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ABSTRACT

With the growth of digital health, bioinformatics and healthcare now produce
massive high-dimensional (HD) datasets that challenge both prediction and inter-
pretability. This work introduces the Tree-Regularized Interpretable Variational
Autoencoder (TRI-VAE), which couples a VAE with a surrogate decision tree
to impose rule-consistent structure on the latent space. TRI-VAE aligns embed-
dings to soft leaf distributions for a cluster-aware representation learning, and em-
ploys a SHAP-based attribution scheme tailored to HD settings to select salient
features and harmonize feature-level explanations with path-based rules. A tree-
regularizer, optimized via a learned average-path-length surrogate, promotes com-
pact and balanced trees; stability-controlled tree updates further preserve assign-
ment consistency over training. Across public (TCGA-LIHC, TUEP) and pri-
vate (PPH) datasets, TRI-VAE delivers competitive predictive performance while
yielding faithful, human-readable explanations. An LLM-assisted evaluation pro-
tocol with clinician review supports the accessibility and reliability of the ex-
tracted rules and attributions, advancing trustworthy Al for medical data analysis.

1 INTRODUCTION

In the rapidly evolving field of digital health, data-driven innovations are reshaping the medical land-
scape. Advanced medical devices, gene sequencing technologies, and widespread electronic health
record systems generate massive amounts of high-dimensional (HD) data (Kasoju et al.} 2023), un-
locking significant potential for smart healthcare. These rich datasets enable accurate prediction
and interpretation of health data patterns, benefiting the healthcare industry by supporting precise
diagnoses and personalized treatment for practitioners, early disease detection and prevention for
patients, and accelerated research progress for medical researchers (Yeung et al. [2023). How-
ever, fully leveraging complex HD data for accurate predictions and understanding the underlying
decision-making processes remains a major challenge.

Explainable prediction with HD data involves two key issues: (i) reducing dimensionality to en-
able accurate prediction and (ii) providing an interpretability mechanism that ensures the compre-
hensibility and credibility of the results. This work employs a Variational Autoencoder (VAE) to
learn structure for dimensionality reduction, and combines post-hoc SHAP attributions with tree-
regularization—based intrinsic interpretability to analyze the model’s decision process, enhancing
reliability and transparency in practice. Integrating these three components introduces several chal-
lenges: first, VAE has inherently complex and obscure internal mechanisms, and existing methods
struggle to guide its learning process effectively from an interpretability standpoint. Second, stan-
dard SHAP estimators can be computationally inefficient and high-variance in high dimensions.
Lastly, the interpretability of the tree model becomes less intuitive as the number of nodes in the
decision tree increases, making the decision-making process harder to understand.

To address these issues, this work introduces the Tree-Regularized Interpretable Variational Au-
toencoder (TRI-VAE) for high-dimensional data. TRI-VAE incorporates an explanatory guidance
mechanism that guide VAE training with a surrogate decision tree, aligning latent variables to rule-
consistent soft leaf distributions and improving representation quality. The framework further intro-
duces a SHAP estimation scheme tailored to high-dimensional settings to quantify feature contribu-
tions, and integrates the resulting attributions with the tree’s intrinsic structure. This work presents
a new interpretability mechanism that integrates the intrinsic interpretability of tree regularization
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with the post-hoc interpretability of SHAP, offering an intuitive and balanced explanation of the
model’s decision-making process.

TRI-VAE is validated through comprehensive experiments on public and domain-specific private
datasets, benchmarked against strong baselines with component-wise evaluations to assess robust-
ness. An automated LLM-based protocol is further introduced to evaluate interpretability, providing
both theoretical and practical support for real-world application.

The contributions of this work are summarized as follows:

» This work proposes a theoretical framework of the Tree-Regularized Interpretable
Variational autoencoder (TRI-VAE) to address the interpretability challenges in high-
dimensional predictive modeling (§ 4.5).

* An explanatory mechanism is introduced to guide VAE’s learning process, strengthening
the connection between the latent representations learned by VAE and the decision tree
structure, thus enhancing model interpretability (§ 4.2).

* A more efficient algorithm is developed for computing SHAP values, reducing computa-
tional costs and improving feature selection, thereby enhancing model training and analysis

efficiency (§[4.3).

* An integrated interpretability mechanism is introduced that combines intrinsic inter-
pretability with post-hoc interpretability, contributing toward the goal of trustworthy Al

SEA.

 To assess interpretability, this paper uses LLM to generate questions, which are validated
by a medical professional to ensure the validity and trustworthiness of the model(§ [5.6).

2 RELATED WORK

Variational autoencoders and variants. VAEs (Kingma, 2013) widely used to learn low-
dimensional structure from high-dimensional data (Mattei & Frellsen,|2019). Adding a classifier on
top of the learned embeddings often yields strong downstream classification performance on com-
plex data(Zhang et al.l 2019} |Hira et al.,|2021). However, these methods often lack interpretability,
which is particularly concerning in medical settings. To mitigate this issue, XOmiVAE incorporates
DeepSHAP to attribute importance to input features and latent dimensions in omics-based cancer
classification(Withnell et al.| 2021} |Lundberg & Lee, [2017). Yet these approaches remain post-hoc
and do not induce a rule-consistent decision structure in the input space, leaving the internal work-
ings of VAEs largely opaque. In contrast, this work couples a VAE with an interpretable, tree-guided
module that aligns latent representations to soft leaf distributions, yielding rule-consistent partitions
in latent space and traceable decisions.

SHAP and Shapley Value. SHAP is a widely used post-hoc interpretability framework that quan-
tifies feature importance for individual samples, providing insights into model predictions. Exact
Shapley values are computationally prohibitive due to factorial-scale permutations. To address this,
two main approximation methods have been developed: model-specific methods, exemplified by
TreeSHAP (Lundberg et al., [2018)), which exploit tree structure to compute Shapley values without
sampling (Yu et al., 2022; Muschalik et al., {2024} Yang, |2021)); and model-agnostic methods such as
Kernel SHAP (Lundberg & Lee,[2017), which fit a local, kernel-weighted linear surrogate and derive
Shapley values on that approximation. The key advantage of this approach is its independence from
any specific model structure, which makes it highly versatile and has been shown to be effective in
various tasks (Chau et al., 2022; |Covert & Lee) 2021} [Aas et al., [2021). However, Kernel SHAP’s
sampling estimator becomes costly and high-variance in high dimensions. This study refines Ker-
nel SHAP with subset-size—aware coalition sampling consistent with the Shapley kernel, improving
sample efficiency and stability while preserving its theoretical basis.

