1)

= (2α− 1)[1/(1 + eγ2)(1− β2) + 1/(1 + e−γ2)β1)]

lim
n→∞

A2
1(t1) = 1/(1 + eγ2)(2α− 1)(1− β2) + 1/(1 + e−γ2)(2α− 1)(β2)

= (2α− 1)[1/(1 + eγ2)(1− β2) + 1/(1 + e−γ2)β2)]

lim
n→∞

B1
1(t1) = −1/(1 + eγ2)(1− α)(1− β1) + 1/(1 + e−γ2)(1− α)β1 − 1/(1 + eγ2)α(1− β1) + 1/(1 + e−γ2)αβ1

= −1/(1 + eγ2)(1− β1) + 1/(1 + e−γ2)β1

lim
n→∞

B2
1(t1) = −1/(1 + eγ2)(1− α)(1− β2) + 1/(1 + e−γ2)(1− α)β2 − 1/(1 + eγ2)α(1− β2) + 1/(1 + e−γ2)αβ2

= −1/(1 + eγ2)(1− β2) + 1/(1 + e−γ2)β2

On the other hand,
lim
n→∞

A1
2(t1) = eγ2/(1 + eγ2)2(1− α)(1− β1)(γ2) + e−γ2/(1 + e−γ2)2(1− α)β1(−γ2)

+ e+γ2/(1 + eγ2)2α(1− β1)(−γ2) + e−γ2/(1 + e−γ2)2αβ1(γ2)

= eγ2/(1 + eγ2)2(1− 2α)(1− β1) + e−γ2/(1 + e−γ2)2(2α− 1)β1γ2

lim
n→∞

A2
2(t1) = eγ2/(1 + eγ2)2(1− α)(1− β2)(γ2) + e−γ2/(1 + e−γ2)2(1− α)β2(−γ2)

+ eγ2/(1 + eγ2)2α(1− β2)(−γ2) + e−γ2/(1 + e−γ2)2αβ2(γ2)

= eγ2/(1 + eγ2)2(1− 2α)(1− β2) + e−γ2/(1 + e−γ2)2(2α− 1)β2γ2

lim
n→∞

B1
2(t1) = eγ2/(1 + eγ2)2(1− α)(1− β1)(γ2) + e −γ2/(1 + e−γ2)2(1− α)β1(γ2)

+ eγ2/(1 + eγ2)2α(1− β1)(γ2) + e−γ2/(1 + e−γ2)2αβ1(γ2),

lim
n→∞

B2
2(t1) = eγ2/(1 + eγ2)2(1− α)(1− β2)(γ2) + e −γ2/(1 + e−γ2)2(1− α)β2(γ2)

+ eγ2/(1 + eγ2)2α(1− β2)(γ2) + e−γ2/(1 + e−γ2)2αβ2(γ2).

Finally, taking the value of environment of (α, β1, β2) = (0.25, 0.1, 0.2), we complete the proof:
γj,r,1(t1 + 1) < γj,r,1(t1).

D FEATURE AUGMENTATED TRAINING

D.1 RICH FEATURES FOR OOD GENERALIZATION

The results in Sec. 3 imply that the model is expected to learn all potentially useful features during the
pre-training in order to achieve the optimal OOD generalization performance. Otherwise, the OOD
training is less likely to exacerbate the poorly learned features. It also explains the success of learning
diverse and rich features by weight averaging (Rame et al., 2022) and rich feature construction (or
Bonsai) (Zhang et al., 2022), and adopting PCA to learn all the potentially useful features (Ye et al.,
2022).

Despite the empirical success, however, the learning of new features in both Bonsai and weight
averaging is uncontrolled, which may discard previously learned useful features or fail to explore
all the desired features. Besides, they also need multiple initializations and training of the whole
networks with different random seeds to encourage the diversity of feature learning, which in turn
requires much more computational overhead to reach convergence.

D.2 THE FAT ALGORITHM

To overcome the limitations of previous rich feature learning algorithms, we propose Feature
Augmented Training (FAT), that adopts an iterative data-centric strategy to enforce the model
to learn all useful features directly.

26

Published at ICLR 2023 Workshop on Domain Generalization

Algorithm 1 FAT: Feature Augmented Training
1: Input: Training data Dtr; the maximum augmentation rounds K; predictor f := w ◦ φ; length

of inner training epochs e; termination threshold p;
2: Initialize groups Ga ← Dtr, G

r ← {};
3: for k ∈ [1, . . . ,K] do
4: Randomly initialize wk;
5: for j ∈ [1, . . . , e] do
6: Obtain ℓFAT with G via Eq. 24;
7: Update wk, φ with ℓFAT;
8: end for
9: // Early Stop if fk = wk ◦ φ fails to find new features.

