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ARTICLE INFO ABSTRACT

Article history: Large-scale volumetric medical images with annotation are rare, costly, and time pro-
hibitive to acquire. Self-supervised learning (SSL) offers a promising pre-training and
feature extraction solution for many downstream tasks, as it only uses unlabeled data.
2000 MSC: 41A05, 41A10, 65DO0S, Recently, SSL methods based on instance discrimination have gained popularity in the
65D17 medical imaging domain. However, SSL pre-trained encoders may use many clues in
the image to discriminate an instance that are not necessarily disease-related. More-
. . over, pathological patterns are often subtle and heterogeneous, requiring the ability of

Self-supervised learning . . 7.
Contrastive learning the desired method to represent anatomy-specific features that are sensitive to abnor-
Label-efficient learning mal changes in different body parts. In this work, we present a novel SSL framework,
3D Medical imaging data named DrasCLR, for 3D lung CT images to overcome these challenges. We propose
two domain-specific contrastive learning strategies: one aims to capture subtle disease
patterns inside a local anatomical region, and the other aims to represent severe dis-
ease patterns that span larger regions. We formulate the encoder using conditional
hyper-parameterized network, in which the parameters are dependant on the anatomical
location, to extract anatomically sensitive features. Extensive experiments on large-
scale datasets of lung CT scans show that our method improves the performance of
many downstream prediction and segmentation tasks. The patient-level representation
improves the performance of the patient survival prediction task. We show how our
method can detect emphysema subtypes via dense prediction. We demonstrate that
fine-tuning the pre-trained model can significantly reduce annotation efforts without
sacrificing emphysema detection accuracy. Our ablation study highlights the impor-

tance of incorporating anatomical context into the SSL framework.
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have been collected and stored in hospitals’ picture archiving
and communication systems (PACS) for decades. Recently,
self-supervised learning (SSL) has become increasingly pop-
ular as a way to alleviate the annotation burden by exploiting
the readily available unlabeled data (Jing and Tian, 2020; Ohri
and Kumar, 2021; You et al., 2022b,a). However, unlike su-
pervised approaches, which use experts’ annotations (e.g., dis-
ease labels, lesion segmentation masks) as supervision, self-
supervised models are trained with limited supervision derived
from the data itself, making it far more difficult to identify
disease-related features from the data. Furthermore, certain le-
sions (e.g., early-stage tumors) may occupy only a small re-
gion in high-resolution volumetric medical images, and their
visual patterns may vary depending on where they are located
in the body. Thus, the desired self-supervised learning algo-
rithm should be sensitive enough to capture local anatomical
deformities. In this research, we propose DrasCLR: a novel
framework for self-supervised learning of disease-related and
anatomy-specific representation of 3D medical imaging. Dras-
CLR learns a patch-based dense representation that condition-
ally depends on the anatomical location of the center voxel. We
extensively evaluate our method on chest computed tomogra-
phy (CT) imaging because of its prominent role in the preven-

tion, diagnostics and treatment of lung diseases.

Self-supervised learning methods aim to provide useful fea-
ture representations for downstream tasks without human su-
pervision, which is typically achieved by optimizing the model
to solve a proxy task. When designing a proxy task, the primary
consideration is: what information in the data is important and
what is not to the downstream tasks? Early self-supervised ap-
proaches use heuristic-based pretext tasks to learn representa-
tions invariant to transformations that do not change the seman-
tic meaning of the target labels (Doersch et al., 2015; Zhang
etal., 2016; Gidaris et al., 2018). More recent contrastive learn-
ing approaches (Chen et al., 2020a; He et al., 2020) use instance
discrimination task, which consider every instance as a class of
its own and train deep neural networks to discriminate pairs of

similar inputs (augmented views of the same instance) from a

selection of dissimilar pairs (different instances). In this set-
ting, data augmentation guided by prior knowledge often plays
a vital role in preserving task-relevant information (Tian et al.,
2020b). The sampling strategy for negative pairs is also crucial
for the performance of contrastive learning methods. Recent
studies (Jin et al., 2018; Jeon et al., 2021) show that hard nega-
tive sampling guided by domain knowledge helps in preventing
trivial solutions and improving the alignment of extracted fea-

tures with human semantics.

Self-supervised representation learning of disease-related
features in medical images is particularly challenging for two
reasons. First, since disease-related features are often rep-
resented through subtle changes, an effective self-supervised
learning method should be able to ignore large but irrelevant
and non-informative information, such as anatomical differ-
ences, and focus on representing fine-grained features, such
as small deviations from normal-appearing tissues (Holmberg
et al., 2020). Second, because pathological tissues may only
scatter in a few small regions, adequately representing local
content is crucial for dense (voxel-level) prediction tasks such
as anomaly detection and segmentation. Several self-supervised
learning methods (Zhou et al., 2019; Chaitanya et al., 2020;
Haghighi et al., 2021) have been developed to learn local rep-
resentations of 3D medical images. These methods use sub-
volumes sampled from random locations in the image as in-
puts and train a single encoder with parameters shared across
all locations. However, disease types and their visual patterns
are often associated with anatomical locations. For example,
pulmonary emphysema can be divided into three major sub-
types (i.e., centrilobular, paraseptal, and panlobular) based on
their visual characteristics and anatomical locations within the
lung (Smith et al., 2014). A more sophisticated framework for
learning local representations should incorporate anatomical lo-
cations as prior information to account for the spatial hetero-

geneity of anatomical and pathological patterns.

In this research, we take inspiration from the aforementioned
challenges and propose a novel contrastive learning framework

for 3D lung CT images. In order to represent disease-related
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imaging features, we propose to combine two domain-specific
contrasting strategies. The first strategy leverages the similar-
ity across patients at the same anatomical location and aims to
represent small disease patterns within a local (anchor) region.
The second strategy takes advantage of anatomical similarities
between the anchor and its nearby anatomical regions, with the
goal of complementing the first strategy by learning larger dis-
ease patterns that expand beyond the local region. We use small
3D patches to represent local anatomical regions. The effec-
tiveness of both strategies depends on the difficulty of instance
discrimination; as the anatomical similarity between the query
and negative patches becomes greater, the encoder is forced to
rely on subtle and disease-related features rather than normal
anatomical features. To that end, we use image registration
to obtain hard negative patches from different subjects that are
anatomically best aligned to the query patch. In particular, we
obtain point-by-point correspondence between image pairs by
mapping them to the same anatomical atlas. The coordinates in
the atlas image can then be viewed as a standard set of anatom-
ical locations. To incorporate anatomical locations into learned
representations, we further develop a novel 3D convolutional
layer whose kernels are conditionally parameterized through a
routing function that takes the coordinates in atlas space as in-
puts. We call our unified framework Disease-related anatomy-
specific Contrastive Learning Representation (DrasCLR). The
overview of our proposed approach is illustrated in Fig. 1. We
conduct experiments on large-scale lung CT datasets. The re-
sults empirically show that our method outperforms baseline
methods on both image-level and voxel-level tasks.

In summary, the major contributions of this paper are:

1. We propose a novel framework for contrastive learning of
disease-related representation for 3D lung CT images.

2. We propose a novel 3D convolutional layer that encodes
anatomical location-dependent information.

3. We extensively validate our model on large-scale lung CT
datasets and show that our method outperforms existing
baselines for a wide range of image-level tasks.

4. We demonstrate the application of our method for voxel-

wise emphysema detection and show that using our pre-
trained model can significantly cut annotation costs with-

out compromising detection accuracy.

The paper is organized as follows: We present the details of
our proposed methodology in Section 2. Implementation de-
tails and experimental results are described in Sections 3 and
4, respectively. We discuss the key findings and limitations of
our work in Section 5. We survey the related works and draw
comparisons with our preliminary work in Section 6. Finally,

we conclude the paper in Section 7.

2. Method

We propose DrasCLR, a novel contrastive learning frame-
work for 3D lung CT images. Our goal is to learn location-
specific representations that are sensitive to tissue abnormali-
ties. We start by aligning images to an anatomical atlas using
image registration and treating the image of each patient as a
collection of 3D patches centered at a common set of anatom-
ical locations. Our contrasting strategies are motivated by two
domain-specific similarity cues: one leverages the similarity be-
tween patients at the same anatomical location, and the second
leverages the similarity between nearby anatomical locations
on the same image. In the following sections, we explain each
component separately. The schematic diagram of the proposed
method is shown in Fig. 1. The notations used in this paper are

summarized in Table 1.

