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A B S T R A C T

Large-scale volumetric medical images with annotation are rare, costly, and time pr
hibitive to acquire. Self-supervised learning (SSL) offers a promising pre-training an
feature extraction solution for many downstream tasks, as it only uses unlabeled dat
Recently, SSL methods based on instance discrimination have gained popularity in th
medical imaging domain. However, SSL pre-trained encoders may use many clues
the image to discriminate an instance that are not necessarily disease-related. Mor
over, pathological patterns are often subtle and heterogeneous, requiring the ability
the desired method to represent anatomy-specific features that are sensitive to abno
mal changes in different body parts. In this work, we present a novel SSL framewor
named DrasCLR, for 3D lung CT images to overcome these challenges. We propo
two domain-specific contrastive learning strategies: one aims to capture subtle disea
patterns inside a local anatomical region, and the other aims to represent severe di
ease patterns that span larger regions. We formulate the encoder using condition
hyper-parameterized network, in which the parameters are dependant on the anatomic
location, to extract anatomically sensitive features. Extensive experiments on larg
scale datasets of lung CT scans show that our method improves the performance
many downstream prediction and segmentation tasks. The patient-level representatio
improves the performance of the patient survival prediction task. We show how o
method can detect emphysema subtypes via dense prediction. We demonstrate th
fine-tuning the pre-trained model can significantly reduce annotation efforts witho
sacrificing emphysema detection accuracy. Our ablation study highlights the impo
tance of incorporating anatomical context into the SSL framework.

© 2023 Elsevier B. V. All rights reserve

uction

eep learning approaches have significantly advanced

vision and many other fields (Voulodimos et al., 2018;
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Liu et al., 2020; Pouyanfar et al., 2018), efforts to apply the

advancements to medical image analysis are still hampere

by the scarcity of large-scale annotated datasets. Annota

ing medical images requires domain expertise and is a lab

rious and costly process, especially for 3D volumetric med

cal data. However, massive amounts of unlabeled raw imag
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een collected and stored in hospitals’ picture archiving

mmunication systems (PACS) for decades. Recently,

pervised learning (SSL) has become increasingly pop-

a way to alleviate the annotation burden by exploiting

dily available unlabeled data (Jing and Tian, 2020; Ohri

mar, 2021; You et al., 2022b,a). However, unlike su-

d approaches, which use experts’ annotations (e.g., dis-

bels, lesion segmentation masks) as supervision, self-

ised models are trained with limited supervision derived

he data itself, making it far more difficult to identify

-related features from the data. Furthermore, certain le-

e.g., early-stage tumors) may occupy only a small re-

high-resolution volumetric medical images, and their

patterns may vary depending on where they are located

body. Thus, the desired self-supervised learning algo-

hould be sensitive enough to capture local anatomical

ities. In this research, we propose DrasCLR: a novel

ork for self-supervised learning of disease-related and

y-specific representation of 3D medical imaging. Dras-

arns a patch-based dense representation that condition-

pends on the anatomical location of the center voxel. We

vely evaluate our method on chest computed tomogra-

T) imaging because of its prominent role in the preven-

agnostics and treatment of lung diseases.

supervised learning methods aim to provide useful fea-

presentations for downstream tasks without human su-

on, which is typically achieved by optimizing the model

e a proxy task. When designing a proxy task, the primary

ration is: what information in the data is important and

not to the downstream tasks? Early self-supervised ap-

es use heuristic-based pretext tasks to learn representa-

variant to transformations that do not change the seman-

ning of the target labels (Doersch et al., 2015; Zhang

016; Gidaris et al., 2018). More recent contrastive learn-

roaches (Chen et al., 2020a; He et al., 2020) use instance

ination task, which consider every instance as a class of

and train deep neural networks to discriminate pairs of

inputs (augmented views of the same instance) from a

selection of dissimilar pairs (different instances). In this

ting, data augmentation guided by prior knowledge often p

a vital role in preserving task-relevant information (Tian e

2020b). The sampling strategy for negative pairs is also cr

for the performance of contrastive learning methods. Re

studies (Jin et al., 2018; Jeon et al., 2021) show that hard n

tive sampling guided by domain knowledge helps in preven

trivial solutions and improving the alignment of extracted

tures with human semantics.

Self-supervised representation learning of disease-re

features in medical images is particularly challenging for

reasons. First, since disease-related features are often

resented through subtle changes, an effective self-superv

learning method should be able to ignore large but irrele

and non-informative information, such as anatomical d

ences, and focus on representing fine-grained features,

as small deviations from normal-appearing tissues (Holm

et al., 2020). Second, because pathological tissues may

scatter in a few small regions, adequately representing

content is crucial for dense (voxel-level) prediction tasks

as anomaly detection and segmentation. Several self-superv

learning methods (Zhou et al., 2019; Chaitanya et al., 2

Haghighi et al., 2021) have been developed to learn local

resentations of 3D medical images. These methods use

volumes sampled from random locations in the image a

puts and train a single encoder with parameters shared ac

all locations. However, disease types and their visual pat

are often associated with anatomical locations. For exam

pulmonary emphysema can be divided into three major

types (i.e., centrilobular, paraseptal, and panlobular) base

their visual characteristics and anatomical locations withi

lung (Smith et al., 2014). A more sophisticated framewor

learning local representations should incorporate anatomic

cations as prior information to account for the spatial he

geneity of anatomical and pathological patterns.

In this research, we take inspiration from the aforementi

challenges and propose a novel contrastive learning framew

for 3D lung CT images. In order to represent disease-re



3

imaging f

contrastin

ity across

represent

The secon

between t

goal of co

ease patte

3D patch

tiveness o

discrimin

and negat

rely on su

anatomica

to obtain

anatomica

obtain po

mapping

the atlas i

ical locati

representa

layer who

routing fu

puts. We

specific C

overview

conduct e

sults emp

methods o

In sum

1. We p

disea

2. We p

anato

3. We e

datas

base

4. We d

e-

h-

of

e-

d

of

w

y,

e-

n-

li-

g

a

-

o

e-

d

ns

h

d

re

D

e-

g

al

y

g-

s-

s’

xi

d

Ke Yu et al. /Medical Image Analysis (2023)

eatures, we propose to combine two domain-specific

g strategies. The first strategy leverages the similar-

patients at the same anatomical location and aims to

small disease patterns within a local (anchor) region.

d strategy takes advantage of anatomical similarities

he anchor and its nearby anatomical regions, with the

mplementing the first strategy by learning larger dis-

rns that expand beyond the local region. We use small

es to represent local anatomical regions. The effec-

f both strategies depends on the difficulty of instance

ation; as the anatomical similarity between the query

ive patches becomes greater, the encoder is forced to

btle and disease-related features rather than normal

l features. To that end, we use image registration

hard negative patches from different subjects that are

lly best aligned to the query patch. In particular, we

int-by-point correspondence between image pairs by

them to the same anatomical atlas. The coordinates in

mage can then be viewed as a standard set of anatom-

ons. To incorporate anatomical locations into learned

tions, we further develop a novel 3D convolutional

se kernels are conditionally parameterized through a

nction that takes the coordinates in atlas space as in-

call our unified framework Disease-related anatomy-

ontrastive Learning Representation (DrasCLR). The

of our proposed approach is illustrated in Fig. 1. We

xperiments on large-scale lung CT datasets. The re-

irically show that our method outperforms baseline

n both image-level and voxel-level tasks.

mary, the major contributions of this paper are:

ropose a novel framework for contrastive learning of

se-related representation for 3D lung CT images.

ropose a novel 3D convolutional layer that encodes

mical location-dependent information.

xtensively validate our model on large-scale lung CT

ets and show that our method outperforms existing

lines for a wide range of image-level tasks.

emonstrate the application of our method for voxel-

wise emphysema detection and show that using our pr

trained model can significantly cut annotation costs wit

out compromising detection accuracy.

