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ABSTRACT
Increasing airspace congestion requires the development of robust
collision avoidance systems to mitigate the risk of near mid-air col-
lisions between aircraft. The Airborne Collision Avoidance System-X
(ACAS-X) is a next-generation solution that provides both better
conflict resolution maneuvers and fewer unnecessary actions com-
pared to the conventional equipment (TCAS-II) currently used in
most commercial and general aviation aircraft. ACAS-X is achieved
through dynamic programming for one-to-one aircraft encounters.
However, this solution still faces significant limitations, in partic-
ular the restriction to single intruder scenarios and the reliance
on discretized state and action spaces. In this paper, we show that
the naive application of ACAS-X to multi-threat scenarios leads
to suboptimal and even catastrophic results. To address these is-
sues, we formalize the multi-agent aircraft collision problem and
argue for the adoption of deep multi-agent reinforcement learning
(MARL) techniques, which have the potential to compute optimal
maneuvers in complex multi-aircraft scenarios. Finally, we identify
key challenges and open research questions for the multi-agent
aircraft collision avoidance problem.
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1 INTRODUCTION
The rapid densification of airspace, fueled by emerging technolo-
gies such as unmanned aerial vehicles (UAVs), presents significant
challenges for collision management. In some previsions, these
systems can become prevalent in future smart city environments,
supporting applications such as urban air taxis, delivery services,
and infrastructure monitoring [28]. This increasing operational den-
sity underscores the critical need for robust and reliable collision
avoidance systems to prevent mid-air collisions and ensure safety.
Our study focuses specifically on fixed-wing UAVs, but the ideas
can be generalized to all types of aircraft systems, from general
aviation to propeller UAVs. In this paper, we address the critical task
of collision avoidance in a dense airspace. We define the aircraft
controlled by the focal agent as the “own aircraft”, while all other
surrounding aircraft are referred to as “intruders”.

The Airborne Collision Avoidance System (ACAS-X) [10, 15, 17–
19] is a next-generation solution designed to enhance aviation
safety by overcoming the limitations of the currently deployed
equipment, Traffic Collision Avoidance System II (TCAS-II) [11].
ACAS-X reduces both the risk of mid-air collisions and the fre-
quency of unnecessary maneuvering alerts [20], enabling collision
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avoidance through cost tables computed by dynamic programming
over a stochastic process that models an airspace encounter. ACAS-
Xu [9, 32] is its specific version designed for unmanned fixed-wing
aircraft. Despite its successes, ACAS-Xu is inherently limited by
its design, since it assumes a single-intruder scenario and relies
on a simplified, discretized state and action space [34]. The ma-
jor problem is that it assumes a single-intruder scenario, which
is extrapolated for the multi-intruder case. While these assump-
tions allow for efficient computation via dynamic programming,
they become dangerous in dense airspace environments with mul-
tiple intruders, where the state space grows exponentially with
the number of aircraft. Thus, this method has its applicability com-
promised in the context of multiple aircraft operating in a dense
airspace. Other previous studies have extended ACAS-X methods
to multiple intruders [23, 31, 36], but always by decomposing the
problem into single-intruder subproblems, which leads to subopti-
mal solutions. This highlights the need for a paradigm shift towards
more comprehensive methods capable of handling the complexity
of multi-intruder scenarios.

To achieve solutions that generalize to an unknown number of in-
truders, deep reinforcement learning (DRL) emerges as a promising
approach. By exploiting function approximation through deep neu-
ral networks, DRL can be very effective in environments with large
or continuous state and action spaces, making it well suited for the
intricacies of dense airspace collision avoidance. Deep multi-agent
reinforcement learning (MARL) has demonstrated its effectiveness
in collision avoidance for robotics, allowing agents to learn coor-
dination directly from raw sensor data [26]. Similarly, MARL has
been successfully applied to UAV swarm control, where decentral-
ized agents must cooperate in dynamic environments [2, 5]. These
achievements position MARL as a relevant approach for addressing
multi-agent collision avoidance in dense airspace.

In Section 2, we describe a standard aircraft collision avoidance
scenario and present a multi-agent adaptation of the single-intruder
ACAS-Xu solution, which highlights the necessity for more robust
aircraft coordination approaches. Building on this, Section 3 formal-
izes the aircraft collision avoidance problem in its full complexity
and advocates for MARL methods as a promising solution. Section 4
discusses the challenges inherent to multi-agent settings in collision
avoidance. Finally, our conclusions are summarized in Section 5.