2.1. Anatomical Alignment via Image Registration

We represent each volumetric image as a collection of 3D
patches centered at a standard set of anatomical locations pre-
defined on an anatomical atlas, with each patch corresponding
to a distinct anatomical region of the lung. To align anatomical
structures among patients, we first choose an image of a healthy
subject to serve as the anatomical atlas, and then use image reg-
istration to obtain the subject-specific transformations that es-
tablish the point-by-point correspondence between the patients’
images and the atlas image. Let Xq,s denote the atlas image, x;

denote the image of patient #, the transformation ¢; is obtained
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Fig. 1: Schematic diagram of DrasCLR. Left panel: We represent a volumetric image with a collection of 3D patches registered with distinctive anatomical
landmarks defined in an atlas image. We develop an encoder that generates location-specific representation using the patch and location of associated anatomical
landmark as inputs. Our contrastive learning framework comprises two objectives. Middle panel: The first one aims to learn local representation from a single
patch. Right panel: The second one aims to learn representations of larger patterns across neighboring patches. Both contrasting strategies incentivize the encoder
to learn disease-related features by using patches of similar anatomy as hard negative samples. Notation used in the diagram: i indexes images, j indexes patches;

x{ and p/ are the query patch and its anatomical location; AND

A are neighboring patches of xf ; x{ is a patch with the same anatomical location in a different

image; Xf represents random transformations of the given patch. q{ s rll.,k+,k, are embeddings of the query patch, neighboring patch, and positive and negative keys,
respectively. fp,, fg, are the encoder and momentum-updated encoder, respectively.

by solving the optimization problem as follows: the anatomical atlas:

argmin S1n(9)(5). Xauw) + RoB4) () PD) = 48 (P) = . @

2.2. Conditionally Parameterized Convolutional Layer

where Sim(-,-) is mutual information similarity function and . . . .
G Y Image patches from different anatomical locations have dis-

Reg(¢;) is a regularization term to ensure the transformation is L . . . .
&4 g tinctive anatomical features and may be associated with dif-

smooth. We perform the image registration using the Advanced . . .
P gereg g ferent diseased tissue patterns. Standard convolutional layers

Neuroimaging Tools (ANTS) Tustison et al. (2014). that apply the same kernels throughout the entire image may

After registration, we divide the lung region of the atlas im- not be sufficient to accommodate spatial heterogeneity among

age into J evenly spaced three-dimensional patches with some patches at different locations. Inspired by CondConv (Yang

overlap and define the patches’ centers as the anatomical land- etal., 2019), we propose Loc-CondConv, a location-dependent,

Iy, .. .
marks, denoted by {p }j=1’ where j is the patch index and each conditionally parameterized convolutional layer. Instead of us-

j 3. . . L _ ) ’ ]
p’ € Ris a coordinate in the arlas space. We apply the in ing static convolutional kernels, we compute convolutional ker-

. _1 .
verse transformation ¢~ to locate the anatomical landmarks on nels as a function of the anatomical location. In particular, we

each patient’s image and extract the corresponding patches for parameterize the kernels in Loc-CondConv as a linear combi-

training. Formally, each patient’s image x; is partitioned into nation of 1 convolutional kernels:
J
=0

x/ e R pl = ¢-1(p/) and d is the dimension of patch.

a set of patches {x{ }f= , centered at { p{ }_,, respectively, where

W=a W+ +ayWy, (3)

N

4= are the same-sized convolutional kernels as in

It is straightforward to show that patches with the same index where {W,}

N

across all patients correspond to the same anatomical region on the regular convolutional layer and {a,},_,

are scalar weights
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Table 1: Important notations in this paper.

Models
e(-,-16))  Image encoder.
g(-:6,)  MLP projection head.
f(,60)  Network composed of ¢ and g, where 6 = {6;,6,)}.

r(-) Routing function used in Loc-CondConv.

Functions

i) Transformation from the i-th image to the atlas space.
q),T' ) Inverse transformation from atlas space to the i-th image.
7(-)  Random augmentations.

Variables

p’ Location of the j-th anatomical landmark in the atlas space.
17{ Location of the j-th anatomical landmark mapped in the i-th subject.

x{ Patch of the i-th subject centering at the j-th anatomical landmark.

¥/ Representation of j-th patch in the i-th image used in downstream tasks.
yi  Representation of the i-th image used in downstream tasks.

qu MoCo embedding of j-th patch in the i-th query image.

ki MoCo embedding of the positive sample.

k- MoCo embedding of the negative sample.

/{ MoCo embedding of /-th neighboring patch in the i-th image.
N(j)  Neighboring patches of the j-th patch.

Xanas  The atlas image.

computed via a routing function taking anatomical location as
input. Specifically, we construct the routing function r(-) using
a fully-connected layer followed by a Sigmoid activation func-

tion:

r(p!) = o(p! x W), e

where p/ is a coordinate in the atlas space and W, is a learn-
able weight matrix with dimension 3 X N, and o represents
the sigmoid function. Fig. 2 illustrates the architecture of Loc-
CondConv. In the DrasCLR models, we replace all static con-

volutional layers with Loc-CondConv layers.

2.3. Local Contrastive Loss

In contrastive learning, the model is trained to discriminate
pairs of positive inputs from a selection of negative pairs. Re-
cent studies show that selecting harder negative pairs is criti-
cal for the success of contrastive learning (Saunshi et al., 2019;
Robinson et al., 2020). The anatomical similarity between pa-
tients in the same lung region provides domain-specific cues for
selecting hard negatives. More specifically, after registration
alignment, any pair of patches centered at the same anatomical
landmark, e.g., x{ s x( (i # v), have highly similar local anatomy,

forcing the encoder to discriminate them using more subtle vi-

P eR3
"1%"2\« “n
W, W, .. w,

Fig. 2: The architecture of the Loc-CondConv layer. The kernels W are condi-
tionally parameterized for each anatomical location p/. The symbols «, denote
the routing weights. x denotes the input from the previous layer.

sual features, such as pathological tissues, rather than shortcuts,
such as the overall anatomical background or boundaries.

With this motivation, we propose a local contrasting strategy.
Formally, given a patch x,’ , we generate two augmented views
X‘ij = f(xij ), where 7 is random augmentations sampled from a set
of transformations 7. These two augmented patches are con-
sidered as a positive pair. Each negative sample is generated as
Z{; = f(x{) by randomly sampling a patch in the same anatomical
region j from a different patient (v # i) and random augmen-
tations 7 ~ 7. For notation simplicity, the tilde symbol that
represents random augmentations is omitted for the query and
negative sample in subsequent text. We adopt the MoCo (He
et al., 2020) as our contrastive learning paradigm, for its capa-
bility to efficiently leverage a large number of negative samples.
Specifically, we train two networks fj,, fy, to map the positive
pair (xf , 2,’ ) and the negative pair (x{ ,xl) to corresponding em-

beddings as follows:
q) = fO. 710, ke = f(EpT160. ko= f(xl.p"200. (5)

where 6y = m6; + (1 — m)f, and m € [0,1) is a momen-
tum coefficient. The network f(:,-;6,) is comprised of a fea-
ture extractor function e(:,-;6;), which accepts both patches
and their corresponding anatomical landmarks as inputs, and
a multilayer perceptron (MLP) projection head g(-; 6,), which
maps the patch representations to the space where contrastive
loss is applied. The equation can be written as f (x{ ,ph0,) =
g(e(x{,pfgel);ez), where 6, = {6,6,}. Finally, the local con-
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trastive loss per location is defined as:

A exp(q] - k./7)
L] =—log 5 i re ; . (6)
exp(q] - k. /1) + X¥ explg! - k_/7)

where K~ denotes the number of negative pairs and 7 denotes

the temperature hyperparameter.

2.4. Neighboring Contrastive Loss

The local contrastive loss incentivizes representations to be
sensitive to tissue abnormalities within local anatomical re-
gions. Pathological tissues, however, may expand beyond the
borders of a single patch. We develop a complementary con-
trasting strategy - neighboring contrasting to allow the same
encoder to learn disease patterns that may spread across multi-
ple anatomical regions. For a given anatomical region j, we de-
note the indices of its £ nearest neighboring regions by N(), its
neighboring anatomical landmarks by { pl}f€ NG and the neigh-

boring patches of x{ on the same image by {x,’. } The corre-

¢
IEN())"
sponding embeddings of the neighboring patches are given by:

= f(d, p'6,), 1€ N(j). (7

Please note that random augmentations were applied to x in
our implementation. For notation brevity, the tilde symbol is
omitted.