The paper is organized as follows: We present the details

our proposed methodology in Section 2. Implementation d

tails and experimental results are described in Sections 3 an

4, respectively. We discuss the key findings and limitations

our work in Section 5. We survey the related works and dra

comparisons with our preliminary work in Section 6. Finall

we conclude the paper in Section 7.

2. Method

We propose DrasCLR, a novel contrastive learning fram

work for 3D lung CT images. Our goal is to learn locatio

specific representations that are sensitive to tissue abnorma

ties. We start by aligning images to an anatomical atlas usin

image registration and treating the image of each patient as

collection of 3D patches centered at a common set of anatom

ical locations. Our contrasting strategies are motivated by tw

domain-specific similarity cues: one leverages the similarity b

tween patients at the same anatomical location, and the secon

leverages the similarity between nearby anatomical locatio

on the same image. In the following sections, we explain eac

component separately. The schematic diagram of the propose

method is shown in Fig. 1. The notations used in this paper a

summarized in Table 1.

2.1. Anatomical Alignment via Image Registration

We represent each volumetric image as a collection of 3

patches centered at a standard set of anatomical locations pr

defined on an anatomical atlas, with each patch correspondin

to a distinct anatomical region of the lung. To align anatomic

structures among patients, we first choose an image of a health

subject to serve as the anatomical atlas, and then use image re

istration to obtain the subject-specific transformations that e

tablish the point-by-point correspondence between the patient

images and the atlas image. Let XAtlas denote the atlas image,

denote the image of patient i, the transformation ϕi is obtaine
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Schematic diagram of DrasCLR. Left panel: We represent a volumetric image with a collection of 3D patches registered with distinctive anato
ks defined in an atlas image. We develop an encoder that generates location-specific representation using the patch and location of associated anato
k as inputs. Our contrastive learning framework comprises two objectives. Middle panel: The first one aims to learn local representation from a
ight panel: The second one aims to learn representations of larger patterns across neighboring patches. Both contrasting strategies incentivize the en
disease-related features by using patches of similar anatomy as hard negative samples. Notation used in the diagram: i indexes images, j indexes pa

j are the query patch and its anatomical location; xl∈N( j)
i are neighboring patches of x j

i ; x j
v is a patch with the same anatomical location in a diff

j
i represents random transformations of the given patch. q j

i , r
l
i , k+, k− are embeddings of the query patch, neighboring patch, and positive and negative

ely. fθq , fθk are the encoder and momentum-updated encoder, respectively.

ing the optimization problem as follows:

argmin
ϕi

Sim
(
ϕi(xi), XAtlas

)
+ Reg(ϕi), (1)

Sim(·, ·) is mutual information similarity function and

) is a regularization term to ensure the transformation is

. We perform the image registration using the Advanced

maging Tools (ANTs) Tustison et al. (2014).

r registration, we divide the lung region of the atlas im-

o J evenly spaced three-dimensional patches with some

and define the patches’ centers as the anatomical land-

denoted by {p j}Jj=1, where j is the patch index and each
3 is a coordinate in the atlas space. We apply the in-

ansformation ϕ−1
i to locate the anatomical landmarks on

atient’s image and extract the corresponding patches for

. Formally, each patient’s image xi is partitioned into

f patches {x j
i }Jj=1 centered at {p j

i }Jj=1, respectively, where
d×d×d, p j

i = ϕ
−1
i (p j) and d is the dimension of patch.

aightforward to show that patches with the same index

all patients correspond to the same anatomical region on

the anatomical atlas:

ϕi(p j
i ) = ϕi

(
ϕ−1

i (p j)
)
= p j.

2.2. Conditionally Parameterized Convolutional Layer

Image patches from different anatomical locations have

tinctive anatomical features and may be associated with

ferent diseased tissue patterns. Standard convolutional la

that apply the same kernels throughout the entire image

not be sufficient to accommodate spatial heterogeneity am

patches at different locations. Inspired by CondConv (Y

et al., 2019), we propose Loc-CondConv, a location-depen

conditionally parameterized convolutional layer. Instead o

ing static convolutional kernels, we compute convolutional

nels as a function of the anatomical location. In particula

parameterize the kernels in Loc-CondConv as a linear co

nation of n convolutional kernels:

W = α1W1 + · · · + αNWN ,

where {Wn}Nn=1 are the same-sized convolutional kernels

the regular convolutional layer and {αn}Nn=1 are scalar we
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Table 1: Important notations in this paper.

Image encoder.
MLP projection head.
Network composed of e and g, where θ = {θ1, θ2}.
Routing function used in Loc-CondConv.

Transformation from the i-th image to the atlas space.
Inverse transformation from atlas space to the i-th image.
Random augmentations.

Location of the j-th anatomical landmark in the atlas space.
Location of the j-th anatomical landmark mapped in the i-th subject.
Patch of the i-th subject centering at the j-th anatomical landmark.
Representation of j-th patch in the i-th image used in downstream tasks.
Representation of the i-th image used in downstream tasks.
MoCo embedding of j-th patch in the i-th query image.
MoCo embedding of the positive sample.
MoCo embedding of the negative sample.
MoCo embedding of l-th neighboring patch in the i-th image.
Neighboring patches of the j-th patch.
The atlas image.

via a routing function taking anatomical location as

ecifically, we construct the routing function r(·) using

nnected layer followed by a Sigmoid activation func-

r(p j) = σ(p j ×Wr), (4)

is a coordinate in the atlas space and Wr is a learn-

ht matrix with dimension 3 × N, and σ represents

id function. Fig. 2 illustrates the architecture of Loc-

v. In the DrasCLR models, we replace all static con-

l layers with Loc-CondConv layers.

l Contrastive Loss

rastive learning, the model is trained to discriminate

ositive inputs from a selection of negative pairs. Re-

es show that selecting harder negative pairs is criti-

success of contrastive learning (Saunshi et al., 2019;

et al., 2020). The anatomical similarity between pa-

e same lung region provides domain-specific cues for

hard negatives. More specifically, after registration

t, any pair of patches centered at the same anatomical

, e.g., x j
i , x

j
v (i , v), have highly similar local anatomy,

e encoder to discriminate them using more subtle vi-

Fig. 2: The architecture of the Loc-CondConv layer. The kernels W are con
tionally parameterized for each anatomical location p j. The symbols αn deno
the routing weights. x denotes the input from the previous layer.

sual features, such as pathological tissues, rather than shortcu

such as the overall anatomical background or boundaries.

With this motivation, we propose a local contrasting strateg

Formally, given a patch x j
i , we generate two augmented view

x̃ j
i = t̃(x j

i ), where t̃ is random augmentations sampled from a s

of transformations T . These two augmented patches are co

sidered as a positive pair. Each negative sample is generated

x̃ j
v = t̃(x j

v) by randomly sampling a patch in the same anatomic

region j from a different patient (v , i) and random augme

tations t̃ ∼ T . For notation simplicity, the tilde symbol th

represents random augmentations is omitted for the query an

negative sample in subsequent text. We adopt the MoCo (H

et al., 2020) as our contrastive learning paradigm, for its cap

bility to efficiently leverage a large number of negative sample

Specifically, we train two networks fθq , fθk to map the positi

pair (x j
i , x̃

j
i ) and the negative pair (x j

i , x
j
v) to corresponding em

beddings as follows:

q j
i = f (x j

i , p
j; θq), k+ = f (x̃ j

i , p
j; θk), k− = f (x j

v, p j; θk), (

where θk = mθk + (1 − m)θq and m ∈ [0, 1) is a mome

tum coefficient. The network f (·, ·; θq) is comprised of a fe

ture extractor function e(·, ·; θ1), which accepts both patch

and their corresponding anatomical landmarks as inputs, an

a multilayer perceptron (MLP) projection head g(·; θ2), whic

maps the patch representations to the space where contrasti

loss is applied. The equation can be written as f (x j
i , p

j; θq)

g(e(x j
i , p

j; θ1); θ2), where θq = {θ1, θ2}. Finally, the local co



6

trastive

where

the tem

2.4. N

The

sensitiv

gions.