10: if Training accuracy of fk is smaller than p then
11: Set K = k − 1 and terminate the loop;
12: end if
13: Split Dtr into groups Da

k ,Dr
k according to fk;

14: Update groups Ga ← Ga ∪ {Da
k}, Gr ← Gr ∪ {Dr

k};
15: end for
16: Synthesize the final classifier w ← 1

K

∑K
i=1 wi;

17: return f = w ◦ φ;

Intuitively, the potentially useful features presented in the training data are features that have non-
trivial correlations with labels, or using the respective feature to predict the labels is able to achieve a
non-trivial training performance. Moreover, the invariance principle assumes that the training data
comes from different environments (Arjovsky et al., 2019), which implies that each set of features can
only dominate the correlations with labels in a subset of data. Therefore, it is possible to differentiate
the distinct sets of useful features entangled in the training data into different subsets, where simple
ERM can effectively learn the dominant features presented in the data as shown in Theorem 3.1.

The intuition naturally motivates an iterative rich feature learning algorithm, i.e., FAT, that differenti-
ates the subsets and explores new features in multiple rounds. We list FAT in Algorithm 1, where we
are given a randomly initialized or pre-trained model f = w ◦ φ that consists a featurizer φ and a
classifier w. In round k, FAT first identifies the subset that contains the already learned features by
collecting the data points where f yields the correct prediction, denoted as Gr

k, and the subset that
contains the other samples as Ga

k.

Given a grouped datasets G = {Gr, Ga} with 2k − 1 groups, where Ga = {Da
i }

k−1
i=0 is the grouped

sets for new feature augmentation, and Gr = {Dr
i }

k−1
i=1 is the grouped sets for already learned

feature retention (notice that Dr
0 is the empty set), FAT performs distributionally robust optimization

(DRO) (Namkoong & Duchi, 2016; Zhang et al., 2022) on Ga to explore new features that have not
been learned in previous rounds. Meanwhile, FAT also needs to retain the already learned features by
minimizing the empirical risk at Gr. The FAT objective at round k then is

ℓFAT = max
Da

i ∈Ga
ℓDa

i
(wk ◦ φ) + λ ·

∑
Dr

i ∈Gr

ℓDr
i
(wi ◦ φ), (24)

where ℓDi
(w ◦ φ) refers to the empirical risk of w ◦ φ evaluated at the subset Di, and {wi|1 ≤ i ≤

k − 1} are the historical classifiers trained in round i.

Relations with previous rich feature learning algorithms. Compared with previous feature
learning algorithms, FAT directly controls the exploration of new features while keeping retaining
the already learned features by identifying and grouping subsets that contain distinct features, which
also requires less computational overhead as FAT does not need to train the whole network multiple
times. Although Bonsai also adopts the DRO to explore new features, the multiple initializations in
Bonsai could lead to uncontrolled behaviors such as forgetting that leads to suboptimal performance,
as observed in our experiments.

27

Published at ICLR 2023 Workshop on Domain Generalization

D.3 PRACTICAL IMPLEMENTATIONS OF FAT

When the featurizer is implemented as a deep net that have a massive amount of parameters, back-
propagating through Algorithm 1 can allocate too much memory for propagating with 2K−1 batches
of data. It is common for many realistic benchmarks such as Camelyon17 and FMoW in wilds
benchmark (Koh et al., 2021) that adopts a DenseNet (Huang et al., 2017) with 121 layers as the
featurizer. To relieve the exceeding computational and memory overhead, we propose a lightweight
version of FAT, denoted as FAT. Instead of storing all of historical subsets and classifiers, iFAT
iteratively use the augmentation and retention sets and historical classifier from only the last round.
In contrast, previous rich feature learning algorithm (Zhang et al., 2022; Rame et al., 2022) incurs a
high computational and memory overhead as the round grows. For example, in RxRx1, we have to
reduce the batch size of Bonsai to allow the proceeding of rounds ≥ 3.

We elaborate the detailed algorithmic description of iFAT in Algorithm 2. As iFAT stores only the
latest augmentation and retention subsets, inspecting the training performance for termination check
(line 10 of Algorithm 1) may not be suitable. However, one can still inspect the performance in either
an OOD validation set that finds suitable intermediate feature representations, or the retention set that
checks whether learning new features leads to a severe contradiction of already learned features (FAT
should terminate if so).

Algorithm 2 A practical variant of FAT
1: Input: Training data Dtr; the maximum augmentation rounds K; predictor f := w ◦ φ; length

of inner training epochs e; termination threshold p;
2: Initialize groups Ga ← Dtr, G

r ← {};
3: for k ∈ [1, . . . ,K] do
4: Randomly initialize wk;
5: for j ∈ [1, . . . , e] do
6: Obtain ℓFAT with G via Eq. 24;
7: Update wk, φ with ℓFAT;
8: end for
9: // Early Stop if fk = wk ◦ φ fails to find new features.

10: if Training accuracy of fk is smaller than p then
11: Set K = k − 1 and terminate the loop;
12: end if
13: if k > 1 then
14: // Hence it doesnot need to maintain all historical

classifiers.
15: Update wk ← (wk−1, wk);
16: end if
17: Split Dtr into groups Da

k ,Dr
k according to fk;

18: // Hence it doesnot need to maintain all historical subsets.
19: Update groups Ga ← {Da

k}, Gr ← {Dr
k};

20: end for
21: return f = w ◦ φ;

E MORE EMPIRICAL RESULTS

We provide full details of the empirical verifications in Sec. 3.