Decision Trees and Tree regularization. Decision trees (Loh, |2011) are standard supervised-
learning models for classification and regression. Their hierarchical structure yields transparent,
human-simulatable rules that are easy to visualize and scrutinize, making trees natural vehicles for
interpretability (Arrieta et al.|[2020; [Burkart & Huber}, 2021). A growing body of work has sought to
advance the interpretability of decision trees. |Souza et al.[(2022) optimize split structure to minimize
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Figure 1: The framework of Tree-Regularized Interpretable Variational Autoencoder.

explanation size, yielding shorter, simpler rules without sacrificing accuracy; Wang et al.| (2023) em-
ploy trees to extract disentangled factors from neural policies and propose evaluation metrics that

operationalize interpretability in robotics; and [Arenas et al.| (2022) formalize explanation notions
and derive complexity bounds that delineate the feasibility of exact extraction. Yet purely tree-based
methods still struggle to form semantically meaningful splits in high dimensions. To bridge ex-
pressive deep models with interpretable rules, [Frosst & Hinton| (2017) distill deep networks into
soft decision trees, achieving competitive accuracy while exposing explicit, path-based rules;
regularize deep networks with a surrogate decision tree by penalizing its average path
length (APL) as a regularization term, so the deep model remains well-approximated by a compact,
human-simulatable tree. Leveraging this regularization, this study applies a learned APL surrogate
to penalize surrogate-tree complexity and promote compact, balanced trees, and employs a stability-
controlled tree-update protocol to reduce update-induced drift.

3 PRELIMINARIES

High-dimensional data suffer from the “curse of dimensionality”, and many deep learning models
operate as “black boxes”, complicating interpretability. To address this, XOmiVAE combines a
VAE with SHAP. This approach uncovers the contributions and correlations of genes and latent
dimensions in cancer classification, enabling novel biomedical insights. In XOmiVAE, the VAE
performs dimensionality reduction by learning an encoder g,(z | x) and a decoder pg(z | z),
mapping high-dimensional data z € R¢ to a lower-dimensional latent space z. The training objective
is the evidence lower bound (ELBO):

Lyae = Eg, (zloy[log po (2 | 2)] — Dkr(ge(z | #) [ po(2)) - ey
A prediction head then computes a soft label §(z) for each data point, which is used for attribution.

Let N = {1,...,d} index features and let f(x) denote the scalar output to be explained. For any
subset S C N, define the characteristic function
U(S|x):EXN\S[f(3:S, XN\S)] 2)

where the expected model output when the features in .S are fixed to their observed values g and
the remaining features are integrated under a background distribution. The Shapley value of feature
1€ Nis
[S|!(d -S| —1)! .
gilr)= Y ( ~ ) (v(S Uit 2) = v(s | 2)). 3)

SCN\{i}
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which quantifies the marginal contribution of feature ¢ across coalitions. XOmiVAE thus reduces
dimensionality while improving interpretability by using SHAP values {¢;(z)} to explain feature
contributions to predictions.

4 METHODOLOGY

4.1 PROBLEM FORMULATION

Given D = {(z;,y;)} Y, with z; € R? and y; € {0, 1}, the goal is to learn a mapping fy : R? —
{0, 1} that combines predictive accuracy and interpretability. As in Fig.|1] TRI-VAE combines (i) a
VAE for compact latent representations (Lyag), (ii) an efficient SHAP-based attribution module for
feature selection, (iii) tree-guided clustering to align embeddings with rule-based partitions (Ljuster),
and (iv) a tree regularizer that penalizes average path length to promote concise, balanced tree (Lyee)-
Sections 4.2—4.4 detail these components.

4.2 INTERPRETIVE GUIDANCE ARCHITECTURES

Although VAEs can learn rich latent distributions, they offer limited insight into the model’s in-
ternal mechanisms. The interpretive guidance architecture addresses this by introducing structural
supervision into the VAE’s latent space through a surrogate decision tree. This tree defines an inter-
pretable partition, with each leaf corresponding to a rule defined by its root-to-leaf path. A soft label
is assigned to each sample to capture its compatibility with all leaf rules. The network then aligns
its predictions with these soft labels, encouraging samples with similar leaf-rule profiles to cluster
in the representation space.

Tree-guided soft labels and alignment. Given a dataset D, a surrogate decision tree 7' evaluates
each sample z; through a series of splits, producing leaf-rule scores that induce a soft distribution
p(x;) over all leaves. Note that computations are restricted to an attribution-selected feature subset
to avoid performance degradation in high-dimensional settings (see . Let L = {l1,0a,...,4m}
be the set of unique leaves observed across samples, where m = |L|. Each leaf /; is assigned
a unique cluster index ¢ € {1,...,m}. The soft-label matrix Y € RN*™ ig then defined by
[Ysofl]z},c = pc(xi)-

To construct p(x), let the root-to-leaf constraint sequence for leaf ¢; be £; = {(fx, Ok, br)} iy
where fj, is the split feature, 6y, the threshold, and b, € {41, —1} encodes the branch orientation of
¢; atnode k. To measure the difference between leaves, the distance between the path and the sample
d; is calculated, which quantifies how well a sample satisfies the corresponding path constraints. For
a sample x, node-wise violations accumulate only when a split condition is not satisfied. Formally,
the violation at each split is defined as

dj(z) = 1 i:max(O, bi (zp, — Ok)). 4)

r
J k=1

With leaf £; assigned to cluster c, soft labels are then obtained by normalizing the path scores into a
distribution over clusters.

exp( - d(a2))
22;1 exp( - du(xl)) .
The network is then required to predict, for each sample, a distribution over the same m clus-
ters. Concretely, a linear mapping from the latent representation produces logits h(x;) € R™ and
§(z;) = softmax(h(z;)). Define §.(z;) = [§(z;)]c. where J.(z;) denote the predicted probabil-
ity that sample x; belongs to cluster c¢. The alignment is enforced with the Kullback-Leibler (KL)
divergence:

[Ysofl]i,c = pc(xi) = (5)

N m
Letuster = X >0 [Ylie log @ ©
N i=1 c=1 Ge(xi)

Minimizing this clustering loss aligns representations with the tree-induced partition of the input
space, making samples that follow similar decision paths closer in the latent space. This alignment
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enhances the synergy between the neural network and the surrogate tree, yielding more interpretable
guidance.