borders

trasting

encode

ple ana

note th

neighb

boring

spondi

Please

our im

omitted

Inste

struct p

in whic

sample

sample

locatio

The

L j
n =

where

this los

the dis

es in

oder

ut to

ined

and

loss

(9)

n be

(10)

lay-

ging

and-

iven

(11)

side

omi-

rep-

s for

scan

an-

althy

f 3D

each

e at-

rs of

align

lung
Ke Yu et al. /Medical Image Analysis (2023)

loss per location is defined as:

L j
l = − log

exp(q j
i · k+/τ)

exp(q j
i · k+/τ) +

∑K− exp(q j
i · k−/τ)

, (6)

K− denotes the number of negative pairs and τ denotes

perature hyperparameter.

eighboring Contrastive Loss

local contrastive loss incentivizes representations to be

e to tissue abnormalities within local anatomical re-

Pathological tissues, however, may expand beyond the

of a single patch. We develop a complementary con-

strategy - neighboring contrasting to allow the same

r to learn disease patterns that may spread across multi-

tomical regions. For a given anatomical region j, we de-

e indices of its ℓ nearest neighboring regions byN( j), its

oring anatomical landmarks by {pl}ℓl∈N( j), and the neigh-

patches of x j
i on the same image by {xl

i}ℓl∈N( j). The corre-

ng embeddings of the neighboring patches are given by:

rl
i = f (xl

i, p
l; θq), l ∈ N( j). (7)

note that random augmentations were applied to xl
i in

plementation. For notation brevity, the tilde symbol is

.

ad of constructing positive and negative pairs, we con-

ositive and negative sets, specifically,

positive set :
{
{xl

i}ℓl∈N( j), x j
i

}
,

negative set :
{
{xl

i}ℓl∈N( j), x j
v

}
, v , i,

h the set of neighboring patches {xl
i}ℓl∈N( j) serve as query

s, their corresponding central patch x j
i acts as positive

, and x j
v, a patch from a random image at the same central

n j, acts as the negative sample.

neighboring contrastive loss per location is define as:

− log
∑N( j)

l exp(rl
i · k+/τ)∑N( j)

l exp(rl
i · k+/τ) +

∑N( j)
l
∑K−

k− exp(rl
i · k−/τ)

,

(8)

k+ and k− are the same as defined in Eqn. 5. Minimizing

s forces the encoder to extract similar visual features of

ease spreading across the patch x j
i and its neighboring

patches {xl
i}ℓl∈N( j). Additionally, by selecting random patch

the same anatomical region as the hard negatives, the enc

is prevented from using mismatched anatomy as a shortc

perform this instance discrimination task.

2.5. Overall Model

We train our model end-to-end by minimizing the comb

local contrastive loss and neighboring contrastive loss

looping through each anatomical landmark. The overall

function per location is defined as:

L j = L j
l +L j

n.

During inference time, the voxel-level representation ca

obtained by:

y j
i = e(x j

i , p
j; θ1),

where e(·, ·; θ1) is the trained encoder with Loc-CondConv

ers. The image-level representation yi is obtained by avera

the representations of patches across all the anatomical l

marks. Formally, the representation at the image level is g

by:

yi =
1
J

J∑

j=1

e(x j
i , p

j; θ1).

Note that, at the time of inference, p j can be any point in

the atlas space and is not restricted to the predefined anat

cal landmarks. In our experiments, we obtain image-level

resentations using only predetermined anatomical marker

computational efficiency.

3. Implementation Details

We begin by extracting the lung regions from each CT

using the lung segmentation method proposed by Hofm

ninger et al. (2020). We then choose the image of one he

subject as the anatomical atlas and partition it into a grid o

patches with some overlap. This results in 581 patches,

with a size of 32 × 32 × 32, that fully cover the lung in th

las image. Anatomical landmarks are defined as the cente

these 581 patches on the atlas coordinate system.

For registration, rather than registering raw images, we

the segmentation of the lung in the moving images to the
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he atlas. A healthy subject’s lung, representing com-

es among most subjects, was chosen as the anatomi-

We use the image registration toolkit ANTs (Tustison

4) to obtain the forward and inverse affine transforma-

een each subject’s (moving) lung segmentation and

fixed) lung segmentation.

struct the encoder e(·, ·; θ1) using Loc-CondConv lay-

building blocks. Each Loc-CondConv layer contains

volutional kernels with size 3 × 3 × 3 and is zero-

each side of the inputs by one pixel. We adopt batch

tion (BN) (Ioffe and Szegedy, 2015) and ELU (Clev-

2015) activation following each Loc-CondConv. For

ction head g(·; θ2), we adopt a 2-layer MLP with

tivation. We set the number of nearest neighbors

e neighboring contrastive loss as 2 based on an ab-

dy (Sec. 4.4.3). We create data augmentations using

MONAI Consortium, 2020) package. The data aug-

includes random affine transforms (applied in the or-

tion, translation, and scale), Gaussian noise, and ran-

e contrast adjustments. We optimize the networks

D with momentum = 0.9 and weight decay = 10−4.

ing rate is set to be 10−2 and is updated using a co-

ule. We choose the batch size of 128. Following the

n MoCo-v2 (Chen et al., 2020b), we set temperature

nd momentum coefficient to 0.999. Unlike regular

hich uses a single dictionary for negative samples, we

conditional memory bank that maintains separate dic-

or anatomical landmarks, each of which has a size of

training, we select negative samples from the corre-

dictionary, which stores patch embeddings from the

omical location as the query patch. We perform self-

d pretraining on the full dataset using four NVIDIA

0 GPUs, each with 32GB memory, for 48 hours or 20

hichever comes first.

iments

section, we take our DrasCLR pre-trained models and

heir performance in medical imaging tasks at both im-

age and voxel levels. At the image level, we evaluate the e

fectiveness of the learned representation in disease phenotyp

prediction, disease severity classification, and survival anal

sis. At the voxel level, we first describe how our model can b

used to produce voxel-wise segmentation masks. Using this a

proach, we then present the quantitative and qualitative resul

of subtype emphysema detection. Finally, we perform ablatio

studies to validate the importance of the proposed componen

in DrasCLR.

4.1. Datasets

We conduct the experiments on two large-scale lung C

datasets, including the COPDGene dataset (Regan et al., 201

and the MosMed dataset (Morozov et al., 2020). We apply th

same data preprocessing procedure for images in both datase

We begin by re-sampling all images into 1mm3 isotropic re

olution. We then threshold the Hounsfield Units (HU) to th

intensity window of [−1024, 240] and normalize the intensi

range to [−1, 1] by linear scaling.

4.1.1. COPDGene Dataset

Chronic Obstructive Pulmonary Disease (COPD) is a chron

inflammatory lung disease that causes obstruction of lung a

flow and is one of the leading causes of death worldwide. Th

COPDGene Study (Regan et al., 2011) is a multi-center obse

vational study that collects imaging data, genetic biomarker

and relevant phenotypes from a large cohort of subjects. In o

study, we use a large set of 3D thorax CT images from 9,18

subjects for self-supervised pre-training. We use the spiromet

measures, disease-related phenotypes, and survival status of th

same cohort as the image-level labels in our experiments. On

subset of these CT scans, an experienced pulmonologist ann

tated the bounding boxes of subtypes of emphysema by clickin

on locations surrounded by the pathological tissues (Castal

et al., 2013; Mendoza et al., 2012). This procedure created 69

centrilobular emphysema bounding boxes from 153 subjec

and 243 paraseptal emphysema bounding boxes from 69 su

jects. All these bounding boxes are of the same size (32mm3

We use this annotated subset to examine the performance of th

DrasCLR pre-trained model for subtype emphysema detectio
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MosMed Dataset

MosMed dataset contains 3D thorax CT images of 1,110

s from the municipal hospitals in Moscow, Russia (Mo-

t al., 2020). Subjects in this dataset are classified into

des (“Zero”, “Mild”, “Moderate”, “Severe”, and “Criti-

ased on COVID-19 related CT findings and physiologi-

asures, such as body temperature, respiration rate, blood

saturation level (SpO2) and so on. Triage decisions are

ased on the severity levels of the patients. For example,

s in the “Moderate” category only need to be followed

ome by a primary care physician, whereas patients in

ritical” category are immediately transferred to the in-

care unit. We use the CT images in MosMed for model

ining and use COVID-19 severity grades as classification

n downstream analysis.

age Level Evaluation

ssess how much disease-related information is preserved

proposed method, we use the learned image-level repre-

n to predict a wide range of clinical variables measured

ubject level, such as spirometry measurements, disease

ypes, disease staging, and patients’ survival rates.