E.1 COLOREDMNIST EXPERIMENTS

We conducted extensive experiments on COLOREDMNIST and WILDS to verify the effectiveness of
FAT in finding a better OOD solution under objective conflicts.

A controlled study. We first conducted a controlled study using COLOREDMNIST dataset (Ar-
jovsky et al., 2019) to examine the feature learning performance of FAT under various conditions.

28

Published at ICLR 2023 Workshop on Domain Generalization

Table 2: OOD performance on COLOREDMNIST datasets initialized with different representations.
COLOREDMNIST-025 COLOREDMNIST-01

ERM-NF ERM BONSAI FAT ERM-NF ERM BONSAI FAT

ERM 17.14 (±0.73) 12.40 (±0.32) 11.21 (±0.49) 17.27 (±2.55) 73.06 (±0.71) 73.75 (±0.49) 70.95 (±0.93) 76.05 (±1.45)
IRMV1 67.29 (±0.99) 59.81 (±4.46) 70.28 (±0.72) 70.57 (±0.68) 76.89 (±3.25) 73.84 (±0.56) 76.71 (±4.10) 82.33 (±1.77)
V-REX 68.62 (±0.73) 65.96 (±1.29) 70.31 (±0.66) 70.82 (±0.59) 83.52 (±2.52) 81.20 (±3.27) 82.61 (±1.76) 84.70 (±0.69)
IRMX 67.00 (±1.95) 64.05 (±0.88) 70.46 (±0.42) 70.78 (±0.61) 81.61 (±1.98) 75.97 (±0.88) 80.28 (±1.62) 84.34 (±0.97)
IB-IRM 56.09 (±2.04) 59.81 (±4.46) 70.28 (±0.72) 70.57 (±0.68) 75.81 (±0.63) 73.84 (±0.56) 76.71 (±4.10) 82.33 (±1.77)
CLOVE 58.67 (±7.69) 65.78 (±0.00) 65.57 (±3.02) 65.78 (±2.68) 75.66 (±10.6) 74.73 (±0.36) 72.73 (±1.18) 75.12 (±1.08)
IGA 51.22 (±3.67) 62.43 (±3.06) 70.17 (±0.89) 67.11 (±3.40) 74.20 (±2.45) 73.74 (±0.48) 74.72 (±3.60) 83.46 (±2.17)
FISHR 69.38 (±0.39) 67.74 (±0.90) 68.75 (±1.10) 70.56 (±0.97) 77.29 (±1.61) 82.23 (±1.35) 84.19 (±0.66) 84.26 (±0.93)
ORACLE 71.97 (±0.34) 86.55 (±0.27)

We used both the original COLOREDMNIST with Etr = {(0.25, 0.1), (0.25, 0.2)} (denoted as COL-
OREDMNIST-025), where spurious features are better correlated with labels, and the modified
COLOREDMNIST (denoted as COLOREDMNIST-01) with Etr = {(0.1, 0.2), (0.1, 0.25)}, where
invariant features are better correlated with labels. We compared the OOD performance of the
features learned by FAT, with that of ERM and the state-of-the-art rich feature learning algorithm
Bonsai (Zhang et al., 2022). We select various state-of-the-art OOD objectives including IRMv1 (Ar-
jovsky et al., 2019), VREx (Krueger et al., 2021), IRMX (Chen et al., 2022b), IB-IRM (Ahuja et al.,
2021), CLOvE (Wald et al., 2021), IGA (Koyama & Yamaguchi, 2020) and Fishr (Rame et al.,
2021) for evaluating the quality of the learned features. The feature representations are frozen once
initialized for the OOD training as fine-tuning the featurizer can distort the pre-trained features (Ku-
mar et al., 2022). We also compared FAT with the common training approach that uses unfrozen
ERM features, denoted as ERM-NF. For Bonsai, we trained 2 rounds following Zhang et al. (2022),
while for FAT the automatic termination stopped at round 2 in COLOREDMNIST-025 and round
3 in COLOREDMNIST-01. For ERM, we pre-trained the model with the same number of overall
epochs as FAT in COLOREDMNIST-01, while early stopping at the number of epochs of 1 round in
COLOREDMNIST-025 to prevent over-fitting. All methods adopted the same backbone and the same
training protocol following previous works (Zhang et al., 2022; Chen et al., 2022b). More details are
given in Appendix F.1.

The results are reported in Table 2, which shows that FAT significantly improves the OOD generaliza-
tion performance of all OOD objectives for all the COLOREDMNIST datasets over ERM. In contrast,
although Bonsai boosts the OOD performance for COLOREDMNIST-025, it sometimes leads to a
suboptimal performance when invariant correlations are stronger, which could be attributed to the
uncontrolled feature learning with multiple initializations.