Cluster-Head Update and Inheritance Under soft supervision, training proceeds in a tree-guided
manner: at iteration ¢ the network is distilled into a surrogate tree 73 whose leaves induce clusters
and soft labels. When the tree is replaced by the updated tree 7", the clustering head is first re-
sized to match the new leaf count and then updated via a structure-aware transfer to preserve cluster
identities from 77", Specifically, each new leaf is paired with the most compatible predecessor
leaf using two complementary criteria—path similarity, which measures agreement of root-to-leaf
split sequences and sample overlap, computed as the intersection-over-union(IoU) between assign-
ments induced by 77" and T°¥. If both criteria indicate a reliable match, the corresponding
output weights and bias are initialized by convex combination between the default initializer and the
parameters of the matched predecessor (see Appendix[B.1I] Algorithm|T|for implementation details);
otherwise, the default initializer is used and unmatched predecessors are discarded. This procedure
yields smooth cluster evolution under minor edits while remaining robust to substantive changes,
maintaining consistent soft labels and a stable optimization trajectory.

Controlled Tree Update To mitigate update-induced drift that destabilizes cluster identities, TRI-
VAE performs tree replacement as a controlled update with separate scoring and gating stages. Let
T be the in-force tree and 772" the tree distilled at iteration ¢ on an attribution-selected feature
subset U; with attribution scores s; (see §4.3). The candidate is first evaluated by a penalized fidelity
objective that balances predictive agreement with structural simplicity:

J(T7d) = MSE(T7™) + Aapl - APL(T7*; Xan) (7

where MSE measures fidelity to the network’s outputs, and APL denotes the average path length of
the surrogate tree (formally defined in §4.4)), computed over the entire input set X, = {z1,...,2n5}
to penalize excessive depth.

Acceptance of a new tree is then gated by three complementary criteria: (i) attribution alignment,
requiring sufficient correlation between split importance and attribution scores (align(7*"4, s;) >
Talign)> €nsuring consistency with feature-level explanations; (ii) assignment stability, quantified by
the normalized mutual information NMI(z{"", z§2"?) between successive leaf assignments (where
z$" and z§29 are the vectors of per-sample leaf indices produced by T and T34, respectively)
, which is permutation-invariant and robust to differing leaf counts; and (iii) fidelity improvement,
requiring that the penalized objective J strictly decreases. Metric definitions and implementation
details are provided in Appendix [C]and Appendix [B.2]respectively.

4.3 EFFICIENT SHAP SAMPLING STRATEGIES

Training surrogate trees in high-dimensional spaces can yield deep, high-variance structures. TRI-
VAE therefore restricts the surrogate to a compact, attribution-selected feature subset ranked by
SHAP that reflect the network’s predictive behavior and align naturally with the tree splits. Instead
of standard Kernel SHAP — whose kernel weighting suffers from degeneracy and ill-conditioning
as dimensionality grows, this method rebalances the sampling budget across subset sizes while pre-
serving Shapley-consistent weights, achieving broad coalition coverage at comparable cost.

Subset-size-weighted sampling. Specifically, weights are assigned to all possible subset sizes. Let

d denote the number of input features, U C {1,...,d} a feature subset, and p|u| the total weight
assigned to all subsets of size |U|. This weighting enables effective sampling across subset sizes.
d—1
(3

L ol =Ton’
Subsequently, this sampling approach, based on Kernel SHAP, generates feature subsets such that
the number of sampled subsets of a given size is proportional to the total weight assigned to that
subset size. Let k be the total number of sampled subsets. The number of samples assigned to
subsets of a specific size |U|, denoted by k|y|, is determined according to the following equation:
plU
ko) =k x —12l—, ©)
i=1 Pi
Interestingly, for very small and very large subset sizes, it is possible to generate more samples
than the number of possible subsets, which could provide deeper insights into these extreme cases.
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Finally, to compute the weight for each individual sample, the total subset size weight is distributed
among the subsets. This is accomplished using the following equation:

PlUl

Pl 10
Fo, (10)

mu| =

Attribution smoothing and feature selection. To stabilize feature ranking across epochs, an ex-
ponential moving average (EMA) is maintained over attribution estimates. Let () ¢ Rio be
the kernel-weighted, magnitude—averaged attribution vector aggregated at epoch ¢. The smoothed
scores are

S0 = Bs0D 4 (1=, fe 1), 5O =4O, an

In practice, 3 was empirically chosen as 0.6. At each epoch, the top—+ features under s) form the
feature subset U, with k = min( [0.25d], nmax), and the surrogate tree is then trained on U,.

4.4 SIMPLE AND BALANCED DECISION TREE MODELS

To keep the surrogate decision tree both simple and balanced, a tree regularizer (Wu et al., [2018)
is adopted. Minimizing the regularizer L., promotes the formation of compact and well-balanced
trees. Here, the complexity is quantified by the average path length (APL), defined as the expected
number of internal decisions along the root-to-leaf path required to make a prediction for a given
sample x.

Because tree induction is non-differentiable, the regularizer cannot be optimized directly. A small

MLP surrogate Q(W; &) is therefore trained to map the current network parameters W to an estimate
of the tree’s APL. Let (W) denote the measured APL of the surrogate tree fitted at parameters
W. During training, parameter snapshots and their measured complexities form a dataset S =
{(W;,Q(W;))}/_,. and the surrogate is learned by Lo-regularized least squares:

J
min 3 (W) = 2W;:6)” + eléll. (12)
j=1

The tree regularizer used in optimization is then taken to be the surrogate output,
Luee = Q(W;6). (13)
To remain aligned with the evolving model, only parameter—APL pairs from the most recent 50

epochs are retained when updating the surrogate.

4.5 TREE-REGULARIZED INTERPRETABLE VARIATIONAL AUTOENCODER

TRI-VAE optimizes a weighted sum of three objectives: (i) a VAE term that reconstructs high-
dimensional inputs and shapes a compact latent space; (ii) a cluster-alignment term that matches
network predictions to tree-induced soft labels; and (iii) a tree-complexity term that penalizes ex-
cessive average path length to promote simple and balanced rules.