2 MOTIVATION
The need for MARL-based approaches to collision avoidance can
be justified by illustrating the limitations of the current solutions,
which appear even in a simplified versio of the problem. Build-
ing on the standard ACAS-Xu framework, let’s consider a sce-
nario where 𝑁 aircraft operate at a fixed altitude in a 2D plane,
which corresponds to the ACAS problem limited to its horizontal
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Figure 1: Illustration of the simplified 2D collision avoidance
problem with several intruders.

dimension. This abstraction allows us to focus on the core deci-
sion making process while minimizing computational overhead.
The objective is to minimize the occurrence of collisions while
simultaneously reducing deviations in the aircraft’s heading ad-
justments. The situation is evaluated once per second. At each
time step, each aircraft selects a heading adjustment from the set
𝐴 = {0◦/𝑠,±1.5◦/𝑠,±3◦/𝑠}, corresponding to no change, a weak
turn, or a strong turn to the left or right. A Near Mid-Air Collision
(NMAC) is occurring when the separation between two aircraft
falls to 500 feet or less (about 150 meters). Figure 1 shows the in-
formation available to the aircraft to make their decision. Each
aircraft 𝑖 has access to its own velocity 𝑣𝑖 , as well as the velocity 𝑣 𝑗 ,
distance 𝜌

𝑖,𝑗
, relative heading 𝜃𝑖,𝑗 , and relative bearing𝜓

𝑖,𝑗
to every

other aircraft. It also has information about its own last action, 𝑎𝑖 .
This constitutes an observation vector, available for each aircraft
𝑖 , corresponding to 𝑥𝑖 = (𝑣𝑖 , 𝑎𝑖 , 𝑠𝑖,1, · · · , 𝑠𝑖,𝑖−1, 𝑠𝑖,𝑖+1, · · · , 𝑠𝑖,𝑁 ), where
𝑠𝑖,𝑗 = (𝑣 𝑗 , 𝜌𝑖,𝑗 , 𝜃𝑖,𝑗 ,𝜓𝑖,𝑗

) is the relative state of aircraft 𝑗 as perceived
by aircraft 𝑖 .

2.1 Ad-hoc Solution to a Multi-intruder Context
The ACAS-Xu framework addresses the collision avoidance prob-
lem by focusing on scenarios involving a single intruder aircraft
[32]. The solution is derived using dynamic programming, which
computes an optimal policy for a specially conceived Markov De-
cision Process (MDP), which represents the stochastic evolution
of two aircraft in the same airspace, with predefined simple be-
haviors for the intruder, highly penalizing with negative rewards
a collision, but also including small negative rewards for strong
turns and inversions of direction. The resulting table provides a
mapping of state-action pairs to corresponding long-term expected
costs. Specifically, for any configuration involving one intruder, the
table specifies the cost associated with performing a given action
in a given state. To explore the potential of extending ACAS-Xu’s
single-intruder solutions to a multi-intruder context, we propose
six heuristic strategies that make use of this cost table. Let that cost
table correspond to the function 𝑄 (𝑠, 𝑎). Also let’s define the func-
tion 𝑐 (𝑖) as the one that indicates the closest intruder in relation to

aircraft 𝑖 , so as:

𝑐 (𝑖) = argmin
1≤ 𝑗≤𝑁 | 𝑗≠𝑖

[
𝜌
𝑖,𝑗

]
. (1)

Closest Intruder. Each aircraft selects its maneuver following
the cost table based on the state information of its nearest intruder.
Based on this method, the optimal action 𝑎∗

𝑖
for aircraft 𝑖 is:

𝑎∗𝑖 = argmin
𝑎∈𝐴

[
𝑄 (𝑠𝑖,𝑐 (𝑖 ) , 𝑎)

]
, (2)

where 𝐴 is the set of possible actions (no heading change, weak or
strong left or right), and 𝑠𝑖,𝑗 is the state from the own aircraft when
we only consider its closest intruder, 𝑐 (𝑖), as defined in Eq. (1).