E.2 WILDS EXPERIMENTS

Table 3: OOD generalization performances on WILDS benchmark.

INIT. METHOD
CAMELYON17∗ CIVILCOMMENTS FMOW IWILDCAM∗ AMAZON∗ RXRX1

Avg. acc. (%) Worst acc. (%) Worst acc. (%) Macro F1 10-th per. acc. (%) Avg. acc. (%)

ERM DFR 95.14 (±1.96) 77.34 (±0.50) 41.96 (±1.90) 23.15 (±0.24) 48.00 (±0.00) -
ERM DFR-s† - 82.24 (±0.13) 56.17 (±0.62) 52.44 (±0.34) - -
ERM ERM 74.30 (±5.96) 55.53 (±1.78) 33.58 (±1.02) 28.22 (±0.78) 51.11 (±0.63) 30.21 (±0.09)
ERM GroupDRO 76.09 (±6.46) 69.50 (±0.15) 33.03 (±0.52) 28.51 (±0.58) 52.00 (±0.00) 29.99 (±0.13)
ERM IRMv1 75.68 (±7.41) 68.84 (±0.95) 33.45 (±1.07) 28.76 (±0.45) 52.00 (±0.00) 30.10 (±0.05)
ERM V-REx 71.60 (±7.88) 69.03 (±1.08) 33.06 (±0.46) 28.82 (±0.47) 52.44 (±0.63) 29.88 (±0.35)
ERM IRMX 73.49 (±9.33) 68.91 (±1.19) 33.13 (±0.86) 28.82 (±0.47) 52.00 (±0.00) 30.10 (±0.05)

Bonsai DFR 95.17 (±0.18) 77.07 (±0.85) 43.26 (±0.82) 21.36 (±0.41) 46.67 (±0.00) -
Bonsai DFR-s† - 81.26 (±1.86) 58.58 (±1.17) 50.85 (±0.18) - -
Bonsai ERM 73.98 (±5.30) 63.34 (±3.49) 31.91 (±0.51) 28.27 (±1.05) 48.58 (±0.56) 24.22 (±0.44)
Bonsai GroupDRO 72.82 (±5.37) 70.23 (±1.33) 33.12 (±1.20) 27.16 (±1.18) 42.67 (±1.09) 22.95 (±0.46)
Bonsai IRMv1 73.59 (±6.16) 68.39 (±2.01) 32.51 (±1.23) 27.60 (±1.57) 47.11 (±0.63) 23.35 (±0.43)
Bonsai V-REx 76.39 (±5.32) 68.67 (±1.29) 33.17 (±1.26) 25.81 (±0.42) 48.00 (±0.00) 23.34 (±0.42)
Bonsai IRMX 64.77 (±10.1) 69.56 (±0.95) 32.63 (±0.75) 27.62 (±0.66) 46.67 (±0.00) 23.34 (±0.40)

FAT DFR 95.28 (±0.19) 77.34 (±0.59) 43.54 (±1.26) 23.54 (±0.52) 49.33 (±0.00) -
FAT DFR-s† - 79.56 (±0.38) 57.69 (±0.78) 52.31 (±0.38) - -
FAT ERM 77.80 (±2.48) 68.11 (±2.27) 33.13 (±0.78) 28.47 (±0.67) 52.89 (±0.63) 30.66 (±0.42)
FAT GroupDRO 80.41 (±3.30) 71.29 (±0.46) 33.55 (±1.67) 28.38 (±1.32) 52.58 (±0.56) 29.99 (±0.11)
FAT IRMv1 77.97 (±3.09) 70.33 (±1.14) 34.04 (±0.70) 29.66 (±1.52) 52.89 (±0.63) 29.99 (±0.19)
FAT V-REx 75.12 (±6.55) 70.97 (±1.06) 34.00 (±0.71) 29.48 (±1.94) 52.89 (±0.63) 30.57 (±0.53)
FAT IRMX 76.91 (±6.76) 71.18 (±1.10) 33.99 (±0.73) 29.04 (±2.96) 52.89 (±0.63) 29.92 (±0.16)
∗Indicates using “cheating” protocol in DFR.†Indicates spurious feature learning. The lower the better.

We also compared FAT with ERM and Bonsai in the realistic datasets curated by Koh et al. (2021)
that contain complicated features and distribution shifts. The learned features were evaluated with
several state-of-the-art OOD objectives in WILDS, including GroupDro (Sagawa* et al., 2020),

29

Published at ICLR 2023 Workshop on Domain Generalization

IRMv1 (Arjovsky et al., 2019), VREx (Krueger et al., 2021) as well as IRMX (Chen et al., 2022b). In
addition, we evaluated the learned features with Deep Feature Reweighting (DFR) (Kirichenko et al.,
2022; Izmailov et al., 2022). Specifically, when a OOD validation set was available, DFR performed
logistic regression on the OOD validation set based on the learned features andIzmailov et al. (2022)
found that it achieves impressive OOD performance. We also reported DFR-s by regression with the
environment labels (when available) to evaluate the spurious feature learning of different methods.
For datasets without a proper OOD validation set, e.g., CAMELYON17, we followed the “cheating”
protocol (Rosenfeld et al., 2022) that performs logistic regression based on both a random split from
the training and test data. More details are given in Appendix F.2.2. We trained all ERM, Bonsai and
FAT the same number of steps, and kept the rounds of Bonsai and FAT the same. The only exception
was in RXRX1 where both Bonsai and FAT required more steps to converge. We used the same
evaluation protocol as previous works (Koh et al., 2021; Shi et al., 2022; Zhang et al., 2022; Chen
et al., 2022b) to ensure a fair comparison. More details are given in Appendix F.2.