ﬁ - ACVAE + )\Cluster Ecluster + )\tree »Ctreea (14)
where Acjuster, AMree > 0 are loss weights. See Appendix for weighting details.

5 EXPERIMENTS AND RESULTS

5.1 SETTINGS

Datasets. This study uses three datasets. TCGA-LIHC provides 424 liver-cancer transcriptomic
profiles with 60,661 features. TUEP (Obeid & Picone, 2016; a subset of the TUH EEG corpus) is
represented by 186,200 samples with 798 features after data processing. The private PPH cohort
contains 5,935 cases with 48 clinical variables. See Detailed descriptions of all datasets and data
processing methods are provided in Appendix [D.1]
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Performance Metrics: Model performance is reported using accuracy, precision, recall, F1 score,
and AUC; formal definition in Appendix [C)). Interpretability is additionally assessed via clinician
responses to LLM-generated multiple-choice items.

Experimental Setup In this study, the encoder input dimension equals the feature count of each
dataset; hidden and latent sizes are 64. Models are optimized with Adam (Ir = 10~3) for 300
epochs, using batch size 128 on PPH/TUEP and 32 on TCGA-LIHC. Results are averaged over five
fixed seeds {19, 21, 42, 60, 99}. All experiments were run on 4x NVIDIA RTX 3090 (24 GB)
GPUs. Code is provided in the supplementary materials.

5.2 EFFECTIVENESS VALIDATION OF THE INTERPRETIVE GUIDANCE MECHANISM

b @ 0 1] lest

(a) Baseline VAE (no guidance). (b) TRI-VAE (with guidance).

0.2

Assignment stability (NMI)

0.0

QP & o Q> ®
AP > S RN, B

Tree update at t epoch
(c) surrogate tree on dataset PPH (d) Assignment stability during training.

Figure 2: Panels (a—b) show t-SNE of latent space; points are colored by surrogate-tree leaf and marker shape
denotes class. Panel(c) displays the surrogate tree on PPH dataset. Panel (d) reports assignment stability (NMI)
across tree updates. T-SNE and surrogate-tree results for TCGA-LIHC and TUEP appear in Appendix@

Latent-space alignment. Latent embeddings are visualized using t-SNE, as shown in Fig.[2] With-
out tree guidance (Fig.[24), the embeddings are diffuse and colors corresponding to different decision
paths show noticeable overlap, indicating weak alignment between latent codes and rule partitions.
After applying the interpretive guidance mechanism(Fig. 2b), samples following the same decision
path (denoted by similar colors) cluster more tightly in the latent space, while samples belonging to
different paths are more clearly separated. This demonstrates that the latent representation becomes
aligned with the rule-based partitioning induced by the decision tree, leading to a more structured
and interpretable embedding space.

Fidelity of the Surrogate Tree. Fig. [2c|shows the surrogate tree for PPH, which provides readable
decision paths that account for the model’s predictions. The surrogate tree closely matches the
behavior of the VAE classifier on held-out data, achieving high fidelity on all datasets—PPH: 96.1%,
TCGA-LIHC: 97.6%, and TUEP: 91.2%. These results indicate that the extracted paths can be
trusted as faithful explanations in most cases.

Assignment stability. To assess the stability of tree replacement during training, the procedure
tracks the NMI between consecutive leaf—assignment vectors at each tree refresh. During the first
50 epochs, the surrogate tree is freely replaced to avoid over-constraining the VAE while its rep-
resentations are still forming, which manifests as early volatility in Fig. [2d] After epoch 50, the
tree-update control (§4.2) is enabled to prevent dramatic structural changes that could disrupt rep-
resentation learning; the curve then transitions from volatility to a stable regime, with NMI main-
taining a mid-high band and gradually increasing. As the latent representation matures, updates
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become conservative—mostly local refinements rather than wholesale restructurings—so consecu-
tive leaf assignments remain stable and clusters avoid large reassignments.

Further results for TCGA-LIHC and TUEP are provided in Appendix [A.T]

5.3 EVALUATION OF THE EFFECTIVENESS OF TREE REGULARIZATION

This experiment evaluates the tree regularization module and shows that, across datasets, it produces
more compact surrogate trees and improves predictive performance. Figure [3] compares surrogate
trees trained with and without tree regularization on the PPH dataset, demonstrating a clear reduction
in structural complexity. AUC gains are observed — +0.059 on PPH, +0.011 on TCGA-LIHC, and
+0.011 on TUEP—indicating that enforcing concise decision paths enhances generalization while
also achieving higher predictive quality.

(a) Surrogate tree when Agee=0 (b) Surrogate tree when Agee—6

Figure 3: Comparison of Decision Tree Structures with/without tree regularization. See Appendix for
enlarged version

5.4 EFFECT OF SAMPLING SI1ZE IN SHAP ESTIMATION

To evaluate the efficiency of the proposed SHAP sampling strategy under high-dimensional setting,
experiments were conducted under different sampling sizes on the TCGA-LIHC dataset, as shown
in Table [T} Results indicate that small sampling sizes lead to only moderate performance drops
but greatly reduce running time. As the sampling size increases, accuracy and fidelity improve
and eventually converge when the size reaches 4000 or more. This shows that the sampling strategy
maintains performance within an acceptable range while offering a clear trade-off between efficiency
and accuracy in high-dimensional settings. See Appendix [A4] for the baseline comparison with
Kernel SHAP.

Table 1: Performance and efficiency of sampling SHAP under different SHAP sampling sizes

Sample Size AUC  Accuracy Fidelity Time per explanation (s)

10 0978 0918 0.882 0.231
100 0.985 0.927 0.906 2.860
1000 0.989 0.942 0.918 28.539
2000 0.991 0.952 0.929 57.187
3000 0.993 0.952 0.937 85.656
4000 0.995 0.975 0.965 114.248
5000 0.996  0.987 0.976 142.979

5.5 EXPLAINABLE PREDICTION ABILITY EVALUATION OF TRI-VAE

TRI-VAE is evaluated on TCGA_LIHC, TUEP, and PPH datasets. All results are averaged over five
fixed seeds. Baselines include a strong black-box learner (XGBoost (Chen & Guestrinl 2016)), inter-
preted post-hoc via SHAP), an inherently interpretable generalized additive model (EBM (Lou et al.,
2012 Nori et al., 2019)), VAE-based counterparts (OmiVAE (Zhang et al.;, 2019), XOmiVAE (With-
nell et al., 2021))), and recent structurally interpretable deep models (NCART (Luo & Xul 2024)), a
differentiable tree ensemble; IMN (Kadra et al 2024)), a hypernetwork yielding instance-specific
linear models). Results for TCGA-LIHC, TUEP, and PPH appear in Tables 2} [3] and ] respectively.
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TRI-VAE consistently outperforms existing VAE-based models and remains competitive with other
state-of-the-art interpretable models, achieving a strong balance between predictive performance
and interpretability in high-dimensional data.