Closest Intruder with Priority. In the previous naive method,
there is no coordination between the different agents, thus com-
bined maneuvers can result in catastrophic results. In this second
method, each aircraft still selects its maneuver based on the state
information of its nearest intruder. However, to avoid potential
conflicts that could arise if two aircraft simultaneously adjust their
heading, a priority mechanism is implemented in the form of a
complete precedence order. In our experiments, the priority is as-
signed based on aircraft identifiers (lexicographic precedence), so
as 𝑖 < 𝑗 ⇐⇒ 𝑖 ≻ 𝑗 . In this way, only the aircraft with the lowest
index is allowed to adjust its heading. Using this rule, the optimal
action 𝑎∗

𝑖
is therefore:

𝑎∗𝑖 =

{
argmin𝑎∈𝐴

[
𝑄 (𝑠𝑖,𝑐 (𝑖 ) , 𝑎)

]
if 𝑖 ≻ 𝑐 (𝑖),

0◦/𝑠 otherwise.
(3)

Min-Max Cost. In this third method, each aircraft takes into
account the cost of all possible actions for every intruder. Then the
retained cost for each action is the maximum across all intruders.
The chosen action is the one that minimizes this maximum cost
over all intruders. This is formalized as:

𝑎∗𝑖 = argmin
𝑎∈𝐴

[
max
𝑗

[
𝑄 (𝑠𝑖,𝑗 , 𝑎)

] ]
. (4)

Weighted Min-Max Cost. This method modifies the min-max
cost approach by incorporating distance-based weighting in order
to choose the intruder to consider, increasing the importance of
closer intruders. Thus, the agent tends to prioritize the most imme-
diate threats. To ensure that𝑤𝑖,𝑗 ∈ [0, 1],∀𝑖∀𝑗 , and that𝑤𝑖,𝑐 (𝑖 ) = 1,
i.e. the maximal weight will be assigned to the closest intruder, let’s
consider the following weight function, based on the distances:

𝑤𝑖, 𝑗 = exp

(
𝜌
𝑖,𝑐 (𝑖 ) − 𝜌

𝑖,𝑗

𝜌
𝑖,𝑐 (𝑖 )

)
. (5)

The optimal action 𝑎∗
𝑖
is then given by:

𝑎∗𝑖 = argmin
𝑎∈𝐴

[
max
𝑗

[
𝑤𝑖, 𝑗 ·𝑄 (𝑠𝑖, 𝑗 , 𝑎)

] ]
. (6)



Figure 2: Aircraft random initial positions for an episode
with 3 agents in the simulation.

Cost Sum. In this method, each aircraft considers, for each pos-
sible action, the accumulated cost for every intruder. That is the
strategy defined by the official ACAS-Xu specification [9]. The
chosen action is the one that minimizes this additive cost over all
intruders, which is formalized as follows:

𝑎∗𝑖 = argmin
𝑎∈𝐴

[ 𝑗≠𝑖∑︁
1≤ 𝑗≤𝑁

[
𝑄 (𝑠𝑖,𝑗 , 𝑎)

] ]
. (7)

Weighted Majority Vote. Finally, in this last method, each air-
craft gets the best action for every intruder using the 𝑄 table, then
chooses the one that is the best for the majority, but considering the
weight of each vote proportionally to the distance of each intruder,
so as:

𝑎∗𝑖 = argmax
𝑎∈𝐴

[ ∑︁
𝑎∈𝐴

𝑗≠𝑖∑︁
1≤ 𝑗≤𝑁

𝑤𝑖,𝑗 · 1[𝑎=argmin𝑎∈𝐴𝑄 (𝑠𝑖,𝑗 ,𝑎) ]
]
, (8)

where𝑤𝑖,𝑗 follows Eq. (5).

2.2 Performance Comparison
To evaluate the performance of each approach, we developed a com-
prehensive benchmarking framework by analyzing the statistical
results of millions of simulations, varying the number of aircraft,
with randomized initialization. That encounter model first places
each aircraft uniformly on a circle of 45 km in diameter. Then, the
position of each aircraft is perturbed by a random uniform noise
from 0 to 5 km, to ensure unique initial configurations at each simu-
lation. That episode initialization is illustrated in the Figure 2. Each
aircraft is initially oriented toward the center of the circle, and the
speed is kept fixed at 800 km/h in this experiment. Every second,
each aircraft 𝑖 selects the action 𝑎∗

𝑖
based on the same analyzed

strategy. Figure 3 shows, for each strategy, the proportion of Near
Mid-Air Collisions (NMACs) among all simulations, as a function
of the number of agents in the simulation.

The first key observation is the absence of collisions in the two-
agent scenario (a single intruder case) for any of the tested heuris-
tics, which is not the case for the random behavior. This achieve-
ment is not surprising since the optimal solution for this setting was
computed using dynamic programming. However, as the number
of agents increases, NMACs begin to occur in all strategies. This
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Figure 3: Comparison of the proportion ofNearMid-Air Colli-
sions for each strategy, with regards to the number of agents
in the simulation. Each point of the chart represents the
proportion of collisions computed through 50 000 random
simulations.

highlights the need for more efficient coordination strategies to
enable scalability to larger numbers of agents.