The results are presented in Table 3. FAT consistently achieves the best invariant feature learning
performance across various challenging realistic datasets. Meanwhile, compared to ERM and Bonsai,
FAT also reduces over-fitting to the spurious feature learning led by spurious correlations. Thus, FAT
achieves consistent improvements when the learned features are applied to various OOD objectives.
In contrast, Bonsai may lead to a suboptimal performance due to the uncontrolled learning behavior.

E.3 THE TERMINATION CHECK IN FAT.

Table 4: Performances in various sets at different FAT rounds.

COLOREDMNIST-025 ROUND-1 ROUND-2 ROUND-3

TRAINING ACC. 85.08± 0.14 71.87± 0.96 84.93± 1.26
RETENTION ACC. - 88.11± 4.28 43.82± 0.59
OOD ACC. 11.08± 0.30 70.64± 0.62 10.07± 0.26

A key difference between FAT and previous rich feature learning algorithms is that FAT performs
controlled feature learning. As elaborated in Sec. D.2, FAT can terminate automatically by inspecting
the retention accuracy. To verify, we list the FAT performances in various subsets of COLOREDM-
NIST-025 at different rounds. As shown in Table 4, after FAT learns sufficiently good features at
Round 2, it is not necessary to proceed with Round 3 as it will destroy the already learned features
and lead to degenerated retention and OOD performance.

F MORE DETAILS ABOUT THE EXPERIMENTS

In this section, we provide more details and the implementation, evaluation and hyperparameter
setups in complementary to the experiments in Appendix E.

F.1 MORE DETAILS ABOUT COLOREDMNIST EXPERIMENTS

Datasets. In the controlled experiments with COLOREDMNIST, we follow the evaluation settings
as previous works (Arjovsky et al., 2019; Zhang et al., 2022; Chen et al., 2022b). In addition to the
original COLOREDMNIST with Etr = {(0.25, 0.1), (0.25, 0.2)} (denoted as COLOREDMNIST-025)
where spurious features are better correlated with labels, we also incorporate the modified one
(denoted as COLOREDMNIST-01) with Etr = {(0.1, 0.2), (0.1, 0.25)} where invariant features are
better correlated with labels, since both cases can happen at real world.

Architecture and optimization. To ensure a fair comparison, we use 4-Layer MLP with a hidden
dimension of 256 as the backbone model for all methods, where we take the first 3 layers as the
featurizer and the last layer as the classifier, following the common practice (Gulrajani & Lopez-Paz,
2021; Koh et al., 2021). For the optimization of the models, we use the Adam Kingma & Ba (2015)
optimizer with a learning rate of 1e−3 and a weight decay of 1e−3. We report the mean and standard
deviation of the performances of different methods with each configuration of hyperparameters 10
times with the random seeds from 1 to 10.

30

Published at ICLR 2023 Workshop on Domain Generalization

Implementation of ERM-NF and OOD objectives. For the common pre-training protocol
with ERM, our implementation follows the previous works (Zhang et al., 2022). Specifically,
we first train the model with {0, 50, 100, 150, 200, 250} epochs and then apply the OOD regular-
ization of various objectives with a penalty weight of {1e1, 1e2, 1e3, 1e4, 1e5}. We adopt the
implementations from Zhang et al. (2022) for various OOD objectives, including IRMv1 (Ar-
jovsky et al., 2019),VREx (Krueger et al., 2021),IB-IRM (Ahuja et al., 2021),CLOvE (Wald et al.,
2021),IGA (Koyama & Yamaguchi, 2020) and Fishr (Rame et al., 2021) Besides, we also incorporate
the state-of-the-art OOD objective proposed by Chen et al. (2022b) that is able to resolve both
COLOREDMNIST-025 and COLOREDMNIST-01.