COPD Phenotype Prediction

begin by performing self-supervised pre-training with

R on the COPDGene dataset. Then, we use the learned

level representations in downstream prediction tasks in

r readout fashion. In particular, we train linear regres-

odels to predict two pulmonary function measures on the

le, which are percent predicted values of Forced Expira-

lume in one second (FEV1pp) and its ratio with Forced

pacity (FEV1/FVC). We use R2 scores as an evaluation

for the regression analysis. In addition, we train multi-

gistic regression models to predict four categorical out-

(1) Global Initiative for Chronic Obstructive Lung Dis-

OLD) spirometric stage, a four-grade categorical vari-

dicating the severity of airflow limitation, (2) Centrilobu-

hysema visual score (CLE), a six-grade categorical vari-

dicating the extent of emphysema in centrilobular, (3)

tal emphysema visual score (Paraseptal), a three-grade

categorical variable indicating the severity of paraseptal em

sema, and (4) Acute Exacerbation history (AE history),

nary variable indicating whether the patient has encounter

least one exacerbation event before enrolling in the study.

all classification tasks, we use accuracy as the evaluation

ric. To account for human variability in annotation, for GO

CLE, and Paraseptal scores, we also report the proportio

times the predicted class fell within one class of the true s

(denoted as 1-off ).

We compare the performance of DrasCLR against both

supervised and supervised approaches. The unsupervised b

lines include: Models Genesis (Zhou et al., 2021), Med

Net (Chen et al., 2019), MoCo (3D version on the entire

ume) (He et al., 2020), Context SSL (Sun et al., 2021), Dom

CLR (Chaitanya et al., 2020), SwinUNETR (Tang et al., 20

and DiRA (Haghighi et al., 2022). To ensure a fair com

ion, each method was pre-trained on the corresponding da

on which DrasCLR was pre-trained. Alongside deep learn

based baselines, we also evaluate methods that rely on ex

designed features. These approaches include the Diverge

based feature extractor (Schabdach et al., 2017), the K-m

algorithm applied to features from local lung regions (Sc

dach et al., 2017), and the widely-accepted clinical des

tor, Low Attenuation Area (LAA). The supervised base

include convolutional neural networks (CNN) that were s

rately trained to predict FEV1pp, GOLD and CLE score

ing 2D slices as inputs (2D CNN) (González et al., 2018)

Subject2Vec (Singla et al., 2018), where a patch-based C

model was first trained with FEV1 and FEV1/FVC as join

pervised information, and the learned image representa

were then used in other prediction tasks. We perform five

cross-validation for all experiments and report the averag

sults along with standard deviations. Table 2 shows tha

DrasCLR pre-trained model outperforms unsupervised bas

models in all metrics, with the exception of 1-off accurac

Paraseptal emphysema, where the difference is within one

dard deviation. We have also conducted statistical tests (

to Table A.5 in Appendix ) to compare the evaluation outco
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sults of phenotype prediction on the COPDGene dataset. We use R-Square for continuous measurements and accuracy for discrete scores. Resu
e mean and standard deviation (mean±s.d.) are derived from 5-fold cross validation. Our DrasCLR model has the best or competitive performance
e prediction tasks when compared to seven unsupervised methods, and it generalizes better than the supervised method for predicting visual scores a

Supervised Spirometry COPD Staging Visual scores Acuity
logFEV1pp logFEV1/FVC GOLD GOLD 1-off CLE CLE 1-off Paraseptal Paraseptal 1-off AE Histor

R-Square % Accuracy

✗ 0.44±.02 0.60±.01 55.8 75.7 32.9 77.7 33.3 87.6 73.8
✗ 0.55±.03 0.68±.02 57.3 82.3 - - - - -

e-based ✗ 0.58±.03 0.70±.02 58.9 84.2 - - - - -
t ✗ 0.47±.10 0.59±.06 57.0±1.3 75.4±.9 40.3±1.9 69.6±1.6 53.1±0.7 81.8±0.8 78.7±1.3

nesis ✗ 0.58±.01 0.64±.01 59.5±2.3 82.9±1.3 41.8±1.4 77.0±1.5 52.7±.5 85.3±1.1 77.8±.8
✗ 0.40±.02 0.49±.02 52.7±1.1 67.6±1.4 36.5±.7 61.9±.9 52.5±1.4 79.7±1.2 78.6±.9

R ✗ 0.39±.02 0.47±.01 56.7±1.0 75.8±.7 39.9±.4 71.7±1.3 53.9±1.4 82.2±1.2 78.7±.6
TR ✗ 0.54±.02 0.64±.02 59.8±.6 81.0±.6 42.3±1.1 76.8±1.1 52.4±.5 84.4±.7 78.3±1.0

✗ 0.50±.03 0.59±.02 58.8±1.7 78.3±1.2 42.0±0.5 72.0±0.6 53.7±0.8 83.2±0.8 78.9±0.9
L ✗ 0.62±.01 0.70±.01 63.2±1.1 83.6±.9 50.4±1.3 81.5±1.1 56.2±1.1 84.9±1.2 78.8±1.3

✓ 0.53 - 51.1 - - 60.4 - -
ec ✓ 0.67±.03 0.74±.01 65.4 89.1 40.6 74.7 52.8 83.0 76.9

✗ 0.63±.01 0.71±.01 65.0±.6 85.6±.6 53.9±.8 86.3±.7 58.4±.8 87.0±.8 78.9±1.3

not reported.
line methods only report mean value without standard deviation in original manuscript.
ont is used to highlight the highest value for each column among all methods.
line is used to highlight the highest value for each column among unsupervised methods.

LR with those of the baseline methods. The results

our DrasCLR significantly outperforms the baseline

or most of the downstream tasks. Our DrasCLR pre-

odel also outperforms the supervised baseline models,

Subject2Vec and 2D CNN, in terms of CLE, Parasep-

E History predictions. For spirometry and COPD

n which Subject2Vec were trained, the performance

r model is smaller compared to other unsupervised

odels.

, these results suggest that image-level features ex-

the DrasCLR pre-trained model preserve richer infor-

out COPD severity than other unsupervised baselines.

pared to supervised methods, our proposed method

re generalizable features as it achieves higher predic-

rmance for a broader range of clinical variables, such

sema visual scores and AE history.

rvival Analysis of COPD Patients

luate the effectiveness of DrasCLR in survival anal-

e COPDGene population. We employ the Cox pro-

hazards (CPH) model (Cox, 1972) to predict patients’

sing the learned image-level representations while

g for five potential confounders, including age, gen-

der, race, smoking status, and packyear (calculated by mul

plying the number of packs of cigarettes smoked per day by th

number of years the person has smoked). We compare the pe

formance of features extracted by our method against: (1) han

designed imaging features, (2) imaging features retrieved b

other machine learning methods, and (3) relevant clinical fe

tures, such as spirometry measures and the BODE index (Ce

et al., 2004). The hand-designed imaging features include C

metrics of emphysema, gas trapping, average wall thickness

hypothetical airway, and wall area percentage of segmental a

ways (Martinez et al., 2006). All comparison baselines use th

same CPH model and are controlled by including the same fi

confounding variables.