Instead of constructing positive and negative pairs, we con-

struct positive and negative sets, specifically,

" it j
positive set : {{xi}leN(j), x{},

negative set : {{xﬁ}feN(j), x{:}, V£,

in which the set of neighboring patches { serve as query

e
Xidient)
samples, their corresponding central patch x] acts as positive
sample, and xla patch from a random image at the same central
location j, acts as the negative sample.

The neighboring contrastive loss per location is define as:

exp(r,{ ki /7)

Z;V(j) eXp(rf ke /T) + Z;V(J') Z/{fi exp(rl{ . k,/T),
()

where k. and k_ are the same as defined in Eqn. 5. Minimizing

j ]
},l log

this loss forces the encoder to extract similar visual features of

the disease spreading across the patch x; and its neighboring

patches {x!}{_ (- Additionally, by selecting random patches in
the same anatomical region as the hard negatives, the encoder
is prevented from using mismatched anatomy as a shortcut to

perform this instance discrimination task.

2.5. Overall Model

We train our model end-to-end by minimizing the combined
local contrastive loss and neighboring contrastive loss and
looping through each anatomical landmark. The overall loss

function per location is defined as:
L=1rl+ L. ©9)

During inference time, the voxel-level representation can be
obtained by:
v = el pli 6, (10)

where e(-, -; 0;) is the trained encoder with Loc-CondConv lay-
ers. The image-level representation y; is obtained by averaging
the representations of patches across all the anatomical land-
marks. Formally, the representation at the image level is given

by:
J

1 o
yz':jze(x{»lﬂ;@l) (11

j=1
Note that, at the time of inference, p/ can be any point inside
the atlas space and is not restricted to the predefined anatomi-
cal landmarks. In our experiments, we obtain image-level rep-
resentations using only predetermined anatomical markers for

computational efficiency.

3. Implementation Details

We begin by extracting the lung regions from each CT scan
using the lung segmentation method proposed by Hofman-
ninger et al. (2020). We then choose the image of one healthy
subject as the anatomical atlas and partition it into a grid of 3D
patches with some overlap. This results in 581 patches, each
with a size of 32 x 32 x 32, that fully cover the lung in the at-
las image. Anatomical landmarks are defined as the centers of
these 581 patches on the atlas coordinate system.

For registration, rather than registering raw images, we align

the segmentation of the lung in the moving images to the lung
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mask of the atlas. A healthy subject’s lung, representing com-
mon shapes among most subjects, was chosen as the anatomi-
cal atlas. We use the image registration toolkit ANTSs (Tustison
et al., 2014) to obtain the forward and inverse affine transforma-
tions between each subject’s (moving) lung segmentation and
the atlas (fixed) lung segmentation.

We construct the encoder e(:, -; 6) using Loc-CondConv lay-
ers as the building blocks. Each Loc-CondConv layer contains
N 3D-convolutional kernels with size 3 X 3 x 3 and is zero-
padded on each side of the inputs by one pixel. We adopt batch
normalization (BN) (Ioffe and Szegedy, 2015) and ELU (Clev-
ert et al., 2015) activation following each Loc-CondConv. For
the projection head g(-;6,), we adopt a 2-layer MLP with
ReLU activation. We set the number of nearest neighbors
used in the neighboring contrastive loss as 2 based on an ab-
lation study (Sec. 4.4.3). We create data augmentations using
MONAI (MONALI Consortium, 2020) package. The data aug-
mentation includes random affine transforms (applied in the or-
der of rotation, translation, and scale), Gaussian noise, and ran-
dom image contrast adjustments. We optimize the networks
using SGD with momentum = 0.9 and weight decay = 107*.
The learning rate is set to be 1072 and is updated using a co-
sine schedule. We choose the batch size of 128. Following the
practice in MoCo-v2 (Chen et al., 2020b), we set temperature
7 to 0.2 and momentum coefficient to 0.999. Unlike regular
MoCo, which uses a single dictionary for negative samples, we
develop a conditional memory bank that maintains separate dic-
tionaries for anatomical landmarks, each of which has a size of
4096. For training, we select negative samples from the corre-
sponding dictionary, which stores patch embeddings from the
same anatomical location as the query patch. We perform self-
supervised pretraining on the full dataset using four NVIDIA
Tesla V100 GPUs, each with 32GB memory, for 48 hours or 20

epochs, whichever comes first.

4. Experiments

In this section, we take our DrasCLR pre-trained models and

evaluate their performance in medical imaging tasks at both im-

age and voxel levels. At the image level, we evaluate the ef-
fectiveness of the learned representation in disease phenotype
prediction, disease severity classification, and survival analy-
sis. At the voxel level, we first describe how our model can be
used to produce voxel-wise segmentation masks. Using this ap-
proach, we then present the quantitative and qualitative results
of subtype emphysema detection. Finally, we perform ablation
studies to validate the importance of the proposed components

in DrasCLR.

4.1. Datasets

We conduct the experiments on two large-scale lung CT
datasets, including the COPDGene dataset (Regan et al., 2011)
and the MosMed dataset (Morozov et al., 2020). We apply the
same data preprocessing procedure for images in both datasets.
We begin by re-sampling all images into 1mm?> isotropic res-
olution. We then threshold the Hounsfield Units (HU) to the
intensity window of [—1024,240] and normalize the intensity

range to [—1, 1] by linear scaling.

4.1.1. COPDGene Dataset

Chronic Obstructive Pulmonary Disease (COPD) is a chronic
inflammatory lung disease that causes obstruction of lung air-
flow and is one of the leading causes of death worldwide. The
COPDGene Study (Regan et al., 2011) is a multi-center obser-
vational study that collects imaging data, genetic biomarkers,
and relevant phenotypes from a large cohort of subjects. In our
study, we use a large set of 3D thorax CT images from 9,180
subjects for self-supervised pre-training. We use the spirometry
measures, disease-related phenotypes, and survival status of the
same cohort as the image-level labels in our experiments. On a
subset of these CT scans, an experienced pulmonologist anno-
tated the bounding boxes of subtypes of emphysema by clicking
on locations surrounded by the pathological tissues (Castaldi
et al., 2013; Mendoza et al., 2012). This procedure created 696
centrilobular emphysema bounding boxes from 153 subjects,
and 243 paraseptal emphysema bounding boxes from 69 sub-
jects. All these bounding boxes are of the same size (32mm?).
We use this annotated subset to examine the performance of the

DrasCLR pre-trained model for subtype emphysema detection.
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4.1.2. MosMed Dataset

The MosMed dataset contains 3D thorax CT images of 1,110
subjects from the municipal hospitals in Moscow, Russia (Mo-
rozov et al., 2020). Subjects in this dataset are classified into
five grades (‘“Zero”, “Mild”, “Moderate”, “Severe”, and “Criti-
cal”) based on COVID-19 related CT findings and physiologi-
cal measures, such as body temperature, respiration rate, blood
oxygen saturation level (SpO2) and so on. Triage decisions are
made based on the severity levels of the patients. For example,
patients in the “Moderate” category only need to be followed
up at home by a primary care physician, whereas patients in
the “Critical” category are immediately transferred to the in-
tensive care unit. We use the CT images in MosMed for model
pre-training and use COVID-19 severity grades as classification

labels in downstream analysis.

4.2. Image Level Evaluation

To assess how much disease-related information is preserved
by the proposed method, we use the learned image-level repre-
sentation to predict a wide range of clinical variables measured
at the subject level, such as spirometry measurements, disease

phenotypes, disease staging, and patients’ survival rates.