Evaluation of feature learning methods. For the sake of fairness in comparison, by default,
we train all feature learning methods by the same number of epochs and rounds (if applicable).
For the implementation Bonsai, we strictly follow the recommended setups provided by Zhang
et al. (2022), 6 where we train the model with Bonsai by 2 rounds with 50 epochs for round 1, 500
epochs for round 2, and 500 epochs for the synthesize round in COLOREDMNIST-025. While in
COLOREDMNIST-01, round 1 contains 150 epochs, round 2 contains 400 epochs and the synthesize
round contains 500 epochs. For the implementation of FAT, we train the model with 2 rounds of
FAT in COLOREDMNIST-025, and 3 rounds of FAT in COLOREDMNIST-01, where each round
contains 150 epochs. While for the retain penalty, we find using a fixed number of 0.01 already
achieved sufficiently good performance. ERM only contains 1 round, for which we train the model
with 150 epochs in COLOREDMNIST-025 as we empirically find more epochs will incur severe
performance degeneration in COLOREDMNIST-025. While in COLOREDMNIST-01, we train the
model with ERM by 500 epochs to match up the overall training epochs of FAT and Bonsai. We
provide a detailed distribution of the number of epochs in each round in Table 5. It can be found

Table 5: Number of epochs in each round of various feature learning algorithms.

CMNIST-025 ROUND-1 ROUND-2 ROUND-3 SYN. ROUND CMNIST-01 ROUND-1 ROUND-2 ROUND-3 SYN. ROUND

ERM 150 - - - ERM 500 - - -
BONSAI 50 150 - 500 BONSAI 150 400 - 500
FAT 150 150 - - FAT 150 150 150 -

that, although Bonsai costs 2 − 3 times of training epochs more than ERM and FAT, Bonsai does
not necessarily find better feature representations for OOD training, as demonstrated in Table. 1. In
contrast, FAT significantly and consistently learns richer features given both COLOREDMNIST-025
and COLOREDMNIST-01 than ERM, which shows the superiority of FAT.

F.2 MORE DETAILS ABOUT WILDS EXPERIMENTS

In this section, we provide more details about the WILDS datasets used in the experiments as well as
the evaluation setups.

F.2.1 DATASET DESCRIPTION.

To evaluate the feature learning performance given data from realistic scenarios, we select 6 chal-
lenging datasets from WILDS (Koh et al., 2021) benchmark. The datasets contain various realistic
distribution shifts, ranging from domain distribution shifts, subpopulation shifts and the their mixed.
A summary of the basic information and statistics of the selected WILDS datasets can be found in
Table. 6, Table. 7, respectively. In the following, we will give a brief introduction to each of the
datasets. More details can be found in the WILDS paper (Koh et al., 2021).

Amazon. We follow the WILDS splits and data processing pipeline for the Amazon dataset (Ni
et al., 2019). It provides 1.4 million comments collected from 7, 676 Amazon customers. The
task is to predict the score (1-5 stars) for each review. The domains d are defined according to the
reviewer/customer who wrote the product reviews. The evaluation metric used for the task is 10th
percentile of per-user accuracies in the OOD test sets, and the backbone model is a DistilBert (Sanh
et al., 2019), following the WILDS protocol (Koh et al., 2021).

6https://github.com/TjuJianyu/RFC

31

https://github.com/TjuJianyu/RFC

Published at ICLR 2023 Workshop on Domain Generalization

Table 6: A summary of datasets information from WILDS.
Dataset Data (x) Class information Domains Metric Architecture
AMAZON Product reviews Star ratings (5 classes) 7,676 reviewers 10-eth percentile acc. DistillBERT
CAMELYON17 Tissue slides Tumor (2 classes) 5 hospitals Avg. acc. DenseNet-121
CIVILCOMMENTS Online comments Toxicity (2 classes) 8 demographic groups Wr. group acc. DistillBERT
FMOW Satellite images Land use (62 classes) 16 years x 5 regions Wr. group acc. DenseNet-121
IWILDCAM Photos Animal species (186 classes) 324 locations Macro F1 ResNet-50
RXRX1 Cell images Genetic treatments (1,139 classes) 51 experimental batches Avg. acc ResNet-50

Table 7: A summary of datasets statistics from WILDS.

Dataset # Examples # Domains

train val test train val test

AMAZON 1,000,124 100,050 100,050 5,008 1,334 1,334
CAMELYON17 302,436 34,904 85,054 3 1 1
CIVILCOMMENTS 269,038 45,180 133,782 - - -
FMOW 76,863 19,915 22,108 11 3 2
IWILDCAM 129,809 14,961 42,791 243 32 48
RXRX1 40,612 9,854 34,432 33 4 14

Camelyon17. We follow the WILDS splits and data processing pipeline for the Camelyon17
dataset (Bándi et al., 2019). It provides 450, 000 lymph-node scans from 5 hospitals. The task
in Camelyon17 is to take the input of 96× 96 medical images to predict whether there exists a tumor
tissue in the image. The domains d refers to the index of the hospital where the image was taken.
The training data are sampled from the first 3 hospitals where the OOD validation and test data
are sampled from the 4-th and 5-th hospital, respectively. We will use the average accuracy as the
evaluation metric and a DenseNet-121 (Huang et al., 2017) as the backbone for the featurizer.