The second important remark is that the strategy "sum", which
chooses the action that minimizes the sum of expected long-term
costs considering all the intruders, and which is the strategy rec-
ommended by the ACAS-Xu official specification, presents a quick
deterioration in its safety performance, that can be seen when the
number of aircraft is greater than 3, becoming worse than "random".
The strategy "weighted vote", which is a common solution to ag-
gregate multi-agent decisions, also presented a quite disappointing
performance, approximating "random" when the number of aircraft
was greater than 5 in the experiment.

Another notable observation is the reduced proportion of col-
lisions performed by the "closest intruder with priority" strategy
when the number of agents ranges from 3 to 5 in that experiment,
highlighting the effectiveness of coordination mechanisms, even if
simple, thus the need for. However, despite its initial advantage, this
strategy exhibits a significant increase in collisions as the number
of agents continues to grow, eventually becoming less performant
than the others, even if still better than "random".

Finally, the figure highlights the comparable performance of the
three other strategies : "closest intruder (without priority)", "min-
max cost", and "weightedmin-max cost". Among these, the min-max
methods show a slight advantage, particularly the weighted ver-
sion, which consistently outperforms the other approaches when
the number of agents exceeds 6 in that experiment. This under-
scores that usingmore information allows for more efficient optimal
maneuvers, as min-max cost incorporates the costs of multiple in-
truders, and weighted min-max cost further utilizes distance data.

These results demonstrate the value of heuristic extensions to
single-intruder solutions but also highlight their limitations. The
lack of explicit coordination between agents allows the occurrence
of avoidable collisions and can even induce some others. The use
of the distance to deduce the criticality of an encounter has also
its own limits. These experimental results support the need for



more sophisticated approaches such as multi-agent reinforcement
learning (MARL) to tackle the collision avoidance problem in the
presence of several intruders.

3 MARL-BASED COLLISION AVOIDANCE
In this Section, we define the complete multi-agent collision avoid-
ance problem and highlight the advantage of using a deep MARL
approach to solve it.

3.1 Multi-agent Aircraft Collision Avoidance
Building on the insights gained from the simplified 2D collision
avoidance setup, we now formalize the problem in a more general
and realistic context. This extension incorporates 3D motion, con-
tinuous actions and partial observability, reflecting the complexity
of real-world airspace operations.

Reinforcement Learning typically tries to solve Markov Deci-
sion Processes (MDPs). These can be extended to multiple agents
using MMDPs [25]. In the context of aircraft collision avoidance,
each agent has a partial observation of the whole state and has
only access to the states of nearby aircraft. Therefore, the problem
can be formulated as a Decentralized Partially Observable Markov
Decision Process (Dec-POMDP) [1] which can be formally defined
as a tuple ⟨𝐼 , 𝑆, 𝐴,𝑇 , 𝑅,𝛾,Ω,𝑂, 𝐻, 𝜇⟩ where :

• 𝐼 is the set of 𝑁 agents,
• 𝑆 is the set of 𝑘 variables 𝑆1, . . . , 𝑆𝑘 defining the state space,
• 𝐴 = 𝐴1 ×𝐴2 × . . . ×𝐴𝑁 is the joint action space,
• 𝑇 is the state transition function 𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1],
• 𝑅 is the global reward function 𝑅 : 𝑆 ×𝐴 × 𝑆 → R,
• 𝛾 is the discount factor, 𝛾 ∈ [0, 1],
• Ω = Ω1 × Ω2 × . . . × Ω𝑁 is the set of joint observations,
• 𝑂 is the observation function 𝑂 : 𝑆 × Ω → [0, 1],
• 𝐻 is the time-horizon of the problem,
• 𝜇 is the initial state distribution 𝜇 : 𝑆 → [0, 1].

𝐼 is the set of all aircraft operating in the airspace. 𝑆 is the set of
all states representing the infinite set of possible configurations of
position, speed, heading, and last action of each aircraft. 𝜇 is the
initial state distribution, i.e. the encounter model. The joint action
space 𝐴 contains all the combinations of actions for each agent,
which are two continuous values for left-right (yaw) and up-down
(pitch) heading changes. The dynamics of aircraft are governed
by the transition model 𝑇 which updates positions and heading at
each time step based on a simple 3D kinematic model known as
the Dubins’ aircraft model [6].