4.2.1. COPD Phenotype Prediction

We begin by performing self-supervised pre-training with
DrasCLR on the COPDGene dataset. Then, we use the learned
image-level representations in downstream prediction tasks in
a linear readout fashion. In particular, we train linear regres-
sion models to predict two pulmonary function measures on the
log scale, which are percent predicted values of Forced Expira-
tory Volume in one second (FEV1pp) and its ratio with Forced
vital capacity (FEV;/FVC). We use R? scores as an evaluation
metric for the regression analysis. In addition, we train multi-
class logistic regression models to predict four categorical out-
comes: (1) Global Initiative for Chronic Obstructive Lung Dis-
ease (GOLD) spirometric stage, a four-grade categorical vari-
able indicating the severity of airflow limitation, (2) Centrilobu-
lar emphysema visual score (CLE), a six-grade categorical vari-
able indicating the extent of emphysema in centrilobular, (3)

Paraseptal emphysema visual score (Paraseptal), a three-grade

categorical variable indicating the severity of paraseptal emphy-
sema, and (4) Acute Exacerbation history (AE history), a bi-
nary variable indicating whether the patient has encountered at
least one exacerbation event before enrolling in the study. For
all classification tasks, we use accuracy as the evaluation met-
ric. To account for human variability in annotation, for GOLD,
CLE, and Paraseptal scores, we also report the proportion of
times the predicted class fell within one class of the true score

(denoted as /-off).

We compare the performance of DrasCLR against both un-
supervised and supervised approaches. The unsupervised base-
lines include: Models Genesis (Zhou et al., 2021), Medical-
Net (Chen et al., 2019), MoCo (3D version on the entire vol-
ume) (He et al., 2020), Context SSL (Sun et al., 2021), Domain-
CLR (Chaitanya et al., 2020), SwinUNETR (Tang et al., 2022),
and DiRA (Haghighi et al., 2022). To ensure a fair compar-
ion, each method was pre-trained on the corresponding dataset
on which DrasCLR was pre-trained. Alongside deep learning-
based baselines, we also evaluate methods that rely on expert-
designed features. These approaches include the Divergence-
based feature extractor (Schabdach et al., 2017), the K-means
algorithm applied to features from local lung regions (Schab-
dach et al., 2017), and the widely-accepted clinical descrip-
tor, Low Attenuation Area (LAA). The supervised baselines
include convolutional neural networks (CNN) that were sepa-
rately trained to predict FEVipp, GOLD and CLE scores us-
ing 2D slices as inputs (2D CNN) (Gonzilez et al., 2018), and
Subject2Vec (Singla et al., 2018), where a patch-based CNN
model was first trained with FEV1 and FEV;/FVC as joint su-
pervised information, and the learned image representations
were then used in other prediction tasks. We perform five-fold
cross-validation for all experiments and report the average re-
sults along with standard deviations. Table 2 shows that the
DrasCLR pre-trained model outperforms unsupervised baseline
models in all metrics, with the exception of 1-off accuracy for
Paraseptal emphysema, where the difference is within one stan-
dard deviation. We have also conducted statistical tests (refer

to Table A.5 in Appendix ) to compare the evaluation outcomes
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Table 2: Results of phenotype prediction on the COPDGene dataset. We use R-Square for continuous measurements and accuracy for discrete scores. Results
including the mean and standard deviation (meanzs.d.) are derived from 5-fold cross validation. Our DrasCLR model has the best or competitive performance on
all phenotype prediction tasks when compared to seven unsupervised methods, and it generalizes better than the supervised method for predicting visual scores and

AE history.

. Spirometry COPD Staging Visual scores Acuity
Method Supervised | | EEVipp logFEV)/FVC | GOLD GOLD l-off | CLE  CLE I-off Paraseptal Paraseptal I-off | AE History
Metric ‘ R-Square ‘ % Accuracy
LAA-950 X 0.44. 0 0.60..01 55.8 75.7 329 77.7 333 87.6 73.8
K-Means X 0.55403 0.68.02 57.3 82.3 - - - - -
Divergence-based X 0.58..03 0.704.02 58.9 84.2 - - - - -
MedicalNet X 0.47..10 0.59..06 57.0.13 754.9 403419  69.6.16 53.1.07 81.8403 78.7.13
ModelsGenesis X 0.58.01 0.64..01 59.5:23 82.9.13 41.8414 77.0415 52.7:5 853411 77.8:8
MoCo X 0.40. 02 0.49. 02 527411 67.6414 36.5:7 61.9.9 525414 79.7:12 78.6.9
DomainCLR X 0.39.02 047,01 56.7.10 75.8.7 3994 717413 53914 822412 78.7.6
SwinUNETR X 0.54. 02 0.64.02 59.8.6 81.0+6 423411 76.841.1 524.5 84.4.7 783410
DiRA X 0.50..03 0.59..02 58.8.41.7 783412 42.0.05 72.0.06 53.7.08 83.2.08 78.9.09
Context SSL X 0.62... 0 0.70..01 632,41, 83.6.9 504413 81.541 56.2.11 849,12 78.8.13
2D CNN v 0.53 - 51.1 - - 60.4 - -
Subject2Vec v 0.67..03 0.74. 01 65.4 89.1 40.6 74.7 52.8 83.0 76.9
Ours X \ 063401 071401 \ 65.016 85.6..6 \ 539.5  86.3.7 58.4.4 87.0.8 \ 78.9.13

- indicates not reported.

Some baseline methods only report mean value without standard deviation in original manuscript.
The bold font is used to highlight the highest value for each column among all methods.
The underline is used to highlight the highest value for each column among unsupervised methods.

of DrasCLR with those of the baseline methods. The results
show that our DrasCLR significantly outperforms the baseline
methods for most of the downstream tasks. Our DrasCLR pre-
trained model also outperforms the supervised baseline models,
including Subject2Vec and 2D CNN, in terms of CLE, Parasep-
tal, and AE History predictions. For spirometry and COPD
Staging, on which Subject2Vec were trained, the performance
gap of our model is smaller compared to other unsupervised
baseline models.

Overall, these results suggest that image-level features ex-
tracted by the DrasCLR pre-trained model preserve richer infor-
mation about COPD severity than other unsupervised baselines.
When compared to supervised methods, our proposed method
learns more generalizable features as it achieves higher predic-
tive performance for a broader range of clinical variables, such

as emphysema visual scores and AE history.

4.2.2. Survival Analysis of COPD Patients

We evaluate the effectiveness of DrasCLR in survival anal-
ysis for the COPDGene population. We employ the Cox pro-
portional hazards (CPH) model (Cox, 1972) to predict patients’
survival using the learned image-level representations while

controlling for five potential confounders, including age, gen-

der, race, smoking status, and packyear (calculated by multi-
plying the number of packs of cigarettes smoked per day by the
number of years the person has smoked). We compare the per-
formance of features extracted by our method against: (1) hand-
designed imaging features, (2) imaging features retrieved by
other machine learning methods, and (3) relevant clinical fea-
tures, such as spirometry measures and the BODE index (Celli
et al., 2004). The hand-designed imaging features include CT
metrics of emphysema, gas trapping, average wall thickness of
hypothetical airway, and wall area percentage of segmental air-
ways (Martinez et al., 2006). All comparison baselines use the
same CPH model and are controlled by including the same five

confounding variables.

We report the results in terms of time-dependent concordance
index (C'¥), which estimates the model’s risk ranking ability, at
each of the censoring period quantiles. Table 3 shows that the
survival model with our imaging features achieved concordance
scores of 0.76, 0.75, and 0.74 at the 25", 50, and 75" quan-
tiles, respectively, outperforming baselines with imaging-only
features retrieved by both deep learning-based models and the
hand-designed model. In comparison to clinical features, our
method outperformed spirometry measures (0.76 vs 0.74) for

risk stratification of near-term events before the 25™ quantile,
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Table 3: Time-dependent concordance index on the COPDGene dataset. Re-
sults are averages over five runs with bootstrapped standard errors. The highest
mean values in each column are highlighted in bold. Our DrasCLR model per-
forms the best when compared to other imaging representation approaches, and
it provides incremental predictive value to clinical features.