Table 2: comparison of model performance on dataset TCGA-LIHC

Model Accuracy Precision Recall F1 Score AUC
XGBoost 0.958+0.031  0.987£0.014  0.965£0.026  0.976£0.018  0.985+0.010
EBM 0.976+£0.014  0.987+0.009  0.987+0.013  0.9874+0.008  0.9984+0.002

OmiVAE 0.928+£0.015  0.942+0.012  0.948+0.015  0.9451+0.014  0.93840.009
XOmiVAE  0.985+0.011  0.993£0.010  0.955+0.005  0.973+£0.005  0.977+0.016
NCART 0.981£0.006  0.995+0.007  0.984+0.011  0.9891+0.004  0.98240.003
IMN 0.97940.006  0.987+0.011 0.990+0.007  0.988+0.003  0.999-£0.001
TRI-VAE 0.987+£0.015  0.978+0.016  0.958+0.013  0.965+0.010  0.99640.002

Table 3: comparison of model performance on dataset TUEP

Model Accuracy Precision Recall F1 Score AUC
XGBoost 0.903£0.001  0.890£0.004  0.745£0.002  0.811£0.002  0.946=£0.001
EBM 0.921+£0.001  0.925+0.002  0.921+0.001  0.9284+0.003  0.966+-0.001

OmiVAE 0.8440.002 0.861£0.01 0.844£0.003  0.852+0.001 0.809-£0.001
XOmiVAE  0.89740.003  0.920£0.001  0.958+0.003  0.939+0.002  0.93440.001
NCART 0.890£0.007  0.913+0.025  0.959+0.033  0.9354+0.005  0.92640.007
IMN 0.845+£0.003  0.843+0.002  0.999+0.002 0.9144+0.001  0.86540.001
TRI-VAE 0.906£0.011  0.944+0.007  0.940+0.013  0.9431+0.005  0.93640.005

Table 4: comparison of model performance on dataset PPH

Model Accuracy Precision Recall F1 Score AUC
XGBoost 0.976£0.003  0.699+0.049  0.719+0.033  0.708+0.039  0.933+0.009
EBM 0.977+£0.002  0.747+0.030  0.637+0.057  0.6861+0.035  0.91140.018

OmiVAE 0.825+£0.014  0.857+£0.038  0.807+0.048  0.830+0.016  0.82940.020
XOmiVAE ~ 0.9234+0.021  0.891£0.035  0.915+0.028  0.902+0.019  0.938+0.015
NCART 0.976£0.004  0.825+0.057  0.558+0.041 0.665£0.041 0.935+0.012
IMN 0.975+£0.004  0.916+0.008 0.531+0.06 0.67240.003  0.93440.001
TRI-VAE 0.961£0.012  0.967+0.013  0.961+0.016  0.963+0.011  0.91240.016

5.6 EVALUATION OF EXPLAINABLE MODELS USING LLMS

In this section, explainability is assessed in the clinical context of PPH diagnosis using a locally
deployed large language model (LLM) to render model outputs in a more clinician-readable form.
Specifically, DeepSeek is employed, an open-source LLM that supports secure local deployment.
DeepSeek was prompted with only structured outputs-namely, SHAP-derived feature rankings and
symbolic, text-based representations of decision tree logic. This design intentionally avoids uncon-
strained generation and mitigate hallucination by grounding the LLM’s generation in model-derived,
domain-consistent artifacts. Prompt examples used in this evaluation are provided in Appendix[B.4]
DeepSeek was tasked with generating 20 multiple-choice or judgment-based questions (see Ap-
pendix for an example) strictly based on the provided artifacts. These questions were then pre-
sented to nine healthcare professionals (seven attending physicians, one associate chief physician,
and one chief physician) from a local hospital. Points were awarded based on agreement between
clinicians’ answers and model’s outputs. A weighted average score was calculated (weights: 1 for
attendings, 2 for associate chief, 3 for chief physician), resulting in a final interpretability score of
86.9/100. This result supports the claim that our model’s reasoning is both accessible and verifiable
to domain experts, while the controlled use of the LLM ensures the reliability of the interpretability.
See Appendix [B.6|for a visual summary of the evaluation workflow.

6 CONCLUSION

This study addresses interpretability in high-dimensional modeling by introducing TRI-VAE. The
method links the VAE latent space to a decision-tree structure by treating tree leaves as soft clus-
tering labels. It further refines Kernel SHAP with a subset-size—aware sampling scheme to re-
duce variance and improve scalability in high dimensions. In addition, it combines intrinsic (tree-
regularized) and post-hoc (SHAP-based) explanations to provide a multi-level view of model behav-
ior. Experiments show that TRI-VAE achieves strong balance between prediction performance and
interpretability, offering a practical path toward trustworthy analysis of high-dimensional data.
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A.1.2 TUEP
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Figure 6: TUEP: t-SNE visualization of latent space
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Figure 7: TUEP: surrogate tree
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A.2 EFFECTIVENESS VALIDATION OF THE INTERPRETIVE GUIDANCE MECHANISM
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A.3 COMPARISON OF DECISION TREE STRUCTURES WITH/WITHOUT REGULARIZATION

Samples = 32
value = [15.183, 33.336]

Samples = 41
value = [21.466, 33.336]
Samples = 126
[value = [64.921, 44.448)|

(b) Surrogate tree when Ayee=6

Figure 10: Comparison of Decision Tree Structures with/without tree regularization.
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A.4 ADDITIONAL ANALYSIS ON SHAP IN HIGH-DIMENSIONAL SETTINGS

A4.1

KERNELSHAP BASELINE COMPARISON

Table 5: Kernel SHAP: performance and efficiency under different sampling sizes (TCGA-LIHC).