We report the results in terms of time-dependent concordan

index (Ctd), which estimates the model’s risk ranking ability,

each of the censoring period quantiles. Table 3 shows that th

survival model with our imaging features achieved concordan

scores of 0.76, 0.75, and 0.74 at the 25th, 50th, and 75th qua

tiles, respectively, outperforming baselines with imaging-on

features retrieved by both deep learning-based models and th

hand-designed model. In comparison to clinical features, o

method outperformed spirometry measures (0.76 vs 0.74) f

risk stratification of near-term events before the 25th quantil
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Time-dependent concordance index on the COPDGene dataset. Re-
averages over five runs with bootstrapped standard errors. The highest
lues in each column are highlighted in bold. Our DrasCLR model per-
e best when compared to other imaging representation approaches, and
es incremental predictive value to clinical features.

Method Concordance Index

t = 25th t = 50th t = 75th

Hand-designed 0.74±0.02 0.73±0.01 0.74±0.01
Models Genesis 0.72±0.02 0.7±0.01 0.72±0.01
Subject2Vec 0.72±0.02 0.72±0.01 0.72±0.03
DomainCLR 0.74±0.02 0.72±0.02 0.72±0.02
SwinUNETR 0.73±0.02 0.73±0.01 0.71±0.01
DiRA 0.74±0.02 0.74±0.01 0.74±0.02
Context SSL 0.74±0.01 0.74±0.02 0.74±0.01
Ours 0.76±0.02 0.75±0.01 0.74±0.01

Spirometry 0.74±0.02 0.75±0.01 0.74±0.01
BODE 0.76±0.01 0.75±0.01 0.75±0.00

+ Clinical
Hand-designed + BODE 0.76±0.02 0.76±0.01 0.76±0.01
Ours + Spirometry 0.77±0.02 0.76±0.00 0.76±0.01
Ours + BODE 0.78±0.01 0.77±0.01 0.77±0.00

underperformed the BODE index (0.74 vs 0.75) at the

antile of censoring time, and achieved comparable accu-

herwise. We also developed survival models with com-

maging and clinical features. The bottom rows of Ta-

how that the model using both our imaging features and

index achieved the highest concordance scores of 0.78,

nd 0.77 at the 25th, 50th, and 75th quantiles, respectively,

strating that the imaging representation learned by Dras-

rovides incremental predictive value for survival analysis

D patients.

COVID-19 Severity Prediction

first pre-train a model with DrasCLR on the CT scans

osMed dataset. Then, we freeze the encoder and train

r classifier to predict the severity of COVID-19, a cate-

variable with five grades. The unsupervised comparison

s, consistent with those used in the COPDGene experi-

re also pre-trained on the MosMed dataset and evaluated

he same linear readout approach. Additionally, a super-

NN model that uses entire 3D images (referred to as

N) is incorporated for comparison. To evaluate classifi-

performance, we perform five-fold cross-validation and

the average test accuracy along with standard deviations.

e 4 shows that the DrasCLR pre-trained model outper-

he unsupervised baseline models. Statistical tests (refer

e A.7 in Appendix) further indicate DrasCLR’s signif-

Table 4: Classification of 5-grade COVID-19 severity on the MosMed d
The results are the means and standard deviations of accuracy for 5-fold
validation. The highest mean value is highlighted in bold. Our DrasCLR
leads the best performance over both unsupervised and supervised appro

Method Supervised % Accurac

3D CNN ✓ 61.2±3.5
MedicalNet ✗ 62.1±3.3
Models Genesis ✗ 62.0±3.5
MoCo ✗ 62.1±3.3
DomainCLR ✗ 63.2±2.8
SwinUNETR ✗ 59.0±2.9
DiRA ✗ 62.6±2.7
Context SSL ✗ 65.3±3.2

Ours w/o Neighbor Contrast ✗ 62.6±2.4
Ours ✗ 65.4±2.5

icant outperformance over Models Genesis, DiRA, and S

UNETR, while its performance is comparable to Context

Both Context SSL and our methods leverage the contex

tween neighboring anatomical regions for representation le

ing. Context SSL incorporates this information via a graph

ral network, whereas our method uses a neighboring contra

strategy. The ablation study results in Table 4’s bottom

show that leveraging anatomical context from large regio

useful for categorizing COVID-19 severity. With the neigh

ing contrastive loss, the COVID-19 severity prediction accu

increases by 2.8%. Interestingly, we found that the superv

3D CNN model performs the worst, suggesting that directl

tracting features from the entire volume may have resulte

the loss of fine-grained information at local anatomy. It is

possible that the supervised model may not converge prop

or becomes overfitted due to the small amount of training

4.3. Voxel Level Evaluation

To show that the DrasCLR pre-trained model encodes

grained information at local anatomy, we demonstrate its

ity to detect two subtypes of emphysema (i.e., centrilobula

paraseptal emphysema), which are prevalent in different

monary regions. We perform the experiments in three asp

First, we conduct a quantitative evaluation for emphysem

tection via voxel-wise classification. Second, we show the q

itative results of predicted emphysema masks for COPD

tients at different stages. Third, we perform emphysema
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a group of randomly selected subjects and show the

ip between the detected emphysema volume and the

COPD stage. In addition, we demonstrate that our

n reduce annotation efforts through transfer learning.

physema Detection via Dense Classification

pose to use dense or voxel-level classification for em-

detection. In particular, we first pre-train a model with

on all CT scans from the COPDGene dataset. We

tune the model in a binary classification task to dis-

between emphysema-annotated patches and healthy

The healthy patches are sampled from random sub-

the criteria that the subjects’ GOLD scores are equal

d no centrilobular or paraseptal emphysema is found

their image-level visual scores. For evaluation, we

o different fine-tuning schemes: (1) Linear readout,

lizes the pre-trained encoder as a fixed feature extrac-

ining a new linear classifier. This is compared to the

ploying expert-designed features; and (2) Full fine-

hich involves appending a linear classifier to the pre-

coder and fine-tuning all network layers. This ap-

employed for the unsupervised comparison baselines.

ference time, the fine-tuned model is used to perform

e classification of emphysema. For a given patch, the

is positive if 25% voxels within it have a predicted

y of emphysema greater than 0.5; otherwise, the de-

negative.

presents the quantitative performance of our method

arison baselines for emphysema detection. Under the

dout scheme, our model is compared to a logistic re-

odel using patch-level LAA features. Under the full

g scheme, our model is compared against a patch-

N, trained from scratch on the same annotated set

, and against unsupervised models pre-trained on the

PDGene dataset. The results in Table 5 show that,

rison to the clinical descriptor LAA, the linear model

ur learned features achieves superior F1 scores for

ype emphysema detection. Through full fine-tuning,

l achieves the highest scores across all metrics for

paraseptal emphysema detection. For centrilobular emphysem

detection, our approach achieves a superior F1 score compare

to the comparison methods, while Context SSL exhibits a pe

formance on par with our model.

To qualitatively demonstrate the outcomes of our method, w

create voxel-wise emphysema segmentation for subjects at di

ferent stages of COPD. In particular, we first use the full fin

tuning model to estimate the probability of emphysema in

sliding-window fashion with a step size of 1 voxel. We the

use a 0.5 threshold to map voxels with emphysema probabili

greater than or equal to the threshold to 1 and all other vo

els to 0. Fig. 3 shows the predicted segmentation masks

two subtypes of emphysema of varying COPD stage in cor

nal and 3D views. We find that as the COPD severity increa

(higher GOLD score), the volume of detected emphysema r

gion increases in both subtypes. Furthermore, segmentatio

masks of GOLD scores 1 and 2 show a clear heterogenei

in the regional distribution of emphysema in the lung betwee

these two subtypes. The regions of predicted segmentation a

consistent with the clinical definition of emphysema subtype

where centrilobular emphysema is commonly described as a

abnormal enlargement of airspaces centered on the respirato

bronchiole (Leopold and Gough, 1957) and paraseptal emph

sema refers to emphysematous change adjacent to a pleural su

face (Heard et al., 1979).