The reward function 𝑅 is designed to penalize unsafe and ineffi-
cient behavior: significant costs are assigned to actions that lead
to collisions, a lesser penalty is assigned to reversals (e.g., switch-
ing from a left turn to a right turn), and a small cost is given for
strengthening actions in the same direction (e.g., transitioning from
a weak left turn to a strong left turn). Conversely, there is a small
reward for maintaining a steady heading, which encourages agents
to avoid unnecessary maneuvers [20]. Reference values for imme-
diate rewards are: −1 for collision, −0.0001 for strengthening or
reversing, +0.00001 for going straight forward.

The observation space Ω is shared by all agents, where Ω = Ω𝑛
1 .

Each agent’s observation consists of a partial view of the global
state. Specifically, an agent perceives the relative states of nearby

agents within a fixed radius 𝑟 , including their velocity, distance,
relative heading, relative altitude, and relative bearing. Moreover,
to account for sensor inaccuracy, a zero-mean Gaussian noise is
added to each parameter of the perfect observation to reproduce
the uncertainty relative to the estimated position and dynamics of
intruders [7]. In addition, agents have access to their own speed
and the last action they performed.

Finally,𝛾 represents the discount factor, applied to future rewards
to account for their decreasing importance over time. The problem
runs over a finite horizon 𝐻 , typically set to 500 time steps, where
each time step corresponds to one second of simulated time.

3.2 Deep MARL for Collision Avoidance
Deep learning methods offer a powerful approach to manage the
high-dimensional, continuous state space inherent in aircraft col-
lision avoidance, while avoiding discretization assumptions and
effectively generalizing to unseen states. Moreover, the real-time
and embedded decision process required for this application is con-
sistent with deep MARL, where actions are efficiently computed via
a single forward pass through the actor network, which in addition
presents a smaller memory footprint, compared to the storage of
the entire Q-table.

Furthermore, deep MARL leverages the centralized training and
decentralized execution paradigm (CTDE), allowing aircraft to learn
coordinated behaviors by sharing global information through a
centralized critic during training, and then operating autonomously
during execution based solely on their local observations. This
framework is particularly suitable for collision avoidance, where
each aircraft has only a partial view of the global state. This is
typically done in policy gradient actor-critic algorithms with a
centralized critic which takes as input global state information to
compute either the value or value-state function during learning.
During execution, each agent follows its policy through its actor
network, which only needs the local observations and not any
centralized information. This is particularly useful in our problem
because aircraft have to make their decisions based only on their
local observations.

Although independent learning (IL), where single-agent RL al-
gorithms are applied to each agent independently, is widely used
for MARL collision avoidance [2, 4], policy gradient algorithms
with centralized critics, such as MAPPO [38] and MADDPG [27],
have demonstrated superior performance in collaborative environ-
ments [33] by effectively using shared global information for state
evaluation. In addition, the scalability required for the projected
density of future airspace can be addressed by algorithms such as
MADDPG with attention mechanisms that are effective for con-
trolling swarms of UAVs [5]. The state-of-the-art PPO algorithm
[35] performs surprisingly well in multi-agent environments, and
was used in [2] for effective control and collision avoidance in UAV
swarms, as well as in [4] for aircraft deconfliction in a simulator by
increasing or decreasing the speed of aircraft.

Attention mechanisms have been widely applied in collision
avoidance methods [2, 4, 5], leveraging their ability to assign vary-
ing levels of importance to nearby aircraft based on their potential
impact. These mechanisms enable agents to identify and priori-
tize intruders that pose an imminent collision risk. Often using



recurrent neural networks like LSTMs, attention mechanisms ef-
fectively capture spatial and temporal dependencies, making them
particularly well-suited for partially observable environments.

4 CHALLENGES AND OPEN QUESTIONS
Developing autonomous aircraft that can safely navigate complex
airspace is a challenging task. Multi-agent deep reinforcement learn-
ing is a promising approach to address this challenge. However,
implementing MARL in aviation raises significant concerns related
to system safety, robustness, and scalability. To ensure the safe
and reliable operation of autonomous aircraft, we must carefully
consider these challenges and explore solutions that can mitigate
risks and improve system performance.

How can robust and effective behaviors be developed in
a continuously changing environment where other agents
change their behavior as they learn? MARL suffers from the
non-stationarity of the environment due to the continuous change
of each agent’s policy during training. Hence, an optimal action in
one training step could be suboptimal in the next step because the
other agents have changed their behavior. Some recent advances
may help to address this issue [24, 30, 37].