Sample Size AUC Accuracy Fidelity Time per explanation (s)

10 0972 0.883 0.843 0.277
100 0.981 0.906 0.882 3.575
1000 0.986 0.929 0.902 35.674
2000 0.989 0.937 0.921 74.343
3000 0991 0.941 0.934 111.353
4000 0.993 0.952 0.954 154.235
5000 0.994 0.952 0.954 193.022

A.4.2 HIGH-DIMENSIONAL MEMORY/EFFICIENCY HANDLING

Directly performing Kernel SHAP in high-dimensional settings becomes memory- and time-
prohibitive because it requires evaluating many coalitions and solving a large weighted least-squares
problem. To make the baseline feasible and ensure a fair comparison, the same engineering measures
are applied to both Kernel SHAP and the Sampling SHAP strategy:

Streaming mini-batch evaluation of coalitions (no materialization of a full design matrix).
Mixed precision (fp16 masks / fp32 accumulators) to reduce activation memory.

Conjugate-gradient (CG) solver for the normal equations X WX 5 = X "Wy instead
of explicitly forming and inverting X "W X.
Size-stratified coalition sampling to cover all subset sizes while controlling variance; Ker-
nelSHAP uses the Shapley kernel w(]S|) with importance correction, whereas Sampling
SHAP follows the proposed size distribution.

Batch-size capping and seed-controlled mask generation to stabilize memory usage and
variance.

These implementation choices prevent GPU memory blow-ups for Kernel SHAP in high dimension
and keep both methods comparable under matched hardware/software conditions.
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B IMPLEMENTATION DETAILS

B.1 STRUCTURE-AWARE CLUSTER-HEAD UPDATE

Algorithm 1 Structure-Aware Cluster-Head Update

Require: previous tree 7}, new tree T7*¢", data Xy,, old head H,q, initializer Init, tolerance
g, decay 7, IoU threshold 7
Ensure: updated head H, ey,
1: function PATHSIM(p4, p2, €, )
2: kicp < length of longest common prefix under tolerant equality
(same feature, direction, and per-split threshold difference < ¢)
3 dist ¢ (Ipa] — iep) + (Ip2] — ki)
4 return 1/(1 + - dist)
5: end function
6: Poa < EXTRACTPATHS(TY™), Puew +— EXTRACTPATHS(T;*¢")
70 2V« TP apply(Xy, ), ztY < T/ apply(Xy,)
8: Hpew + Init(|Prew|)
9: for each new leaf ¢ € Ppey do
0

10: "« max PATHSIM (Puewlc], Poialo]; €,7) > best similarity value
0€Po1d
1: 0"« arg max PATHSIM (Puewlc], Poialo]; €, 7) > ID of best-matching old leaf
0€Po1d
12: A+ {i| 2Z0"li] = 0*}, B« {i | z}*"[i] = ¢}
14N Bl
13: ToU «
YT auB|
14: if s* >0 A IoU > 7 then
15: w 4= Vs* - IoU
16: Hyewlc] ¢ (1 — w) Hyewlc] + w Hoalo*]
17: end if

18: end for
19: return H, .,

17
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B.2 CONTROLLED ACCEPTANCE THRESHOLDS

Let
JE = MSE(TF™) + - APLTE™; Xan),

JEnd = MSEval(T7™) + Xapt - APL(TF*™: Xon).
Here, A,p is setto 7.5 X 10~%. The candidate is accepted if
ACCEPT(Tf™) = (J7™ + ¢, < JF™)
A (align(thand, st) > Tahgn)
A (NMI(zgur 2°0) > 1a(1)).
Early in training, latent representations and distilled targets are nonstationary. A strict stability re-
quirement at this stage tends to reject beneficial restructurings and underfit the surrogate. As training
progresses and representations stabilize, a higher stability floor helps preserve cluster identities and

prevents gratuitous structural churn. For this reason, the NMI floor is annealed from a permissive
level to a stricter target.

The stability threshold is annealed over epochs (71" total) as

0, t<al,
t—aT
7'nmi(t) = Tstart + BiT(Tend - Tstart)7 oT S t < (a + ﬁ)Ta
Tend, otherwise,

with o = 0.25, 8 = 0.50, Tgtars = 0.30, and 7g = 0.70 (for T=300, these correspond to ¢ < 75,
75 <t <225, and t > 225). The alignment gate uses a fixed Spearman threshold 7,j;gn = 0.35.
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B.3 WEIGHT SCHEDULES FOR AcLusters AND Aireg

The training objective is a weighted composite loss:

L = LVAE + )\clusler Lcluster + Atree Ltree~
Let e denote the current epoch, 1" the schedule horizon (set to 7'=>50 in the reported experiments),
and ¢ = min(1,e/T).

Acuster: Because soft labels derive from the surrogate’s leaf structure and are particularly noisy
early on, a cosine schedule (with zero initial slope at t=0) is adopted to avoid prematurely steering
the latent representation, yet allows it to dominate later as the structure stabilizes.

The cluster-alignment weight follows a cosine rise from 0 to 8.0:

Acusier(t) = 8.0 x 1 (1 — cos(nt)).

Aree:  The tree regularization weight is disabled during the first 50 epochs to avoid interfering with
early representation learning, and is then fixed to a constant value thereafter:

() 0, e<50,
ree\€) =
‘ 6.0, e> 50.

This schedule postpones structural pressure until cluster identities and latent representation have
largely stabilized; once activated, this loss term enforces compactness without introducing additional
late-phase variance. The regularizer itself is given by the learned APL surrogate Q2(W; &), which
maps current network parameters to an APL estimate and is trained on recent parameter—APL pairs
to track model evolution.
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B.4 LLM-BASED PROMPT DESIGN FOR INTERPRETABILITY EVALUATION

To evaluate the interpretability of the TRI-VAE model from a clinical perspective, we employed a
large language model (LLM) to generate a structured questionnaire targeted at medical experts. The
objective is to assess whether the explanations provided by the model—based on SHAP values and
decision tree rules—are intuitive and align with expert domain knowledge.