Concordance Index

Feature Method
t=25"  r=50" r=75"
Hand-designed 0744002 0.73.001  0.74.001
. Models Genesis 0.72:002  0.7:001  0.72.001
Imaging Subject2Vec 072000 0724001 0.724003
DomainCLR 0.741002  0.72.0020  0.72.:002
SwinUNETR 0.732002  0.73.001 0.71.001
DiRA 074002  0.74.001  0.74.002
Context SSL 0.74.001  0.74.:002  0.74.001
Ours 0.76.002  0.75:001  0.74.001
. Spirometry 0.74.002  0.75.001  0.74.001
Clinical BODE 076s001 0.75s001 0752000
Hand-designed + BODE  0.76.002  0.76.001 0.76.001
Imaging + Clinical ~ Ours + Spirometry 0.77:002  0.761000 0.76:0.01
Ours + BODE 0.7810_01 0'7710.01 0.77¢o_00

slightly underperformed the BODE index (0.74 vs 0.75) at the
75™ quantile of censoring time, and achieved comparable accu-
racy otherwise. We also developed survival models with com-
bined imaging and clinical features. The bottom rows of Ta-
ble 3 show that the model using both our imaging features and
BODE index achieved the highest concordance scores of 0.78,
0.77, and 0.77 at the 25", 50, and 75 quantiles, respectively,
demonstrating that the imaging representation learned by Dras-
CLR provides incremental predictive value for survival analysis

of COPD patients.

4.2.3. COVID-19 Severity Prediction

We first pre-train a model with DrasCLR on the CT scans
in the MosMed dataset. Then, we freeze the encoder and train
a linear classifier to predict the severity of COVID-19, a cate-
gorical variable with five grades. The unsupervised comparison
methods, consistent with those used in the COPDGene experi-
ment, are also pre-trained on the MosMed dataset and evaluated
using the same linear readout approach. Additionally, a super-
vised CNN model that uses entire 3D images (referred to as
3D CNN) is incorporated for comparison. To evaluate classifi-
cation performance, we perform five-fold cross-validation and
report the average test accuracy along with standard deviations.

Table 4 shows that the DrasCLR pre-trained model outper-
forms the unsupervised baseline models. Statistical tests (refer

to Table A.7 in Appendix) further indicate DrasCLR’s signif-

Table 4: Classification of 5-grade COVID-19 severity on the MosMed dataset.
The results are the means and standard deviations of accuracy for 5-fold cross
validation. The highest mean value is highlighted in bold. Our DrasCLR model
leads the best performance over both unsupervised and supervised approaches.

Method Supervised % Accuracy
3D CNN v 61.2.35
MedicalNet X 62.1.133
Models Genesis X 62.0135
MoCo X 62.1433
DomainCLR X 63.2.08
SwinUNETR X 59.0429
DiRA X 62.6.27
Context SSL X 65.3.32
Ours w/o Neighbor Contrast X 62.6104
Ours X 65.4,,5

icant outperformance over Models Genesis, DiRA, and Swin-
UNETR, while its performance is comparable to Context SSL.
Both Context SSL and our methods leverage the context be-
tween neighboring anatomical regions for representation learn-
ing. Context SSL incorporates this information via a graph neu-
ral network, whereas our method uses a neighboring contrasting
strategy. The ablation study results in Table 4’s bottom rows
show that leveraging anatomical context from large regions is
useful for categorizing COVID-19 severity. With the neighbor-
ing contrastive loss, the COVID-19 severity prediction accuracy
increases by 2.8%. Interestingly, we found that the supervised
3D CNN model performs the worst, suggesting that directly ex-
tracting features from the entire volume may have resulted in
the loss of fine-grained information at local anatomy. It is also
possible that the supervised model may not converge properly

or becomes overfitted due to the small amount of training data.

4.3. Voxel Level Evaluation

To show that the DrasCLR pre-trained model encodes fine-
grained information at local anatomy, we demonstrate its abil-
ity to detect two subtypes of emphysema (i.e., centrilobular and
paraseptal emphysema), which are prevalent in different pul-
monary regions. We perform the experiments in three aspects.
First, we conduct a quantitative evaluation for emphysema de-
tection via voxel-wise classification. Second, we show the qual-
itative results of predicted emphysema masks for COPD pa-

tients at different stages. Third, we perform emphysema de-
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tection on a group of randomly selected subjects and show the
relationship between the detected emphysema volume and the
patient’s COPD stage. In addition, we demonstrate that our

method can reduce annotation efforts through transfer learning.

4.3.1. Emphysema Detection via Dense Classification

We propose to use dense or voxel-level classification for em-
physema detection. In particular, we first pre-train a model with
DrasCLR on all CT scans from the COPDGene dataset. We
then fine-tune the model in a binary classification task to dis-
criminate between emphysema-annotated patches and healthy
patches. The healthy patches are sampled from random sub-
jects with the criteria that the subjects” GOLD scores are equal
to zero, and no centrilobular or paraseptal emphysema is found
based on their image-level visual scores. For evaluation, we
employ two different fine-tuning schemes: (1) Linear readout,
which utilizes the pre-trained encoder as a fixed feature extrac-
tor and training a new linear classifier. This is compared to the
model employing expert-designed features; and (2) Full fine-
tuning, which involves appending a linear classifier to the pre-
trained encoder and fine-tuning all network layers. This ap-
proach is employed for the unsupervised comparison baselines.
During inference time, the fine-tuned model is used to perform
voxel-wise classification of emphysema. For a given patch, the
detection is positive if 25% voxels within it have a predicted
probability of emphysema greater than 0.5; otherwise, the de-
tection is negative.

Table 5 presents the quantitative performance of our method
and comparison baselines for emphysema detection. Under the
linear readout scheme, our model is compared to a logistic re-
gression model using patch-level LAA features. Under the full
fine-tuning scheme, our model is compared against a patch-
based CNN, trained from scratch on the same annotated set
of patches, and against unsupervised models pre-trained on the
entire COPDGene dataset. The results in Table 5 show that,
in comparison to the clinical descriptor LAA, the linear model
utilizing our learned features achieves superior F1 scores for
both subtype emphysema detection. Through full fine-tuning,

our model achieves the highest scores across all metrics for

paraseptal emphysema detection. For centrilobular emphysema
detection, our approach achieves a superior F1 score compared
to the comparison methods, while Context SSL exhibits a per-

formance on par with our model.

To qualitatively demonstrate the outcomes of our method, we
create voxel-wise emphysema segmentation for subjects at dif-
ferent stages of COPD. In particular, we first use the full fine-
tuning model to estimate the probability of emphysema in a
sliding-window fashion with a step size of 1 voxel. We then
use a 0.5 threshold to map voxels with emphysema probability
greater than or equal to the threshold to 1 and all other vox-
els to 0. Fig. 3 shows the predicted segmentation masks of
two subtypes of emphysema of varying COPD stage in coro-
nal and 3D views. We find that as the COPD severity increase
(higher GOLD score), the volume of detected emphysema re-
gion increases in both subtypes. Furthermore, segmentation
masks of GOLD scores 1 and 2 show a clear heterogeneity
in the regional distribution of emphysema in the lung between
these two subtypes. The regions of predicted segmentation are
consistent with the clinical definition of emphysema subtypes,
where centrilobular emphysema is commonly described as an
abnormal enlargement of airspaces centered on the respiratory
bronchiole (Leopold and Gough, 1957) and paraseptal emphy-
sema refers to emphysematous change adjacent to a pleural sur-

face (Heard et al., 1979).

Finally, we analyze the correlation between the total em-
physema detected in 3D images and the subjects’ COPD
stages. In particular, we randomly select 500 subjects from the
COPDGene dataset and use the fully fine-tuned model to make
voxel-wise emphysema classification on their CT scans. Then,
we aggregate all voxels in a CT scan to determine the fraction of
voxels with a predicted probability of emphysema greater than
0.5. The box plots in Fig. 4 represent the distributions of de-
tected emphysema proportion against GOLD scores, as well as
the group with preserved ratio impaired spirometry (PRISm).
Subplots of both centrilobular and paraseptal emphysema show
positive correlations between the detected emphysema and pa-

tient’s COPD severity.
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Centrilobular Emphysema

Paraseptal Emphysema

GOLD 4

Fig. 3: Examples of predicted dense emphysema binary masks for subjects with different GOLD scores. The top three rows show the predicted regions of
centrilobular emphysema, and the bottom three rows show the predicted regions of paraseptal emphysema. The intensity range is set as [-1060, -825] to better
illustrate the emphysema. The predicted emphysema regions are plotted in red, and the lung regions are plotted in blue. As the severity of COPD increases (higher
GOLD score), the detected region increases in both subtypes of emphysema. In addition, the predicted emphysema regions correspond to the clinical description of
their subtypes.
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Table 5: Evaluation for subtype emphysema detection. Results are the means and standard deviations (meanzs.d.) of F1, precision and recall scores for 5-fold cross
validation. The highest mean values in each column are highlighted in bold. Our DrasCLR surpasses the clinical descriptor LAA in F1 score when using a linear
readout, and achieves the top scores across all metrics for both subtype emphysema detections with full fine-tuning.