Finally, we analyze the correlation between the total em

physema detected in 3D images and the subjects’ COP

stages. In particular, we randomly select 500 subjects from th

COPDGene dataset and use the fully fine-tuned model to ma

voxel-wise emphysema classification on their CT scans. The

we aggregate all voxels in a CT scan to determine the fraction

voxels with a predicted probability of emphysema greater tha

0.5. The box plots in Fig. 4 represent the distributions of d

tected emphysema proportion against GOLD scores, as well

the group with preserved ratio impaired spirometry (PRISm

Subplots of both centrilobular and paraseptal emphysema sho

positive correlations between the detected emphysema and p

tient’s COPD severity.
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GOLD 2

Examples of predicted dense emphysema binary masks for subjects with different GOLD scores. The top three rows show the predicted regio
ular emphysema, and the bottom three rows show the predicted regions of paraseptal emphysema. The intensity range is set as [-1060, -825] to
the emphysema. The predicted emphysema regions are plotted in red, and the lung regions are plotted in blue. As the severity of COPD increases (h

core), the detected region increases in both subtypes of emphysema. In addition, the predicted emphysema regions correspond to the clinical descript
types.
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luation for subtype emphysema detection. Results are the means and standard deviations (mean±s.d.) of F1, precision and recall scores for 5-fold cro
he highest mean values in each column are highlighted in bold. Our DrasCLR surpasses the clinical descriptor LAA in F1 score when using a line
achieves the top scores across all metrics for both subtype emphysema detections with full fine-tuning.

Scheme Model Centrilobular Paraseptal

F1 Precision Recall F1 Precision Recall

Linear Readout Patch LAA 0.77±.03 0.94±.02 0.65±.04 0.70±.06 0.83±.06 0.61±.09

Ours 0.82±.03 0.75±.04 0.91±.02 0.82±.03 0.73±.05 0.95±.01

Full Fine-tuning

Patch-based CNN 0.91±.03 0.92±.01 0.89±.05 0.82±.04 0.77±.05 0.88±.02
Models Genesis 0.81±.02 0.71±.03 0.95±.01 0.82±.01 0.76±.01 0.90±.01
SwinUNETR 0.96±.03 0.97±.03 0.94±.04 0.93±.01 0.94±.01 0.91±.01
Context SSL 0.98±.01 0.97±.01 0.99±.01 0.98±.01 0.96±.02 0.99±.01
Ours 0.98±.01 0.97±.01 0.99±.01 0.99±.01 0.99±.02 1.00±.00

parison of predicted volume proportion of centrilobular (left) and paraseptal (right) emphysema for subjects with different GOLD scores. A high
e indicates a more severe stage of COPD. The results show that with an increasing GOLD score, the predicted emphysema volume proportion in C
es higher.

prove Annotation Efficiency via Transfer Learning

r learning makes use of the knowledge of underly-

structure learned by the pre-trained models and has

onstrated to be beneficial in medical imaging analy-

the amount of annotated data is often limited. We

he scenarios of using a subset of annotated data to in-

the power of our method in transfer learning. Specif-

fine-tune the DrasCLR pre-trained model by starting

annotated emphysema patches and gradually increas-

ount of annotations by 10% in subsequent experi-

g. 5 shows the results of transfer learning on two target

performance of centrilobular detection learning from

ith the entire dataset can be surpassed using DrasCLR

50% of the dataset, hence doubling the annotation ef-

he performance of paraseptal detection learning from

ith the entire dataset can be surpassed using DrasCLR

with only 20% of the dataset, thus improving the annotation e

ficiency by five times. These results demonstrate how DrasCL

can significantly reduce the cost of manual image annotatio

ultimately leading to more label-efficient deep learning.

4.4. Ablation Study

In this section, we conduct ablation experiments to valida

the effects of several DrasCLR components.

4.4.1. Design Choices for Incorporating Anatomical Locatio

We demonstrate the effects of various designs for incorp

rating anatomical location information into DrasCLR. Speci

cally, we compare the following four approaches: (1) No co

ditioning, which uses a standard CNN to extract features fro

image patches without taking their anatomical locations into a

count; (2) Concatenation (Sun et al., 2021), which concatenat

the features from the last layer of the standard CNN with th
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%(110) 20%(221) 30%(331) 40%(442) 50%(553)
Percentage of finetuning data (Number of finetuning samples)

5

0

5

0

5

Centrilobular emphysema

DrasCLR
Train from scratch w/ full data
DrasCLR w/ full data

10%(38) 20%(76) 30%(115) 40%(153) 50%(19
Percentage of finetuning data (Number of finetuning samples)
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0.85

0.90

0.95

1.00

F1
 sc

or
e

Paraseptal emphysema

DrasCLR
Train from scratch w/ full data
DrasCLR w/ full data

esults of fine-tuning with different amounts of data. We perform evaluations for centrilobular (left) and paraseptal (right) emphysema detection. Com
odel fine-tuned with full data from scratch (random initialization), the DrasCLR pre-trained model only needs 50% and 20% annotated data to achie
formance for centrilobular and paraseptal emphysema detection, respectively.

Ablation study for how to incorporate anatomical location. We report
e for logFEV1pp, accuracy scores for the GOLD and CLE scores. The
d standard deviation values are calculated via 5-fold cross-validation.
est mean values in each column are highlighted in bold.

od logFEV1pp GOLD CLE

nditioning 0.57±.04 61.8±1.1 48.0±.9
atenation 0.60±.01 62.5±1.0 49.2±1.1
rNetwork 0.60±.01 58.6±1.7 44.1±1.3

ondConv (Ours) 0.62±.02 63.4±1.0 50.3±.9

ical coordinate and then fuses them through fully con-

layers; (3) HyperNetwork (Ha et al., 2016), which uses

ate fully-connected network that takes an anatomical lo-

as input to produce weights in the standard CNN; (4)

consists of our proposed Loc-CondConv layers. We

ark these different ways to incorporate anatomical loca-

n COPDGene dataset. We use the same network back-

our DrasCLR, and train the model with local contrastive

s shown in Table. 6, the simple concatenation approach

orms the standard CNN in three image-level tasks, sug-

that including anatomical location enriches the learned

ntations and enhances the performance of the down-

analysis. Furthermore, Table. 6 shows that the CNN

oc-CondConv layers achieves the best performances in

et tasks, demonstrating it is a superior design for incor-

g anatomical location information.

4.4.2. Impact of Anatomical Location for Disease Detecti

We have thus far validated the importance of anatom

location as well as the effectiveness of Loc-CondConv

for image-level prediction tasks. Our DrasCLR features

CondConv layers, which use anatomical location as the co

tion to control the parameter of convolutional kernel for

ture extraction. To investigate whether anatomical locati

an important factor in representing fine-grained local fea

with DrasCLR, we explore the impact of perturbing the i

locations of DrasCLR on the performance of emphysema

tection. In particular, instead of extracting features from a g

patch using its corresponding anatomical location used a

condition, we use random coordinate sampled in the lun

the condition. In order to evaluate the quality of extracted

tures, We train a linear classifier for emphysema classific

using the extracted representation. We use the same da

as described in Section 4.3.1. As shown in Table 7, by

ing random anatomical locations as inputs, the detection

curacy drops by 6% and 16% for centrilobular and paras

emphysema, respectively, showing statistically significan

creases (p-value< 0.005, one-sided two sample t-test). Th

sults indicate that the DrasCLR pre-trained encoder is sens

to anatomical locations and captures anatomy-specific feat
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nsitivity of the pre-trained DrasCLR model to anatomical location
. The results are the means and standard deviations of emphysema
curacy for 5-fold cross validation. The highest mean values in each
highlighted in bold.