CivilComments. We follow the WILDS splits and data processing pipeline for the CivilComments
dataset (Borkan et al., 2019). It provides 450, 000 comments collected from online articles. The
task is to classify whether an online comment text is toxic or non-toxic. The domains d are defined
according to the demographic features, including male, female, LGBTQ, Christian, Muslim, other
religions, Black, and White. CivilComments is used to study the subpopulation shifts, here we will
use the worst group/domain accuracy as the evaluation metric. As for the backbone of the featurizer,
we will use a DistillBert (Sanh et al., 2019) following WILDS (Koh et al., 2021).

FMoW. We follow the WILDS splits and data processing pipeline for the FMoW dataset (Christie
et al., 2018). It provides satellite images from 16 years and 5 regions. The task in FMoW is to
classify the images into 62 classes of building or land use categories. The domain is split according
to the year that the satellite image was collected, as well as the regions in the image which could be
Africa, America, Asia, Europe or Oceania. Distribution shifts could happen across different years
and regions. The training data contains data collected before 2013, while the validation data contains
images collected within 2013 to 2015, and the test data contains images collected after 2015. The
evaluation metric for FMoW is the worst region accuracy and the backbone model for the featurizer
is a DenseNet-121 (Huang et al., 2017).

iWildCam. We follow the WILDS splits and data processing pipeline for the iWildCam dataset (Beery
et al., 2020). It is consist of 203, 029 heat or motion-activated photos of animal specifies from 323
different camera traps across different countries around the world. The task of iWildCam is to classify
the corresponding animal specifies in the photos. The domains is split according to the locations
of the camera traps which could introduce the distribution shifts. We will use the Macro F1 as the
evaluation metric and a ResNet-50 (He et al., 2016) as the backbone for the featurizer.

RxRx1. We follow the WILDS splits and data processing pipeline for the RxRx1 dataset (Taylor et al.,
2019). The input is an image of cells taken by fluorescent microscopy. The cells can be genetically
perturbed by siRNA and the task of RxRx1 is to predict the class of the corresponding siRNA that
have treated the cells. There exists 1, 139 genetic treatments and the domain shifts are introduced by
the experimental batches. We will use the average accuracy of the OOD experimental batches as the
evaluation metric and a ResNet-50 (He et al., 2016) as the backbone for the featurizer.

32

Published at ICLR 2023 Workshop on Domain Generalization

F.2.2 TRAINING AND EVALUATION DETAILS.

We follow previous works to implement and evaluate different methods used in our experiments (Koh
et al., 2021). The information of the referred paper and code is listed as in Table. 8.

Table 8: The information of the referred paper and code.
Paper Commit Code

WILDS (Koh et al., 2021) v2.0.0 https://wilds.stanford.edu/
Fish (Shi et al., 2022) 333efa24572d99da0a4107ab9cc4af93a915d2a9 https://github.com/YugeTen/fish
Bonsai (Zhang et al., 2022) 33b9ecad0ce8b3462793a2da7a9348d053c06ce0 https://github.com/TjuJianyu/RFC
DFR (Kirichenko et al., 2022; Izmailov et al., 2022) 6d098440c697a1175de6a24d7a46ddf91786804c https://github.com/izmailovpavel/spurious_feature_learning

The general hyperparemter setting inherit from the referred codes and papers, and are as listed in
Table 9. We use the same backbone models to implement the featurizer (He et al., 2016; Huang et al.,
2017; Sanh et al., 2019). By default, we repeat the experiments by 3 runs with the random seeds of
0, 1, 2. While for Camelyon17, we follow the official guide to repeat 10 times with the random seeds
from 0 to 9.

Table 9: General hyperparameter settings for the experiments on WILDS.
Dataset AMAZON CAMELYON17 CIVILCOMMENTS FMOW IWILDCAM RXRX1

Num. of seeds 3 10 3 3 3 3
Learning rate 2e-6 1e-4 1e-5 1e-4 1e-4 1e-3
Weight decay 0 0 0.01 0 0 1e-5
Scheduler n/a n/a n/a n/a n/a Cosine Warmup
Batch size 64 32 16 32 16 72
Architecture DistilBert DenseNet121 DistilBert DenseNet121 ResNet50 ResNet50
Optimizer Adam SGD Adam Adam Adam Adam
Domains in minibatch 5 3 5 5 10 10
Group by Countries Hospitals Demographics× toxicity Times × regions Trap locations Experimental batches
Training epochs 200 10 5 12 9 90

OOD objective implementations. We choose 4 representative OOD objectives to evaluate the
quality of learned features, including GroupDRO (Sagawa* et al., 2020), IRMv1 (Arjovsky et al.,
2019), VREx (Krueger et al., 2021) and IRMX (Chen et al., 2022b). We implement the OOD
objectives based on the code provided by Shi et al. (2022). For each OOD objective, by default,
we follow the WILDS practice to sweep the penalty weights from the range of {1e − 2, 1e −
1, 1, 1e1, 1e2}, and perform the model and hyperparameter selection via the performance in the
provided OOD validation set of each dataset. Due to the overwhelming computational overhead
required by large datasets and resource constraints, we tune the penalty weight in iWildCam according
to the performance with seed 0, which we empirically find yields similar results as full seed tunning.
Besides in Amazon, we adopt the penalty weights tuned from CivilComments since the two datasets
share a relatively high similarity, which we empirically find yields similar results as full seed tunning,
too. On the other hand, it raises more challenges for feature learning algorithms in iWildCam and
Amazon.