Scheme Model ‘ Centrilobular ‘ Paraseptal
‘ F1 Precision  Recall ‘ F1 Precision  Recall
. Patch LAA 0.77i‘03 0.94}02 0.65i‘o4 0.7047“06 0-83106 0.6147“09
L Readout —_—== —o7x00
fnear Beadou Ours 0.821,03 0‘75104 0.911,02 0.82103 0.73105 0.954_,'01
Patch-based CNN 0.91i.03 0.92101 O.Sgi.os 082i04 0.77105 0.881()2
Models Genesis 0.81i'02 0.71JL03 0951.01 0.821_01 0.76L01 0.9047“01
Full Fine—tuning SwinUNETR 0.961'03 0.971_03 0.941,04 0.93101 0.94101 0.91:}01
Context SSL 0.98..01 0.97+.01 0.99.01 | 0.98.0; 0.96. 0.99. o
Ours 0.981.01 0.971_01 0.991.01 0.991.01 0.991.02 1.00:,00

Centrilobular emphysema

Paraseptal emphysema
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Fig. 4: Comparison of predicted volume proportion of centrilobular (left) and paraseptal (right) emphysema for subjects with different GOLD scores. A higher
GOLD score indicates a more severe stage of COPD. The results show that with an increasing GOLD score, the predicted emphysema volume proportion in CT

scan becomes higher.

4.3.2. Improve Annotation Efficiency via Transfer Learning

Transfer learning makes use of the knowledge of underly-
ing data structure learned by the pre-trained models and has
been demonstrated to be beneficial in medical imaging analy-
sis, where the amount of annotated data is often limited. We
simulate the scenarios of using a subset of annotated data to in-
vestigate the power of our method in transfer learning. Specif-
ically, we fine-tune the DrasCLR pre-trained model by starting
with 10% annotated emphysema patches and gradually increas-
ing the amount of annotations by 10% in subsequent experi-
ments. Fig. 5 shows the results of transfer learning on two target
tasks. The performance of centrilobular detection learning from
scratch with the entire dataset can be surpassed using DrasCLR
with only 50% of the dataset, hence doubling the annotation ef-
ficiency. The performance of paraseptal detection learning from

scratch with the entire dataset can be surpassed using DrasCLR

with only 20% of the dataset, thus improving the annotation ef-
ficiency by five times. These results demonstrate how DrasCLR
can significantly reduce the cost of manual image annotation,

ultimately leading to more label-efficient deep learning.

4.4. Ablation Study

In this section, we conduct ablation experiments to validate

the effects of several DrasCLR components.

4.4.1. Design Choices for Incorporating Anatomical Location

We demonstrate the effects of various designs for incorpo-
rating anatomical location information into DrasCLR. Specifi-
cally, we compare the following four approaches: (1) No con-
ditioning, which uses a standard CNN to extract features from
image patches without taking their anatomical locations into ac-
count; (2) Concatenation (Sun et al., 2021), which concatenates

the features from the last layer of the standard CNN with the
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Centrilobular emphysema

0.90

F1 score
°
o
&

0.80

0.75 —— DrasCLR
-=- Train from scratch w/ full data

--- DrasCLR w/ full data

10%(110) 20%(221) 30%(331) 40%(442) 50%(553)
Percentage of finetuning data (Number of finetuning samples)

Paraseptal emphysema
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Fig. 5: Results of fine-tuning with different amounts of data. We perform evaluations for centrilobular (left) and paraseptal (right) emphysema detection. Compared
to the model fine-tuned with full data from scratch (random initialization), the DrasCLR pre-trained model only needs 50% and 20% annotated data to achieve the
same performance for centrilobular and paraseptal emphysema detection, respectively.

Table 6: Ablation study for how to incorporate anatomical location. We report
R-Square for logFEV1pp, accuracy scores for the GOLD and CLE scores. The
mean and standard deviation values are calculated via 5-fold cross-validation.
The highest mean values in each column are highlighted in bold.

Method logFEVipp GOLD CLE

No conditioning 0.57 .04 61.8.11 48.0.9
Concatenation 0.60. o 62.5.10 49.241,
HyperNetwork 0.60..0; 586117 44.1:13
Loc-CondConv (Ours) 0.62. o2 63419 503.9

anatomical coordinate and then fuses them through fully con-
nected layers; (3) HyperNetwork (Ha et al., 2016), which uses
a separate fully-connected network that takes an anatomical lo-
cation as input to produce weights in the standard CNN; (4)
A CNN consists of our proposed Loc-CondConv layers. We
benchmark these different ways to incorporate anatomical loca-
tions on COPDGene dataset. We use the same network back-
bone as our DrasCLR, and train the model with local contrastive
loss. As shown in Table. 6, the simple concatenation approach
outperforms the standard CNN in three image-level tasks, sug-
gesting that including anatomical location enriches the learned
representations and enhances the performance of the down-
stream analysis. Furthermore, Table. 6 shows that the CNN
with Loc-CondConv layers achieves the best performances in
all target tasks, demonstrating it is a superior design for incor-

porating anatomical location information.

4.4.2. Impact of Anatomical Location for Disease Detection

We have thus far validated the importance of anatomical
location as well as the effectiveness of Loc-CondConv layer
for image-level prediction tasks. Our DrasCLR features Loc-
CondConv layers, which use anatomical location as the condi-
tion to control the parameter of convolutional kernel for fea-
ture extraction. To investigate whether anatomical location is
an important factor in representing fine-grained local features
with DrasCLR, we explore the impact of perturbing the input
locations of DrasCLR on the performance of emphysema de-
tection. In particular, instead of extracting features from a given
patch using its corresponding anatomical location used as the
condition, we use random coordinate sampled in the lung as
the condition. In order to evaluate the quality of extracted fea-
tures, We train a linear classifier for emphysema classification
using the extracted representation. We use the same dataset
as described in Section 4.3.1. As shown in Table 7, by us-
ing random anatomical locations as inputs, the detection ac-
curacy drops by 6% and 16% for centrilobular and paraseptal
emphysema, respectively, showing statistically significant de-
creases (p-value< 0.005, one-sided two sample t-test). The re-
sults indicate that the DrasCLR pre-trained encoder is sensitive

to anatomical locations and captures anatomy-specific features.
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Table 7: Sensitivity of the pre-trained DrasCLR model to anatomical location
perturbation. The results are the means and standard deviations of emphysema
detection accuracy for 5-fold cross validation. The highest mean values in each
column are highlighted in bold.

Subtype Random location  Patch location
Centrilobular emphysema 733126 79.2414
Paraseptal emphysema 56.4.4, 721443

Table 8: Ablation study for neighboring contrastive loss. We report R-Square
for logFEV1pp, accuracy scores for GOLD and CLE scores. The mean and
standard deviation values are calculated via 5-fold cross-validation. The highest
mean values in each column are highlighted in bold.

Method logFEVipp logFEV1pp/FVC CLE

No Neighboring Contrast 0.624 02 0.69..02 50.3.409
#Neighbors =1 0.61.0; 0‘701.01 53.0i]_3
# Neighbors = 2 (Ours) 0.63.+.01 0.714.01 53.9.0s
# Neighbors = 3 0.63+.01 0.714.01 52.5.05

4.4.3. Neighboring Contrastive Loss

In this experiment, we investigate the effect of neighboring
contrastive loss as well as the impact of the number of neigh-
bors used. We pre-train DrasCLR models with no neighboring
contrast as well as with different numbers of neighbors. Using
a linear readout scheme, we benchmark the performance of the
pre-trained models in downstream image-level tasks. As shown
in Table 8, the incorporation of spatial context from neighbor-
ing patches enhances the performance of image-level tasks in
most situations. The improvement is particularly notable in
the prediction of the centrilobular visual score, which ranges
from 5% to 8% depending on the number of neighbors. This
is likely due to the fact that CLE grades are determined by the
extent to which the lung’s center is damaged by the disease, and
the neighboring contrasting strategy encourages the learning of

common disease patterns that span multiple anatomical regions.