Random location Patch location

ular emphysema 73.3±2.6 79.2±1.4
al emphysema 56.4±4.1 72.1±4.3

lation study for neighboring contrastive loss. We report R-Square
pp, accuracy scores for GOLD and CLE scores. The mean and
iation values are calculated via 5-fold cross-validation. The highest
in each column are highlighted in bold.

logFEV1pp logFEV1pp/FVC CLE

boring Contrast 0.62±.02 0.69±.02 50.3±0.9
rs = 1 0.61±.01 0.70±.01 53.0±1.3
rs = 2 (Ours) 0.63±.01 0.71±.01 53.9±0.8
rs = 3 0.63±.01 0.71±.01 52.5±0.5

ighboring Contrastive Loss

experiment, we investigate the effect of neighboring

e loss as well as the impact of the number of neigh-

. We pre-train DrasCLR models with no neighboring

s well as with different numbers of neighbors. Using

adout scheme, we benchmark the performance of the

d models in downstream image-level tasks. As shown

, the incorporation of spatial context from neighbor-

es enhances the performance of image-level tasks in

ations. The improvement is particularly notable in

tion of the centrilobular visual score, which ranges

to 8% depending on the number of neighbors. This

ue to the fact that CLE grades are determined by the

hich the lung’s center is damaged by the disease, and

oring contrasting strategy encourages the learning of

isease patterns that span multiple anatomical regions.

dy the Robustness of DrasCLR to the Selection of at-

asCLR framework requires a registration process to

omical landmarks between subjects, a step in the data

sing phase that involves selecting an atlas subject. In

ments reported in the prior section, a healthy individ-

hosen to serve this purpose. To assess the sensitivity

thod to the choice of atlas, we conduct an ablation

analysis by pre-training the model using an unhealthy subjec

specifically a subject with GOLD score of 3, as the atlas. W

then replicate the experiments of COPD phenotype predictio

with the same settings. The results in Table 9 show that th

performance in most downstream tasks is consistent, regardle

of whether the atlas subject is healthy or unhealthy. Statistic

analyses (refer to Table A.6 in Appendix) confirm that there

no significant difference in outcomes when leveraging the ori

inal or the new atlas. These results suggest that our DrasCLR

robust against the choice of the atlas subject.

5. Discussions

5.1. Does DrasCLR learn disease-related features?

In this paper, we propose a novel self-supervised metho

DrasCLR to learn disease-related representation of 3D lung C

images. Medical images have recurring and similar anatom

across patients. While previous self-supervised methods Zho

et al. (2021); Haghighi et al. (2021, 2022) used this knowledg

to learn common anatomical representation, our method us

this knowledge to create hard negative samples in contrasti

learning. As a result, our method is more sensitive to tissue a

normalities and can encode more disease-related informatio

As seen in Table 2, our method demonstrates excellent perfo

mance in predicting a wide range of clinical variables, such

spirometry measures and COPD phenotypes, which are close

associated with the degree of lung impairments in COPD p

tients. Emphysema is a hallmark of COPD. However, visual

assessing emphysema at CT is time-consuming and subject

human variability. Our method demonstrates superior perfo

mance for this task and may provide a data-driven way of qua

tifying the visual score of emphysema from CT imaging.

Moreover, as evidenced by Table 3, imaging features learne

by our method add incremental value to the BODE index f

survival analysis in COPD patients, suggesting that our metho

is capable of capturing complementary risk factors from C

imaging. In addition to the evaluation on the COPD coho

we demonstrate, as shown in Table 4, that DrasCLR can lea

robust features associated with COVID-19 severity. The abili

to represent disease-related information from medical images
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le 9: Results of phenotype prediction on the COPDGene dataset with different atlas. The highest mean values in each column are highlighted in bold

Supervised Spirometry COPD Staging Visual scores Acu
logFEV1pp logFEV1/FVC GOLD GOLD 1-off CLE CLE 1-off Paraseptal Paraseptal 1-off AE His

R-Square % Accuracy

nhealthy atlas) ✗ 0.62±.02 0.71±.02 64.6±1.4 84.9±.8 52.6±.8 84.2±.4 57.8±.9 87.3±.8 79.2±
ealthy atlas) ✗ 0.63±.01 0.71±.01 65.0±.6 85.6±.6 53.9±.8 86.3±.7 58.4±.8 87.0±.8 78.9±

pervised manner is particularly useful during pandemic

ks, when labeled data is rarely available.

oes DrasCLR extract location-specific features?

nventional convolutional layer is designed to be transi-

invariant. However, pathological patterns tend to be

eneous across locations in the human body, and an one-

-all design may not be sufficient to learn the variety of

abnormalities at different anatomical locations. In this

we incorporate anatomical context into representation

g via two components in DrasCLR. First, image registra-

used to provide a unified anatomical coordinate system,

images are aligned to the atlas. Second, a novel Loc-

onv layer is introduced to have modifiable weights that

ditionally dependent on anatomical location.

have explored different ways to incorporate anatomical

n into representation learning. As seen in Table 6, the

ndConv layer is superior to simple concatenation and

etwork. To further validate the effect of our design, we

ate the impact of perturbing the input locations of Dras-

n emphysema detection. As shown in Table. 7, the em-

a detection accuracy decreases when random location

, demonstrating that lack of correct anatomical context is

ntal.

hy do we choose sliding-window based approach for em-
ysema segmentation?

most well-known architecture for medical image seg-

ion is U-Net (Ronneberger et al., 2015), which is com-

of opposing convolution and deconvolution layers, and

information is provided through skip connections to each

r layer to recover fine-grained details. Traditionally, U-

ining relies on complete pixel/voxel-level annotation, a

e-intensive requirement that can be challenging to meet.

Recent developments in weakly-supervised UNet methods

bost et al., 2017; Liu et al., 2022) have sought to mitigate

requirement using image-level labels. In our scenario, em

sema annotation in the COPDGene dataset was collecte

bounding boxes by a physician clicking on regions surro

ing by pathological tissues, thus the annotation is not com

at the voxel level. Our method can leverage these part

annotated images and produce voxel-wise emphysema cl

fication in a sliding-window fashion. Moreover, the Dras

pre-trained model is capable of utilizing spatial informatio

modifying kernels’ weights based on the input anatomica

cation. As illustrated by Fig. 3, our method can produce h

quality emphysema segmentation in which the regional d

bution of detected emphysema matches with the clinica

scription of emphysema subtypes. The box plots in Fig. 4 s

quantitative evidence that the detected emphysema volume

relates with the subjects’ COPD stages.

5.4. Scope and limitations of the study

This study is specifically focused on lung CT scans.

evaluation predominantly utilizes the COPDGene dat

which is one of the largest publicly available 3D me

datasets, making it an excellent benchmark for evaluating

efficacy of self-supervised learning methods. While we

showcased the robustness of DrasCLR in a range of d

stream tasks related to pulmonary diseases, its potentia

plications to other anatomical structures remain unexplor

our current research. Future directions could involve expan

the applicability of DrasCLR to interpret scans of other

regions or exploring its adaptability across different ima

modalities.

While in our methodology, image registration provide

dual advantages of aligning anatomical structures and e
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onsistent coordinate system within the atlas, this pro-

t without its challenges. The computational demands

registration are considerable, often resulting in pro-

ocessing time and increased resource requirements.

ly, within our implementation, applying the image

n process to the COPDGene dataset took approxi-

o days. Additionally, the quality of learned represen-

pends on the registration algorithm’s accuracy and can

ve to factors like initialization, optimization strategy,

eter settings. Inaccurate registration can lead to mis-

t of structures, which can adversely affect subsequent

portant to note that our contrastive learning strategy

e universally optimal for all medical imaging analy-

Specifically, our method emphasizes disease-related

y employing hard negative samples with aligned

. While effective in enhancing sensitivity to devia-

ed by diseased tissues, this approach may deprioritize

elated to anatomical differences. In contrast, Chai-

l. (2020) specifically targeted organ segmentation as

ry task and employed negative samples derived from

natomies to learn anatomical features. As organ seg-

is beyond the scope of this study, we did not assess

d’s performance on this particular task.

d Work

following sections, we review related works in four

self-supervised learning approaches, including pre-

based methods and contrastive learning methods, (2)

ns of self-supervised learning in medical image analy-

f-supervised learning methods that exploit anatomical

medical images, and (4) conditionally parameterized

Following this review, we highlight the specific im-

ts of this paper in comparison to our preceding work.

supervised Learning

pervised learning has been shown to be an effective

for learning semantically useful representations from

large-scale unlabeled data without requiring human annot

tion (Jing and Tian, 2020; Ohri and Kumar, 2021). To ge

erate supervisory signals from the data itself, a popular stra

egy is to present the model with various pretext tasks to solv

Commonly used pretext tasks include image inpainting (Patha

et al., 2016), image colorization (Zhang et al., 2016), relati

position prediction (Doersch et al., 2015), image jigsaw pu

zle (Noroozi and Favaro, 2016), patch cut and paste (Li et a

2021a), temporal order verification (Misra et al., 2016), ge

metric transformation recognition (Gidaris et al., 2018), cros

modal correspondence (Korbar et al., 2018; Arandjelovic an

Zisserman, 2017), and so on. These methods all have on

thing in common: they build predictive-based pretext tasks u

ing data’s inherent structures, such as context similarity, spati

correlation, and temporal order. High-level semantic featur

are extracted in the process of accomplishing these tasks.