How can we scale collision avoidance techniques to han-
dle the increasing density of autonomous aircraft in future
airspace?We envision a future where not just dozens, but hundreds
or even thousands of autonomous aircraft share the sky. Therefore,
the solutions to collision avoidance need to scale efficiently to run
in real-time and to scale in terms of memory usage for more modest
systems. Current research on collision avoidance for unmanned air-
craft tends to study cases with only two to ten agents [2, 4], which
is a very low bound compared to what is expected in the future of
airspace management. Hierarchical reinforcement learning could
appear as a relevant approach. Decomposing the problem into hi-
erarchical levels related to sub-airspace (such as separated flight
planes) could help manage complexity and improve scalability [12].

Howcanwe ensure the safety and reliability of autonomous
systems in the face of sensor noise and potential adversar-
ial attacks? Solutions must satisfy strong safety requirements on
an infinite set of different aircraft configurations. Reinforcement
learning with safety guarantees in the mono-agent case is still an
active research area, and only a few works have tackled the multi-
agent case [8, 13]. The embedded solutions need to be robust to
uncertainty in the state estimation to account for sensor inaccu-
racy and noise [7]. Uncertainty may also come from the behavior
of other aircraft, which may be cooperative, non-cooperative, or
even adversarial, in which case each aircraft must recognize the
intruder’s profile and intentions, and must act accordingly. This
should require a specific offline and/or online adversarial training
protocol [14].

What communication protocols can minimize latency and
maximize reliability in real-time, multi-agent systems? Al-
though current systems such as TCAS and ACAS-X rely on trans-
mitted position data, they do not fully exploit the potential of shared
messages about action intentions or preferences. Explicit commu-
nication can be quite helpful in a multi-agent scenario. These mes-
sages can be added to the action space and observed by nearby

aircraft to promote better coordination [3]. Agents can share in-
formation concerning their perception, their future actions, their
flight objectives, and eventually negotiate to choose a satisfying
combined set of maneuvers.

How to design a reliable encounter model to test the pro-
posed methods in a multi-aircraft scenario? The difficulty lies
in how to test whether the proposed solutions meet safety standards
through a reliable encounter model that encapsulates most of the
possible cases that could occur in real life. Encounter models for
one-to-one interactions [21] and multi-threat situations with up to
three aircraft [22] have been well-studied. However, scaling these
models to include more aircraft presents a significant theoretical
and computational challenge.

How can we make deep learning-based multi-agent sys-
tems interpretable and explainable for certification andhuman-
interaction purposes? Airborne systems must be reliable and
comply with stringent constraints. In particular, a large open and
active issue is the certification of neural networks, which are often
considered as black boxes. Although a promising approach has been
developed to verify and prove the properties of neural networks for
aircraft collision avoidance systems [16], multi-agent explainability
is a very under-researched domain, and could open the door to
find and understand new ways of cooperation. Plus, integrating the
human in the loop of MARL, which is particularly important for
airborne and traffic control systems, is still a challenging task [29].

5 CONCLUSION AND NEXT STEPS
Through simulations, we showed that current optimal policies de-
rived via dynamic programming do not scale well as the number of
aircraft in the airspace increases, motivating the need for a multi-
agent perspective. Thus, we formalized the multi-agent aircraft
collision avoidance problem within the framework of a decentral-
ized partially observable Markov decision process (Dec-POMDP).
By taking advantage of recent deep multi-agent reinforcement
learning (MARL) approaches, we emphasized the potential of these
algorithms to learn coordinated behaviors in response to the chal-
lenges posed by increasingly dense airspace. However, there are
still several open research questions that must be addressed by the
multi-agent community, for which investigation tracks such as safe
and hierarchical multi-agent reinforcement learning, adversarial
training, and intruder intent recognition.

In this paper, we developed an experimental scenario and tested
diverse strategies to demonstrate the limits of ad-hoc heuristic so-
lutions that could be used to extend the single intruder collision
avoidance solution to the multi-indruder case. In the next steps of
this research, we intend to test and adapt different state-of-the-art
MARL algorithms to verify whether that techniques can effectively
tackle the multi-agent version of the CAS problem, potentially al-
lowing the agents to learn autonomously on how to coordinate their
actions, with the advantages of increasing the complexity of the ob-
servation and action spaces, not only by allowing to operate directly
in the continuous dimensions, but also by adding other informa-
tive variables concerning the other agents (flight plan, dynamics,
communicated intentions or demands), and an augmented control,
including the simultaneous decision over horizontal, vertical, and
acceleration/deceleration maneuvers.
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