4.4.4. Study the Robustness of DrasCLR to the Selection of at-
las

Our DrasCLR framework requires a registration process to
align anatomical landmarks between subjects, a step in the data
preprocessing phase that involves selecting an atlas subject. In
the experiments reported in the prior section, a healthy individ-
ual was chosen to serve this purpose. To assess the sensitivity

of our method to the choice of atlas, we conduct an ablation

analysis by pre-training the model using an unhealthy subject,
specifically a subject with GOLD score of 3, as the atlas. We
then replicate the experiments of COPD phenotype prediction
with the same settings. The results in Table 9 show that the
performance in most downstream tasks is consistent, regardless
of whether the atlas subject is healthy or unhealthy. Statistical
analyses (refer to Table A.6 in Appendix) confirm that there is
no significant difference in outcomes when leveraging the orig-
inal or the new atlas. These results suggest that our DrasCLR is

robust against the choice of the atlas subject.

5. Discussions
5.1. Does DrasCLR learn disease-related features?

In this paper, we propose a novel self-supervised method,
DrasCLR to learn disease-related representation of 3D lung CT
images. Medical images have recurring and similar anatomy
across patients. While previous self-supervised methods Zhou
et al. (2021); Haghighi et al. (2021, 2022) used this knowledge
to learn common anatomical representation, our method uses
this knowledge to create hard negative samples in contrastive
learning. As a result, our method is more sensitive to tissue ab-
normalities and can encode more disease-related information.
As seen in Table 2, our method demonstrates excellent perfor-
mance in predicting a wide range of clinical variables, such as
spirometry measures and COPD phenotypes, which are closely
associated with the degree of lung impairments in COPD pa-
tients. Emphysema is a hallmark of COPD. However, visually
assessing emphysema at CT is time-consuming and subject to
human variability. Our method demonstrates superior perfor-
mance for this task and may provide a data-driven way of quan-
tifying the visual score of emphysema from CT imaging.

Moreover, as evidenced by Table 3, imaging features learned
by our method add incremental value to the BODE index for
survival analysis in COPD patients, suggesting that our method
is capable of capturing complementary risk factors from CT
imaging. In addition to the evaluation on the COPD cohort,
we demonstrate, as shown in Table 4, that DrasCLR can learn
robust features associated with COVID-19 severity. The ability

to represent disease-related information from medical images in
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Table 9: Results of phenotype prediction on the COPDGene dataset with different atlas. The highest mean values in each column are highlighted in bold.

Method Supervised Spirometry COPD Staging Visual scores Acuity

P logFEVipp logFEV,/FVC | GOLD GOLD I-off | CLE CLE I-off Paraseptal Paraseptal /-off | AE History
Metric ‘ R-Square ‘ % Accuracy
Ours (unhealthy atlas) X 0.62.02 0.71.02 64.6.1 4 84.9.¢ 52.6.3 84.2. 4 57.8+9 873, 79.2.15
Ours (healthy atlas) X 0.63+.01 0.71.01 65.0..6 85.64.6 53.9.3 86.3. 7 58.4.5 87.0.8 789113

an unsupervised manner is particularly useful during pandemic

outbreaks, when labeled data is rarely available.

5.2. Does DrasCLR extract location-specific features?

A conventional convolutional layer is designed to be transi-
tionally invariant. However, pathological patterns tend to be
heterogeneous across locations in the human body, and an one-
size-fits-all design may not be sufficient to learn the variety of
tissue abnormalities at different anatomical locations. In this
paper, we incorporate anatomical context into representation
learning via two components in DrasCLR. First, image registra-
tion is used to provide a unified anatomical coordinate system,
and all images are aligned to the atlas. Second, a novel Loc-
CondConv layer is introduced to have modifiable weights that
are conditionally dependent on anatomical location.

We have explored different ways to incorporate anatomical
location into representation learning. As seen in Table 6, the
Loc-CondConv layer is superior to simple concatenation and
hypernetwork. To further validate the effect of our design, we
investigate the impact of perturbing the input locations of Dras-
CLR on emphysema detection. As shown in Table. 7, the em-
physema detection accuracy decreases when random location
is used, demonstrating that lack of correct anatomical context is

detrimental.

5.3. Why do we choose sliding-window based approach for em-
physema segmentation?

The most well-known architecture for medical image seg-
mentation is U-Net (Ronneberger et al., 2015), which is com-
posed of opposing convolution and deconvolution layers, and
spatial information is provided through skip connections to each
decoder layer to recover fine-grained details. Traditionally, U-
Net training relies on complete pixel/voxel-level annotation, a

resource-intensive requirement that can be challenging to meet.

Recent developments in weakly-supervised UNet methods (Du-
bost et al., 2017; Liu et al., 2022) have sought to mitigate this
requirement using image-level labels. In our scenario, emphy-
sema annotation in the COPDGene dataset was collected as
bounding boxes by a physician clicking on regions surround-
ing by pathological tissues, thus the annotation is not complete
at the voxel level. Our method can leverage these partially
annotated images and produce voxel-wise emphysema classi-
fication in a sliding-window fashion. Moreover, the DrasCLR
pre-trained model is capable of utilizing spatial information by
modifying kernels’ weights based on the input anatomical lo-
cation. As illustrated by Fig. 3, our method can produce high-
quality emphysema segmentation in which the regional distri-
bution of detected emphysema matches with the clinical de-
scription of emphysema subtypes. The box plots in Fig. 4 show
quantitative evidence that the detected emphysema volume cor-

relates with the subjects’ COPD stages.

5.4. Scope and limitations of the study

This study is specifically focused on lung CT scans. Our
evaluation predominantly utilizes the COPDGene dataset,
which is one of the largest publicly available 3D medical
datasets, making it an excellent benchmark for evaluating the
efficacy of self-supervised learning methods. While we have
showcased the robustness of DrasCLR in a range of down-
stream tasks related to pulmonary diseases, its potential ap-
plications to other anatomical structures remain unexplored in
our current research. Future directions could involve expanding
the applicability of DrasCLR to interpret scans of other body
regions or exploring its adaptability across different imaging
modalities.

While in our methodology, image registration provides the

dual advantages of aligning anatomical structures and estab-
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lishing a consistent coordinate system within the atlas, this pro-
cess is not without its challenges. The computational demands
of image registration are considerable, often resulting in pro-
longed processing time and increased resource requirements.
Specifically, within our implementation, applying the image
registration process to the COPDGene dataset took approxi-
mately two days. Additionally, the quality of learned represen-
tations depends on the registration algorithm’s accuracy and can
be sensitive to factors like initialization, optimization strategy,
and parameter settings. Inaccurate registration can lead to mis-
alignment of structures, which can adversely affect subsequent
analysis.

It is important to note that our contrastive learning strategy
may not be universally optimal for all medical imaging analy-
sis tasks. Specifically, our method emphasizes disease-related
features by employing hard negative samples with aligned
anatomies. While effective in enhancing sensitivity to devia-
tions caused by diseased tissues, this approach may deprioritize
features related to anatomical differences. In contrast, Chai-
tanya et al. (2020) specifically targeted organ segmentation as
the primary task and employed negative samples derived from
different anatomies to learn anatomical features. As organ seg-
mentation is beyond the scope of this study, we did not assess

our method’s performance on this particular task.

6. Related Work

In the following sections, we review related works in four
areas: (1) self-supervised learning approaches, including pre-
text task-based methods and contrastive learning methods, (2)
applications of self-supervised learning in medical image analy-
sis, (3) self-supervised learning methods that exploit anatomical
context in medical images, and (4) conditionally parameterized
networks. Following this review, we highlight the specific im-

provements of this paper in comparison to our preceding work.

6.1. Self-supervised Learning

Self-supervised learning has been shown to be an effective

approach for learning semantically useful representations from

large-scale unlabeled data without requiring human annota-
tion (Jing and Tian, 2020; Ohri and Kumar, 2021). To gen-
erate supervisory signals from the data itself, a popular strat-
egy is to present the model with various pretext tasks to solve.
Commonly used pretext tasks include image inpainting (Pathak
et al., 2016), image colorization (Zhang et al., 2016), relative
position prediction (Doersch et al., 2015), image jigsaw puz-
zle (Noroozi and Favaro, 2016), patch cut and paste (Li et al.,
2021a), temporal order verification (Misra et al., 2016), geo-
metric transformation recognition (Gidaris et al., 2018), cross-
modal correspondence (Korbar et al., 2018; Arandjelovic and
Zisserman, 2017), and so on. These methods all have one
thing in common: they build predictive-based pretext tasks us-
ing data’s inherent structures, such as context similarity, spatial
correlation, and temporal order. High-level semantic features

are extracted in the process of accomplishing these tasks.