More recently, contrastive learning methods have emerged

one of the most popular self-supervised approaches due to the

empirical success in computer vision (Misra and Maaten, 202

Lee et al., 2021; Caron et al., 2021). The objective of co

trastive training is to push learned representations to be simil

for positive (similar) pairs and dissimilar for negative (dissim

lar) pairs. This task is called instance discrimination (Wu et a

2018) and is often formulated using the InfoNCE loss (Gu

mann and Hyvärinen, 2010; Van den Oord et al., 2018). A v

riety of contrastive learning frameworks have been propose

such as SimCLR (Chen et al., 2020a), which uses the au

mented view of the same input as positive samples and the au

mented views of other samples in a minibatch as negative sam

ples, and MoCo (He et al., 2020), which uses a slow moving a

erage (momentum) encoder and a dictionary that stores old ne

ative representations to enable constructing very large batch

of negative pairs. We extend MoCo as our contrastive learnin

paradigm. Rather than using a global dictionary, we develop

conditional memory bank that maintains distinct dictionaries

negative representations for each anatomical location. The d

sign of sampling strategies for positive and negative pairs is

key driver to the success of contrastive learning (Saunshi et a
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ian et al., 2020a). Previous studies have demonstrated

coders trained with harder negative pairs can represent

hallenging features (Jin et al., 2018; Jeon et al., 2021;

on et al., 2020; Kalantidis et al., 2020; Robinson et al.,

We create negative pairs from examples with highly sim-

al anatomy to force the model to solve instance discrim-

using more subtle visual features (e.g. deviation from

appealing tissues).

L Applications in Medical Imaging

supervised learning is particularly useful for medical

g analysis, in which labels are expensive to collect. Sev-

dies have shown the effectiveness of self-supervised ap-

es in a variety of medical imaging analysis tasks such

ase diagnosis (Shurrab and Duwairi, 2021; Li et al.,

Azizi et al., 2021), detection and localization (Tajbakhsh

019; Jiao et al., 2020; Lei et al., 2021), image segmen-

(Taleb et al., 2020; Ross et al., 2018; Ye et al., 2022;

al., 2022; Zeng et al., 2021; Zhang et al., 2022), and

registration (Li and Fan, 2018). Contrastive learning

orks have been employed to leverage large-scale, un-

medical imaging data to produce pre-trained models.

mple, Sowrirajan et al. (2021) adopted MoCo as a pre-

approach to obtain high-quality representations for de-

diseases in chest X-rays; Azizi et al. (2021) extended

R to train robust representations for dermatology condi-

assification and thoracic disease classification by using

ilability of multiple views of the same pathology from

e patients; Tang et al. (2022) combined multiple proxy

cluding volume inpainting, image rotation and SimCLR

train a 3D Swin Transformer encoder. Our contrastive

g framework is built upon MoCo and is specifically de-

to learn voxel-level representations that are sensitive to

natomical deformities.

veraging Anatomical Structure in SSL

ical images have consistent anatomy across patients,

ng domain-specific cues for self-supervised representa-

rning. Zhou et al. (2021) introduced the Models Gene-

ich learns image representation by recovering anatomi-

cal patterns from transformed sub-volumes extracted from

images. Haghighi et al. (2021) extended the Models G

sis framework by adding a self-classification objective to

able the encoder to learn common anatomical semanti

similar body locations across patients. In a subsequent s

Haghighi et al. (2022) further enhanced their self-superv

learning framework by integrating an adversarial learning c

ponent. Bai et al. (2019) presented an anatomical position

diction task for learning segmentation features from ca

magnetic resonance images. Chaitanya et al. (2020) enha

SimCLR by integrating two domain-specific contrasting st

gies: incentivizing similar representations for volumetric

age slices coming from similar anatomical areas, and in

tivizing distinctive local representations for different ana

ical regions coming from the same image, both of whic

cus on learning features that represent anatomical differe

and the learned features are subsequently employed for o

segmentation. Our approach differs from the reviewed m

ods in two aspects: (1) We use image registration to imp

the alignment of anatomical structures across patients, an

We leverage local anatomical similarity to create hard neg

samples, thereby blocking shortcuts caused by anatomica

ferences and prioritizing sublet differences arising from t

abnormalities.

6.4. Conditionally Parameterized Networks

In comparison to conventional neural networks with

weights, conditionally parameterized networks have we

computed as a function of the inputs. One such network i

pernetwork (Ha et al., 2016), which is typically a small netw

that outputs weights for a primary network. It has been

in functional image representation (Klocek et al., 2019)

hyperparameter optimization (Brock et al., 2017; Lorraine

Duvenaud, 2018; Hoopes et al., 2021). Another prominent

ditional parameterization technique is CondConv (Yang e

2019), which creates convolutional kernels as a linear comb

tion of experts with scalar weights dependent on input im

In our framework, the CondConv is modified to compute co

lutional kernels as a function of the input anatomical locat
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lt, the learned representation at a given voxel depends

s surrounding patch and its anatomical location.

previous work

l. (2021) first presented a contrastive learning method

text SSL) that leverages anatomical context to detect

from normal-appearing tissues. This paper extends

inary version substantially with the following im-

ts:

ave introduced a novel neighboring contrastive loss,

cing the graph-level loss employed in Context SSL.

change offers two primary benefits: (1) Improved

ory efficiency and the facilitation of end-to-end train-

resolving previous memory limitations associated

using entire volumetric images; (2) Focused on a

der local context as opposed to the entire image,

by mitigating shortcuts and fostering the model’s

ty to identify anomalies.

ave introduced the Loc-CondConv layer to represent

my-specific features. The ablation study, presented

ection 4.4.1, demonstrates the effectiveness of Loc-

Conv over the simple concatenation approach em-

ed in Context SSL.

ave broadened our experimental scope to include sur-

analysis, subtype emphysema detection, and exten-

ablation studies. The results, as shown in Tables 2, 3,

d 5, illustrate that DrasCLR surpasses Context SSL

ean evaluation performance. Hypothesis testing con-

that DrasCLR significantly outperforms in emphy-

visual score classifications.

ave presented experimental results for two subtypes

physema detection tasks using limited amounts of

tated data in Section 4.3.2, demonstrating that trans-

arning from DrasCLR could significantly reduce an-

tion efforts.

e included qualitative examples of two emphysema

pes segmented by DrasCLR in Figure 3, illustrating

the detected emphysema damage aligns with COPD

severity and clinically-defined locations of each emph

sema subtype.

7. Conclusion

In this paper, we present a novel method for anatomy-specifi

self-supervised representation learning on 3D lung CT image

We propose two domain-specific contrasting strategies to lea

disease-related representations, including a local contrastin

loss to capture small disease patterns and a neighboring co

trasting loss to learn anomalies spanning across larger anatom

ical regions. In addition, we introduce a novel conditional e

coder for location-specific feature extraction. The experimen

on multiple datasets demonstrate that our proposed method

effective, generalizable, and can be used to improve annotatio

efficiency for supervised learning.
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