Deep Feature Reweighting (DFR) implementations. For the implementation of DFR (Kirichenko
et al., 2022; Izmailov et al., 2022), we use the code provided in Izmailov et al. (2022). By default,
DFR considers the OOD validation as an unbiased dataset and adopts the OOD validation set to
learn a new classifier based on the frozen features from the pre-trained featurizer. We follow the
same implementation and evaluation protocol when evaluating feature learning quality in FMoW
and CivilComments. However, since Camelyon17 does not have the desired OOD validation set,
we follow the “cheating” protocol as in Rosenfeld et al. (2022) to perform the logistic regression
based the train and test sets. Note that when “cheating”, the model is not able to access the whole test
sets. Instead, the logistic regression is conducted on a random split of the concatenated train and test
data. Moreover, for Amazon and iWildCam, we find the original implementation fails to converge
possibly due to the complexity of the task, and the relatively poor feature learning quality. Hence we
implement a new logistic regression based on PyTorch (Paszke et al., 2019) optimized with SGD, and
perform DFR using “cheating” protocol based on the OOD validation set and test set. Besides, we
find neither the two aforementioned implementations or dataset choices can lead to DFR convergence
in RxRx, which we will leave for future investigations.

33

https://wilds.stanford.edu/
https://github.com/YugeTen/fish
https://github.com/TjuJianyu/RFC
https://github.com/izmailovpavel/spurious_feature_learning

Published at ICLR 2023 Workshop on Domain Generalization

Feature learning algorithm implementations. We implement all the feature learning methods
based on the Fish code framework. For the fairness of comparison, we set all the methods to train
the same number of steps or rounds (if applicable) in WILDS datasets. The only exception is in
RxRx1, where both Bonsai and FAT require more steps to converge, since the initialized featurizer
has a relatively large distance from the desired featurizer in the task. We did not train the model
for much too long epochs as Izmailov et al. (2022) find that it only requires 2 − 5 epochs for
deep nets to learn high-quality invariant features. The final model is selected based on the OOD
validation accuracy during the training. Besides, we tune the retain penalty in FAT by searching
over {1e− 2, 1e− 1, 0.5, 1, 2, 10}, and finalize the retain penalty according to the OOD validation
performance. We list the detailed training steps and rounds setups, as well as the used retain penalty
in FAT in Table 10.

Table 10: Hyperparameter setups of feature learning algorithms for the experiments on WILDS.
Dataset AMAZON CAMELYON17 CIVILCOMMENTS FMOW IWILDCAM RXRX1

Overall steps 31,000 10,000 50,445 9,600 48,000 20,000
Approx. epochs 4 10,000 3 4 10 10
Num. of rounds 3 2 3 2 2 10
Steps per round 10,334 5,000 16,815 4,800 10 10
FAT Retain penalty 2.0 1e-2 1e-2 1.0 0.5 10

For ERM, we train the model simply by the overall number of steps, except for RxRx1 where we train
the model by 15, 000 steps following previous setups (Shi et al., 2022). Bonsai and FAT directly adopt
the setting listed in the Table 10. Besides, Bonsai will adopt one additional round for synthesizing
the pre-trained models from different rounds. Although Zhang et al. (2022) requires Bonsai to train
the two rounds for synthesizing the learned features, we empirically find additional training steps in
synthesizing will incur overfitting and worse performance. Moreover, as Bonsai requires propagating
2K − 1 batches of the data that may exceed the memory limits, we use a smaller batch size when
training Bonsai in iWildCam (8) and RxRx1 (56).

F.3 SOFTWARE AND HARDWARE

We implement our methods with PyTorch (Paszke et al., 2019). For the software and hardware
configurations, we ensure the consistent environments for each datasets. We run all the experiments
on on Linux servers with NVIDIA V100 graphics cards with CUDA 10.2.

34

	Introduction
	Preliminaries and Problem Definition
	On Feature Learning in OOD Generalization
	Conclusions
	Related Work
	Preliminaries and Problem Definition
	Proofs for theoretical results
	Implementation details of the synthetic CNN experiments
	Proof for Theorem 3.1
	Proof of Lemma C.2
	Proof of Lemma C.3

	Proof for Theorem 3.2
	Poor invariant feature + IRMv1

	Feature Augmentated Training
	Rich Features for OOD Generalization
	The FAT Algorithm
	Practical Implementations of FAT

	More Empirical Results
	ColoredMNIST Experiments
	Wilds Experiments
	The Termination Check in FAT.

	More Details about the Experiments
	More details about ColoredMNIST experiments
	More details about Wilds experiments
	Dataset description.
	Training and evaluation details.

	Software and hardware