More recently, contrastive learning methods have emerged as
one of the most popular self-supervised approaches due to their
empirical success in computer vision (Misra and Maaten, 2020;
Lee et al., 2021; Caron et al., 2021). The objective of con-
trastive training is to push learned representations to be similar
for positive (similar) pairs and dissimilar for negative (dissimi-
lar) pairs. This task is called instance discrimination (Wu et al.,
2018) and is often formulated using the InfoNCE loss (Gut-
mann and Hyvirinen, 2010; Van den Oord et al., 2018). A va-
riety of contrastive learning frameworks have been proposed,
such as SimCLR (Chen et al., 2020a), which uses the aug-
mented view of the same input as positive samples and the aug-
mented views of other samples in a minibatch as negative sam-
ples, and MoCo (He et al., 2020), which uses a slow moving av-
erage (momentum) encoder and a dictionary that stores old neg-
ative representations to enable constructing very large batches
of negative pairs. We extend MoCo as our contrastive learning
paradigm. Rather than using a global dictionary, we develop a
conditional memory bank that maintains distinct dictionaries of
negative representations for each anatomical location. The de-
sign of sampling strategies for positive and negative pairs is a

key driver to the success of contrastive learning (Saunshi et al.,
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2019; Tian et al., 2020a). Previous studies have demonstrated
that encoders trained with harder negative pairs can represent
more challenging features (Jin et al., 2018; Jeon et al., 2021;
Robinson et al., 2020; Kalantidis et al., 2020; Robinson et al.,
2021). We create negative pairs from examples with highly sim-
ilar local anatomy to force the model to solve instance discrim-
ination using more subtle visual features (e.g. deviation from

normal appealing tissues).

6.2. SSL Applications in Medical Imaging

Self-supervised learning is particularly useful for medical
imaging analysis, in which labels are expensive to collect. Sev-
eral studies have shown the effectiveness of self-supervised ap-
proaches in a variety of medical imaging analysis tasks such
as disease diagnosis (Shurrab and Duwairi, 2021; Li et al.,
2021b; Azizi et al., 2021), detection and localization (Tajbakhsh
et al., 2019; Jiao et al., 2020; Lei et al., 2021), image segmen-
tation (Taleb et al., 2020; Ross et al., 2018; Ye et al., 2022;
He et al., 2022; Zeng et al., 2021; Zhang et al., 2022), and
image registration (Li and Fan, 2018). Contrastive learning
frameworks have been employed to leverage large-scale, un-
labeled medical imaging data to produce pre-trained models.
For example, Sowrirajan et al. (2021) adopted MoCo as a pre-
training approach to obtain high-quality representations for de-
tecting diseases in chest X-rays; Azizi et al. (2021) extended
SimCLR to train robust representations for dermatology condi-
tion classification and thoracic disease classification by using
the availability of multiple views of the same pathology from
the same patients; Tang et al. (2022) combined multiple proxy
tasks including volume inpainting, image rotation and SimCLR
to pre-train a 3D Swin Transformer encoder. Our contrastive
learning framework is built upon MoCo and is specifically de-
signed to learn voxel-level representations that are sensitive to

local anatomical deformities.

6.3. Leveraging Anatomical Structure in SSL

Medical images have consistent anatomy across patients,
providing domain-specific cues for self-supervised representa-
tion learning. Zhou et al. (2021) introduced the Models Gene-

sis, which learns image representation by recovering anatomi-

cal patterns from transformed sub-volumes extracted from CT
images. Haghighi et al. (2021) extended the Models Gene-
sis framework by adding a self-classification objective to en-
able the encoder to learn common anatomical semantics at
similar body locations across patients. In a subsequent study,
Haghighi et al. (2022) further enhanced their self-supervised
learning framework by integrating an adversarial learning com-
ponent. Bai et al. (2019) presented an anatomical position pre-
diction task for learning segmentation features from cardiac
magnetic resonance images. Chaitanya et al. (2020) enhanced
SimCLR by integrating two domain-specific contrasting strate-
gies: incentivizing similar representations for volumetric im-
age slices coming from similar anatomical areas, and incen-
tivizing distinctive local representations for different anatom-
ical regions coming from the same image, both of which fo-
cus on learning features that represent anatomical differences,
and the learned features are subsequently employed for organ
segmentation. Our approach differs from the reviewed meth-
ods in two aspects: (1) We use image registration to improve
the alignment of anatomical structures across patients, and (2)
We leverage local anatomical similarity to create hard negative
samples, thereby blocking shortcuts caused by anatomical dif-
ferences and prioritizing sublet differences arising from tissue

abnormalities.

6.4. Conditionally Parameterized Networks

In comparison to conventional neural networks with fixed
weights, conditionally parameterized networks have weights
computed as a function of the inputs. One such network is hy-
pernetwork (Ha et al., 2016), which is typically a small network
that outputs weights for a primary network. It has been used
in functional image representation (Klocek et al., 2019) and
hyperparameter optimization (Brock et al., 2017; Lorraine and
Duvenaud, 2018; Hoopes et al., 2021). Another prominent con-
ditional parameterization technique is CondConv (Yang et al.,
2019), which creates convolutional kernels as a linear combina-
tion of experts with scalar weights dependent on input images.
In our framework, the CondConv is modified to compute convo-

lutional kernels as a function of the input anatomical locations.
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As a result, the learned representation at a given voxel depends

on both its surrounding patch and its anatomical location.

6.5. Our previous work

Sun et al. (2021) first presented a contrastive learning method
(i.e., Context SSL) that leverages anatomical context to detect
deviation from normal-appearing tissues. This paper extends
the preliminary version substantially with the following im-

provements:

1. We have introduced a novel neighboring contrastive loss,
replacing the graph-level loss employed in Context SSL.
This change offers two primary benefits: (1) Improved
memory efficiency and the facilitation of end-to-end train-
ing, resolving previous memory limitations associated
with using entire volumetric images; (2) Focused on a
broader local context as opposed to the entire image,
thereby mitigating shortcuts and fostering the model’s
ability to identify anomalies.

2. We have introduced the Loc-CondConv layer to represent
anatomy-specific features. The ablation study, presented
in Section 4.4.1, demonstrates the effectiveness of Loc-
CondConv over the simple concatenation approach em-
ployed in Context SSL.

3. We have broadened our experimental scope to include sur-
vival analysis, subtype emphysema detection, and exten-
sive ablation studies. The results, as shown in Tables 2, 3,
4, and 5, illustrate that DrasCLR surpasses Context SSL
in mean evaluation performance. Hypothesis testing con-
firms that DrasCLR significantly outperforms in emphy-
sema visual score classifications.

4. We have presented experimental results for two subtypes
of emphysema detection tasks using limited amounts of
annotated data in Section 4.3.2, demonstrating that trans-
fer learning from DrasCLR could significantly reduce an-
notation efforts.

5. We’ve included qualitative examples of two emphysema
subtypes segmented by DrasCLR in Figure 3, illustrating
how the detected emphysema damage aligns with COPD

severity and clinically-defined locations of each emphy-

sema subtype.

7. Conclusion

In this paper, we present a novel method for anatomy-specific
self-supervised representation learning on 3D lung CT images.
We propose two domain-specific contrasting strategies to learn
disease-related representations, including a local contrasting
loss to capture small disease patterns and a neighboring con-
trasting loss to learn anomalies spanning across larger anatom-
ical regions. In addition, we introduce a novel conditional en-
coder for location-specific feature extraction. The experiments
on multiple datasets demonstrate that our proposed method is
effective, generalizable, and can be used to improve annotation

efficiency for supervised learning.
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Highlights

Self-supervised method extracting disease-specific features from 3D medical data.
Two domain-specific contrastive learning cues leverage anatomical similarities.
Novel 3D convolutional layer with anatomical location-dependent kernels.
Pretrained model generalizes well across downstream prediction tasks.

Improved label-efficiency in lung CT image segmentation.
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