In the prompt design process, the LLM was provided with three categories of input: (1) 200 real-
world anonymized clinical cases, equally split into 100 positive (PPH) and 100 negative (non-PPH)
samples; (2) a ranked list of important features as identified by SHAP and decision tree analysis;
and (3) the structural logic of the decision tree, including feature split thresholds and decision paths.
The LLM was instructed to focus on a subset of features deemed most predictive (approximately 6
out of a total of 48), and to ignore irrelevant variables. Based on this input, the model was prompted
to generate clinically meaningful questions rooted in representative patient scenarios.

You are a medical data analyst tasked with designing an interpretability assessment questionnaire for a
clinical decision-support model used to predict postpartum hemorrhage (PPH). The model outputs are
explained using:

* A decision tree comprising key features: placental width, first-stage labor duration, placental
integrity, gravidity, mode of labor onset, and parity.

e SHAP value-based feature attribution highlighting: second-stage labor duration, gravidity,
parity, placental width, membrane rupture type, fetal delivery mode, placental integrity, car-
betocin administration, vaginal examination count, and maternal education level.

You are provided with a real-world dataset comprising 200 anonymized cases (100 PPH-positive and
100 PPH-negative patients). Your task is to generate a set of 10 representative clinical questions that
will be used to evaluate the model’s interpretability by practicing clinicians. Please adhere to the
following instructions:

(1) All questions must be either binary (True/False) or multiple-choice.

(2) Questions derived from SHAP explanations should assess whether an increase or decrease
in a specific feature value is associated with higher or lower PPH risk.
Example: “Does greater placental width increase the risk of postpartum hemorrhage?”
(True/False)

(3) Questions derived from the decision tree should be grounded in its decision paths.
Example: "If the placental width is large, the first stage of labor is prolonged, and the patient
is multiparous, is the risk of PPH elevated?” (True/False)

(4) Select approximately six representative features from the model’s top-ranked features to
construct clinically relevant and diverse questions.

(5) Avoid ambiguous or overly technical phrasing; the questionnaire should be understandable
by medical professionals without access to model internals.
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B.5 POSTPARTUM HEMORRHAGE RISK QUESTIONNAIRE

Question

Options

1. Please fill out your personal information

A. Name:

B. Occupation:

C. Workplace:

D. Specialty/Department:

2. Which of the following factors do you think is most
closely related to postpartum hemorrhage risk? Please rank
by importance.

A. Placental width

B. First stage duration
C. Second stage duration
D. Placental completion
E. Gravidity

F. Mode of delivery

G. Parity

3. If placental width is large, the risk of postpartum hemor-
rhage may:

. Increase

. Decrease

. Remain unchanged
. Cannot determine

4. Which of the following situations may lead to a higher
risk of postpartum hemorrhage? (Multiple choices)

. Lower parity
. Intact placenta

5. Which stage of labor (first or second stage) is more likely
to increase the risk of postpartum hemorrhage?

. First stage of labor
Second stage of labor
Cannot determine

6. Does a higher parity correlate with a higher risk of post-
partum hemorrhage?

Yes
No
Cannot be determined

7. A prolonged second stage of labor may increase the risk
of postpartum hemorrhage:

Yes
No
Cannot determine

8. A higher parity is associated with a lower risk of postpar-
tum hemorrhage:

Yes
No
Cannot determine

9. The mode of delivery (vaginal delivery or cesarean sec-
tion) does not affect the risk of postpartum hemorrhage:

Yes
No
Cannot determine

10. There is no clear relationship between the mode of am-
niotic sac rupture and the risk of postpartum hemorrhage:

Yes
No
Cannot determine

11. If the placental width is smaller and the duration of the
first stage of labor is shorter, is the risk of postpartum hem-
orrhage lower?

Yes
No
Cannot determine

12. If the placental width is large, the duration of the first
stage of labor is long, and the parity is high, will the risk of
postpartum hemorrhage significantly increase?

Yes
No
Cannot determine

13. If the placental width is large and the placenta is intact,
is the risk of postpartum hemorrhage lower?

Yes
No
Cannot determine

14. The effect of carbetocin on postpartum hemorrhage is
unrelated to other factors:

Yes
No
Cannot determine

15. The more vaginal examinations performed, the higher
the risk of postpartum hemorrhage:

Yes
No
. Cannot determine

QWP OTPOPFOFFOBPHORFORFOFFOFPOTHOTPOOEHTOW
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Question

Options

16. Women with higher levels of education have a lower risk
of postpartum hemorrhage:

A. Yes
B. No
C. Cannot determine

17. Can postpartum hemorrhage be diagnosed in women
with the following characteristics: placental width greater
than 18 cm, first stage of labor duration less than 700 min-
utes, placental integrity score of 1 (intact), age over 30 years,
placental weight greater than 500g, second stage of labor
duration less than 100 minutes, and blood loss during labor
less than 300 ml?

A. Yes
B. No
C. Cannot determine

18. Can postpartum hemorrhage be diagnosed in women
with the following characteristics: placental width greater
than 20 cm, placental length greater than 20 cm, placental
weight greater than 600g, first stage of labor duration less
than 500 minutes, second stage of labor duration less than
100 minutes, spontaneous rupture of membranes (score 1),
and age over 30 years?

A. Yes
B. No
C. Cannot determine

19. Can postpartum hemorrhage be diagnosed in women
with the following characteristics: placental width greater
than 20 cm, first stage of labor duration greater than 800
minutes, placental integrity score of 2 (incomplete), parity
of 2, second stage of labor duration greater than 150 min-
utes, and blood loss during labor greater than 500 ml?

A. Yes
B. No
C. Cannot determine

20. Can postpartum hemorrhage be diagnosed in women
with the following characteristics: first stage of labor du-
ration greater than 600 minutes, placental width less than
17 cm, placental integrity score of 2 (incomplete), placen-
tal length greater than 20 cm, placental weight greater than
600 g, and second stage of labor duration greater than 100
minutes?

A. Yes
B. No
C. Cannot determine

21. Can postpartum hemorrhage be diagnosed in women
with the following characteristics: placental width greater
than 18 cm, first stage of labor duration less than 700 min-
utes, placental integrity score of 1 (intact), placental weight
greater than 500 g, second stage of labor duration less than
50 minutes, fewer than 5 vaginal examinations, and blood
loss during labor less than 300 ml?

A. Yes
B. No
C. Cannot determine
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B.6 EVALUATION PROCESS WITH LLMS

Input: Decision tree Output: Evaluate the model's
for key features extraction interpretability
A
v
Action: Calculate interpretabilit
Input: 100 randomly selected cases o p Y
o . scores by assigning weights
(positive:negative = 1:1) , .
according to professional rank
A
A 4
Prompt: Generate questions based .
P q o Action: Consult doctors of different
on real sample data and decision .
professional ranks
tree features
A
v
Output: Questions and options Form: Interpretability verification
generated by LLM qguestionnaire

Figure 11: Evaluation process with LLMs
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C EVALUATION METRICS
The following metrics are used to evaluate the performance of TRI-VAE:

1. Accuracy Accuracy represents the proportion of all samples correctly classified. It is calculated

as:
TP+TN

TP+ FN+FP+TN

where TP refers to the number of True Positives, TN refers to the number of True Negatives, FP
refers to the number of False Positives, and FN refers to the number of False Negatives.

ACC =

2. Recall Recall (also known as Sensitivity or True Positive Rate) represents the proportion of
actual positive samples correctly identified by the model. It is computed as:

TP

Rec— — -+
CTTPYFN

3. Precision Precision represents the proportion of predicted positive samples that are correctly
identified. It is calculated as:
TP

Pre= — -+
= TPy FP

4. F1 Score The F1 Score is a metric that combines both Precision and Recall, providing a single
measure of model performance that balances the trade-off between them. It is computed as:

Fl — 2 x Pre x Rec

~ Pre +Rec
This metric is especially useful when dealing with imbalanced datasets, where either Precision or
Recall might be misleading on its own.

5. AUC (Area Under the ROC Curve) AUC measures threshold—independent discrimination by
integrating the Receiver Operating Characteristic (ROC), which plots the True Positive Rate (TPR)
against the False Positive Rate (FPR) as the decision threshold varies. Formally,

1
AUC = / TPR(u)du  withu = FPR,
0

6. Fidelity (MSE). Given X and the distilled target yqistin () at iteration ¢,

can 1 can 2
MSE(T¢™) = x| > (Tt ) - ydistin(x)) :
reX

7. Assignment stability (NMI). Let 2{" () and 2{2"4(z) denote leaf indices assigned by TF™
and T4, and P, Q) be their empirical label distributions. Using the symmetric normalization,

NMI(z5"r, z52nd) = TR éf;f’gz o) € [0,1].

8. Feature alignment (Spearman). Let imp(772"?) € R* denote the split-importance vector of
Teand regtricted to Uy. The alignment score is

a‘hgn(thandv St) = pSpearman(imp(Ttaand), St) S [—1, 1]
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D DATASETS AND PROCESSING DETAILS

D.1 DATASETS

Dataset Domain Samples Dimensionality
TCGA_LIHC Liver cancer, transcriptomics 424 60,661
TUEP EEG for epilepsy research 186,200 798
PPH (private)  Postpartum hemorrhage prediction 5,935 48

Table 7: Summary of datasets; for TUEP the figure refers to the post—preprocessing representation.

TCGA-LIHC. The TCGA-LIHC dataset, provided by the University of California, Santa Cruz, is
designed to support cancer research with an emphasis on liver cancer. It contains 424 samples and
60,661 features, primarily gene-expression measurements that carry transcriptomic detail relevant
to liver cancer. The dataset is accessible via https://gdc.xenahubs.net/.

TUEP. TUEP is a publicly available subset of the Temple University Hospital EEG corpus that
is widely used in epilepsy research. The dataset comprises 200 subjects in total, with 100 di-
agnosed with epilepsy and 100 without epilepsy. In this work, each sample is represented by a
798-dimensional vector after preprocessing and feature extraction. The dataset is accessible via
https://isip.piconepress.com/projects/nedc/html/tuh_eeqg/.

Private PPH. The private postpartum hemorrhage (PPH) dataset is sourced from a local hospital.
It comprises 5,935 samples, each with 48 features, and is used for prediction of postpartum hem-
orrhage risk. Note that all patient data used in this process were fully anonymized prior to model
access, and no personally identifiable information (PII) or protected health information (PHI) was
included.

D.2 DATA PROCESSING FOR TUEP

Inclusion and channels. Recordings with labels epilepsy or no-epilepsy are included. Only
average-reference montages are retained; all other montages are excluded. From each recording,
19 international 10-20 electrodes are used: Fpl, Fp2, F3, F4, C3, C4, P3, P4, Ol, 02, F7, F8, T3,
T4, T5, T6, Fz, Cz, Pz.

Preprocessing. All EEG signals are resampled to 256 Hz. Spectral content is harmonized using
a 4th-order IIR Butterworth band-pass filter with passband 0.5 — 128 Hz. Power-line interference is
attenuated with notch filters at 60 Hz and 120 Hz. No automated artifact removal is applied. Each
continuous recording is partitioned into fixed, non-overlapping 10-second windows. Recordings
shorter than one full window are excluded from further analysis.

Feature Extraction. In this study, for each 10-s window and for every retained EEG channel, a
time—frequency representation is obtained via the discrete wavelet transform (DWT). The transform
employs the Daubechies—16 mother wavelet (db16) with six decomposition levels and symmetric
signal extension. From the resulting decomposition, only the detail sub-bands D1, ..., Dg are con-
sidered, while approximation coefficients are discarded.

Let {a;}; denote the coefficients in D; after removing any non-finite values. For each D; the
following seven statistics are computed:

1 N
1. Mean. y = ~ Zai.
i=1

2. Population standard deviation. o =



https://gdc.xenahubs.net/
https://isip.piconepress.com/projects/nedc/html/tuh_eeg/
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a; — |
g

N
1
3. Skewness. (reported only if N > 2): skew(a) = NZ( )3 (bias-corrected in
i=1

implementation).

4. Kurtosis. (non-Fisher form; Gaussian ~ 3; reported only if N > 3):
N
1 a; — [h\4
kurt(a) = — )
urt(a) = ZH( .
5. Maximum. max a;.

6. Minimum. min a;.
K3

N
7. Log-sum distance (LSD). LSD = log10(|z a1;| + 10*12), a robust energy-like scalar.
i=1
Per window, statistics from all channels and sub-bands are concatenated into a 798-dimensional
feature vector:
19 x 6 x 7 =798

~ "~ T =~

channels sub-bands statistics
In total, the corpus yields 186,200 windows, comprising 31,796 non-epilepsy segments and 154,404
epilepsy segments.
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